

Expert SQL Server
2008 Development

Alastair Aitchison
Adam Machanic

Expert SQL Server 2008 Development

Copyright © 2009 by Alastair Aitchison and Adam Machanic

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-7213-7

ISBN-13 (electronic): 978-1-4302-7212-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Evan Terry
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Damon Larson
Compositor: Bytheway Publishing Services
Indexer: Barbara Palumbo
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to
answer questions pertaining to this book in order to successfully download the code.

 CONTENTS

Contents at a Glance

 Contents at a Glance.. iv

 Contents.. v

 About the Author.. xvi

 About the Technical Reviewer .. xvii

 Acknowledgments ... xviii

 Preface... xix

 Chapter 1: Software Development Methodologies for the Database World1

 Chapter 2: Best Practices for Database Programming ...23

 Chapter 3: Testing Database Routines..49

 Chapter 4: Errors and Exceptions ...71

 Chapter 5: Privilege and Authorization...101

 Chapter 6: Encryption ...121

 Chapter 7: SQLCLR: Architecture and Design Considerations.............................159

 Chapter 8: Dynamic T-SQL ..195

 Chapter 9: Designing Systems for Application Concurrency235

 Chapter 10: Working with Spatial Data...283

 Chapter 11: Working with Temporal Data...321

 Chapter 12: Trees, Hierarchies, and Graphs ...371

Index ..419

iv

Contents

 Contents at a Glance .. iv

 Contents.. v

 About the Author.. xvi

 About the Technical Reviewer .. xvii

 Acknowledgments ... xviii

 Preface... xix

 Chapter 1: Software Development Methodologies for the Database World1

Architecture Revisited ...1
Coupling.. 3

Cohesion... 4

Encapsulation ... 5

Interfaces.. 5

Interfaces As Contracts .. 6

Interface Design ... 6

Integrating Databases and Object-Oriented Systems..8

Data Logic... 10

Business Logic.. 11

Application Logic .. 12

The “Object-Relational Impedance Mismatch” ...12
Are Tables Really Classes in Disguise? .. 13

Modeling Inheritance.. 14

ORM: A Solution That Creates Many Problems..17

v

 CONTENTS

Introducing the Database-As-API Mindset...18

The Great Balancing Act ..19

Performance ... 19

Testability ... 20

Maintainability .. 20

Security .. 21

Allowing for Future Requirements.. 21

Summary ...22

Best Practices for Database Programming..23

 Chapter 2: Best Practices for Database Programming ...23

Defensive Programming ..23

Attitudes to Defensive Programming.. 24

Why Use a Defensive Approach to Database Development?.. 27

Best Practice SQL Programming Techniques ..28
Identify Hidden Assumptions in Your Code... 29

Don’t Take Shortcuts .. 33

Testing.. 36

Code Review... 39

Validate All Input... 40

Future-proof Your Code .. 42

Limit Your Exposure.. 43

Exercise Good Coding Etiquette.. 43

Comments ... 44

Indentations and Statement Blocks... 45

If All Else Fails. 46

Creating a Healthy Development Environment ..46

Summary ...47

vi

 CONTENTS

 Chapter 3: Testing Database Routines..49

Approaches to Testing ...49

Unit and Functional Testing ...50

Unit Testing Frameworks ... 52

Regression Testing ... 55

Guidelines for Implementing Database Testing Processes and Procedures....................55
Why Is Testing Important?.. 56

What Kind of Testing Is Important? .. 56

How Many Tests Are Needed?.. 57

Will Management Buy In?... 58

Performance Monitoring Tools ..58

Real-Time Client-Side Monitoring .. 59

Server-Side Traces... 60

System Monitoring ... 61

Dynamic Management Views (DMVs)... 62

Extended Events ... 63

Data Collector ... 65

Analyzing Performance Data ...67
Capturing Baseline Metrics .. 67

Big-Picture Analysis ... 68

Granular Analysis.. 68

Fixing Problems: Is It Sufficient to Focus on the Obvious?... 70

Summary ...70

 Chapter 4: Errors and Exceptions ...71

Exceptions vs. Errors ...71

How Exceptions Work in SQL Server ...72
Statement-Level Exceptions... 73

Batch-Level Exceptions .. 73

vii

 CONTENTS

Parsing and Scope-Resolution Exceptions ... 75

Connection and Server-Level Exceptions ... 76

The XACT_ABORT Setting ... 77

Dissecting an Error Message.. 78

Error Number... 78

Error Level ... 79

Error State ... 79

Additional Information ... 80

SQL Server’s RAISERROR Function... 81

Formatting Error Messages ... 82

Creating Persistent Custom Error Messages... 83

Logging User-Thrown Exceptions.. 85

Monitoring Exception Events with Traces .. 85

Exception Handling ..85

Why Handle Exceptions in T-SQL?.. 86

Exception “Handling” Using @@ERROR... 86

SQL Server’s TRY/CATCH Syntax .. 87

Getting Extended Error Information in the Catch Block ... 89

Rethrowing Exceptions.. 90

When Should TRY/CATCH Be Used? .. 91

Using TRY/CATCH to Build Retry Logic .. 91

Exception Handling and SQLCLR .. 93

Transactions and Exceptions...96
The Myths of Transaction Abortion... 96

XACT_ABORT: Turning Myth into (Semi-)Reality .. 98

TRY/CATCH and Doomed Transactions... 99

Summary ...100

 Chapter 5: Privilege and Authorization...101

The Principle of Least Privilege ...102

viii

 CONTENTS

Creating Proxies in SQL Server... 103

Server-Level Proxies ... 103

Database-Level Proxies... 104

Data Security in Layers: The Onion Model.. 104

Data Organization Using Schemas...105

Basic Impersonation Using EXECUTE AS ...107

Ownership Chaining...110

Privilege Escalation Without Ownership Chains ..112

Stored Procedures and EXECUTE AS .. 112

Stored Procedure Signing Using Certificates ... 114

Assigning Server-Level Permissions .. 117

Summary ...119

 Chapter 6: Encryption ...121

Do You Really Need Encryption?..121
What Should Be Protected?.. 121

What Are You Protecting Against?.. 122

SQL Server 2008 Encryption Key Hierarchy...123
The Automatic Key Management Hierarchy ... 123

Symmetric Keys, Asymmetric Keys, and Certificates.. 124

Database Master Key... 125

Service Master Key.. 125

Alternative Encryption Management Structures... 125

Symmetric Key Layering and Rotation .. 126

Removing Keys from the Automatic Encryption Hierarchy.. 126

Extensible Key Management ... 127

Data Protection and Encryption Methods ..128

Hashing... 129

Symmetric Key Encryption ... 130

ix

 CONTENTS

Asymmetric Key Encryption.. 134

Transparent Data Encryption .. 136

Balancing Performance and Security ..139

Implications of Encryption on Query Design ..145

Equality Matching Using Hashed Message Authentication Codes.. 148

Wildcard Searches Using HMAC Substrings... 153

Range Searches.. 157

Summary ...158

 Chapter 7: SQLCLR: Architecture and Design Considerations.............................159

Bridging the SQL/CLR Gap: The SqlTypes Library..160

Wrapping Code to Promote Cross-Tier Reuse ...161

The Problem ... 161

One Reasonable Solution.. 161

A Simple Example: E-Mail Address Format Validation ... 162

SQLCLR Security and Reliability Features ...163
Security Exceptions .. 164

Host Protection Exceptions... 165

The Quest for Code Safety .. 168

Selective Privilege Escalation via Assembly References.. 168

Working with Host Protection Privileges ... 169

Working with Code Access Security Privileges ... 173

Granting Cross-Assembly Privileges... 175

Database Trustworthiness... 175

Strong Naming... 177

Performance Comparison: SQLCLR vs. TSQL...178
Creating a “Simple Sieve” for Prime Numbers... 179

Calculating Running Aggregates .. 181

String Manipulation .. 183

x

 CONTENTS

Enhancing Service Broker Scale-Out with SQLCLR ...185
XML Serialization.. 185

XML Deserialization .. 186

Binary Serialization with SQLCLR ... 187

Binary Deserialization... 191

Summary ...194

 Chapter 8: Dynamic T-SQL ..195

Dynamic T-SQL vs. Ad Hoc T-SQL..196

The Stored Procedure vs. Ad Hoc SQL Debate...196

Why Go Dynamic?..197
Compilation and Parameterization ... 198

Auto-Parameterization.. 200

Application-Level Parameterization.. 202

Performance Implications of Parameterization and Caching ... 203

Supporting Optional Parameters..205
Optional Parameters via Static T-SQL .. 206

Going Dynamic: Using EXECUTE ... 212

SQL Injection... 218

sp_executesql: A Better EXECUTE .. 220

Performance Comparison... 223

Dynamic SQL Security Considerations...230
Permissions to Referenced Objects.. 230

Interface Rules ... 230

Summary ...232

 Chapter 9: Designing Systems for Application Concurrency235

The Business Side: What Should Happen When Processes Collide?.............................236

Isolation Levels and Transactional Behavior ...237

Blocking Isolation Levels .. 239

xi

 CONTENTS

READ COMMITTED Isolation... 239

REPEATABLE READ Isolation.. 239

SERIALIZABLE Isolation.. 240

Nonblocking Isolation Levels .. 241

READ UNCOMMITTED Isolation .. 241

SNAPSHOT Isolation .. 242

From Isolation to Concurrency Control ... 242

Preparing for the Worst: Pessimistic Concurrency ..243

Progressing to a Solution ... 244

Enforcing Pessimistic Locks at Write Time .. 249

Application Locks: Generalizing Pessimistic Concurrency ... 250

Hoping for the Best: Optimistic Concurrency...259

Embracing Conflict: Multivalue Concurrency Control ..266

Sharing Resources Between Concurrent Users...269

Controlling Resource Allocation.. 272

Calculating Effective and Shared Maximum Resource Allocation .. 277

Controlling Concurrent Request Processing... 279

Summary ...281

 Chapter 10: Working with Spatial Data...283

Modeling Spatial Data..283

Spatial Reference Systems... 286

Geographic Coordinate Systems ... 286

Projected Coordinate Systems .. 286

Applying Coordinate Systems to the Earth ... 288

Datum .. 288

Prime Meridian .. 288

Projection .. 289

Spatial Reference Identifiers .. 290

xii

 CONTENTS

Geography vs. Geometry..292
Standards Compliance ... 293

Accuracy... 294

Technical Limitations and Performance ... 294

Creating Spatial Data...296
Well-Known Text .. 296

Well-Known Binary ... 297

Geography Markup Language... 298

Importing Data.. 298

Querying Spatial Data ..302

Nearest-Neighbor Queries.. 304

Finding Locations Within a Given Bounding Box .. 308

Spatial Indexing ...313
How Does a Spatial Index Work?.. 313

Optimizing the Grid... 315

Summary ...319

 Chapter 11: Working with Temporal Data...321

Modeling Time-Based Information ..321

SQL Server’s Date/Time Data Types ..322
Input Date Formats ... 323

Output Date Formatting .. 325

Efficiently Querying Date/Time Columns .. 326

Date/Time Calculations... 329

Truncating the Time Portion of a datetime Value .. 330

Finding Relative Dates... 332

How Many Candles on the Birthday Cake?.. 335

Defining Periods Using Calendar Tables..336

Dealing with Time Zones ...341

xiii

 CONTENTS

Storing UTC Time.. 343

Using the datetimeoffset Type.. 344

Working with Intervals...346
Modeling and Querying Continuous Intervals ... 347

Modeling and Querying Independent Intervals ... 354

Overlapping Intervals.. 358

Time Slicing.. 362

Modeling Durations..365

Managing Bitemporal Data ..366

Summary ...370

 Chapter 12: Trees, Hierarchies, and Graphs ...371

Terminology: Everything Is a Graph...371

The Basics: Adjacency Lists and Graphs ...373
Constraining the Edges... 374

Basic Graph Queries: Who Am I Connected To? ... 376

Traversing the Graph .. 378

Adjacency List Hierarchies ..388
Finding Direct Descendants.. 389

Traversing down the Hierarchy .. 391

Ordering the Output ... 392

Are CTEs the Best Choice? .. 396

Traversing up the Hierarchy ... 400

Inserting New Nodes and Relocating Subtrees .. 401

Deleting Existing Nodes.. 401

Constraining the Hierarchy... 402

Persisted Materialized Paths ...405

Finding Subordinates.. 406

Navigating up the Hierarchy ... 407

xiv

 CONTENTS

xv

Inserting Nodes .. 408

Relocating Subtrees ... 409

Deleting Nodes ... 411

Constraining the Hierarchy... 411

The hierarchyid Datatype...412
Finding Subordinates.. 413

Navigating up the Hierarchy ... 414

Inserting Nodes .. 415

Relocating Subtrees ... 416

Deleting Nodes ... 417

Constraining the Hierarchy... 417

Summary ...418

Index ..419

About the Author

 Alastair Aitchison is a freelance technology consultant based in Norwich, England. He has experience
across a wide variety of software and service platforms, and has worked with SQL Server 2008 since the
earliest technical previews were made publicly available. He has implemented various SQL Server
solutions requiring highly concurrent processes and large data warehouses in the financial services
sector, combined with reporting and analytical capability based on the Microsoft business intelligence
stack. Alastair has a particular interest in analysis of spatial data, and is the author of Beginning Spatial
with SQL Server 2008 (Apress, 2009). He speaks at user groups and conferences, and is a highly active
contributor to several online support communities, including the Microsoft SQL Server Developer
Center forums.

xvi

About the Technical Reviewer

 Evan Terry is the Chief Technical Consultant at The Clegg Company,
specializing in data management, information and data architecture, database
systems, and business intelligence. His past and current clients include the State
of Idaho, Albertsons, American Honda Motors, and Toyota Motor Sales, USA. He is
the coauthor of Beginning Relational Data Modeling, has published several articles
in DM Review, and has presented at industry conferences and conducted private
workshops on the subjects of data and information quality, and information
management. He has also been the technical reviewer of several Apress books
relating to SQL Server databases. For questions or consulting needs, Evan can be
reached at evan_terry@cleggcompany.com.

xvii

 CONTENTS

Acknowledgments

When I was asked to write this book, I jumped at the chance to work with the great bunch of folks at
Apress again. I am particularly lucky to have the assistance once more of two hugely talented
individuals, in the form of Jonathan Gennick and Evan Terry. As my editor, Jonathan has encouraged,
taught, and mentored me through the authoring process, and has never wavered in his support even
when the going got a bit tough (which, as in any publication schedule, at times it did!). Evan not only
provided the benefit of his wealth of technical knowledge, but also his authoring expertise, and at times
he simply provided a sensible voice of reason, all of which helped to improve the book significantly. I
would also like to thank Mary Tobin, who managed to keep track of all the deadlines and project
management issues, Damon Larson, for correcting my wayward use of the English language, and all the
other individuals who helped get this book into the form that you are now holding in your hands. Thank
you all.

My family have once again had to endure me spending long hours typing away at the keyboard, and
I thank them for their tolerance, patience, and support. I couldn’t do anything without them.

And thankyou to you, the reader, for purchasing this book. I hope that you find the content
interesting, useful, and above all, enjoyable to read.

xviii

xix

Preface

I’ve worked with Microsoft SQL Server for nearly ten years now, and I’ve used SQL Server 2008 since the
very first preview version was made available to the public. One thing I have noticed is that, with every
new release, SQL Server grows ever more powerful, and ever more complex. There is now a huge array of
features that go way beyond the core functionality expected from a database system and, with so many
different facets to cover, it is becoming ever harder to be a SQL Server "expert". SQL Server developers
are no longer simply expected to be proficent in writing T-SQL code, but also in XML and SQLCLR (and
knowing when to use each). You no longer execute a query to get a single result set from an isolated
database, but handle multiple active result sets derived from queries across distributed servers. The
types of information stored in modern databases represent not just character, numeric, and binary data,
but complex data such as spatial, hierarchical, and filestream data.

Attempting to comprehensively cover any one of these topics alone would easily generate enough
material to fill an entire book, so I'm not even going to try doing so. Instead, I’m going to concentrate on
what I believe you need to know to create high-quality database applications, based on my own practical
experience. I’m not going to waste pages discussing the ins and outs of some obscure or little-used
feature, unless I can show you a genuine use case for it. Nor will I insult your intelligence by laboriously
explaining the basics – I'll assume that you're already familiar with the straightforward examples covered
in Books Online, and now want to take your knowledge further.

All of the examples used in this book are based on real-life scenarios that I've encountered, and they
show you how to deal with problems that you're likely to face in most typical SQL Server environments. I
promise not to show you seemingly perfect solutions, which you then discover only work in the
artificially-cleansed "AdventureWorks" world; as developers we work with imperfect data, and I'll try to
show you examples that deal with the warts and all. The code examples were tested using the SQL Server
2008 Developer Edition with Service Pack 1 installed, but should work on all editions of SQL Server 2008
unless explicitly stated otherwise.

Finally, I hope that you enjoy reading this book and thinking about the issues discussed. The reason
why I enjoy database development is that it presents a never-ending set of puzzles to solve – and even
when you think you have found the optimum answer to a problem, there is always the possibility of
finding an even better solution in the future. While you shouldn't let this search for perfection detract
you from the job at hand (sometimes, "good enough" is all you need), there are always new techniques
to learn, and alternative methods to explore. I hope that you might learn some of them in the pages that
follow.

C H A P T E R 1

Software Development
Methodologies for the
Database World

Databases are software. Therefore, database application development should be treated in the same
manner as any other form of software development. Yet, all too often, the database is thought of as a
secondary entity when development teams discuss architecture and test plans, and many database
developers are still not aware of, or do not apply, standard software development best practices to
database applications.

Almost every software application requires some form of data store. Many developers go beyond
simply persisting application data, instead creating applications that are data driven. A data-driven
application is one that is designed to dynamically change its behavior based on data—a better term
might, in fact, be data dependent.

Given this dependency upon data and databases, the developers who specialize in this field have no
choice but to become not only competent software developers, but also absolute experts at accessing
and managing data. Data is the central, controlling factor that dictates the value that any application can
bring to its users. Without the data, there is no need for the application.

The primary purpose of this book is to encourage Microsoft SQL Server developers to become more
integrated with mainstream software development. These pages stress rigorous testing, well-thought-
out architectures, and careful attention to interdependencies. Proper consideration of these areas is the
hallmark of an expert software developer—and database professionals, as core members of any software
development team, simply cannot afford to lack this expertise.

In this chapter, I will present an overview of software development and architectural matters as they
apply to the world of database applications. Some of the topics covered are hotly debated in the
development community, and I will try to cover both sides, even when presenting what I believe to be
the most compelling argument. Still, I encourage you to think carefully about these issues rather than
taking my—or anyone else’s—word as the absolute truth. Software architecture is a constantly changing
field. Only through careful reflection on a case-by-case basis can you hope to identify and understand
the “best” possible solution for any given situation.

Architecture Revisited
Software architecture is a large, complex topic, partly due to the fact that software architects often like to
make things as complex as possible. The truth is that writing first-class software doesn’t involve nearly as
much complexity as many architects would lead you to believe. Extremely high-quality designs are

1

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

possible merely by understanding and applying a few basic principles. The three most important
concepts that every software developer must know in order to succeed are coupling, cohesion, and
encapsulation:

• Coupling refers to the amount of dependency of one module within a system
upon another module in the same system. It can also refer to the amount of
dependency that exists between different systems. Modules, or systems, are said
to be tightly coupled when they depend on each other to such an extent that a
change in one necessitates a change to the other. This is clearly undesirable, as it
can create a complex (and, sometimes, obscure) network of dependencies
between different modules of the system, so that an apparently simple change in
one module may require identification of and associated changes made to a wide
variety of disparate modules throughout the application. Software developers
should strive instead to produce the opposite: loosely coupled modules and
systems, which can be easily isolated and amended without affecting the rest of
the system.

• Cohesion refers to the degree that a particular module or component provides a
single, well-defined aspect of functionality to the application as a whole. Strongly
cohesive modules, which have only one function, are said to be more desirable
than weakly cohesive modules, which perform many operations and therefore
may be less maintainable and reusable.

• Encapsulation refers to how well the underlying implementation of a module is
hidden from the rest of the system. As you will see, this concept is essentially the
combination of loose coupling and strong cohesion. Logic is said to be
encapsulated within a module if the module’s methods or properties do not
expose design decisions about its internal behaviors.

Unfortunately, these qualitative definitions are somewhat difficult to apply, and in real systems,
there is a significant amount of subjectivity involved in determining whether a given module is or is not
tightly coupled to some other module, whether a routine is cohesive, or whether logic is properly
encapsulated. There is no objective method of measuring these concepts within an application.
Generally, developers will discuss these ideas using comparative terms—for instance, a module may be
said to be less tightly coupled to another module than it was before its interfaces were refactored. But it
might be difficult to say whether or not a given module is tightly coupled to another, in absolute terms,
without some means of comparing the nature of its coupling. Let’s take a look at a couple of examples to
clarify things.

What is Refactoring?

Refactoring is the practice of reviewing and revising existing code, while not adding any new features or
changing functionality—essentially, cleaning up what’s there to make it work better. This is one of those
areas that management teams tend to despise, because it adds no tangible value to the application from a
sales point of view, and entails revisiting sections of code that had previously been considered “finished.”

2

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Coupling
First, let’s look at an example that illustrates basic coupling. The following class might be defined to
model a car dealership’s stock (to keep the examples simple, I’ll give code listings in this section based
on a simplified and scaled-down C#-like syntax):

class Dealership
{
 // Name of the dealership
 string Name;

 // Address of the dealership
 string Address;

 // Cars that the dealership has
 Car[] Cars;

 // Define the Car subclass
 class Car
 {
 // Make of the car
 string Make;

 // Model of the car
 string Model;
 }
}

This class has three fields: the name of the dealership and address are both strings, but the
collection of the dealership’s cars is typed based on a subclass, Car. In a world without people who are
buying cars, this class works fine—but, unfortunately, the way in which it is modeled forces us to tightly
couple any class that has a car instance to the dealer. Take the owner of a car, for example:

class CarOwner
{
 // Name of the car owner
 string name;

 // The car owner's cars
 Dealership.Car[] Cars
}

Notice that the CarOwner’s cars are actually instances of Dealership.Car; in order to own a car, it
seems to be presupposed that there must have been a dealership involved. This doesn’t leave any room
for cars sold directly by their owner—or stolen cars, for that matter! There are a variety of ways of fixing
this kind of coupling, the simplest of which would be to not define Car as a subclass, but rather as its own
stand-alone class. Doing so would mean that a CarOwner would be coupled to a Car, as would a
Dealership—but a CarOwner and a Dealership would not be coupled at all. This makes sense and more
accurately models the real world.

3

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Cohesion
To demonstrate the principle of cohesion, consider the following method that might be defined in a
banking application:

bool TransferFunds(
 Account AccountFrom,
 Account AccountTo,
 decimal Amount)
{
 if (AccountFrom.Balance >= Amount)
 AccountFrom.Balance -= Amount;
 else
 return(false);

 AccountTo.Balance += Amount;
 return(true);
}

Keeping in mind that this code is highly simplified and lacks basic error handling and other traits
that would be necessary in a real banking application, ponder the fact that what this method basically
does is withdraw funds from the AccountFrom account and deposit them into the AccountTo account.
That’s not much of a problem in itself, but now think of how much infrastructure (e.g., error-handling
code) is missing from this method. It can probably be assumed that somewhere in this same banking
application there are also methods called Withdraw and Deposit, which do the exact same things, and
which would also require the same infrastructure code. The TransferFunds method has been made
weakly cohesive because, in performing a transfer, it requires the same functionality as provided by the
individual Withdraw and Deposit methods, only using completely different code.

A more strongly cohesive version of the same method might be something along the lines of the
following:

bool TransferFunds(
 Account AccountFrom,
 Account AccountTo,
 decimal Amount)
{
 bool success = false;
 success = Withdraw(AccountFrom, Amount);

 if (!success)
 return(false);

 success = Deposit(AccountTo, Amount);

 if (!success)
 return(false);
 else
 return(true);
}

4

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Although I’ve already noted the lack of basic exception handling and other constructs that would
exist in a production version of this kind of code, it’s important to stress that the main missing piece is
some form of a transaction. Should the withdrawal succeed, followed by an unsuccessful deposit, this
code as-is would result in the funds effectively vanishing into thin air. Always make sure to carefully test
whether your mission-critical code is atomic; either everything should succeed or nothing should. There
is no room for in-between—especially when you’re dealing with people’s funds!

Encapsulation
Of the three topics discussed in this section, encapsulation is probably the most important for a
database developer to understand. Look back at the more cohesive version of the TransferFunds
method, and think about what the associated Withdraw method might look like—something like this,
perhaps:

bool Withdraw(Account AccountFrom, decimal Amount)
{
 if (AccountFrom.Balance >= Amount)
 {
 AccountFrom.Balance -= Amount;
 return(true);
 }
 else
 return(false);
}

In this case, the Account class exposes a property called Balance, which the Withdraw method can
manipulate. But what if an error existed in Withdraw, and some code path allowed Balance to be
manipulated without first checking to make sure the funds existed? To avoid this situation, it should not
have been made possible to set the value for Balance from the Withdraw method directly. Instead, the
Account class should define its own Withdraw method. By doing so, the class would control its own data
and rules internally—and not have to rely on any consumer to properly do so. The key objective here is
to implement the logic exactly once and reuse it as many times as necessary, instead of unnecessarily
recoding the logic wherever it needs to be used.

Interfaces
The only purpose of a module in an application is to do something at the request of a consumer (i.e.,
another module or system). For instance, a database system would be worthless if there were no way to
store or retrieve data. Therefore, a system must expose interfaces, well-known methods and properties
that other modules can use to make requests. A module’s interfaces are the gateway to its functionality,
and these are the arbiters of what goes into or comes out of the module.

Interface design is where the concepts of coupling and encapsulation really take on meaning. If an
interface fails to encapsulate enough of the module’s internal design, consumers may have to rely upon
some knowledge of the module, thereby tightly coupling the consumer to the module. In such a
situation, any change to the module’s internal implementation may require a modification to the
implementation of the consumer.

5

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Interfaces As Contracts
An interface can be said to be a contract expressed between the module and its consumers. The contract
states that if the consumer specifies a certain set of parameters to the interface, a certain set of values
will be returned. Simplicity is usually the key here; avoid defining interfaces that change the number or
type of values returned depending on the input. For instance, a stored procedure that returns additional
columns if a user passes in a certain argument may be an example of a poorly designed interface.

Many programming languages allow routines to define explicit contracts. This means that the input
parameters are well defined, and the outputs are known at compile time. Unfortunately, T-SQL stored
procedures in SQL Server only define inputs, and the procedure itself can dynamically change its
defined outputs. In these cases, it is up to the developer to ensure that the expected outputs are well
documented and that unit tests exist to validate them (see Chapter 3 for information on unit
testing).Throughout this book, I refer to a contract enforced via documentation and testing as an
implied contract.

Interface Design
Knowing how to measure successful interface design is a difficult question. Generally speaking, you
should try to look at it from a maintenance point of view. If, in six months’ time, you were to completely
rewrite the module for performance or other reasons, can you ensure that all inputs and outputs will
remain the same?

For example, consider the following stored procedure signature:

CREATE PROCEDURE GetAllEmployeeData
 --Columns to order by, comma-delimited
 @OrderBy varchar(400) = NULL

Assume that this stored procedure does exactly what its name implies—it returns all data from the
Employees table, for every employee in the database. This stored procedure takes the @OrderBy
parameter, which is defined (according to the comment) as “columns to order by,” with the additional
prescription that the columns should be comma-delimited.

The interface issues here are fairly significant. First of all, an interface should not only hide internal
behavior, but also leave no question as to how a valid set of input arguments will alter the routine’s
output. In this case, a consumer of this stored procedure might expect that, internally, the comma-
delimited list will simply be appended to a dynamic SQL statement. Does that mean that changing the
order of the column names within the list will change the outputs? And, are the ASC or DESC keywords
acceptable? The contract defined by the interface is not specific enough to make that clear.

Secondly, the consumer of this stored procedure must have a list of columns in the Employees table
in order to know the valid values that may be passed in the comma-delimited list. Should the list of
columns be hard-coded in the application, or retrieved in some other way? And, it is not clear if all of the
columns of the table are valid inputs. What about a Photo column, defined as varbinary(max), which
contains a JPEG image of the employee’s photo? Does it make sense to allow a consumer to specify that
column for sorting?

These kinds of interface issues can cause real problems from a maintenance point of view. Consider
the amount of effort that would be required to simply change the name of a column in the Employees
table, if three different applications were all using this stored procedure and had their own hard-coded
lists of sortable column names. And what should happen if the query is initially implemented as
dynamic SQL, but needs to be changed later to use static SQL in order to avoid recompilation costs? Will

6

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

it be possible to detect which applications assumed that the ASC and DESC keywords could be used,
before they throw exceptions at runtime?

The central message I hope to have conveyed here is that extreme flexibility and solid, maintainable
interfaces may not go hand in hand in many situations. If your goal is to develop truly robust software,
you will often find that flexibility must be cut back. But remember that in most cases there are perfectly
sound workarounds that do not sacrifice any of the real flexibility intended by the original interface. For
instance, in this example, the interface could be rewritten in a number of ways to maintain all of the
possible functionality. One such version follows:

CREATE PROCEDURE GetAllEmployeeData
 @OrderByName int = 0,
 @OrderByNameASC bit = 1,
 @OrderBySalary int = 0,
 @OrderBySalaryASC bit = 1,
 -- Other columns ...

In this modified version of the interface, each column that a consumer can select for ordering has
two associated parameters: one parameter specifying the order in which to sort the columns, and a
second parameter that specifies whether to order ascending or descending. So if a consumer passes a
value of 2 for the @OrderByName parameter and a value of 1 for the @OrderBySalary parameter, the result
will be sorted first by salary, and then by name. A consumer can further modify the sort by manipulating
the @OrderByNameASC and @OrderBySalaryASC parameters to specify the sort direction for each column.

This version of the interface exposes nothing about the internal implementation of the stored
procedure. The developer is free to use any technique he or she chooses in order to return the correct
results in the most effective manner. In addition, the consumer has no need for knowledge of the actual
column names of the Employees table. The column containing an employee’s name may be called Name
or may be called EmpName. Or, there may be two columns, one containing a first name and one a last
name. Since the consumer requires no knowledge of these names, they can be modified as necessary as
the data changes, and since the consumer is not coupled to the routine-based knowledge of the column
name, no change to the consumer will be necessary. Note that this same reasoning can also be applied
to suggest that end users and applications should only access data exposed as a view rather than directly
accessing base tables in the database. Views can provide a layer of abstraction that enable changes to be
made to the underlying tables, while the properties of the view are maintained.

Note that this example only discussed inputs to the interface. Keep in mind that outputs (e.g., result
sets) are just as important, and these should also be documented in the contract. I recommend always
using the AS keyword to create column aliases as necessary, so that interfaces can continue to return the
same outputs even if there are changes to the underlying tables. As mentioned before, I also recommend
that developers avoid returning extra data, such as additional columns or result sets, based on input
arguments. Doing so can create stored procedures that are difficult to test and maintain.

7

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Exceptions are a Vital Part of Any Interface

One important type of output, which developers often fail to consider when thinking about implied
contracts, are the exceptions that a given method can throw should things go awry. Many methods throw
well-defined exceptions in certain situations, but if these exceptions are not adequately documented, their
well-intended purpose becomes rather wasted. By making sure to properly document exceptions, you
enable clients to catch and handle the exceptions you’ve foreseen, in addition to helping developers
understand what can go wrong and code defensively against possible issues. It is almost always better to
follow a code path around a potential problem than to have to deal with an exception.

Integrating Databases and Object-Oriented Systems
A major issue that seems to make database development a lot more difficult than it should be isn’t
development-related at all, but rather a question of architecture. Object-oriented frameworks and
database systems generally do not play well together, primarily because they have a different set of core
goals. Object-oriented systems are designed to model business entities from an action standpoint—what
can the business entity do, and what can other entities do to or with it? Databases, on the other hand, are
more concerned with relationships between entities, and much less concerned with the activities in
which they are involved.

It’s clear that we have two incompatible paradigms for modeling business entities. Yet both are
necessary components of almost every application and must be leveraged together toward the common
goal: serving the user. To that end, it’s important that database developers know what belongs where,
and when to pass the buck back up to their application developer brethren. Unfortunately, the question
of how to appropriately model the parts of any given business process can quickly drive one into a gray
area. How should you decide between implementation in the database vs. implementation in the
application?

The central argument on many a database forum since time immemorial (or at least since the dawn
of the Internet) has been what to do with that ever-present required “logic.” Sadly, try as we might,
developers have still not figured out how to develop an application without the need to implement
business requirements. And so the debate rages on. Does “business logic” belong in the database? In the
application tier? What about the user interface? And what impact do newer application architectures
have on this age-old question?

A Brief History of Logic Placement

Once upon a time, computers were simply called “computers.” They spent their days and nights serving
up little bits of data to “dumb” terminals. Back then there wasn’t much of a difference between an
application and its data, so there were few questions to ask, and fewer answers to give, about the
architectural issues we debate today.

But, over time, the winds of change blew through the air-conditioned data centers of the world, and the
systems previously called “computers” became known as “mainframes”—the new computer on the rack
in the mid-1960s was the “minicomputer.” Smaller and cheaper than the mainframes, the “minis” quickly
grew in popularity. Their relative low cost compared to the mainframes meant that it was now fiscally

8

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

possible to scale out applications by running them on multiple machines. Plus, these machines were
inexpensive enough that they could even be used directly by end users as an alternative to the previously
ubiquitous dumb terminals. During this same period we also saw the first commercially available database
systems, such as the Adabas database management system (DBMS).

The advent of the minis signaled multiple changes in the application architecture landscape. In addition to
the multiserver scale-out alternatives, the fact that end users were beginning to run machines more
powerful than terminals meant that some of an application’s work could be offloaded to the user-interface
(UI) tier in certain cases. Instead of harnessing only the power of one server, workloads could now be
distributed in order to create more scalable applications.

As time went on, the “microcomputers” (ancestors of today’s Intel- and AMD-based systems) started
getting more and more powerful, and eventually the minis disappeared. However, the client/server-based
architecture that had its genesis during the minicomputer era did not die; application developers found that
it could be much cheaper to offload work to clients than to purchase bigger servers.

The late 1990s saw yet another paradigm shift in architectural trends—strangely, back toward the world
of mainframes and dumb terminals. Web servers replaced the mainframe systems as centralized data and
UI systems, and browsers took on the role previously filled by the terminals. Essentially, this brought
application architecture full circle, but with one key difference: the modern web-based data center is
characterized by “farms” of commodity servers—cheap, standardized, and easily replaced hardware,
rather than a single monolithic mainframe.

The latest trend toward cloud-based computing looks set to pose another serious challenge to the
traditional view of architectural design decisions. In a cloud-based model, applications make use of
shared, virtualized server resources, normally provided by a third-party as a service over the internet.
Vendors such as Amazon, Google, and Microsoft already offer cloud-based database services, but at the
time of writing, these are all still at a very embryonic stage. The current implementation of SQL Server
Data Services, for example, has severe restrictions on bandwidth and storage which mean that, in most
cases, it is not a viable replacement to a dedicated data center. However, there is growing momentum
behind the move to the cloud, and it will be interesting to see what effect this has on data architecture
decisions over the next few years.

When considering these questions, an important point to remember is that a single database may

be shared by multiple applications, which in turn expose multiple user interfaces, as illustrated in Figure
1-1.

Database developers must strive to ensure that data is sufficiently encapsulated to allow it to be
shared among multiple applications, while ensuring that the logic of disparate applications does not
collide and put the entire database into an inconsistent state. Encapsulating to this level requires careful
partitioning of logic, especially data validation rules.

Rules and logic can be segmented into three basic groups:

• Data logic

• Business logic

• Application logic

9

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Figure 1-1. The database application hierarchy

When designing an application, it’s important to understand these divisions and consider where in
the application hierarchy any given piece of logic should be placed in order to ensure reusability.

Data Logic
Data logic defines the conditions that must be true for the data in the database to be in a consistent,
noncorrupt state. Database developers are no doubt familiar with implementing these rules in the form
of primary and foreign key constraints, check constraints, triggers, and the like. Data rules do not dictate
how the data can be manipulated or when it should be manipulated; rather, data rules dictate the state
that the data must end up in once any process is finished.

It’s important to remember that data is not “just data” in most applications—rather, the data in the
database models the actual business. Therefore, data rules must mirror all rules that drive the business
itself. For example, if you were designing a database to support a banking application, you might be
presented with a business rule that states that certain types of accounts are not allowed to be overdrawn.
In order to properly enforce this rule for both the current application and all possible future
applications, it must be implemented centrally, at the level of the data itself. If the data is guaranteed to
be consistent, applications must only worry about what to do with the data.

As a general guideline, you should try to implement as many data rules as necessary in order to
avoid the possibility of data quality problems. The database is the holder of the data, and as such should
act as the final arbiter of the question of what data does or does not qualify to be persisted. Any
validation rule that is central to the business is central to the data, and vice versa. In the course of my
work with numerous database-backed applications, I’ve never seen one with too many data rules; but
I’ve very often seen databases in which the lack of enough rules caused data integrity issues.

10

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Where Do the Data Rules Really Belong?

Many object-oriented zealots would argue that the correct solution is not a database at all, but rather an
interface bus, which acts as a façade over the database and takes control of all communications to and
from the database. While this approach would work in theory, there are a few issues. First of all, this
approach completely ignores the idea of database-enforced data integrity and turns the database layer into
a mere storage container, failing to take advantage of any of the in-built features offered by almost all
modern databases designed specifically for that purpose. Furthermore, such an interface layer will still
have to communicate with the database, and therefore database code will have to be written at some level
anyway. Writing such an interface layer may eliminate some database code, but it only defers the
necessity of working with the database. Finally, in my admittedly subjective view, application layers are not
as stable or long-lasting as databases in many cases. While applications and application architectures
come and go, databases seem to have an extremely long life in the enterprise. The same rules would apply
to a do-it-all interface bus. All of these issues are probably one big reason that although I’ve heard
architects argue this issue for years, I’ve never seen such a system implemented.

Business Logic
The term business logic is generally used in software development circles as a vague catch-all for
anything an application does that isn’t UI related and that involves at least one conditional branch. In
other words, this term is overused and has no real meaning.

Luckily, software development is an ever-changing field, and we don’t have to stick with the
accepted lack of definition. Business logic, for the purpose of this text, is defined as any rule or process
that dictates how or when to manipulate data in order to change the state of the data, but that does not
dictate how to persist or validate the data. An example of this would be the logic required to render raw
data into a report suitable for end users. The raw data, which we might assume has already been
subjected to data logic rules, can be passed through business logic in order to determine the
aggregations and analyses appropriate for answering the questions that the end user might pose. Should
this data need to be persisted in its new form within a database, it must once again be subjected to data
rules; remember that the database should always make the final decision on whether any given piece of
data is allowed.

So does business logic belong in the database? The answer is a definite “maybe.” As a database
developer, your main concerns tend to revolve around data integrity and performance. Other factors
(such as overall application architecture) notwithstanding, this means that in general practice you
should try to put the business logic in the tier in which it can deliver the best performance, or in which it
can be reused with the most ease. For instance, if many applications share the same data and each have
similar reporting needs, it might make more sense to design stored procedures that render the data into
the correct format for the reports, rather than implementing similar reports in each application.

11

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

Performance vs. Design vs. Reality

Architecture purists might argue that performance should have no bearing on application design; it’s an
implementation detail, and can be solved at the code level. Those of us who’ve been in the trenches and
have had to deal with the reality of poorly designed architectures know that this is not the case.
Performance is, in fact, inexorably tied to design in virtually every application. Consider chatty interfaces
that send too much data or require too many client requests to fill the user’s screen with the requested
information, or applications that must go back to a central server for key functionality with every user
request. In many cases, these performance flaws can be identified—and fixed—during the design phase,
before they are allowed to materialize. However, it’s important not to go over the top in this respect:
designs should not become overly contorted in order to avoid anticipated “performance problems” that
may never occur.

Application Logic
If data logic definitely belongs in the database, and business logic may have a place in the database,
application logic is the set of rules that should be kept as far away from the central data as possible. The
rules that make up application logic include such things as user interface behaviors, string and number
formatting rules, localization, and other related issues that are generally tied to user interfaces. Given the
application hierarchy discussed previously (one database that might be shared by many applications,
which in turn might be shared by many user interfaces), it’s clear that mingling user interface data with
application or central business data can raise severe coupling issues and ultimately reduce the
possibility for sharing of data.

Note that I’m not implying that you should always avoid persisting UI-related entities in a database.
Doing so certainly makes sense for many applications. What I am warning against is the risk of failing to
draw a sufficiently distinct line between user interface elements and the rest of the application’s data.
Whenever possible, make sure to create different tables, preferably in different schemas or even entirely
different databases, in order to store purely application-related data. This will enable you to keep the
application decoupled from the data as much as possible.

The “Object-Relational Impedance Mismatch”
The primary stumbling block that makes it difficult to move information between object-oriented
systems and relational databases is that the two types of systems are incompatible from a basic design
point of view. Relational databases are designed using the rules of normalization, which help to ensure
data integrity by splitting information into tables interrelated by keys. Object-oriented systems, on the
other hand, tend to be much more lax in this area. It is quite common for objects to contain data that,
while related, might not be modeled in a database in a single table.

For example, consider the following class, for a product in a retail system:

class Product
{
 string UPC;
 string Name;
 string Description;
 decimal Price;

12

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

 datetime UpdatedDate;
}

At first glance, the fields defined in this class seem to relate to one another quite readily, and one
might expect that they would always belong in a single table in a database. However, it’s possible that
this product class represents only a point-in-time view of any given product, as of its last-updated date.
In the database, the data could be modeled as follows:

CREATE TABLE Products
(
 UPC varchar(20) PRIMARY KEY,
 Name varchar(50)
);

CREATE TABLE ProductHistory
(
 UPC varchar(20) FOREIGN KEY REFERENCES Products (UPC),
 Description varchar(100),
 Price decimal,
 UpdatedDate datetime,
 PRIMARY KEY (UPC, UpdatedDate)
);

The important thing to note here is that the object representation of data may not have any bearing
on how the data happens to be modeled in the database, and vice versa. The object-oriented and
relational worlds each have their own goals and means to attain those goals, and developers should not
attempt to wedge them together, lest functionality is reduced.

Are Tables Really Classes in Disguise?
It is sometimes stated in introductory database textbooks that tables can be compared to classes, and
rows to instances of a class (i.e., objects). This makes a lot of sense at first; tables, like classes, define a set
of attributes (known as columns) for an entity. They can also define (loosely) a set of methods for an
entity, in the form of triggers.

However, that is where the similarities end. The key foundations of an object-oriented system are
inheritance and polymorphism, both of which are difficult if not impossible to represent in SQL
databases. Furthermore, the access path to related information in databases and object-oriented
systems is quite different. An entity in an object-oriented system can “have” a child entity, which is
generally accessed using a “dot” notation. For instance, a bookstore object might have a collection of
books:

Books = BookStore.Books;

In this object-oriented example, the bookstore “has” the books. But in SQL databases this kind of
relationship between entities is maintained via keys, where the child entity points to its parent. Rather
than the bookstore having the books, the relationship between the entities is expressed the other way
around, where the books maintain a foreign key that points back to the bookstore:

CREATE TABLE BookStores
(
 BookStoreId int PRIMARY KEY

13

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

);

CREATE TABLE Books
(
 BookStoreId int REFERENCES BookStores (BookStoreId),
 BookName varchar(50),
 Quantity int,
 PRIMARY KEY (BookStoreId, BookName)
);

While the object-oriented and SQL representations can store the same information, they do so
differently enough that it does not make sense to say that a table represents a class, at least in current
SQL databases.

Modeling Inheritance
In object-oriented design, there are two basic relationships that can exist between objects: “has-a”
relationships, where an object “has” an instance of another object (e.g., a bookstore has books), and “is-
a” relationships, where an object’s type is a subtype (or subclass) of another object (e.g., a bookstore is a
type of store). In an SQL database, “has-a” relationships are quite common, whereas “is-a” relationships
can be difficult to achieve.

Consider a table called “Products,” which might represent the entity class of all products available
for sale by a company. This table may have columns (attributes) that typically belong to a product, such
as “price,” “weight,” and “UPC.” These common attributes are applicable to all products that the
company sells. However, the company may sell many subclasses of products, each with their own
specific sets of additional attributes. For instance, if the company sells both books and DVDs, the books
might have a “page count,” whereas the DVDs would probably have “length” and “format” attributes.

Subclassing in the object-oriented world is done via inheritance models that are implemented in
languages such as C#. In these models, a given entity can be a member of a subclass, and still generally
treated as a member of the superclass in code that works at that level. This makes it possible to
seamlessly deal with both books and DVDs in the checkout part of a point-of-sale application, while
keeping separate attributes about each subclass for use in other parts of the application where they are
needed.

In SQL databases, modeling inheritance can be tricky. The following code listing shows one way that
it can be approached:

CREATE TABLE Products
(
 UPC int NOT NULL PRIMARY KEY,
 Weight decimal NOT NULL,
 Price decimal NOT NULL
);

CREATE TABLE Books
(
 UPC int NOT NULL PRIMARY KEY
 REFERENCES Products (UPC),
 PageCount int NOT NULL
);

14

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

CREATE TABLE DVDs
(
 UPC int NOT NULL PRIMARY KEY
 REFERENCES Products (UPC),
 LengthInMinutes decimal NOT NULL,
 Format varchar(4) NOT NULL
 CHECK (Format IN ('NTSC', 'PAL'))
);

The database structure created using this code listing is illustrated in Figure 1-2.

Figure 1-2. Modeling CREATE TABLE DVDs inheritance in a SQL database

Although this model successfully establishes books and DVDs as subtypes for products, it has a
couple of serious problems. First of all, there is no way of enforcing uniqueness of subtypes in this model
as it stands. A single UPC can belong to both the Books and DVDs subtypes simultaneously. That makes
little sense in the real world in most cases (although it might be possible that a certain book ships with a
DVD, in which case this model could make sense).

Another issue is access to attributes. In an object-oriented system, a subclass automatically inherits
all of the attributes of its superclass; a book entity would contain all of the attributes of both books and
general products. However, that is not the case in the model presented here. Getting general product
attributes when looking at data for books or DVDs requires a join back to the Products table. This really
breaks down the overall sense of working with a subtype.

Solving these problems is not impossible, but it takes some work. One method of guaranteeing
uniqueness among subtypes involves populating the supertype with an additional attribute identifying
the subtype of each instance. The following tables show how this solution could be implemented:

CREATE TABLE Products
(
 UPC int NOT NULL PRIMARY KEY,
 Weight decimal NOT NULL,
 Price decimal NOT NULL,
 ProductType char(1) NOT NULL
 CHECK (ProductType IN ('B', 'D')),
 UNIQUE (UPC, ProductType)
);

CREATE TABLE Books
(
 UPC int NOT NULL PRIMARY KEY,
 ProductType char(1) NOT NULL
 CHECK (ProductType = 'B'),

15

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

 PageCount int NOT NULL,
 FOREIGN KEY (UPC, ProductType) REFERENCES Products (UPC, ProductType)
);

CREATE TABLE DVDs
(
 UPC int NOT NULL PRIMARY KEY,
 ProductType char(1) NOT NULL
 CHECK (ProductType = 'D'),
 LengthInMinutes decimal NOT NULL,
 Format varchar(4) NOT NULL
 CHECK (Format IN ('NTSC', 'PAL')),
 FOREIGN KEY (UPC, ProductType) REFERENCES Products (UPC, ProductType)
);

By defining the subtype as part of the supertype, a UNIQUE constraint can be created, enabling SQL
Server to enforce that only one subtype for each instance of a supertype is allowed. The relationship is
further enforced in each subtype table by a CHECK constraint on the ProductType column, ensuring that
only the correct product types are allowed to be inserted.

It is possible to extend this method even further using indexed views and INSTEAD OF triggers. A view
can be created for each subtype, which encapsulates the join necessary to retrieve the supertype’s
attributes. By creating views to hide the joins, a consumer does not have to be aware of the
subtype/supertype relationship, thereby fixing the attribute access problem. The indexing helps with
performance, and the triggers allow the views to be updateable.

It is possible in SQL databases to represent almost any relationship that can be embodied in an
object-oriented system, but it’s important that database developers understand the intricacies of doing
so. Mapping object-oriented data into a database (properly) is often not at all straightforward, and for
complex object graphs can be quite a challenge.

The “Lots of Null Columns” Inheritance Model

An all-too-common design for modeling inheritance in the database is to create a single table with all of
the columns for the supertype in addition to all of the columns for each subtype, the latter nullable. This
design is fraught with issues and should be avoided. The basic problem is that the attributes that
constitute a subtype become mixed, and therefore confused. For example, it is impossible to look at the
table and find out what attributes belong to a book instead of a DVD. The only way to make the
determination is to look it up in the documentation (if it exists) or evaluate the code. Furthermore, data
integrity is all but lost. It becomes difficult to enforce that only certain attributes should be non-NULL for
certain subtypes, and even more difficult to figure out what to do in the event that an attribute that should
be NULL isn’t—what does NTSC format mean for a book? Was it populated due to a bug in the code, or
does this book really have a playback format? In a properly modeled system, this question would be
impossible to ask.

16

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

17

ORM: A Solution That Creates Many Problems
One solution to overcoming the problems that exist between relationship and object-oriented systems is
to turn to tools known as object-relational mappers (ORMs), which attempt to automatically map objects
to databases.

Many of these tools exist, including the open source nHibernate project, and Microsoft’s own Entity
Framework. Each of these tools comes with its own features and functions, but the basic idea is the same
in most cases: the developer “plugs” the ORM tool into an existing object-oriented system and tells the
tool which columns in the database map to each field of each class. The ORM tool interrogates the object
system as well as the database to figure out how to write SQL to retrieve the data into object form and
persist it back to the database if it changes. This is all done automatically and somewhat seamlessly.

Some tools go one step further, creating a database for the preexisting objects, if one does not
already exist. These tools work based on the assumption that classes and tables can be mapped in one-
to-one correspondence in most cases, which, as previously mentioned, is generally not true. Therefore
these tools often end up producing incredibly flawed database designs.

One company I did some work for had used a popular Java-based ORM tool for its e-commerce
application. The tool mapped “has-a” relationships from an object-centric rather than table-centric
point of view, and as a result the database had a Products table with a foreign key to an Orders table. The
Java developers working for the company were forced to insert fake orders into the system in order to
allow the firm to sell new products.

While ORM does have some benefits, and the abstraction from any specific database can aid in
creating portable code, I believe that the current set of available tools do not work well enough to make
them viable for enterprise software development. Aside from the issues with the tools that create
database tables based on classes, the two primary issues that concern me are both performance related:

First of all, ORM tools tend to think in terms of objects rather than collections of
related data (i.e., tables). Each class has its own data access methods produced by
the ORM tool, and each time data is needed, these methods query the database on
a granular level for just the rows necessary. This means that (depending on how
connection pooling is handled) a lot of database connections are opened and
closed on a regular basis, and the overall interface to retrieve the data is quite
“chatty.” SQL DBMSs tend to be much more efficient at returning data in bulk than
a row at a time; it’s generally better to query for a product and all of its related data
at once than to ask for the product, and then request related data in a separate
query.

Second, query tuning may be difficult if ORM tools are relied upon too heavily. In
SQL databases, there are often many logically equivalent ways of writing any given
query, each of which may have distinct performance characteristics. The current
crop of ORM tools does not intelligently monitor for and automatically fix possible
issues with poorly written queries, and developers using these tools are often taken
by surprise when the system fails to scale because of improperly written queries.

ORM tools have improved dramatically over the last couple of years, and will undoubtedly continue
to do so as time goes on. However, even in the most recent version of the Microsoft Entity Framework
(.NET 4.0 Beta 1), there are substantial deficiencies in the SQL code generated that lead to database
queries that are ugly at best, and frequently suboptimal. I feel that any such automatically generated
ORM code will never be able to compete performance-wise with manually crafted queries, and a better
return on investment can be made by carefully designing object-database interfaces by hand.

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

18

Introducing the Database-As-API Mindset
By far the most important issue to be wary of when writing data interchange interfaces between object
systems and database systems is coupling. Object systems and the databases they use as back ends
should be carefully partitioned in order to ensure that, in most cases, changes to one layer do not
necessitate changes to the other layer. This is important in both worlds; if a change to the database
requires an application change, it can often be expensive to recompile and redeploy the application.
Likewise, if application logic changes necessitate database changes, it can be difficult to know how
changing the data structures or constraints will affect other applications that may need the same data.

To combat these issues, database developers must resolve to adhere rigidly to a solid set of
encapsulated interfaces between the database system and the objects. I call this the database-as-API
mindset.

An application programming interface (API) is a set of interfaces that allows a system to interact
with another system. An API is intended to be a complete access methodology for the system it exposes.
In database terms, this means that an API would expose public interfaces for retrieving data from,
inserting data into, and updating data in the database.

A set of database interfaces should comply with the same basic design rule as other interfaces: well-
known, standardized sets of inputs that result in well-known, standardized sets of outputs. This set of
interfaces should completely encapsulate all implementation details, including table and column
names, keys, indexes, and queries. An application that uses the data from a database should not require
knowledge of internal information—the application should only need to know that data can be retrieved
and persisted using certain methods.

In order to define such an interface, the first step is to define stored procedures for all external
database access. Table-direct access to data is clearly a violation of proper encapsulation and interface
design, and views may or may not suffice. Stored procedures are the only construct available in SQL
Server that can provide the type of interfaces necessary for a comprehensive data API.

Web Services as a Standard API Layer

It’s worth noting that the database-as-API mindset that I’m proposing requires the use of stored
procedures as an interface to the data, but does not get into the detail of what protocol you use to access
those stored procedures. Many software shops have discovered that web services are a good way to
provide a standard, cross-platform interface layer, such as using ADO.NET data services to produce a
RESTful web service based on an entity data model. Whether using web services is superior to using other
protocols is something that must be decided on a per-case basis; like any other technology, they can
certainly be used in the wrong way or in the wrong scenario. Keep in mind that web services require a lot
more network bandwidth and follow different authentication rules than other protocols that SQL Server
supports—their use may end up causing more problems than they solve.

By using stored procedures with correctly defined interfaces and full encapsulation of information,

coupling between the application and the database will be greatly reduced, resulting in a database
system that is much easier to maintain and evolve over time.

It is difficult to stress the importance that stored procedures play in a well-designed SQL Server
database system in only a few paragraphs. In order to reinforce the idea that the database must be
thought of as an API rather than a persistence layer, this topic will be revisited throughout the book with
examples that deal with interfaces to outside systems.

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

19

The Great Balancing Act
When it comes down to it, the real goal of software development is to produce working software that
customers will want to use, in addition to software that can be easily fixed or extended as time and needs
progress. But, when developing a piece of software, there are hard limits that constrain what can actually
be achieved. No project has a limitless quantity of time or money, so sacrifices must often be made in
one area in order to allow for a higher-priority requirement in another.

The database is, in most cases, the center of the applications it drives. The data controls the
applications, to a great extent, and without the data the applications would not be worth much.
Likewise, the database is often where applications face real challenges in terms of performance,
maintainability, and other critical success factors. It is quite common for application developers to push
these issues as far down into the data tier as possible, and in the absence of a data architect, this leaves
the database developer as the person responsible for balancing the needs of the entire application.

Attempting to strike the right balance generally involves a trade-off between the following areas:

• Performance

• Testability

• Maintainability

• Security

• Allowing for future requirements

Balancing the demands of these competing facets is not an easy task. What follows are some initial
thoughts on these issues; examples throughout the remainder of the book will serve to illustrate them in
more detail.

Performance
We live in an increasingly impatient society. Customers and management place demands that must be
met now (or sometimes yesterday). We want fast food, fast cars, and fast service, and are constantly in
search of instant gratification of all types. That need for speed certainly applies to the world of database
development. Users continuously seem to feel that applications just aren’t performing as fast as they
should, even when those applications are doing a tremendous amount of work. It sometimes feels as
though users would prefer to have any data as fast as possible, rather than the correct data if it means
waiting a bit longer.

The problem, of course, is that performance isn’t easy, and can throw the entire balance off.
Building a truly high-performance application often involves sacrifice. Functionality might have to be
trimmed (less work for the application to do means it will be faster), security might have to be reduced
(less authorization cycles means less work), or inefficient code might have to be rewritten in arcane,
unmaintainable ways in order to squeeze every last CPU cycle out of the server.

So how do we reconcile this need for extreme performance—which many seem to care about to the
exclusion of all else—with the need for development best practices? Unfortunately, the answer is that
sometimes we can only do as well as we can do. Most of the time, if we find ourselves in a position in
which a user is complaining about performance and we’re going to lose money or a job if it’s not
remedied, the user doesn’t want to hear about why fixing the performance problem will increase
coupling and decrease maintainability. The user just wants the software to work fast—and we have no
choice but to deliver.

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

20

A fortunate fact about sticking with best practices is that they’re often considered to be the best way
to do things for several reasons. Keeping a close watch on issues of coupling, cohesion, and proper
encapsulation throughout the development cycle can not only reduce the incidence of performance
problems, but will also make fixing most of them a whole lot easier. And on those few occasions where
you need to break some “perfect” code to get it working as fast as necessary, know that it’s not your
fault—society put you in this position!

Testability
It is inadvisable, to say the least, to ship any product without thoroughly testing it. However, it is
common to see developers exploit anti-patterns that make proper testing difficult or impossible. Many
of these problems result from attempts to produce “flexible” modules or interfaces—instead of properly
partitioning functionality and paying close attention to cohesion, it is sometimes tempting to create “all-
singing, all-dancing,” monolithic routines that try to do it all.

Development of these kinds of routines produces software that can never be fully tested. The
combinatorial explosion of possible use cases for a single routine can be immense—even though, in
most cases, the number of actual combinations that users of the application will exploit is far more
limited.

Think very carefully before implementing a flexible solution merely for the sake of flexibility. Does it
really need to be that flexible? Will the functionality really be exploited in full right away, or can it be
slowly extended later as required?

Maintainability
Throughout the lifespan of an application, various modules and routines will require maintenance and
revision in the form of enhancements and bug fixes. The issues that make routines more or less
maintainable are similar to those that influence testability, with a few twists.

When determining how testable a given routine is, we are generally only concerned with whether
the interface is stable enough to allow the authoring of test cases. For determining the level of
maintainability, we are also concerned with exposed interfaces, but for slightly different reasons. From a
maintainability point of view, the most important interface issue is coupling. Tightly coupled routines
tend to carry a higher maintenance cost, as any changes have to be propagated to multiple routines
instead of being made in a single place.

The issue of maintainability also goes beyond the interface into the actual implementation. A
routine may have a stable, simple interface, yet have a convoluted, undocumented implementation that
is difficult to work with. Generally speaking, the more lines of code in a routine, the more difficult
maintenance becomes; but since large routines may also be a sign of a cohesion problem, such an issue
should be caught early in the design process if developers are paying attention.

As with testability, maintainability is somewhat influenced by attempts to create “flexible”
interfaces. On one hand, flexibility of an interface can increase coupling between routines by requiring
the caller to have too much knowledge of parameter combinations, overrideable options, and the like.
On the other hand, routines with flexible interfaces can sometimes be more easily maintained, at least at
the beginning of a project. In some cases, making routines as generic as possible can result in fewer total
routines needed by a system, and therefore less code to maintain. However, as features are added, the
ease with which these generic routines can be modified tends to break down due to the increased
complexity that each new option or parameter brings. Oftentimes, therefore, it may be advantageous
early in a project to aim for some flexibility, and then refactor later when maintainability begins to suffer.

 CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

21

Maintainability is also tied in with testability in one other key way: the better a routine can be tested,
the easier it will be to modify. Breaking changes are not as much of an issue when tests exist that can
quickly validate new approaches to implementation.

Security
In an age in which identity theft makes the news almost every night, and a computer left open on the
Internet will be compromised within 30 seconds, it is little wonder that security is considered one of the
most important areas when developing software applications. Security is, however, also one of the most
complex areas, and complexity can hide flaws that a trained attacker can easily exploit.

Complex security schemes can also have a huge impact on whether a given piece of software is
testable and maintainable. From a testing standpoint, a developer needs to consider whether a given
security scheme will create too many variables to make testing feasible. For instance, if users are divided
into groups and each group has distinct security privileges, should each set of tests be run for each group
of users? How many test combinations are necessary to exercise before the application can be
considered “fully” tested?

From a maintenance point of view, complexity from a security standpoint is equally dangerous as
complexity of any other type of implementation. The more complex a given routine is, the more difficult
(and therefore more expensive) it will be to maintain.

In a data-dependent application, much of the security responsibility will generally get pushed into
the data tier. The security responsibilities of the data tier or database will generally include areas such as
authentication to the application, authorization to view data, and availability of data. Encapsulating
these security responsibilities in database routines can be a win from an overall application
maintainability perspective, but care must be taken to ensure that the database routines do not become
so bogged down that their maintainability, testability, or performance suffer.

Allowing for Future Requirements
In a dynamic environment, where you face ever-changing customer requirements and additional feature
requests, it is easy to give too much attention to tomorrow’s enhancements, instead of concentrating on
today’s bugs. Looking through many technical specifications and data dictionaries, it’s common to see
the phrase “reserved for future use.” Developers want to believe that adding complexity up front will
work to their advantage by allowing less work to be done later in the development process. However, this
approach of second-guessing future requirements frequently backfires, producing software full of
maintenance baggage. These pieces of code must be carried around by the development team and kept
up to date in order to compile the application, but often go totally unused for years at a time.

Even SQL Server itself even suffers from these problems. For example, according to Books Online,
the NUM_INPUT_PARAMS, NUM_OUTPUT_PARAMS, and NUM_RESULT_SETS returned by the sp_stored_procedures
stored procedure in SQL Server 2008 are reserved for future use (http://msdn.microsoft.com/en-
us/library/ms190504.aspx), just as they were in SQL Server 2005 (http://msdn.microsoft.com/en-
us/library/ms190504(SQL.90).aspx).

In one 15-year-old application I worked on, the initial development team had been especially active
in prepopulating the code base with features reserved for the future. Alas, several years, a few rounds of
layoffs, and lots of staff turnovers later, and no members of the original team were left. The remaining
developers who had to deal with the 2 million–line application were afraid of removing anything lest it
would break some long-forgotten feature that some user still relied upon. It was a dismal scene, to say
the least, and it’s difficult to imagine just how much time was wasted over the years keeping all of that
redundant code up to date.

CHAPTER 1 SOFTWARE DEVELOPMENT METHODOLOGIES FOR THE DATABASE WORLD

22

Although that example is extreme (certainly by far the worst I’ve come across), it teaches us to
adhere to the golden rule of software development: the KISS principle (keep it simple, stupid). Keep your
software projects as straightforward as they can possibly be. Adding new features tomorrow should
always be a secondary concern to delivering a robust, working product today.

Summary
Applications depend upon databases for much more than mere data persistence, and database
developers must have an understanding of the entire application development process in order to create
truly effective database systems.

By understanding architectural concepts such as coupling, cohesion, and encapsulation, database
developers can define modular data interfaces that allow for great gains in ongoing maintenance and
testing. Database developers must also understand how best to map data from object-oriented systems
into database structures, in order to effectively persist and manipulate the data.

This chapter has provided an introduction to these ideas. The concepts presented here will be
revisited in various examples throughout the remainder of the book.

C H A P T E R 2

Best Practices for
Database Programming

Software development is not just a practical discipline performed by coders, but also an area of
academic research and theory. There is now a great body of knowledge concerning software
development, and lengthy academic papers have been written to propose, dissect, and discuss different
approaches to development. Various methodologies have emerged, including test-driven development
(TDD), agile and extreme programming (XP), and defensive programming, and there have been
countless arguments concerning the benefits afforded by each of these schools of thought.

The practices described in this chapter, and the approach taken throughout the rest of this book, are
most closely aligned with the philosophy of defensive programming. However, the topics discussed here
can be applied just as readily in any environment. While software theorists may argue the finer
differences between different methodologies (and undoubtedly, they do differ in some respects), when it
comes down to it, the underlying features of good programming remain the same whatever
methodology you apply.

I do not intend to provide an exhaustive, objective guide as to what constitutes best practice, but
rather to highlight some of the standards that I believe demonstrate the level of professionalism that
database developers require in order to do a good job. I will present the justification of each argument
from a defensive point of view, but remember that they are generally equally valid in other
environments.

Defensive Programming
Defensive programming is a methodology used in software development that suggests that developers
should proactively anticipate and make allowances for (or “defend against”) unforeseen future events.
The objective of defensive programming is to create applications that can remain robust and effective,
even when faced with unexpected situations.

Defensive programming essentially involves taking a pessimistic view of the world—if something
can go wrong, it will: network resources will become unavailable halfway through a transaction; required
files will be absent or corrupt; users will input data in any number of ways different from that expected,
and so on. Rather than leave anything to chance, a defensive programmer will have predicted the
possibility of these eventualities, and will have written appropriate handling code to check for and deal
with these situations. This means that potential error conditions can be detected and handled before an
actual error occurs.

Note that defensive programming does not necessarily enable an application to continue when
exceptional circumstances occur, but it does make it possible for the system to behave in a predictable,
controlled way—degrading gracefully, rather than risking a crash with unknown consequences. In many

23

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

24

cases, it may be possible to identify and isolate a particular component responsible for a failure, allowing
the rest of the application to continue functioning.

There is no definitive list of defensive programming practices, but adopting a defensive stance to
development is generally agreed to include the following principles:

• Keep things simple (or KISS—keep it simple, stupid). Applications are not made
powerful and effective by their complexity, but by their elegant simplicity.
Complexity allows bugs to be concealed, and should be avoided in both
application design and in coding practice itself.

• “If it ain’t broke, fix it anyway.” Rather than waiting for things to break, defensive
programming encourages continuous, proactive testing and future-proofing of an
application against possible breaking changes in the future.

• Be challenging, thorough, and cautious at all stages and development. “What if?”
analyses should be conducted in order to identify possible exceptional scenarios
that might occur during normal (and abnormal) application usage.

• Extensive code reviews and testing should be conducted with different peer
groups, including other developers or technical teams, consultants, end users, and
management. Each of these different groups may have different implicit
assumptions that might not be considered by a closed development team.

• Assumptions should be avoided wherever possible. If an application requires a
certain condition to be true in order to function correctly, there should be an
explicit assertion to this effect, and relevant code paths should be inserted to
check and act accordingly based on the result.

• Applications should be built from short, highly cohesive, loosely coupled modules.
Modules that are well encapsulated in this way can be thoroughly tested in
isolation, and then confidently reused throughout the application. Reusing
specific code modules, rather than duplicating functionality, reduces the chances
of introducing new bugs.

Throughout the remainder of this chapter, I'll be providing simple examples of what I believe to be
best practices demonstrating each of these principles, and these concepts will be continually
reexamined in later chapters of this book.

Attitudes to Defensive Programming
The key advantages of taking a defensive approach to programming are essentially twofold:

• Defensive applications are typically robust and stable, require fewer essential bug
fixes, and are more resilient to situations that may otherwise lead to expensive
failures or crashes. As a result, they have a long expected lifespan, and relatively
cheap ongoing maintenance costs.

• In many cases, defensive programming can lead to an improved user experience.
By actively foreseeing and allowing for exceptional circumstances, errors can be
caught before they occur, rather than having to be handled afterward. Exceptions
can be isolated and handled with a minimum negative effect on user experience,
rather than propagating an entire system failure. Even in the case of extreme

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

25

unexpected conditions being encountered, the system can still degrade gracefully
and act according to documented behavior.

However, as with any school of thought, defensive programming is not without its opponents. Some
of the criticisms commonly made of defensive coding are listed following. In each case, I’ve tried to give
a reasoned response to each criticism.

Defensive code takes longer to develop.

It is certainly true that following a defensive methodology can result in a longer up-front development
time when compared to applications developed following other software practices. Defensive
programming places a strong emphasis on the initial requirements-gathering and architecture design
phases, which may be longer and more involved than in some methodologies. Coding itself takes longer
because additional code paths may need to be added to handle checks and assertions of assumptions.
Code must be subjected to an extensive review that is both challenging and thorough, and then must
undergo rigorous testing. All these factors contribute to the fact that the overall development and release
cycle for defensive software is longer than in other approaches.

There is a particularly stark contrast between defensive programming and so-called “agile”
development practices, which focus on releasing frequent iterative changes on a very accelerated
development and release cycle. However, this does not necessarily mean that defensive code takes
longer to develop when considered over the full life cycle of an application. The additional care and
caution invested in code at the initial stages of development are typically paid back over the life of the
project, because there is less need for code fixes to be deployed once the project has gone live.

Writing code that anticipates and handles every possible scenario makes defensive
applications bloated.

Code bloat suggests that an application contains unnecessary, inefficient, or wasteful code. Defensive
code protects against events that may be unlikely to happen, but that certainly doesn’t mean that they
can’t happen. Taking actions to explicitly test for and handle exceptional circumstances up front can
save lots of hours spent possibly tracing and debugging in the future. Defensive applications may
contain more total lines of code than other applications, but all of that code should be well designed,
with a clear purpose. Note that the label of “defensive programming” is sometimes misused: the
addition of unnecessary checks at every opportunity without consideration or justification is not
defensive programming. Such actions lead to code that is both complex and rigid. Remember that true
defensive programming promotes simplicity, modularization, and code reuse, which actually reduces
code bloat.

Defensive programming hides bugs that then go unfixed, rather than making them
visible.

This is perhaps the most common misconception applied to defensive practices, which manifests from a
failure to understand the fundamental attitude toward errors in defensive applications. By explicitly
identifying and checking exceptional scenarios, defensive programming actually takes a very proactive
approach to the identification of errors. However, having encountered a condition that could lead to an
exceptional circumstance, defensive applications are designed to fail gracefully—that is, at the point of
development, potential scenarios that may lead to exceptions are identified and code paths are created

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

26

to handle them. To demonstrate this in practical terms, consider the following code listing, which
describes a simple stored procedure to divide one number by another:

CREATE PROCEDURE Divide (
 @x decimal(18,2),
 @y decimal(18,2)
)
 AS BEGIN
 SELECT @x / @y
 END;
GO

Based on the code as written previously, it would be very easy to cause an exception using this
procedure if, for example, the supplied value of @y was 0. If you were simply trying to prevent the error
message from occurring, it would be possible to consume (or “swallow”) the exception in a catch block,
as follows:

ALTER PROCEDURE Divide (
 @x decimal(18,2),
 @y decimal(18,2)
)
 AS BEGIN
 BEGIN TRY
 SELECT @x / @y
 END TRY
 BEGIN CATCH
 /* Do Nothing */
 END CATCH
 END;
GO

However, it is important to realize that the preceding code listing is not defensive—it does nothing
to prevent the exceptional circumstance from occurring, and its only effect is to allow the system to
continue operating, pretending that nothing bad has happened. Exception hiding such as this can be
very dangerous, and makes it almost impossible to ensure the correct functioning of an application. The
defensive approach would be, before attempting to perform the division, to explicitly check that all the
requirements for that operation to be successful are met. This means asserting such things as making
sure that values for @x and @y are supplied (i.e., they are not NULL), that @y is not equal to zero, that the
supplied values lie within the range that can be stored within the decimal(18,2) datatype, and so on.

The following code listing provides a simplified defensive approach to this same procedure:

ALTER PROCEDURE Divide (
 @x decimal(18,2),
 @y decimal(18,2)
)
 AS BEGIN
 IF @x IS NULL OR @y IS NULL
 BEGIN
 PRINT 'Please supply values for @x and @y';
 RETURN;
 END

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

27

 IF @y = 0
 BEGIN
 PRINT '@y cannot be equal to 0';
 RETURN;
 END

 BEGIN TRY
 SELECT @x / @y
 END TRY
 BEGIN CATCH
 PRINT 'An unhandled exception occurred';
 END CATCH
 END;
GO

For the purposes of the preceding example, each assertion was accompanied by a simple PRINT
statement to advise which of the conditions necessary for the procedure to execute failed. In real life,
these code paths may handle such assertions in a number of ways—typically logging the error, reporting
a message to the user, and attempting to continue system operation if it is possible to do so. In doing so,
they prevent the kind of unpredictable behavior associated with an exception that has not been
expected.

Defensive programming can be contrasted to the fail fast methodology, which focuses on
immediate recognition of any errors encountered by causing the application to halt whenever an
exception occurs. Just because the defensive approach doesn’t espouse ringing alarm bells and flashing
lights doesn’t mean that it hides errors—it just reports them more elegantly to the end user and, if
possible, continues operation of the core part of the system.

Why Use a Defensive Approach to Database Development?
As stated previously, defensive programming is not the only software development methodology that
can be applied to database development. Other common approaches include TDD, XP, and fail-fast
development. So why have I chosen to focus on just defensive programming in this chapter, and
throughout this book in general? I believe that defensive programming is the most appropriate approach
for database development for the following reasons:

Database applications tend to have a longer expected lifespan than other
software applications. Although it may be an overused stereotype to suggest that
database professionals are the sensible, fastidious people of the software
development world, the fact is that database development tends to be more slow-
moving and cautious than other technologies. Web applications, for example, may
be revised and relaunched on a nearly annual basis, in order to take advantage of
whatever technology is current at the time. In contrast, database development
tends to be slow and steady, and a database application may remain current for
many years without any need for updating from a technological point of view. As a
result, it is easier to justify the greater up-front development cost associated with
defensive programming. The benefits of reliability and bug resistance will typically
be enjoyed for a longer period.

Users (and management) are less tolerant of bugs in database applications. Most
end users have come to tolerate and even expect bugs in desktop and web
software. While undoubtedly a cause of frustration, many people are routinely in

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

28

the habit of hitting Ctrl+Alt+Delete to reset their machine when a web browser
hangs, or because some application fails to shut down correctly. However, the
same tolerance that is shown to personal desktop software is not typically extended
to corporate database applications. Recent highly publicized scandals in which
bugs have been exploited in the systems of several governments and large
organizations have further heightened the general public’s ultrasensitivity toward
anything that might present a risk to database integrity.

Any bugs that do exist in database applications can have more severe
consequences than in other software. It can be argued that people are absolutely
right to be more worried about database bugs than bugs in other software. An
unexpected error in a desktop application may lead to a document or file becoming
corrupt, which is a nuisance and might lead to unnecessary rework. But an
unexpected error in a database may lead to important personal, confidential, or
sensitive data being placed at risk, which can have rather more serious
consequences. The nature of data typically stored in a database warrants a
cautious, thorough approach to development, such as defensive programming
provides.

Designing for Longevity

Consumer software applications have an increasingly short expected shelf life, with compressed release
cycles pushing out one release barely before the predecessor has hit the shelves. However, this does not
have to be the case. Well-designed, defensively programmed applications can continue to operate for
many years. In one organization I worked for, a short-term tactical management information data store
was created so that essential business reporting functions could continue while the organization’s systems
went through an integration following a merger. Despite only being required for an immediate post-merger
period, the (rather unfortunately named) Short Term Management Information database continued to be
used for up to ten years later, as it remained more reliable and robust than subsequent attempted
replacements.

And let that be a lesson in choosing descriptive names for your databases that won’t age with time!

Best Practice SQL Programming Techniques
Having looked at some of the theory behind different software methodologies, and in particular the
defensive approach to programming, you’re now probably wondering about how to put this into
practice. As in any methodology, defensive programming is more concerned with the mindset with
which you should approach development than prescribing a definitive set of rules to follow. As a result,
this section will only provide examples that illustrate the overall concepts involved, and should not be
treated as an exhaustive list. I’ll try to keep the actual examples as simple as possible in every case, so
that you can concentrate on the reasons I consider these to be best practices, rather than the code itself.

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

29

Identify Hidden Assumptions in Your Code
One of the core tenets of defensive programming is to identify all of the assumptions that lie behind the
proper functioning of your code. Once these assumptions have been identified, the function can either
be adjusted to remove the dependency on them, or explicitly test each condition and make provisions
should it not hold true. In some cases, “hidden” assumptions exist as a result of code failing to be
sufficiently explicit.

To demonstrate this concept, consider the following code listing, which creates and populates a
Customers and an Orders table:

CREATE TABLE Customers(
 CustID int,
 Name varchar(32),
 Address varchar(255));

INSERT INTO Customers(CustID, Name, Address) VALUES
 (1, 'Bob Smith', 'Flat 1, 27 Heigham Street'),
 (2, 'Tony James', '87 Long Road');
GO

CREATE TABLE Orders(
 OrderID INT,
 CustID INT,
 OrderDate DATE);

INSERT INTO Orders(OrderID, CustID, OrderDate) VALUES
 (1, 1, '2008-01-01'),
 (2, 1, '2008-03-04'),
 (3, 2, '2008-03-07');
GO

Now consider the following query to select a list of every customer order, which uses columns from
both tables:

SELECT
 Name,
 Address,
 OrderID
FROM
 Customers c
 JOIN Orders o ON c.CustID = o.CustID;
GO

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

30

The query executes successfully and we get the results expected:

Bob Smith Flat 1, 27 Heigham Street 1

Bob Smith Flat 1, 27 Heigham Street 2

Tony James 87 Long Road 3

But what is the hidden assumption? The column names listed in the SELECT query were not qualified
with table names, so what would happen if the table structure were to change in the future? Suppose
that an Address column were added to the Orders table to enable a separate delivery address to be
attached to each order, rather than relying on the address in the Customers table:

ALTER TABLE Orders ADD Address varchar(255);
GO

The unqualified column name, Address, specified in the SELECT query, is now ambiguous, and if we
attempt to run the original query again we receive an error:

Msg 209, Level 16, State 1, Line 1

Ambiguous column name 'Address'.

By not recognizing and correcting the hidden assumption contained in the original code, the query
subsequently broke as a result of the additional column being added to the Orders table. The simple
practice that could have prevented this error would have been to ensure that all column names were
prefixed with the appropriate table name or alias:

SELECT
 c.Name,
 c.Address,
 o.OrderID
FROM
 Customers c
 JOIN Orders o ON c.CustID = o.CustID;
GO

In the previous case, it was pretty easy to spot the hidden assumption, because SQL Server gave a
descriptive error message that would enable any developer to locate and fix the broken code fairly
quickly. However, sometimes you may not be so fortunate, as shown in the following example.

Suppose that you had a table, MainData, containing some simple values, as shown in the following
code listing:

CREATE TABLE MainData(
 ID int,
 Value char(3));
GO

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

31

INSERT INTO MainData(ID, Value) VALUES
 (1, 'abc'), (2, 'def'), (3, 'ghi'), (4, 'jkl');
GO

Now suppose that every change made to the MainData table was to be recorded in an associated
ChangeLog table. The following code demonstrates this structure, together with a mechanism to
automatically populate the ChangeLog table by means of an UPDATE trigger attached to the MainData table:

CREATE TABLE ChangeLog(
 ChangeID int IDENTITY(1,1),
 RowID int,
 OldValue char(3),
 NewValue char(3),
 ChangeDate datetime);
GO

CREATE TRIGGER DataUpdate ON MainData
FOR UPDATE
AS
 DECLARE @ID int;
 SELECT @ID = ID FROM INSERTED;

 DECLARE @OldValue varchar(32);
 SELECT @OldValue = Value FROM DELETED;

 DECLARE @NewValue varchar(32);
 SELECT @NewValue = Value FROM INSERTED;

 INSERT INTO ChangeLog(RowID, OldValue, NewValue, ChangeDate)
 VALUES(@ID, @OldValue, @NewValue, GetDate());
GO

We can test the trigger by running a simple UPDATE query against the MainData table:

UPDATE MainData SET Value = 'aaa' WHERE ID = 1;
GO

The query appears to be functioning correctly—SQL Server Management Studio reports the following:

(1 row(s) affected)

(1 row(s) affected)

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

32

And, as expected, we find that one row has been updated in the MainData table:

ID Value

1 aaa

2 def

3 ghi

4 jkl

and an associated row has been created in the ChangeLog table:

ChangeID RowID OldValue NewValue ChangeDate

1 1 abc aaa 2009-06-15 14:11:09.770

However, once again, there is a hidden assumption in the code. Within the trigger logic, the
variables @ID, @OldValue, and @NewValue are assigned values that will be inserted into the ChangeLog table.
Clearly, each of these scalar variables can only be assigned a single value, so what would happen if you
were to attempt to update two or more rows in a single statement?

UPDATE MainData SET Value = 'zzz' WHERE ID IN (2,3,4);
GO

If you haven’t worked it out yet, perhaps the messages reported by SQL Server Management Studio
will give you a clue as to the result:

(1 row(s) affected)

(3 row(s) affected)

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

33

The result in this case is that all three rows affected by the UPDATE statement have been changed in
the MainData table:

ID Value

1 aaa

2 zzz

3 zzz

4 zzz

but only the first update has been logged:

ChangeID RowID OldValue NewValue ChangeDate

1 1 abc aaa 2009-06-15 14:11:09.770

2 2 def zzz 2009-06-15 15:18:11.007

The failure to foresee the possibility of multiple rows being updated in a single statement led to a
silent failure on this occasion, which is much more dangerous than the overt error given in the previous
example. Had this scenario been actively considered, it would have been easy to recode the procedure to
deal with such an event by making a subtle alteration to the trigger syntax, as shown here:

ALTER TRIGGER DataUpdate ON MainData
FOR UPDATE
AS
 INSERT INTO ChangeLog(RowID, OldValue, NewValue, ChangeDate)
 SELECT i.ID, d.Value, i.Value, GetDate()
 FROM INSERTED i JOIN DELETED d ON i.ID = d.ID;
GO

Don’t Take Shortcuts
It is human nature to want to take shortcuts if we believe that they will allow us to avoid work that we
feel is unnecessary. In programming terms, there are often shortcuts that provide a convenient, concise
way of achieving a given task in fewer lines of code than other, more standard methods. However, these
shortcut methods can come with associated risks. Most commonly, shortcut methods require less code
because they rely on some assumed default values rather than those explicitly stated within the
procedure. As such, they can only be applied in situations where the conditions imposed by those
default values hold true.

By relying on a default value, shortcut methods may increase the rigidity of your code and also
introduce an external dependency—the default value may vary depending on server configuration, or

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

34

change between different versions of SQL Server. Taking shortcuts therefore reduces the portability of
code, and introduces assumptions that can break in the future.

To demonstrate, consider what happens when you CAST a value to a varchar datatype without
explicitly declaring the appropriate data length:

SELECT CAST ('This example seems to work ok' AS varchar);
GO

The query appears to work correctly, and results in the following output:

This example seems to work ok

It seems to be a common misunderstanding among some developers that omitting the length for
the varchar type as the target of a CAST operation results in SQL Server dynamically assigning a length
sufficient to accommodate all of the characters of the input. However, this is not the case, as
demonstrated in the following code listing:

SELECT CAST ('This demonstrates the problem of relying on default datatype length'
AS varchar);
GO

This demonstrates the problem

If not explicitly specified, when CASTing to a character datatype, SQL Server defaults to a length of 30
characters. In the second example, the input string is silently truncated to 30 characters, even though
there is no obvious indication in the code to this effect. If this was the intention, it would have been
much clearer to explicitly state varchar(30) to draw attention to the fact that this was a planned
truncation, rather than simply omitting the data length.

Another example of a shortcut sometimes made is to rely on implicit CASTs between datatypes.
Consider the following code listing:

DECLARE
 @x int = 5,
 @y int = 9,
 @Rate decimal(18,2);

SET @Rate = 1.9 * @x / @y;

SELECT 1000 * @Rate;
GO

In this example, @Rate is a multiplicative factor whose value is determined by the ratio of two
parameters, @x and @y, multiplied by a hard-coded scale factor of 1.9. When applied to the value 1000, as
in this example, the result is as follows:

1060

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

35

Now let’s suppose that management makes a decision to change the calculation used to determine
@Rate, and increases the scale factor from 1.9 to 2. The obvious (but incorrect) solution would be to
amend the code as follows:

DECLARE
 @x int = 5,
 @y int = 9,
 @Rate decimal(18,2);

SET @Rate = 2 * @x / @y;

SELECT 1000 * @Rate;
GO

1000

Rather than increasing the rate as intended, the change has actually negated the effect of applying
any rate to the supplied value of 1000. The problem now is that the sum used to determine @Rate is a
purely integer calculation, 2 * 5 / 9. In integer mathematics, this equates to 1. In the previous example,
the hard-coded value of 1.9 caused an implicit cast of both @x and @y parameters to the decimal type, so
the sum was calculated with decimal precision.

This example may seem trivial when considered in isolation, but can be a source of unexpected
behavior and unnecessary bug-chasing when nested deep in the belly of some complex code. To avoid
these complications, it is always best to explicitly state the type and precision of any parameters used in
a calculation, and avoid implicit CASTs between them.

Another problem with using shortcuts is that they can obscure what the developer intended the
purpose of the code to be. If we cannot tell what a line of code is meant to do, it is incredibly hard to test
whether it is achieving its purpose or not. Consider the following code listing:

DECLARE @Date datetime = '03/05/1979';
SELECT @Date + 365;

At first sight, this seems fairly innocuous: take a specific date and add 365. But there are actually several
shortcuts used here that add ambiguity as to what the intended purpose of this code is:

The first shortcut is in the implicit CAST from the string value '03/05/1979' to a
datetime. As I’m sure you know, there are numerous ways of presenting date
formats around the world, and 03/05/1979 is ambiguous. In the United Kingdom it
means the 3rd of May, but to American readers it means the 5th of March. The
result of the implicit cast will depend upon the locale of the server on which the
function is performed.

Even if the dd/mm/yyyy or mm/dd/yyyy ordering is resolved, there is still
ambiguity regarding the input value. The datatype chosen is datetime, which stores
both a date and time component, but the value assigned to @Date does not specify a
time, so this code relies on SQL Server’s default value of midnight: 00:00:00.
However, perhaps it was not the developer’s intention to specify an instance in
time, but rather the whole of a calendar day. If so, should the original @Date
parameter be specified using the date datatype instead? And what about the result
of the SELECT query—should that also be a date?

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

36

Finally, the code specifies the addition of the integer 365 with a datetime value.
When applied to a date value, the + operator adds the given number of days, so this
appears to be a shortcut in place of using the DATEADD method to add 365 days. But,
is this a shortcut to adding 1 year? If so, this is another example of a shortcut that
relies on an assumption—in this case, that the year in question has 365 days.

The combination of these factors has meant that it is unclear whether the true intention of this simple
line of code is

SELECT DATEADD(DAY, 365, '1979-03-05');

which leads to the following result:

1980-03-04 00:00:00.000

or whether the code is a shortcut for the following:

SELECT CAST(DATEADD(YEAR, 1, '1979-05-03') AS date);

which would lead to a rather different output:

1980-05-03

 Note For further discussion of issues related to temporal data, please refer to Chapter 11.

Perhaps the most well-known example of a shortcut method is the use of SELECT * in order to
retrieve every column of data from a table, rather than listing the individual columns by name. As in the
first example of this chapter, the risk here is that any change to the table structure in the future will lead
to the structure of the result set returned by this query silently changing. At best, this may result in
columns of data being retrieved that are then never used, leading to inefficiency. At worst, this may lead
to very serious errors (consider what would happen if the columns of data in the results are sent to
another function that references them by index position rather than column name, or the possibility of
the results of any UNION queries failing because the number and type of columns in two sets fail to
match). There are many other reasons why SELECT * should be avoided, such as the addition of
unnecessary rows to the query precluding the use of covering indexes, which may lead to a substantial
degradation in query performance.

Testing
Defensive practice places a very strong emphasis on the importance of testing and code review
throughout the development process. In order to defend against situations that might occur in a live
production environment, an application should be tested under the same conditions that it will
experience in the real world. In fact, defensive programming suggests that you should test under
extreme conditions (stress testing)—if you can make a robust, performant application that can cope

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

37

with severe pressure, then you can be more certain it will cope with the normal demands that will be
expected of it. In addition to performance testing, there are functional tests and unit tests to consider,
which ensure that every part of the application is behaving as expected according to its contract, and
performing the correct function. These tests will be discussed in more detail in the next chapter.

When testing an application, it is important to consider the sample data on which tests will be
based. You should not artificially cleanse the data on which you will be testing your code, or rely on
artificially generated data. If the application is expected to perform against production data, then it
should be tested against a fair representation of that data, warts and all. Doing so will ensure that the
application can cope with the sorts of imperfect data typically found in all applications—missing or
incomplete values, incorrectly formatted strings, NULLs, and so on. Random sampling methods can be
used to ensure that the test data represents a fair sample of the overall data set, but it is also important
for defensive testing to ensure that applications are tested against extreme edge cases, as it is these
unusual conditions that may otherwise lead to exceptions.

Even if test data is created to ensure a statistically fair representation of real-world data, and is
carefully chosen to include edge cases, there are still inherent issues about how defensively guaranteed
an application can be when only tested on a relatively small volume of test data. Some exceptional
circumstances only arise in a full-scale environment. Performance implications are an obvious example:
if you only conduct performance tests on the basis of a couple of thousand rows of data, then don’t be
surprised when the application fails to perform against millions of rows in the live environment (you’ll
be amazed at the number of times I’ve seen applications signed off on the basis of a performance test
against a drastically reduced size of data). Nor should you simply assume that the performance of your
application will scale predictably with the number of rows of data involved. With careful query design
and well-tuned indexes, some applications may scale very well against large data sets. The performance
of other applications, however, may degrade exponentially (such as when working with Cartesian
products created from CROSS JOINs between tables). Defensive testing should be conducted with
consideration not only of the volumes of data against which the application is expected to use now, but
also by factoring in an allowance for expected future growth.

Another consideration when testing is the effect of multiple users on a system. There are many
functions that, when tested in isolation, are proven to pass in a consistent, repeatable manner. However,
these same tests can fail in the presence of concurrency—that is, multiple requests for the same resource
on the database. To demonstrate this, the following code listing creates a simple table containing two
integer columns, x and y, and a rowversion column, v.

CREATE TABLE XandY (
 x int,
 y int,
 v rowversion);

INSERT INTO XandY (x, y) VALUES (0, 0);
GO

The following code executes a loop that reads the current values from the XandY table, increments
the value of x by 1, and then writes the new values back to the table. The loop is set to run for 100,000
iterations, and the loop counter only increments if the rowversion column, v, has not changed since the
values were last read.

SET NOCOUNT ON;
DECLARE
 @x int,
 @y int,
 @v rowversion,

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

38

 @success int = 0;
WHILE @success < 100000
BEGIN
 -- Retrieve existing values
 SELECT
 @x = x,
 @y = y,
 @v = v
 FROM XandY

 -- Increase x by 1
 SET @x = @x + 1;

 SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
 BEGIN TRANSACTION
 IF EXISTS(SELECT 1 FROM XandY WHERE v = @v)
 BEGIN
 UPDATE XandY
 SET
 x = @x,
 y = @y
 WHERE v = @v;
 SET @success = @success + 1;
 END
 COMMIT;
END
GO

Executing this code leads, as you’d expect, to the value of the x column being increased to 100,000:

x y v

100000 0 0x00000000001EA0B9

Now let’s try running the same query in a concurrent situation. First, let’s reset the table to its initial
values, as follows:

UPDATE XandY SET x = 0;
GO

Now open up a new query in SQL Server Management Studio and enter the following code:

SET NOCOUNT ON;

DECLARE
 @x int,
 @y int,
 @v rowversion,
 @success int = 0;

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

39

WHILE @success < 100000
BEGIN
 -- Retrieve existing values
 SELECT
 @x = x,
 @y = y,
 @v = v
 FROM XandY

 -- Increase y by 1
 SET @y = @y + 1;

 SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
 BEGIN TRANSACTION
 IF EXISTS(SELECT 1 FROM XandY WHERE v = @v)
 BEGIN
 UPDATE XandY
 SET
 x = @x,
 y = @y
 WHERE v = @v;
 SET @success = @success + 1;
 END
 COMMIT;
END
GO

This second query is identical to the first in every respect except that, instead of incrementing the
value of @x by 1, it increments the value of @y by 1. It then writes both values back to the table, as before.
So, if we were to run both queries, we would expect the values of both x and y to be 100,000, right? To
find out, execute the first query, which updates the value of x. While it is still executing, execute the
second script, which updates the value of y. After a few minutes, once both queries have finished,
checking the contents of the XandY table on my laptop gives the following results:

x y v

99899 99019 0x000000000021ACCC

Despite apparently containing some degree of allowance for concurrency (by testing that the value
of @rowversion has remained unchanged before committing the update), when tested in an environment
with other concurrent queries, these queries have failed to behave as designed. An explanation of why
this has occurred, and methods to deal with such situations, will be explained in Chapter 9.

Code Review
Whereas testing is generally an automated process, code review is a human-led activity that involves
peer groups manually reviewing the code behind an application. The two activities of automated testing
and human code review are complementary and can detect different areas for code improvement. While

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

40

automated test suites can very easily check whether routines are producing the correct output in a given
number of test scenarios, it is very difficult for them to conclusively state that a routine is coded in the
most robust or efficient way, that correct logic is being applied, or the coding standards followed best
practice. In these cases, code review is a more effective approach.

Consider the following code listing, which demonstrates a T-SQL function used to test whether a
given e-mail address is valid:

DECLARE @email_address varchar(255);
IF (
 CHARINDEX(' ',LTRIM(RTRIM(@email_address))) = 0
 AND LEFT(LTRIM(@email_address),1) <> '@'
 AND RIGHT(RTRIM(@email_address),1) <> '.'
 AND CHARINDEX('.',@email_address ,CHARINDEX('@',@email_address)) -
CHARINDEX('@',@email_address) > 1
 AND LEN(LTRIM(RTRIM(@email_address))) -
LEN(REPLACE(LTRIM(RTRIM(@email_address)),'@','')) = 1
 AND CHARINDEX('.',REVERSE(LTRIM(RTRIM(@email_address)))) >= 3
 AND (CHARINDEX('.@',@email_address) = 0 AND CHARINDEX('..',@email_address) = 0)
)
 PRINT 'The supplied email address is valid';
ELSE
 PRINT 'The supplied email address is not valid';

This code might well pass functional tests to suggest that, based on a set of test email addresses
provided, the function correctly identifies whether the format of a supplied e-mail address is valid.
However, during a code review, an experienced developer could look at this code and point out that it
could be much better implemented as a user-defined function using the regular expression methods
provided by the .NET Base Class Library, such as shown here:

SELECT dbo.RegExMatch('\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b', @email_address);

Note that this example assumes that you have registered a function called RegExMatch that
implements the Match method of the .NET System.Text.RegularExpressions.Regex class. While both
methods achieve the same end result, rewriting the code in this way creates a routine that is more
efficient and maintainable, and also promotes reusability, since the suggested RegExMatch function could
be used to match regular expression patterns in other situations, such as checking whether a phone
number is valid.

Challenging and open code review has a significant effect on improving the quality of software code,
but it can be a costly exercise, and the effort required to conduct a thorough code review across an entire
application is not warranted in all situations. One of the advantages of well-encapsulated code is that
those modules that are most likely to benefit from the exercise can be isolated and reviewed separately
from the rest of the application.

Validate All Input
Defensive programming suggests that you should never trust any external input—don’t make
assumptions about its type (e.g. alphabetic or numeric), its length, its content, or even its existence!
These rules apply not just to user input sent from an application UI or web page, but also to any external
file or web resource on which the application relies.

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

41

A good defensive stance is to assume that all input is invalid and may lead to exceptional
circumstances unless proved otherwise. There are a number of techniques that can be used to ensure
that input is valid and safe to use:

• Data can be “massaged.” For example, bad characters can be replaced or escaped.
However, there are some difficulties associated in identifying exactly what data
needs to be treated, and knowing the best way in which to handle it. Silently
modifying input affects data integrity and is generally not recommended unless it
cannot be avoided.

• Data can be checked against a “blacklist” of potentially dangerous input and
rejected if it is found to contain known bad items. For example, input should not
be allowed to contain SQL keywords such as DELETE or DROP, or contain
nonalphanumeric characters.

• Input can be accepted only if it consists solely of content specified by a “whitelist”
of allowed content. From a UI point of view, you can consider this as equivalent to
allowing users to only select values from a predefined drop-down list, rather than
a free-text box. This is arguably the most secure method, but is also the most rigid,
and is too restrictive to be used in many practical applications.

All of these approaches are susceptible to flaws. For example, consider that you were using the
ISNUMERIC() function to test whether user input only contained numeric values. You might expect the
result of the following to reject the input:

DECLARE @Input varchar(32) = '10E2';
SELECT ISNUMERIC(@Input);

Most exceptions occur as the result of unforeseen but essentially benign circumstances. However,
when dealing with user input, you should always be aware of the possibility of deliberate, malicious
attacks that are targeted to exploit any weaknesses exposed in a system that has not been thoroughly
defended. Perhaps the most widely known defensive programming techniques concern the prevention
of SQL injection attacks. That is, when a user deliberately tries to insert and execute malicious code as
part of user input supplied to an application.

SQL injection attacks typically take advantage of poorly implemented functions that construct and
execute dynamic SQL-based on unvalidated user input. Consider the following example:

CREATE PROCEDURE Hackable
 @Input varchar(32)
AS BEGIN
 DECLARE @sql varchar(256) = 'SELECT status FROM sys.sysusers WHERE name = ''' + @Input +
'''';
 EXECUTE(@sql);
END

The intended purpose of this code is fairly straightforward—it returns the status of the user supplied
in the parameter @Input. So, it could be used in the following way to find out the status of the user John:

EXEC Hackable 'John';
GO

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

42

But what if, instead of entering the value John, the user entered the input 'public'' or 1=1 --', as
follows?

EXEC Hackable @Input='public'' or 1=1 --';
GO

This would lead to the SQL statement generated as follows:

SELECT status FROM sys.sysusers WHERE name = 'public' OR 1 = 1;

The condition OR 1 = 1 appended to the end of the query will always evaluate to true, so the effect
will be to make the query list every row in the sys.sysusers table.

Despite this being a simple and well-known weakness, it is still alarmingly common. Defending
against such glaring security holes can easily be achieved, and various techniques for doing so are
discussed in Chapter 6.

Future-proof Your Code
In order to prevent the risk of bugs appearing, it makes sense to ensure that any defensive code adheres
to the latest standards. There are no ways to guarantee that code will remain resilient, but one habit that
you should definitely adopt is to ensure that you rewrite any old code that relies on deprecated features,
and do not use any deprecated features in new development in order to reduce the chances of
exceptions occurring in the future.

Deprecated features refer to features that, while still currently in use, have been superseded by
alternative replacements. While they may still be available for use (to ensure backward compatibility),
you should not develop applications using features that are known to be deprecated. Consider the
following code listing:

 CREATE TABLE ExpertSqlServerDevelopment.dbo.Deprecated (
 EmployeeID int DEFAULT 0,
 Forename varchar(32) DEFAULT '',
 Surname varchar(32) DEFAULT '',
 Photo image NULL
);

 CREATE INDEX ixDeprecated ON Deprecated(EmployeeID);
 DROP INDEX Deprecated.ixDeprecated;

 INSERT INTO ExpertSqlServerDevelopment.dbo.Deprecated (
 EmployeeID, Forename, Surname, Photo) VALUES
 (1, 'Bob', 'Smith', DEFAULT),
 (2, 'Benny', 'Jackson', DEFAULT)

 SET ROWCOUNT 1;
 SELECT 'Name' = ForeName + ' ' + Surname
 FROM ExpertSqlServerDevelopment.dbo.Deprecated
 ORDER BY ExpertSqlServerDevelopment.dbo.Deprecated.EmployeeID
 SET ROWCOUNT 0;

This query works as expected in SQL Server 2008, but makes use of a number of deprecated features,
which should be avoided. Fortunately, spotting usage of deprecated features is easy—the

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

43

sys.dm_os_performance_counters dynamic management view (DMV) maintains a count of every time a
deprecated feature is used, and can be interrogated as follows:

 SELECT
 object_name,
 instance_name,
 cntr_value
 FROM sys.dm_os_performance_counters
 WHERE
 object_name = 'SQLServer:Deprecated Features'
 AND cntr_value > 0;

A related, although perhaps more serious, threat to defensive applications is code that relies on
undocumented features. Many such features exist in SQL Server—the following code listing
demonstrates the undocumented sp_MSForEachTable stored procedure, for example, which can be used
to execute a supplied query against every table in a database.

EXEC sp_MSforeachtable "EXEC sp_spaceused '?'";

While it is certain that deprecated features will be removed at some point in the future, that time
scale is generally known, and there is usually a documented upgrade path to ensure that any
functionality previously provided by features that are deprecated will be replaced by an alternative
method. Undocumented features, in contrast, may break at any time without warning, and there may be
no clear upgrade path. I strongly recommend that you avoid such risky (and almost always unnecessary)
practices.

Limit Your Exposure
If defensive programming is designed to ensure that an application can cope with the occurrence of
exceptional events, one basic defensive technique is to limit the number of such events that can occur. It
follows logically that exceptions can only occur in features that are running, so don’t install more
features than necessary—by reducing the application surface area, you limit your exposure to potential
attacks. Don’t grant EXTERNAL_ACCESS to an assembly when SAFE will do. Don’t enable features such as
database mail unless they add value or are strictly required by your application.

All users should be authenticated, and only authorized to access those resources that are required,
for the period of time for which they are required. Unused accounts should be removed immediately,
and unnecessary permissions revoked. Doing so reduces the chance of the system being compromised
by an attack, and is discussed in more detail in Chapter 5.

If the security of a system is compromised, employing encryption may help to limit any damage
caused. Different encryption methods are discussed in Chapter 6.

Exercise Good Coding Etiquette
Good coding etiquette, by which I refer to practices such as clearly commented code, consistent layout,
and well-named variables, should be considered a vital part of any software development methodology,
and not specifically related to defensive programming. I have chosen to include it here, partly because I
consider it so vital that it can never be restated too often, but also because the nature of defensive
programming emphasizes these areas more than other approaches, for the following reasons:

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

44

As stated previously, the aim of defensive programming is to minimize the risk of
errors occurring as a result of future unforeseen events. Those future events may be
construed to include future maintenance and enhancements made to the code. By
creating clear, well-documented code now, you enhance its future
understandability, reducing the chances that bugs will be accidentally introduced
when it is next addressed.

Furthermore, since defensive programming aims to create robust, resilient
applications, these applications may continue running for a very long duration
without any need for manual intervention. When they are next reviewed some
years later, the development team responsible may be very different, or the original
developers may no longer remember why a certain approach was taken. It is vitally
important that this information be documented and clearly visible in the code
itself, so that errors or new assumptions are not introduced that could damage the
stability of the application.

Code that is well laid out often goes hand in hand with code that is well thought
out. By undertaking such simple steps as indenting code blocks, for example, you
can easily identify steps that lie within a loop, and those that are outside the loop,
preventing careless mistakes. Most IDEs and code editors provide layout features
that will automatically apply a consistent format for tabs, whitespace,
capitalization and so on, and these settings can normally be customized to match
whatever coding standards are in place in a given organization.

Well-laid-out, meaningfully commented code will make it easier for thorough code
review. If the code needs to be revised, it will be much easier to quickly establish
the best method to do so.

Finally, if a bug is discovered in a section of code, it is much easier to track down
within a well-coded function, and hence resolved with the minimum amount of
disruption.

For these reasons, I believe exercising good code etiquette to be a key part of defensive programming. In
the following sections, I’ll make a few observations on some specific aspects of coding etiquette.

Comments
Everybody knows that comments are an important part of any code, and yet few of us comment our
code as well as we should (one reason commonly put forward is that developers prefer to write code
rather than writing about code). Almost every school of thought on best coding practice states that you
should make liberal use of comments in code, and defensive programming is no different. Well-written
comments make it easier to tell what a function is aiming to achieve and why it has been written a
certain way, which by implication means that it is easier to spot any bugs or assumptions made that
could break that code.

Good comments should give additional information to whoever is reading the code—not simply
point out the obvious or restate information that could easily be found in Books Online. The following
comment, for example, is not helpful:

-- Set x to 5
SET @x = 5;

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

45

In general, comments should explain why a certain approach has been taken and what the
developer is aiming to achieve. Using comments to describe expected behavior makes it much easier to
identify cases of unexpected behavior. In general it is not necessary to simply comment what a built-in
function does, but there may be exceptions to this rule. For example, at a single glance, can you say what
you expect the result of the following to be?

DECLARE @y int = 2010, @c int, @n int, @k int, @i int, @j int, @l int, @m int,
@d int;
SET @c = (@y / 100);
SET @n = @y - 19 * (@y / 19);
SET @k = (@c - 17) / 25;
SET @i = @c - @c / 4 - (@c - @k) / 3 + 19 * @n + 15;
SET @i = @i - 30 * (@i / 30);
SET @i = @i - (@i / 28) * (1 - (@i / 28) * (29 / (@i + 1)) * ((21 - @n) / 11));
SET @j = @y + @y / 4 + @i + 2 - @c + @c / 4;
SET @j = @j - 7 * (@j / 7);
SET @l = @i - @j;
SET @m = 3 + (@l + 40) / 44;
SET @d = @l + 28 - 31 * (@m / 4);
SELECT CAST(CONVERT(char(4),@y) + '-' + RIGHT('0' + CONVERT(varchar(2),@m),2) + '-'
+ RIGHT('0' + CONVERT(varchar(2),@d),2) AS DateTime);

I actually encountered the previous function in a production application, where it was being used to
determine whether employees were entitled to a bonus because they had worked on a public holiday. In
case you haven’t figured it out, the result gives you the date of Easter Sunday in any given year (specified
using the variable @y). The code actually fulfils its purpose, but without any comments it took me a long
time to find out what that purpose was!

In many cases, you can obviate the need for writing explicit comments by using self-documenting
code—choosing well-named variables, column aliases, and table aliases. Consider the following code:

SELECT DATEPART(Y, '20090617');

In most programming languages, the character Y used in a date format function denotes the year
associated with a date. It may therefore seem reasonable to expect the preceding code to return the full
year of the supplied date, 2009, or perhaps just the final digit of the year, 9. To explain the actual result of
168, the code could have easily been made self-documenting by replacing the Y with DAYOFYEAR (for
which it is an abbreviation):

SELECT DATEPART(DAYOFYEAR, '20090617');

Indentations and Statement Blocks
Code indentations and liberal use of whitespace can help to identify logical blocks of code, loops, and
batches, creating code that is understandable, easily maintained, and less likely to have bugs introduced
in the future. However, these practices clearly have no direct effect on the execution of the code itself. It
is therefore vitally important that the visual layout of code reinforces its logical behavior, as poorly
presented code may actually be misleading. Consider the following example:

IF 1 = 1
 PRINT 'True';
ELSE

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

46

 PRINT 'False';
 PRINT 'Then Print this';

In this case, the indentation on the final line of code makes it appear to be part of the ELSE clause,
but this is not the case, and the result Then Print this will be printed irrespective of the result of the
test.

To avoid such misleading situations, I always recommend the liberal use of statement blocks
marked by BEGIN and END, even if a block contains only one statement, as follows:

IF 1 = 1
 BEGIN
 PRINT 'True';
 END
ELSE
 BEGIN
 PRINT 'False';
 END
PRINT 'Then Print This';

Another misleading practice that can easily be avoided is the failure to use parentheses to explicitly
demonstrate the order in which the components of a query are resolved. Consider the following code
listing:

DECLARE @Table TABLE (x int, y int);
INSERT INTO @Table VALUES (1,1), (1,2), (2,1), (2,2), (3,1), (3,2);

SELECT *
FROM @Table
WHERE
 x = 1 AND
 y = 1 OR y = 2;
GO

In this case, as before, the code indentation actually detracts from the true logic of the code, which
is to select all rows where x=1 AND y=1, or where y=2.

If All Else Fails. . .
A fundamental feature of defensive programming is to make assertions to ensure that exceptional
circumstances do not occur. It can be argued that, if the ideal of defensive programming were ever truly
realized, it would not be necessary to implement exception-handling code, since any potential scenarios
that could lead to exceptions would have been identified and handled before they were allowed to occur.
Unfortunately, it is not practically possible to explicitly test all exceptional scenarios and, in the real-
world, exception and error handling remain very important parts of any software application. For a
detailed discussion of exception and error handling in SQL Server, please refer to Chapter 4.

 CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

47

Creating a Healthy Development Environment
The best applications are not created by the individual brilliance of one or two coders, but by the
coordinated, effective collaboration of a development team. Successful defensive development is most
likely to occur when coding is a shared, open activity.

The benefits of collaborative coding are that you can draw on a shared pool of technical knowledge
and resources to ensure that coding is thorough and accurate. Different people will be able to critically
examine code from a number of different points of view, which helps to identify any assumptions that
might have gone unnoticed by a single developer.

If developers work in isolation, they may introduce dependencies that present a risk to the future
maintainability of the code. If only one developer knows the intricacies of a particularly complex section
of code and then that developer leaves or is unavailable, you may encounter difficulties maintaining that
code in the future. In fact, individual competiveness between developers can lead to developers
deliberately adding complexity to an application. Coders may seek to ensure that only they understand
how a particular section of complex code works, either as a way of flaunting their technical knowledge,
for reasons of personal pride, or as a way of creating a dependence on them—making themselves
indispensable and ensuring their future job security. All of these create an unhealthy development
environment and are likely to negatively affect the quality of any code produced.

Managers responsible for development teams should try to foster an environment of continued
professional development, in which shared learning and best practice are key. Software development is
a constantly changing area—what is considered best practice now may well be obsolete within a few
years. In order to make sure that applications remain cutting edge, individual training of developers and
knowledge-sharing between peers should be promoted and encouraged.

The success (or otherwise) of attempts to implement defensive development may also be influenced
by wider corporate decisions, including reward systems. For example, a company may implement a
reward scheme that pays individual bonuses for any developer that discovers and solves bugs in live
applications. Although presumably designed to improve software quality, the effect may actually be
completely the opposite—after all, what is the incentive to code defensively (preventing errors before
they occur) when it removes the opportunity for a developer to allow bugs through and personally
receive the reward for fixing them later? Such policies are likely to encourage competitive, individualistic
behavior where developers only look after themselves, instead of taking actions based on the best
interests of the project.

Another factor affecting the success of defensive development concerns the way in which budget
and project deadlines are managed. Penalties are normally incurred for delivering software projects after
deadline. It is an unfortunate fact that, when deadlines are brought forward or budgets slashed, it is
defensive practices (such as rigorous testing) that management regard as nonessential, and are among
the first to be dropped from the scope of the project.

Managers that demand quick-fix solutions based on unrealistic short-term time scales are likely to
encourage piecemeal coding practices that create holes. These are unlikely to use defensive
programming and will not stand up to rigorous testing. Software development must be crafted with
patience and care, yet management demands often necessitate that shortcuts must be taken, and rarely
can truly defensive programming projects be seen to completion. For these reasons, true defensive
programming might be seen as an ideal, rather than an achievable objective.

Summary
Defensive programming practices aim to improve the resilience and reliability of software applications
when faced with unforeseen circumstances. Given the typical expected lifespan of database applications
and the potential severity of the consequences should a bug occur, it makes sense to adopt a defensive

CHAPTER 2 BEST PRACTICES FOR DATABASE PROGRAMMING

48

approach to ensure that the applications remain robust over a long period of time, and that the need for
ongoing maintenance is kept to a minimum.

In this chapter, I have demonstrated a few simplistic examples of what I consider to be best practice
in SQL programming, and illustrated how they relate to the defensive programming methodology.
Throughout the rest of the book, I will continue to show in more detail how to adopt a defensive stance
across a range of development scenarios.

C H A P T E R 3

Testing Database Routines

What defines a great developer? Is it the ability to code complex routines quickly and accurately? The
ability to implement business requirements correctly, within budget, and on schedule? Or perhaps it can
be defined by how quickly the developer can track down and fix bugs in the application—or the inverse,
the lack of bugs in the developer’s code?

All of these are certainly attributes of a great developer, but in most cases they don’t manifest
themselves merely due to raw skill. The hallmark of a truly great developer, and what allows these
qualities to shine through, is a thorough understanding of the importance of testing.

By creating unit tests early on in the development process, developers can continuously validate
interfaces and test for exceptions and regressions. Carefully designed functional tests ensure compliance
with business requirements. And performance testing—the kind of testing that always seems to get the
most attention—can be used to find out whether the application can actually handle the anticipated
amount of traffic.

Unfortunately, like various other practices that are better established in the application
development community, testing hasn’t yet caught on much with database professionals. Although
some development shops performance test stored procedures and other database code, it is rare to see
database developers writing data-specific unit tests.

There is no good reason that database developers should not write just as many—or more—tests
than their application developer counterparts. It makes little sense to test a data-dependent application
without validating the data pieces that drive the application components!

This chapter provides a brief introduction to the world of software testing and how testing
techniques can be applied in database development scenarios. Software testing is a huge field, complete
with much of its own lingo, so my intention is to concentrate only on those areas that I believe to be
most important for database developers.

Approaches to Testing
There are a number of testing methodologies within the world of quality assurance, but in general, all
types of software tests can be split into two groups:

• Black box testing refers to tests that make assumptions only about inputs and
outputs of the module being tested, and as such do not validate intermediate
conditions. The internal workings of the module are not exposed to (or required
by) the tester—hence they are contained within a “black box.”

• White box testing, on the other hand, includes any test in which the internal
implementation of the routine or function being tested is known and validated by
the tester. White box testing is also called “open-box” testing, as the tester is
allowed to look inside the module to see how it operates, rather than just
examining its inputs and outputs.

49

CHAPTER 3 TESTING DATABASE ROUTINES

Within each of these broad divisions are a number of specific tests designed to target different
particular areas of the application in question. Examples of black box tests include unit tests, security
tests, and basic performance tests such as stress tests and endurance tests. As the testing phase
progresses, target areas are identified that require further testing, and the types of tests performed tend
to shift from black box to white box to focus on specific internal elements.

From a database development perspective, examples of white box tests include functional tests that
validate the internal working of a module, tests that perform data validation, and cases when
performance tuning requires thorough knowledge of data access methods. For instance, retrieving and
analyzing query plans during a performance test is an example of white box testing against a stored
procedure.

Unit and Functional Testing
Developing software with a specific concentration on the data tier can have a benefit when it comes to
testing: there aren’t too many types of tests that you need to be familiar with. Arguably, the two most
important types of test are those that verify that the application behaves as it is meant to, and returns the
correct results. This is the purpose of unit tests and functional tests.

Unit tests are black box tests that verify the contracts exposed by interfaces. For
instance, a unit test of a stored procedure should validate that, given a certain set of
inputs, the stored procedure returns the correct set of output results, as defined by
the interface of the stored procedure being tested. The term correct as used here is
important to define carefully. It means “correct” only insofar as what is defined as
the contract for the stored procedure; the actual data returned is not important. So,
as long as the results represent valid values in the correct format and of the correct
datatypes given the interface’s contract, a unit test should pass. Phrased another
way, unit tests test the ability of interfaces to communicate with the outside world
exactly as their contracts say they will.

Functional tests, as their name implies, verify the functionality of whatever is being
tested. In testing nomenclature, the term functional test has a much vaguer
meaning than unit test. It can mean any kind of test, at any level of an application,
that tests whether that piece of the application works properly—in other words,
that it performs the appropriate sequence of operations to deliver the correct final
result as expected. For a simple stored procedure that selects data from the
database, this asks the question of whether the stored procedure returning the
correct data? Again, I will carefully define the term correct. This time, correct means
both the kind of validation done for a unit test (data must be in the correct format),
as well as a deeper validation of the accuracy of the actual values returned. The
logic required for this kind of validation means that a functional test is a white box
test in the database world, compared to the black box of unit testing.

Let’s take a look at an example to make these ideas a bit clearer. Consider the following stored
procedure, which might be used for a banking application:

CREATE PROCEDURE GetAggregateTransactionHistory
 @CustomerId int
AS
BEGIN
 SET NOCOUNT ON;

50

 CHAPTER 3 TESTING DATABASE ROUTINES

 SELECT
 SUM
 (
 CASE TransactionType
 WHEN 'Deposit' THEN Amount
 ELSE 0
 END
) AS TotalDeposits,
 SUM
 (
 CASE TransactionType
 WHEN 'Withdrawal' THEN Amount
 ELSE 0
 END
) AS TotalWithdrawals
 FROM TransactionHistory
 WHERE
 CustomerId = @CustomerId;
END;

This stored procedure’s implied contract states that, given the input of a customer ID into the
@CustomerId parameter, a result set of two columns and zero or one rows will be output (the contract
does not imply anything about invalid customer IDs or customers who have not made any transactions).
The column names in the output result set will be TotalDeposits and TotalWithdrawals, and the
datatypes of the columns will be the same as the datatype of the Amount column in the
TransactionHistory table (we’ll assume it’s decimal).

What if the Customer Doesn’t Exist?

The output of the GetAggregateTransactionHistory stored procedure will be the same whether you
pass in a valid customer ID for a customer that happens to have had no transactions, or an invalid
customer ID. Either way, the procedure will return no rows. Depending on the requirements of a particular
situation, it might make sense to make the interface richer by changing the rules a bit, only returning no
rows if an invalid customer ID is passed in. That way, the caller will be able to identify invalid data and give
the user an appropriate error message rather than implying that the nonexistent customer made no
transactions.

A unit test against this stored procedure should do nothing more than validate the interface. A

customer ID should be passed in, and the unit test should interrogate the output result set (or lack
thereof) to ensure that there are two columns of the correct name and datatype and zero or one rows. No
verification of data is necessary; it would be out of scope, for instance, to find out whether the aggregate
information was accurate or not—that would be the job of a functional test.

The reason that we draw such a distinction between unit tests and functional tests is that when
testing pure interface compliance, we want to put ourselves in the position of someone programming
against the interface from a higher layer. Is the interface working as documented, providing the
appropriate level of encapsulation and returning data in the correct format?

51

CHAPTER 3 TESTING DATABASE ROUTINES

Each interface in the system will need one or more of these tests (see the “How Many Tests Are
Needed?” section later in the chapter), so they need to be kept focused and lightweight. Programming
full white box tests against every interface may not be feasible, and it might be simpler to test the validity
of data at a higher layer, such as via the user interface itself. In the case of the
GetAggregateTransactionHistory stored procedure, writing a functional test would essentially entail
rewriting the entire stored procedure again—hardly a good use of developer time.

Unit Testing Frameworks
Unit testing is made easier through the use of unit testing frameworks, which provide structured
programming interfaces designed to assist with quickly testing software. These frameworks generally
make use of debug assertions, which allow the developer to specify those conditions that make a test
true or false.

A debug assertion is a special kind of macro that is turned on only when a piece of software is
compiled in debug mode. It accepts an expression as input and throws an exception if the expression is
false; otherwise, it returns true (or void, in some languages). For instance, the following assertion would
always throw an exception:

Assert(1 == 0);

Assertions allow a developer to self-document assumptions made by the code of a routine. If a
routine expects that a variable is in a certain state at a certain time, an assertion can be used in order to
help make sure that assumption is enforced as the code matures. If, at any time in the future, a change in
the code invalidates that assumption, an exception will be thrown should the developer making the
change hit the assertion during testing or debugging.

In unit testing, assertions serve much the same purpose. They allow the tester to control what
conditions make the unit test return true or false. If any assertion throws an exception in a unit test, the
entire test is considered to have failed.

Unit testing frameworks exist for virtually every language and platform, including T-SQL (for
example, the TSQLUnit project available from http://sourceforge.net/projects/tsqlunit). Personally,
I find unit testing in T-SQL to be cumbersome compared to other languages, and prefer to write my tests
in a .NET language using the .NET unit testing framework, NUnit (http://www.nunit.org).

Providing an in-depth guide to coding against unit testing frameworks is outside the scope of this
book, but given that unit testing stored procedures is still somewhat of a mystery to many developers, I
will provide a basic set of rules to follow. When writing stored procedure unit tests, the following basic
steps can be followed:

1. First, determine what assumptions should be made about the stored
procedure’s interface. What are the result sets that will be returned? What are
the datatypes of the columns, and how many columns will there be? Does the
contract make any guarantees about a certain number of rows?

2. Next, write code necessary to execute the stored procedure to be tested. If
you’re using NUnit, I find that the easiest way of exposing the relevant output
is to use ADO.NET to fill a DataSet with the result of the stored procedure,
where it can subsequently be interrogated. Be careful at this stage; you want to
test the stored procedure, not your data access framework. You might be
tempted to call the stored procedure using the same method as in the
application itself. However, this would be a mistake, as you would end up
testing both the stored procedure and that method. Given that you only

52

 CHAPTER 3 TESTING DATABASE ROUTINES

need to fill a DataSet, recoding the data access in the unit test should not be a
major burden, and will keep you from testing parts of the code that you don’t
intend to.

3. Finally, use one assertion for each assumption you’re making about the stored
procedure; that means one assertion per column name, one per column
datatype, one for the row count if necessary, and so on. Err on the side of using
too many assertions—it’s better to have to remove an assumption later
because it turns out to be incorrect than to not have had an assumption there
to begin with and have your unit test pass when the interface is actually not
working correctly.

The following code listing gives an example of what an NUnit test of the
GetAggregateTransactionHistory stored procedure might look like:

[TestMethod]
public void TestAggregateTransactionHistory()
{
 // Set up a command object
 SqlCommand comm = new SqlCommand();

 // Set up the connection
 comm.Connection = new SqlConnection(
 @"server=serverName; trusted_connection=true;");

 // Define the procedure call
 comm.CommandText = "GetAggregateTransactionHistory";
 comm.CommandType = CommandType.StoredProcedure;

 comm.Parameters.AddWithValue("@CustomerId", 123);

 // Create a DataSet for the results
 DataSet ds = new DataSet();

 // Define a DataAdapter to fill a DataSet
 SqlDataAdapter adapter = new SqlDataAdapter();
 adapter.SelectCommand = comm;

 try
 {
 // Fill the dataset
 adapter.Fill(ds);
 }
 catch
 {
 Assert.Fail("Exception occurred!");
 }

 // Now we have the results -- validate them...

 // There must be exactly one returned result set
 Assert.IsTrue(

53

CHAPTER 3 TESTING DATABASE ROUTINES

 ds.Tables.Count == 1,
 "Result set count != 1");

 DataTable dt = ds.Tables[0];

 // There must be exactly two columns returned
 Assert.IsTrue(
 dt.Columns.Count == 2,
 "Column count != 2");

 // There must be columns called TotalDeposits and TotalWithdrawals
 Assert.IsTrue(
 dt.Columns.IndexOf("TotalDeposits") > -1,
 "Column TotalDeposits does not exist");

 Assert.IsTrue(
 dt.Columns.IndexOf("TotalWithdrawals") > -1,
 "Column TotalWithdrawals does not exist");

 // Both columns must be decimal
 Assert.IsTrue(
 dt.Columns["TotalDeposits"].DataType == typeof(decimal),
 "TotalDeposits data type is incorrect");

 Assert.IsTrue(
 dt.Columns["TotalWithdrawals"].DataType == typeof(decimal),
 "TotalWithdrawals data type is incorrect");

 // There must be zero or one rows returned
 Assert.IsTrue(
 dt.Rows.Count <= 1,
 "Too many rows returned");
}

Although it might be disturbing to note that the unit test is over twice as long as the stored
procedure it is testing, keep in mind that most of this code can be easily turned into a template for quick
reuse. As noted before, you might be tempted to refactor common unit test code into a data access
library, but be careful lest you end up testing your test framework instead of the actual routine you’re
attempting to test. Many hours can be wasted debugging working code trying to figure out why the unit
test is failing, when it’s actually the fault of some code the unit test is relying on to do its job.

Unit tests allow for quick, automated verification of interfaces. In essence, they help you as a
developer to guarantee that in making changes to a system you didn’t break anything obvious. In that
way, they are invaluable. Developing against a system with a well-established set of unit tests is a joy, as
each developer no longer needs to worry about breaking some other component due to an interface
change. The unit tests will complain if anything needs to be fixed.

Regression Testing
As you build up a set of unit tests for a particular application, the tests will eventually come to serve as a
regression suite, which will help to guard against regression bugs—bugs that occur when a developer

54

 CHAPTER 3 TESTING DATABASE ROUTINES

breaks functionality that used to work. Any change to an interface—intentional or not—will cause unit
tests to fail (assuming that the tests have been written correctly). For the intentional changes, the
solution is to rewrite the unit test accordingly. But it is these unintentional changes for which we create
unit tests, and which regression testing targets.

Experience has shown that fixing bugs in an application often introduces other bugs. It can be
difficult to substantiate how often this happens in real development scenarios, but it has been suggested
that figures as high as 50 percent can occur in some cases. By building a regression suite, the cost of
fixing these “side effect” bugs is greatly reduced. They can be discovered and mended during the
development phase, instead of being reported by end users once the application has already been
deployed.

Regression testing is also the key to some newer software development methodologies, such as agile
development and extreme programming (XP). As these methodologies increase in popularity, and their
adoption filters through to the database world, it can be expected that database developers will begin to
adopt some of these techniques more readily.

Guidelines for Implementing Database Testing Processes
and Procedures
Of all the possible elements that make up a testing strategy, there is really only one key to success:
consistency. Tests must be repeatable, and must be run the same way every time, with only well-known
(i.e., understood and documented) variables changed. Inconsistency, or a lack of knowledge concerning
those variables that might have changed between tests, can mean that any problems identified during
testing will be difficult to trace.

Development teams should strive to build a suite of tests that are run at least once for every release
of the application, if not more often. These tests should be automated and easy to run. Preferably, the
suite of tests should be modular, so that if a developer is working on one part of the application, the
subset of tests that apply to only that section can be easily exercised in order to validate any changes.

Continuous Testing

Once you’ve built a set of automated tests, you’re one step away from a fully automatic testing
environment. Such an environment should retrieve the latest code from the source control repository, run
appropriate build scripts to compile a working version of the application, and run through the entire test
suite. Many software development shops use this technique to run their tests several times a day, throwing
alerts almost instantly if problem code is checked in. This kind of rigorous automated testing is called
continuous integration, and it’s a great way to take some of the testing burden out of the hands of
developers while still making sure that all of the tests get run as often as (or even more often than)
necessary. A great free tool to help set up continuous integration in .NET environments is
CruiseControl.NET, available at http://sourceforge.net/projects/ccnet.

Testers must also pay particular attention to any data used to conduct the tests. It can often be

beneficial to generate test data sets that include every possible case the application is likely to see. Such
a set of data can guarantee consistency between test runs, as it can be restored to its original state. It can
also guarantee that rare edge cases are tested that might otherwise not be seen.

55

CHAPTER 3 TESTING DATABASE ROUTINES

It’s also recommended that a copy of actual production data (if available) be used for testing near
the end of any given test period, rather than relying on artificially generated test data. Oftentimes,
generated sets can lack the realism needed to bring to light obscure issues that only real users can
manage to bring out of an application.

Why Is Testing Important?
It can be argued that the only purpose of software is to be used by end users, and therefore the only
purpose of testing is to make sure that those end users don’t encounter issues. Thus, there are two
important goals that testing hopes to achieve:

• Testing finds problems that need to be fixed.

• Testing ensures that no problems need to be fixed.

Eventually, all software must be tested. If not fully tested by developers or a quality assurance team,
an application will be tested by the end users trying to use the software. Unfortunately, this is a great way
to lose credibility; users are generally not pleased with buggy software.

Testing by development and quality assurance teams validates the software. Each kind of testing
that is performed validates a specific piece of the puzzle, and if a complete test suite is used (and the
tests are passed), the team can be fairly certain that the software has a minimal number of bugs,
performance defects, and other issues. Since the database is an increasingly important component in
most applications, testing the database makes sense; if the database has problems, they will propagate
to the rest of the application.

What Kind of Testing Is Important?
From the perspective of a database developer, only a few types of tests are really necessary in the
majority of cases. Databases should be tested for the following issues:

• Interface consistency should be validated in order to guarantee that applications
have a stable structure for data access.

• Data availability and authorization tests are similar to interface consistency tests,
but more focused on who can get data from the database than how the data
should be retrieved.

• Authentication tests verify whether valid users can log in, and whether invalid
users are refused access. These kinds of tests are only important if the database is
being used for authenticating users.

• Performance tests are important for verifying that the user experience will be
positive, and that users will not have to wait longer than necessary for data.
Performance testing may involve load tests, which monitor the performance of
the database under a given load; saturation tests, which attempt to overwhelm the
system by constantly adding load and/or removing resources from it until it
breaks; and, endurance tests, which place a continuous demand on the database
over a sustained period of time.

56

 CHAPTER 3 TESTING DATABASE ROUTINES

• Regression testing covers every other type of test, but generally focuses on
uncovering issues that were previously fixed. A regression test is a test that
validates that a fix still works.

How Many Tests Are Needed?
Although most development teams lack a sufficient number of tests to test the application thoroughly, in
some cases the opposite is true. Too many tests can be just as much of a problem as not enough tests;
writing tests can be time-consuming, and tests must be maintained along with the rest of the software
whenever functionality changes. It’s important to balance the need for thorough testing with the
realities of time and monetary constraints.

A good starting point for database testing is to create one unit test per interface parameter “class,”
or group of inputs. For example, consider the following stored procedure interface:

CREATE PROCEDURE SearchProducts
 SearchText varchar(100) = NULL,
 PriceLessThan decimal = NULL,
 ProductCategory int = NULL

This stored procedure returns data about products based on three parameters, each of which is
optional, based on the following (documented) rules:

• A user can search for text in the product’s description.

• A user can search for products where the price is less than a given input price.

• A user can combine a text search or price search with an additional filter on a
certain product category, so that only results from that category are returned.

• A user cannot search on both text and price simultaneously. This condition should
return an error.

• Any other combination of inputs should result in an error.

In order to validate the stored procedure’s interface, one unit test is necessary for each of these
conditions. The unit tests that pass in valid input arguments should verify that the stored procedure
returns a valid output result set per its implied contract. The unit tests for the invalid combinations of
arguments should verify that an error occurs when these combinations are used. Known errors are part
of an interface’s implied contract (see Chapter 4 for more information on this topic).

In addition to these unit tests, an additional regression test should be produced for each known
issue that has been fixed within the stored procedure, in order to ensure that the procedure’s
functionality does not degenerate over time.

Although this seems like a massive number of tests, keep in mind that these tests can—and
should—share the same base code. The individual tests will have to do nothing more than pass the
correct parameters to a parameterized base test.

Will Management Buy In?
It’s an unfortunate fact that many management teams believe that testing is either an unnecessary waste
of time or not something that should be a well-integrated part of the software development process at
all. Many software shops, especially smaller ones, have no dedicated quality assurance staff, and such

57

CHAPTER 3 TESTING DATABASE ROUTINES

compressed development schedules that little testing gets done, making full functionality testing nearly
impossible.

Several companies I’ve done work for have been in this situation, and it never results in the time or
money savings that management thinks it will. On the contrary, time and money is actually wasted by
lack of testing.

A test process that is well integrated into development finds most bugs up front, when they are
created, rather than later on. A developer who is currently working on enhancing a given module has an
in-depth understanding of the code at that moment. As soon as he or she moves on to another module,
that knowledge will start to wane as focus moves on to other parts of the application. If defects are
discovered and reported while the developer is still in the trenches, the developer will not need to
relearn the code in order to fix the problem, thereby saving a lot of time. These time savings translate
directly into increased productivity, as developers end up spending more time working on new features,
and less on fixing defects.

If management teams refuse to listen to reason and allocate additional development time for proper
testing, try doing it anyway. Methodologies such as test-driven development (TDD), in which you write
the tests first, and then create routines that pass the tests, can greatly enhance overall developer
productivity. Adopting a testing strategy—with or without management approval—can mean better,
faster output, which in the end will help to ensure success.

Performance Monitoring Tools
Verification using unit, functional, and regression tests is extremely important for thoroughly testing
that an application behaves correctly, but it is performance testing that really gets the attention of most
developers. Performance testing is imperative for ensuring a positive user experience. Users don’t want
to wait any longer than absolutely necessary for data.

Performance testing relies on collecting, reviewing, and analyzing performance data for different
aspects of the system. Before going into details about how to analyze the performance of a system, it is
therefore necessary to look at some of the tools that can be used to capture such data. SQL Server 2008
provides a number of in-built tools that allow DBAs and developers to store or view real-time
information about activity taking place on the server, including the following:

• SQL Server Profiler

• Server-side traces

• System Monitor console

• Dynamic Management Views (DMVs)

• Extended Events

• Data Collector

There are also a number of third-party monitoring tools available that can measure, aggregate, and
present performance data in different ways. In this section, I’ll discuss some of the different methods of
monitoring performance, and the type of situations in which they can be used.

58

 CHAPTER 3 TESTING DATABASE ROUTINES

 Note Access to performance monitoring tools in many organizations is restricted to database or system
administrators. However, most of the tools described in this section allow for performance logs to be saved, so if
you have insufficient permissions to be able to monitor performance, another sufficiently privileged user may be
able to profile the performance of a server and export the results for you.

Real-Time Client-Side Monitoring
The Profiler tool that ships with SQL Server 2008 is extremely useful and very easy to use. Simply load the
Profiler application and point it to the instance of SQL Server that you want to monitor, and it will report
real-time information based on around 200 different events. However, for most performance monitoring
work, there are only a few key events that you’ll need to worry about.

When initially baselining an application, I generally start by looking at only the SQL:BatchCompleted
and RPC:Completed events. Each of these events fires on completion of queries; the only difference
between them is that RPC:Completed fires on completion of a remote procedure call (RPC), whereas
SQL:BatchCompleted fires on completion of a SQL batch—different access methods, same end result.

The most valuable columns available for both of these events are CPU, Reads, Writes, and Duration:

• The CPU column reports the amount of CPU time, in milliseconds, spent parsing,
compiling, and executing the query. Due to the fact that this column includes
compilation time, it is common to see the reported amount of time drop on
consecutive queries, thanks to plan caching.

• The Reads column reports the number of logical reads performed by the query. A
logical I/O occurs any time SQL Server’s query engine requests data, whether from
the physical disk or from the buffer cache. If you see high numbers in this column,
it may not necessarily indicate a performance problem, because the majority of
data may be read from cache. However, even reading data from memory does cost
the server in terms of CPU time, so it is a good idea to try to keep any kind of reads
to a minimum.

• The Writes column reports the number of physical writes performed by the query.
This means that only writes that were actually persisted to disk during the course
of the query will be reported.

• The Duration column reports the total time elapsed for the call, in milliseconds.
The duration of a query is a direct reflection on the user experience, so this is
generally the one to start with. If the application is performing slowly, you can find
the worst offending queries using this column.

By reviewing the high-level information contained in these columns, you can identify potential
candidates for further investigation. First, think about limits that need to be set for any given query in
the system. What is the maximum amount of time that a query can be allowed to run? What should the
average amount of run time be? By aggregating the Duration column, you can determine whether these
times have been exceeded.

Once you’ve isolated possible problem areas (see the “Granular Analysis” section later in the
chapter), you can delve deeper in with more in-depth sets of events. For instance, the Scan:Started
event can be used to identify possible queries that are making inefficient use of indexes and therefore
may be causing I/O problems. The SP:Recompile event, on the other hand, indicates queries that are

59

CHAPTER 3 TESTING DATABASE ROUTINES

getting recompiled by the query optimizer, and may therefore be consuming larger-than-necessary
amounts of CPU time.

Server-Side Traces
While SQL Server Profiler is a convenient and useful tool, it does have some limitations. The main
problem is that, in order to facilitate real-time data collection and display, SQL Server needs to
continually stream the data back to the tool—and there is an overhead associated with doing so. As such,
the very act of attempting to monitor performance may have a negative effect on the performance of the
system being measured, leading to biased results (the “observer effect”).

In an extremely high-transaction performance test, you should strive to minimize the impact of
monitoring on results of the test by using server-side traces instead of the Profiler tool. A server-side
trace runs in the background on the SQL server, saving its results to a local file on the server instead of
streaming them to the client.

It is possible to define the parameters for a server-side trace manually in T-SQL, but to do so is a
laborious and unnecessary process. A better approach is to create a server-side trace based on a trace
definition exported from the SQL Server Profiler tool, as explained in the following steps:

1. First, use SQL Server Profiler to define the events, columns, and filters required
for the trace.

2. Select File > Export > Script Trace Definition > For SQL Server 2005 – 2008, and
select a file name to save the script.

3. Once the script has been saved, open it in SQL Server Management Studio.
This file contains the T-SQL code required to start a trace based on the
parameters supplied.

4. Edit the following line of the script, by specifying a valid output path and file
name for the trace results where indicated:

exec @rc = sp_trace_create @TraceID output, 0, N'InsertFileNameHere',
@maxfilesize, NULL

 Note The specified file name should not include an extension of any kind. One will automatically be added by
the trace.

5. You might also wish to modify the value of the @maxfilesize parameter, which
by default is set to 5MB. Increasing the maximum file size will help to
minimize the number of rollover files created during the trace. I generally set
this to 200MB as a starting point.

6. Once you have finished editing, execute the script. The trace will begin
collecting data in the background, and the generated script will return a trace
identifier, TraceID, which you should make note of as it will be required to
control the trace later.

After following these steps, the trace will be running, and the output of all specified events will be
written to the log file, so now is the time to execute your test suite. When you are done tracing, you must
stop and close the trace by using the sp_trace_setstatus stored procedure, supplying the TraceID trace

60

 CHAPTER 3 TESTING DATABASE ROUTINES

identifier returned when the trace was started. This is demonstrated in the following code listing (in this
case the trace identifier is listed as 99):

EXEC sp_trace_setstatus @traceid=99, @status=0;
EXEC sp_trace_setstatus @traceid=99, @status=2;
GO

Once the trace is stopped and closed, the sys.fn_trace_gettable function can be used to read the
data from the trace file. This function takes two arguments: a full path to the trace file name—including
the .trc extension automatically added by SQL Server—and the maximum number of rollover files to
read. The following T-SQL would be used to read the trace file from the path C:\Traces\myTrace.trc. The
number of rollover files is set high enough that all of the data will be read back, even if the trace rolled
over to new files several times:

SELECT *
FROM sys.fn_trace_gettable('C:\Traces\myTrace.trc', 999);
GO

Once selected in this way, the trace data can be used just like any other data in SQL Server. It can be
inserted into a table, queried, or aggregated in any number of ways in order to evaluate which queries
are potentially causing problems.

System Monitoring
For a bigger-picture view of the overall performance of a server, system performance counters are an
invaluable resource. These counters can be read using the System Monitor console (aka Performance
Monitor, or perfmon.exe, depending on the operating system under which your SQL Server instance is
running), although many load-testing tools have integrated system counter collection and reporting
mechanisms. Similar to SQL Server trace events, there are hundreds of counters from which to choose—
but only a handful generally need to be monitored when doing an initial performance evaluation of a
SQL Server installation.

The following counters are a good starting point for determining what kinds of performance issues
to look for:

• Processor:% Processor Time reports the total processor time with respect to the
available capacity of the server. If this counter is above 70 percent during peak
load periods, it may be worthwhile to begin investigating which routines are
making heavy use of CPU time.

• PhysicalDisk:Avg. Disk Queue Length indicates whether processes have to wait to
use disk resources. As a disk is fulfilling requests (i.e., reading and writing data),
requests that cannot be immediately filled are queued. Too many simultaneous
requests results in wait times, which can mean query performance problems. It’s a
good idea to make sure that queue lengths stay below 1 (meaning, effectively, that
there is no queue) whenever possible.

• PhysicalDisk:Disk Read Bytes/sec and PhysicalDisk:Disk Write Bytes/sec report
the number of bytes read from and written to the disk, respectively. These figures
are not especially interesting on their own, but coupled with Avg. Disk Queue
Length can help to explain problems. Slow SELECT queries coupled with high
physical reads and low queue lengths can indicate that the buffer cache is not

61

CHAPTER 3 TESTING DATABASE ROUTINES

being effectively utilized. Slow DML queries coupled with high physical writes and
high queue lengths are a typical indication of disk contention, and a good sign that
you might want to evaluate how to reduce index fragmentation in order to
decrease insert and update times.

• SQLServer:Locks:Average Wait Time (ms) reports the average amount of time
that queries are waiting on locks. Decreasing lock contention can be quite a
challenge, but it can be solved in some cases by using either dirty reads (the READ
UNCOMMITTED isolation level) or row versioning (the SNAPSHOT isolation level). See
Chapter 9 for a discussion of these and other options.

• SQLServer:Buffer Manager:Page life expectancy is the average amount of time, in
seconds, that pages remain in buffer cache memory after they are read off of the
disk. This counter, coupled with Disk Read Bytes/sec, can help to indicate where
disk bottlenecks are occurring—or, it might simply indicate that your server needs
more RAM. Either way, values below 300 (i.e., 5 minutes) may indicate that you
have a problem in this area.

• SQLServer:Plan Cache:Cache Hit Ratio and SQLServer:Plan Cache:Cached Pages
are counters that deal with the query plan cache. The Cache Hit Ratio counter is
the ratio of cache hits to lookups—in other words, what percentage of issued
queries are already in the cache. During a performance run, this number should
generally start out low (assuming you’ve rebooted the SQL server before starting in
order to put it into a consistent state) and go up during the course of the run.
Toward the end, you should see this number fairly near to 100, indicating that
almost all queries are cached. The Cached Pages counter indicates how many 8KB
pages of memory are being used for the procedure cache. A low Cache Hit Ratio
combined with a high Cached Pages value means that you need to consider fixing
the dynamic SQL being used by the system. See Chapter 8 for information on
techniques for solving dynamic SQL problems.

 Tip SQL Server Profiler has the ability to import saved performance counter logs in order to correlate them with
traces. This can be useful for helping to pinpoint the cause of especially large spikes in areas such as CPU time
and disk utilization.

Dynamic Management Views (DMVs)
The dynamic management views exposed by SQL Server 2008 contain a variety of server- and database-
level information that can be used to assist in performance measurement. The
sys.dm_os_performance_counters DMV contains over 1,000 rows of high-level performance counters
maintained by the server, including common measures concerning I/O, locks, buffers, and log usage.
Querying this DMV presents an alternative method of collecting much of the same data that is exposed
via the performance monitoring console.

In addition to sys.dm_os_performance_counters, there are many other DMVs that contain
information useful for performance monitoring purposes. The following list shows a few of the DMVs
that I find to be most helpful for performance measurement and tuning:

62

 CHAPTER 3 TESTING DATABASE ROUTINES

• sys.dm_exec_query_stats: Provides performance statistics for queries whose plans
are currently in the cache. When joined to sys.dm_exec_sql_text and
sys.dm_exec_query_plan, it is possible to analyze the performance of individual
troublesome batches in relation to their SQL and query plan.

• sys.dm_db_index_usage_stats, sys.dm_db_index_physical_stats, and
sys.dm_db_index_operational_stats: These three views display information that is
useful for index tuning, including reporting the number of seeks and scans
performed against each index, the degree of index fragmentation, and possible
index contention and blocking issues.

• sys.dm_os_wait_stats: This records information regarding requests that were
forced to wait—in other words, any request that could not immediately be
satisfied by the server because of unavailability of I/O or CPU resource.

• sys.dm_os_waiting_tasks and sys.dm_tran_locks: Information on waiting tasks
and locks, contained in these two tables respectively, can be combined to help
identify blocking situations.

 Caution DMVs generally report any timings measured in microseconds (1/1,000,000 of a second), whereas
most other performance measuring tools report timings in milliseconds (1/1,000 of a second).

Analyzing the detailed information contained in these DMVs allows you to understand the root
cause of many performance issues, and identify the appropriate course of action to rectify them. For
example, suppose that sys.dm_os_wait_stats on a poorly performing server showed a significant
number of I/O waits (e.g., high values for PAGEIOLATCH, LOGMGR, or IO_COMPLETION), but hardly any waits
for CPU resource. Clearly, the performance issues in this case will not be resolved by upgrading the
server CPU—there is an I/O bottleneck and the appropriate solution involves finding a way to shorten
I/O response times, or reducing the I/O requirements of the query.

 Note DMVs store preaggregated, cumulative statistics since the server was last restarted. In order to reset wait
statistics before running a performance test, you can use DBCC SQLPERF with the CLEAR option—for example,
DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR);.

Extended Events
Extended events make up a flexible, multipurpose eventing system introduced in SQL Server 2008 that
can be used in a wide variety of scenarios, including performance testing. There are over 250 predefined
events, some of which mirror traditional trace event triggers, including RPC:Completed, sp_completed,
and lock_timeout, although there are also many others. The payload (i.e., the columns of data) collected
when an event fires can then be delivered to a variety of synchronous and asynchronous targets. This
flexible framework for handling extended events allows you to build a customized performance

63

CHAPTER 3 TESTING DATABASE ROUTINES

monitoring system, which collects very specific measurements and delivers them in a variety of formats
to meet your monitoring requirements.

One of the shortcomings of the monitoring tools introduced previously is that they tend to collect
performance indicators that are aggregated at predefined levels. The wait statistics exposed in
sys.dm_os_wait_stats, for example, might indicate that an I/O bottleneck is occurring at a server-wide
level. However, based on this information alone, we cannot tell which queries or sessions were affected,
or for how long they were made to wait. By leveraging extended events such as sqlos.wait_info and
sqlos.wait_info_external, it is possible to gather specific wait statistics at the session or statement
levels. Performance statistics gathered using extended events can be further refined by the addition of
predicates, which specify, for example, to only gather information on specific types of wait, those that
occur a certain number of times, or those that exceed a minimum wait time.

The following code listing illustrates how to create a new extended event session that records all
statements that encounter waits (triggered by the sqlos.wait_info event), and saves them to a log file on
the server:

CREATE EVENT SESSION WaitMonitor ON SERVER
ADD EVENT sqlos.wait_info(
 ACTION(
 sqlserver.sql_text,
 sqlserver.plan_handle)
 WHERE total_duration > 0
)
ADD TARGET package0.asynchronous_file_target(
 SET filename = N'c:\wait.xel',
 metadatafile = N'c:\wait.xem');
GO

When you are ready to start the log, run the following:

ALTER EVENT SESSION WaitMonitor ON SERVER
STATE = start;
GO

Once the session is started, the sql_text and plan_handle actions will be collected every time the
sqlos_wait_info event fires and delivered to the specified target. Notice that in this example I specify an
asynchronous file target, which means that SQL Server execution will continue while event data is sent
to and saved in the target file. If events are fired more quickly than they can be handled, they will be
stored in a buffer while waiting to be saved to the target. The size of this buffer is determined by the
MAX_MEMORY event session variable, which by default is set to 4MB. If events continue to be sent after the
buffer is full, then there may be the risk of events being lost from the session and not saved to the target.
Synchronous targets do not have this risk, but they may exhibit worse performance because any tasks
that fire events are made to wait for the last event to be fully consumed by the target before being
allowed to continue.

To stop the WaitMonitor session, execute the following code listing:

ALTER EVENT SESSION WaitMonitor ON SERVER
STATE = stop;
GO

The payload captured by the extended event session is saved to the file target in XML format. To
analyze the data contained within this file, it can be loaded back into SQL Server using the

64

 CHAPTER 3 TESTING DATABASE ROUTINES

sys.fn_xe_file_target_read_file method, and then queried using XQuery syntax, as shown in the
following query:

SELECT
 xe_data.value('(/event/action[@name=''sql_text'']/value)[1]','varchar(max)')
 AS sql_text,
 xe_data.value('(/event/@timestamp)[1]','datetime')
 AS timestamp,
 xe_data.value('(/event/data[@name=''wait_type'']/text)[1]','varchar(50)')
 AS wait_type,
 xe_data.value('(/event/data[@name=''total_duration'']/value)[1]','int')
 AS total_duration,
 xe_data.value('(/event/data[@name=''signal_duration'']/value)[1]','int')
 AS signal_duration
FROM (
 SELECT
 CAST(event_data AS xml) AS xe_data
 FROM
 sys.fn_xe_file_target_read_file('c:\wait_*.xel', 'c:\wait_*.xem', null, null)
) x;
GO

 Note Extended Events can be used in many more situations than the simple example shown here. For more
information, and examples of other possible uses, see Books Online: http://msdn.microsoft.com/en-
us/library/bb630354.aspx.

Data Collector
The Data Collector allows you to automatically collect performance data from DMVs and certain system
performance counters and upload them to a central management data warehouse (MDW) at regular
intervals according to a specified schedule. There are three predefined system collection sets that come
with SQL Server and, of these, the most useful from a performance tuning point of view is the server
activity collection set. The server activity collection set combines information from DMVs including
sys.dm_os_wait_stats, sys.dm_exec_sessions, sys.dm_exec_requests, and sys.dm_os_waiting_tasks,
with various SQL Server and OS performance counters to provide an overview of CPU, disk I/O, memory,
and network resource usage on the server. By default, each measure is sampled every 60 seconds, and
the collected data is uploaded to the MDW every 15 minutes, where it is kept for 14 days before being
purged. If required, you can adjust the definition, frequency, and duration of counters collected by
creating your own custom data collection set based on the performance counter’s collector type.

Whereas the other profiling tools previously discussed are primarily useful for short-term diagnosis
and testing focused on a particular target area, the data collector is a useful tool for monitoring long-
term trends in performance. Historical performance data can be collected and persisted over a long
period of time, and comparisons can be drawn of the relative performance of a server over several
months, or even years. The data collector also provides preformatted, drill-down tabular reports and
graphs that make it relatively easy to identify major problem areas at a glance. Figure 3-1 illustrates a
default report generated from the server activity collection set.

65

CHAPTER 3 TESTING DATABASE ROUTINES

Figure 3-1. The server activity collection report

66

 CHAPTER 3 TESTING DATABASE ROUTINES

Analyzing Performance Data
In the previous section, I discussed how to capture SQL Server performance data using a number of
different tools and techniques. In this section, let’s now consider what data you should monitor, and
how to analyze it in order to build up a profile of how a database is performing.

Note that while the techniques discussed here may help you identify bottlenecks and other
performance issues, they do not deal with how to fix those problems. Throughout the remainder of the
book, various examples will discuss how to look at code from a performance-minded point of view and
how to solve some problems, but keep in mind that this book is not intended as a thorough guide to
query performance tuning. I highly recommend that readers searching for a more detailed guide invest
in a book dedicated to the subject, such as SQL Server 2008 Query Performance Tuning Distilled, by Grant
Fritchey and Sajal Dam (Apress, 2009).

Capturing Baseline Metrics
Just as with unit and functional testing, having an overall process in place is extremely important when it
comes to performance evaluation. Performance tests should be repeatable and should be done in an
environment that can be rolled back to duplicate the same conditions for multiple test runs.

Keep in mind that any component in the application may be contributing in some way to
performance, so starting from the same point each time is imperative. I recommend using a test
database that can be restored to its original state each time, as well as rebooting all servers involved in
the test just before beginning a run, in order to make sure that the test starts with the same initial
conditions each time. Another option that might be easier than backing up and restoring a test database
is using SQL Server 2008’s database snapshot feature, or, if you use a virtualized environment, restoring
a saved state from a virtual machine image. Try each technique in your own environment to determine
which fits best into your testing system.

In addition to making sure the servers are in the same state, you should also collect exactly the same
performance counters, query trace data and other metrics in precisely the same way for each test run.
Consistency is the key to validating not only that changes are effective, but also measuring how effective
they are.

During a testing process, the first test that is run should be used as a baseline. The metrics captured
during the baseline test will be used to compare results for later runs. As problems are solved, or if test
conditions change (e.g., if you need to collect more performance counters in a certain area), you should
establish a new baseline from which to go forward. Keep in mind that fixing issues in one area of an
application might have an impact on performance of another area. For instance, a given query may be
I/O-bound, whereas another may be CPU-bound. By fixing the I/O problems for the first query, you may
introduce greater CPU utilization, which in turn will cause the other query to degrade in performance if
they are run simultaneously.

Baselining metrics in a database environment is generally a fairly straightforward process. Server-
side traces should be used to capture performance data, including query duration and resources used.
This data can then be aggregated to determine minimum, maximum, and average statistics for queries.
In order to determine which resources are starved, performance counters can be used to track server
utilization. As changes are made to fix performance issues, the baseline data can be analyzed against
other test data in order to establish performance trends.

67

CHAPTER 3 TESTING DATABASE ROUTINES

Big-Picture Analysis
Once you have set up performance counters and traces, you are ready to begin actual performance
testing. But this raises the question, “Where to begin?” Especially in a large legacy application, running
an end-to-end performance test can be a daunting task.

A first step is to determine what kinds of unit and functional tests exist, and evaluate whether they
can be used as starting points for performance tests. Some load testing tools, such as Microsoft’s Visual
Studio Team System 2008, have the ability to directly load-test prebuilt unit tests. However, most
commercial load tools are designed to exercise applications or web code directly. Try to collect as many
tests as possible to cover the most-used parts of the application. Absolute coverage is nice, but is
unrealistic in many cases.

The next step is to implement a load testing suite using the prebuilt unit and functional tests.
Depending on which load tool you are using, this can take some time. The key is to make sure that the
load tool passes random or semirandom inputs into any function that goes back to the database, in
order to simulate real traffic and make sure that caching does not play too big a part in skewing
numbers. Nonrandom inputs can mask disk I/O issues caused by buffer cache recycling.

Set goals for the test to determine what level of load you need to test at. If you are testing on a
system that mirrors the application’s production environment, try to test at a load equal to that which
the application encounters during peak periods. If the test servers are less powerful than the production
systems, scale back appropriately. Note that it can be difficult to test against servers that aren’t scaled
the same as production systems. For instance, if the production database system has eight processors
and is attached to a dedicated storage area network (SAN), and the test database system has four
processors and internal drives, there may be an I/O mismatch. In this situation it might be advisable to
modify SQL Server’s processor affinity on the test system such that less processor power is available,
which will make the available processor to available disk I/O ratio fall into line with the actual
environment in which code needs to run.

In addition to making sure that the test and production systems are scaled similarly, make sure that
the SQL Server configurations in both systems are similar. For example, ensure that the maximum
degree of parallelism is set similarly so that processors will be used the same way in queries on both the
test and production systems. Likewise, you should monitor the RAM options to ensure that they are
configured to equivalent percentages on both systems—so if your production system has 16GB of RAM
but SQL Server’s maximum server memory setting is 12GB, you’ll want to set your test system to use 75
percent of the available RAM as well.

Once user goals are set, load tests should generally be configured to step up load slowly, rather than
immediately hit the server with the peak number of users. Gradually increasing load during the test
creates a more accurate simulation of a typical production environment, in which a server may get
rebooted during a maintenance period, then slowly accept user requests and warm up its caches before
encountering a larger number of requests during more active times of the day. Note that step testing
may not be an accurate figure if you’re testing a situation such as a cluster failover, in which a server may
be subjected to a full load immediately upon starting up.

The goal of a big-picture test is to see how the system scales overall. Try to look at general trends in
the performance counters to determine whether the system can handle load spikes, or generally
sustained load over long periods of time (again, depending on actual application usage patterns, if
possible). Data captured during this period can be used later for more granular analysis of specific
components.

Granular Analysis
If the results of a big-picture test show that certain areas need work, a more granular investigation into
specific routines will generally be necessary. Using aggregated trace data collected from a full system

68

 CHAPTER 3 TESTING DATABASE ROUTINES

test, it’s important to evaluate both individual queries and groups of queries that are long-running or
resource intensive.

While it is often tempting to look only at the worst offending queries—for instance, those with the
maximum duration—this may not tell the complete story. For instance, you may notice that certain
stored procedures are taking longer than others to run during peak load. These procedures may be
responsible for longer user interface wait times, but the individual stored procedure with the longest
duration may not necessarily indicate the single longest user interface wait time. This is due to the fact
that many applications call more than one stored procedure every time the interface needs to be
updated with additional data. In these cases it is important to group procedures that are called together
and aggregate their total resource utilization.

When aggregating the combined performance impact of a group of queries, it is important to
consider the way in which those procedures are called:

• If stored procedures are called sequentially, their individual durations should be
added together in order to determine the total user wait time for that group, and
the maximum resource utilization of any procedure in the group should be
recorded.

• If, on the other hand, all of the procedures are called simultaneously in parallel
(for instance, on different connections), resource utilization should be totaled in
order to determine the group’s overall impact on the system, and the duration of
the longest-running individual query should be noted.

For example, assume that in a given system, whenever a user logs in, three different stored
procedures are called to get data for the first screen. Table 3-1 shows the average data collected for these
stored procedures.

Table 3-1. Stored Procedures Called After Login, with Averaged Data

Stored Procedure Duration (ms) CPU Reads Writes

LogSessionStart 422 10 140 1

GetSessionData 224 210 3384 0

GetUserInfo 305 166 6408 0

If the system calls these stored procedures sequentially, the total duration that should be recorded

for this group is 951 ms (422 + 224 + 305). Since each is called individually, total system impact at any
given time will only be as much as the maximum values for each of the given columns. So we record 210
for CPU, 6408 for Reads, and 1 for Writes.

On the other hand, if these stored procedures are called simultaneously, the impact will be much
different. Total duration will only be as much as the longest running of the three—422ms (assuming, of
course, that the system has enough resources available to handle all three requests at the same time).
However, CPU time during the run should be recorded as 386, Reads as 9932, and Writes as 1.

By grouping stored procedures in this way, the total impact for a given feature can be assessed. It
may be the case that individually long-running stored procedures are not the primary performance
culprits, and are actually being overshadowed by groups of seemingly less resource-intensive stored
procedures. This can also be an issue with cursors that are doing a large number of very small fetch

69

CHAPTER 3 TESTING DATABASE ROUTINES

70

operations. Each individual fetch may fall under the radar, but taken as a whole, it may become clear
that the cursor is using a lot of resources.

Another benefit of this kind of grouping is that further aggregation is possible. For instance, given
these figures, it is possible to determine how much impact a certain number of users logging in
simultaneously would have on the system. That information can be useful when trying to reach specific
scalability goals.

Fixing Problems: Is It Sufficient to Focus on the Obvious?
When evaluating the performance of a system and trying to determine where to look to fix problems, it
can be tempting to focus on the obvious worst offenders first. However, some care should be taken to
make effective use of your time; in many cases what appear to be the obvious problems are actually side
effects of other, more subtle issues.

Looking at duration alone is often the easiest mistake to make when analyzing performance issues.
Duration tells a major part of the story, but it does not necessarily indicate a performance problem with
that stored procedure. It may indicate that the query had to wait for some other query—or queries—to
complete, or that the query was competing with other queries for resources. When performance tuning,
it is best to be suspicious of long-running queries with very low reported resource utilization. These are
often not the real culprits at all.

By using the granular analysis technique and aggregating, it is often possible to find the real
offenders more easily. For instance, in one fairly high-transaction system, a procedure was getting called
from time to time that was writing 10MB of data to the disk. This procedure reported a high duration,
which was interpreted as a possible performance problem. Unfortunately there wasn’t much to tune in
that stored procedure, but further aggregate analysis revealed another stored procedure in the system
that was getting called over 1,000 times a minute and writing as much as 50KB to the disk each time it
was called. Each call to the second stored procedure reported a small enough duration that it did not
appear to be causing performance problems, yet as it turned out it was causing issues in other areas. By
tuning it and reducing the amount of data it was writing on each call, the average duration of the first
stored procedure was reduced dramatically.

Summary
Software testing is a complex field, but it is necessary that developers understand enough of it to make
the development process more effective. By implementing testing processes during development, more
robust software can be delivered with less expense.

Database developers, like application developers, must learn to exploit unit tests in order to
increase software project success rates. Database routines will definitely benefit from unit testing,
although performance testing is extremely important as well—and much more popular with
management teams.

During performance testing, make sure to carefully analyze the data. By recombining the numbers
in various ways based on application usage patterns, it is often possible to discover performance issues
that are not obvious from the raw numbers. SQL Server 2008 ships with a variety of methods for
collecting and presenting performance counters, and I’ll be using these to analyze the relative
performance of different approaches taken in later chapters throughout the book.

Testing is one of the important factors that helps differentiate good developers from truly great
ones. If you’re not already testing your software during the development process, the methodologies
presented here can help you to implement a set of procedures that will get you closer to the next level.

C H A P T E R 4

Errors and Exceptions

As software developers, we often daydream of a Utopian world of bug-free software—developed under
the shade of a palm tree on a remote island while sipping a long, fruity cocktail. But, alas, back in the real
world, hordes of developers sit in cubicle farms gulping acrid coffee, fighting bugs that are not always
their fault or under their control in any way.

Exceptions can occur in even the most stringently tested software, simply because it is not possible
to check every error condition in advance. For instance, do you know what will happen if a janitor, while
cleaning the data-center floor, accidentally slops some mop water into the fan enclosure of the database
server? It might crash, or it might not; it might just cause some component to fail somewhere deep in the
app, sending up a strange error message.

Although most exceptions won’t be so far out of the realm of testability, it is certainly important to
understand how to deal with them when and if they occur. It is also imperative that SQL Server
developers understand how to work with errors—both those thrown by the server itself and custom
errors built specifically for when problems occur during the runtime of an application.

Exceptions vs. Errors
The terms exception and error, while often used interchangeably by developers, actually refer to slightly
different conditions:

An error can occur if something goes wrong during the course of a program, even
though it can be purely informational in nature. For instance, the message
displayed by a program informing a user that a question mark is an invalid
character for a file name is considered to be an error message. However, this may
or may not mean that the program itself is in an invalid state.

An exception, on the other hand, is an error that is the result of an exceptional
circumstance. For example, if a network library is being used to send packets, and
the network connection is suddenly dropped due to someone unplugging a cable,
the library might throw an exception. An exception tells the calling code that
something went wrong and the routine aborted unexpectedly. If the caller does not
handle the exception (i.e., capture it), its execution will also abort. This process will
keep repeating until the exception is handled, or until it reaches the highest level of
the call stack, at which point the entire program will fail.

Another way to think about exceptions and errors is to think of errors as occurrences that are
expected by the program. The error message that is displayed when a file name contains an invalid
character is informational in nature because the developer of the program predicted that such an event
would occur and created a code path specifically to deal with it. A dropped network connection, on the

71

CHAPTER 4 ERRORS AND EXCEPTIONS

other hand, could be caused by any number of circumstances and therefore is much more difficult to
handle specifically. Instead, the solution is to raise an exception and fail. The exception can then be
handled by a routine higher in the call stack, which can decide what course of action to take in order to
solve the problem.

What Defines an "Exceptional" Circumstance?

There is some debate in the software community as to whether exceptions should really be used only for
exceptional circumstances, or whether it is acceptable to use them as part of the regular operation of a
program. For example, some programmers choose to define a large number of different custom
exceptions, and then deliberately raise these exceptions as a method of controlling the flow of an
application. There are some possible benefits to this approach: raising an exception is a useful way to
break out of a routine immediately, however deeply nested in the call stack that routine might be; and, an
exception can be used to describe conditions that would be difficult to express in the normal return value
of a method. However convenient it may seem to use exceptions in such scenarios, they clearly represent
an abuse of the intended purpose of exception-handling code (which, remember, is to deal with
exceptional circumstances). Furthermore, making lots of exception calls can make your code hard to read,
and debugging can be made more difficult, since debuggers generally implement special behavior
whenever exceptions are encountered. As a result, exception-laden code is more difficult to maintain when
compared to code that relies on more standard control flow structures.

In my opinion, you should raise exceptions only to describe truly exceptional circumstances. Furthermore,
due to the fact that exceptions can cause abort conditions, they should be used sparingly. However, there
is certainly an upside to using exceptions over errors, which is that it’s more difficult for the caller to ignore
an exception, since it will cause code to abort if not properly handled. If you’re designing an interface that
needs to ensure that the caller definitely sees a certain condition when and if it occurs, it might make
sense to use an exception rather than an error.

As in almost all cases, the decision is very dependent on the context of your application, so do not feel
obliged to stick to my opinion!

How Exceptions Work in SQL Server
The first step in understanding how to handle errors and exceptions in SQL Server is to take a look at
how the server itself deals with error conditions. Unlike many other programming languages, SQL Server
has an exception model that involves different behaviors for different types of exceptions. This can cause
unexpected behavior when error conditions do occur, so careful programming is essential when dealing
with T-SQL exceptions.

To begin with, think about connecting to a SQL Server and issuing some T-SQL. First, you must
establish a connection to the server by issuing login credentials. The connection also determines what
database will be used as the default for scope resolution (i.e., finding objects—more on this in a bit).
Once connected, you can issue a batch of T-SQL. A batch consists of one or more T-SQL statements,
which will be compiled together to form an execution plan.

72

 CHAPTER 4 ERRORS AND EXCEPTIONS

The behavior of the exceptions thrown by SQL Server mostly follows this same pattern: depending
on the type of exception, a statement, a batch, or an entire connection may be aborted. Let’s take a look
at some practical examples to see this in action.

Statement-Level Exceptions
A statement-level exception aborts only the current statement that is running within a batch of T-SQL,
allowing any subsequent statements within the batch to run. To see this behavior, you can use SQL
Server Management Studio to execute a batch that includes an exception, followed by a PRINT statement.
For instance:

SELECT POWER(2, 32);
PRINT 'This will print!';
GO

Running this batch results in the following output:

Msg 232, Level 16, State 3, Line 1

Arithmetic overflow error for type int, value = 4294967296.000000.

This will print!

When this batch was run, the attempt to calculate POWER(2, 32) caused an integer overflow, which
threw the exception. However, only the SELECT statement was aborted. The rest of the batch continued
to run, which, in this case, meant that the PRINT statement still printed its message.

Batch-Level Exceptions
Unlike a statement-level exception, a batch-level exception does not allow the rest of the batch to
continue running. The statement that throws the exception will be aborted, and any remaining
statements in the batch will not be run. An example of a batch-aborting exception is an invalid
conversion, such as the following:

SELECT CONVERT(int, 'abc');
PRINT 'This will NOT print!';
GO

The output of this batch is as follows:

Msg 245, Level 16, State 1, Line 1
Conversion failed when converting the varchar value 'abc' to data type int.

73

CHAPTER 4 ERRORS AND EXCEPTIONS

In this case, the conversion exception occurred in the SELECT statement, which aborted the batch at
that point. The PRINT statement was not allowed to run, although if the batch had contained any valid
statements before the exception, these would have been executed successfully.

Batch-level exceptions might be easily confused with connection-level exceptions (which drop the
connection to the server), but after a batch-level exception, the connection is still free to send other
batches. For instance:

SELECT CONVERT(int, 'abc');
GO
PRINT 'This will print!';
GO

In this case there are two batches sent to SQL Server, separated by the batch separator, GO. The first
batch throws a conversion exception, but the second batch is still run. This results in the following
output:

Msg 245, Level 16, State 1, Line 2

Conversion failed when converting the varchar value 'abc' to data type int.

This will print!

Batch-level exceptions do not affect only the scope in which the exception occurs. The exception
will bubble up to the next level of execution, aborting every call in the stack. This can be illustrated by
creating the following stored procedure:

CREATE PROCEDURE ConversionException
AS
BEGIN
 SELECT CONVERT(int, 'abc');
END;
GO

Running this stored procedure followed by a PRINT shows that, even when an exception occurs in an
inner scope (within the stored procedure), the outer batch is still aborted:

EXEC ConversionException;
PRINT 'This will NOT print!';
GO

The result of this batch is the same as if no stored procedure was used:

Msg 245, Level 16, State 1, Line 4
Conversion failed when converting the varchar value 'abc' to data type int.

74

 CHAPTER 4 ERRORS AND EXCEPTIONS

Parsing and Scope-Resolution Exceptions
Exceptions that occur during parsing or during the scope-resolution phase of compilation appear at first
to behave just like batch-level exceptions. However, they actually have a slightly different behavior. If the
exception occurs in the same scope as the rest of the batch, these exceptions will behave just like a
batch-level exception. If, on the other hand, an exception occurs in a lower level of scope, these
exceptions will behave just like statement-level exceptions—at least, as far as the outer batch is
concerned.

As an example, consider the following batch, which includes a malformed SELECT statement (this is a
parse exception):

SELECTxzy FROM SomeTable;
PRINT 'This will NOT print!';
GO

In this case, the PRINT statement is not run, because the whole batch is discarded during the parse
phase. The output is the following exception message:

Msg 156, Level 15, State 1, Line 1
Incorrect syntax near the keyword 'FROM'.

To see the difference in behavior, the SELECT statement can be executed as dynamic SQL using the
EXEC function. This causes the SELECT statement to execute in a different scope, changing the exception
behavior from batch-like to statement-like. Try running the following T-SQL to observe the change:

EXEC('SELECTxzy FROM SomeTable');
PRINT 'This will print!';
GO

The PRINT statement is now executed, even though the exception occurred:

Msg 156, Level 15, State 1, Line 1

Incorrect syntax near the keyword 'FROM'.

This will print!

This type of exception behavior also occurs during scope resolution. Essentially, SQL Server
processes queries in two phases. The first phase parses and validates the query and ensures that the T-
SQL is well formed. The second phase is the compilation phase, during which an execution plan is built
and objects referenced in the query are resolved. If a query is submitted to SQL Server via ad hoc SQL
from an application or dynamic SQL within a stored procedure, these two phases happen together.
However, within the context of stored procedures, SQL Server exploits late binding. This means that the
parse phase happens when the stored procedure is created, and the compile phase (and therefore scope
resolution) occurs only when the stored procedure is executed.

75

CHAPTER 4 ERRORS AND EXCEPTIONS

To see what this means, create the following stored procedure (assuming that a table called
SomeTable does not exist in the current database):

CREATE PROCEDURE NonExistentTable
AS
BEGIN
 SELECT xyz
 FROM SomeTable;
END;
GO

Although SomeTable does not exist, the stored procedure is created—the T-SQL parses without any
errors. However, upon running the stored procedure, an exception is thrown:

EXEC NonExistentTable;
GO

This leads to

Msg 208, Level 16, State 1, Procedure NonExistentTable, Line 4
Invalid object name 'SomeTable'.

Like the parse exception, scope-resolution exceptions behave similarly to batch-level exceptions
within the same scope, and similarly to statement-level exceptions in the outer scope. Since the stored
procedure creates a new scope, hitting this exception within the procedure aborts the rest of the
procedure, but any T-SQL encountered in the calling batch after execution of the procedure will still run.
For instance:

EXEC NonExistentTable;
PRINT 'This will print!';
GO

leads to the following result:

Msg 208, Level 16, State 1, Procedure NonExistentTable, Line 4

Invalid object name 'SomeTable'.

This will print!

Connection and Server-Level Exceptions
Some exceptions thrown by SQL Server can be so severe that they abort the entire connection, or cause
the server itself to crash. These types of connection- and server-level exceptions are generally caused by
internal SQL Server bugs, and are thankfully quite rare. At the time of writing, I cannot provide any

76

 CHAPTER 4 ERRORS AND EXCEPTIONS

examples of these types of exceptions, as I am not aware of any reproducible conditions in SQL Server
2008 that cause them.

The XACT_ABORT Setting
Although users do not have much control over the behavior of exceptions thrown by SQL Server, there is
one setting that can be modified on a per-connection basis. Turning on the XACT_ABORT setting makes all
statement-level exceptions behave like batch-level exceptions. This means that control will always be
immediately returned to the client any time an exception is thrown by SQL Server during execution of a
query (assuming the exception is not handled).

To enable XACT_ABORT for a connection, the following T-SQL is used:

SET XACT_ABORT ON;

This setting will remain enabled for the entire connection—even if it was set in a lower level of
scope, such as in a stored procedure or dynamic SQL—until it is disabled using the following T-SQL:

SET XACT_ABORT OFF;

To illustrate the effect of this setting on the behavior of exceptions, let’s review a couple of the
exceptions already covered. Recall that the following integer overflow exception operates at the
statement level:

SELECT POWER(2, 32);
PRINT 'This will print!';
GO

Enabling the XACT_ABORT setting before running this T-SQL changes the output, resulting in the
PRINT statement not getting executed:

SET XACT_ABORT ON;
SELECT POWER(2, 32);
PRINT 'This will NOT print!';
GO

The output from running this batch is as follows:

Msg 232, Level 16, State 3, Line 2
Arithmetic overflow error for type int, value = 4294967296.000000.

Note that XACT_ABORT only affects the behavior of runtime errors, not those generated during
compilation. Recall the previous example that demonstrated a parsing exception occurring in a lower
scope using the EXEC function:

EXEC('SELECTxzy FROM SomeTable');
PRINT 'This will print!';
GO

The result of this code listing will remain the same, regardless of the XACT_ABORT setting, resulting in
the PRINT statement being evaluated even after the exception occurs.

77

CHAPTER 4 ERRORS AND EXCEPTIONS

In addition to controlling exception behavior, XACT_ABORT also modifies how transactions behave
when exceptions occur. See the section “Transactions and Exceptions” later in this chapter for more
information.

Dissecting an Error Message
A SQL Server exception has a few different component parts, each of which are represented within the
text of the error message. Each exception has an associated error number, error level, and state. Error
messages can also contain additional diagnostic information including line numbers and the name of
the procedure in which the exception occurred.

Error Number
The error number of an exception is listed following the text Msg within the error text. For example, the
error number of the following exception is 156:

Msg 156, Level 15, State 1, Line 1
Incorrect syntax near the keyword 'FROM'.

SQL Server generally returns the error message with the exception, so having the error number
usually doesn’t assist from a problem-solving point of view. However, there are times when knowing the
error number can be of use. Examples include use of the @@ERROR function, or when doing specialized
error handling using the TRY/CATCH syntax (see the sections “Exception ‘Handling’ Using @@ERROR” and
“SQL Server’s TRY/CATCH Syntax” later in the chapter for details on these topics).

The error number can also be used to look up the localized translation of the error message from the
sys.messages catalog view. The message_id column contains the error number, and the language_id
column can be used to get the message in the correct language. For example, the following T-SQL
returns the English text for error 208:

SELECT text
FROM sys.messages
WHERE
 message_id = 208
 AND language_id = 1033;
GO

The output of this query is an error message template, shown here:

Invalid object name '%.*ls'.

See the section “SQL Server’s RAISERROR Function” for more information about error message
templates.

78

 CHAPTER 4 ERRORS AND EXCEPTIONS

Error Level
The Level tag within an error message indicates a number between 1 and 25. This number can
sometimes be used to either classify an exception or determine its severity. Unfortunately, the key word
is “sometimes”: the error levels assigned by SQL Server are highly inconsistent and should generally not
be used in order to make decisions about how to handle exceptions.

The following exception, based on its error message, is of error level 15:

Msg 156, Level 15, State 1, Line 1
Incorrect syntax near the keyword 'FROM'.

The error levels for each exception can be queried from the sys.messages view, using the severity
column. A severity of less than 11 indicates that a message is a warning. If severity is 11 or greater, the
message is considered to be an error and can be broken down into the following documented
categories:

• Error levels 11 through 16 are documented as “errors that can be corrected by the
user.” The majority of exceptions thrown by SQL Server are in this range,
including constraint violations, parsing and compilation errors, and most other
runtime exceptions.

• Error levels 17 through 19 are more serious exceptions. These include out-of-
memory exceptions, disk space exceptions, internal SQL Server errors, and other
similar violations. Many of these are automatically logged to the SQL Server error
log when they are thrown. You can identify those exceptions that are logged by
examining the is_event_logged column of the sys.messages table.

• Error levels 20 through 25 are fatal connection and server-level exceptions. These
include various types of data corruption, network, logging, and other critical
errors. Virtually all of the exceptions at this level are automatically logged.

Although the error levels that make up each range are individually documented in Books Online
(http://msdn2.microsoft.com/en-us/library/ms164086.aspx), this information is inconsistent or
incorrect in many cases. For instance, according to documentation, severity level 11 indicates errors
where “the given object or entity does not exist.” However, error 208, “Invalid object name,” is a level-16
exception. Many other errors have equally unpredictable levels, and it is recommended that you do not
program client software to rely on the error levels for handling logic.

In addition to inconsistency regarding the relative severity of different errors, there is, for the most
part, no discernable pattern regarding the severity level of an error and whether that error will behave on
the statement or batch level. For instance, both errors 245 (“Conversion failed”) and 515 (“Cannot insert
the value NULL . . . column does not allow nulls”) are level-16 exceptions. However, 245 is a batch-level
exception, whereas 515 acts at the statement level.

Error State
Each exception has a State tag, which contains information about the exception that is used internally
by SQL Server. The values that SQL Server uses for this tag are not documented, so this tag is generally
not helpful. The following exception has a state of 1:

79

CHAPTER 4 ERRORS AND EXCEPTIONS

Msg 156, Level 15, State 1, Line 1
Incorrect syntax near the keyword 'FROM'.

Additional Information
In addition to the error number, level, and state, many errors also carry additional information about the
line number on which the exception occurred and the procedure in which it occurred, if relevant. The
following error message indicates that an invalid object name was referenced on line 4 of the procedure
NonExistentTable:

Msg 208, Level 16, State 1, Procedure NonExistentTable, Line 4
Invalid object name 'SomeTable'.

If an exception does not occur within a procedure, the line number refers to the line in the batch in
which the statement that caused the exception was sent.

Be careful not to confuse batches separated with GO with a single batch. Consider the following T-
SQL:

SELECT 1;
GO
SELECT 2;
GO
SELECT 1/0;
GO

In this case, although a divide-by-zero exception occurs on line 5 of the code listing itself, the
exception message will report that the exception was encountered on line 1:

(1 row(s) affected)

 (1 row(s) affected)

Msg 8134, Level 16, State 1, Line 1

Divide by zero error encountered.

The reason for the reset of the line number is that GO is not actually a T-SQL command. GO is an
identifier recognized by SQL Server client tools (e.g., SQL Server Management Studio and SQLCMD) that
tells the client to separate the query into batches, sending each to SQL Server one after another. This
seemingly erroneous line number reported in the previous example occurs because each batch is sent
separately to the query engine. SQL Server does not know that on the client (e.g., in SQL Server
Management Studio) these batches are all displayed together on the screen. As far as SQL Server is

80

 CHAPTER 4 ERRORS AND EXCEPTIONS

concerned, these are three completely separate units of T-SQL that happen to be sent on the same
connection.

SQL Server’s RAISERROR Function
In addition to the exceptions that SQL Server itself throws, users can raise exceptions within T-SQL by
using a function called RAISERROR. The general form for this function is as follows:

RAISERROR ({ msg_id | msg_str | @local_variable }
 { ,severity ,state }
 [,argument [,...n]])
 [WITH option [,...n]]

The first argument can be an ad hoc message in the form of a string or variable, or a valid error
number from the message_id column of sys.messages. If a string is specified, it can include format
designators that can then be filled using the optional arguments specified at the end of the function call.

The second argument, severity, can be used to enforce some level of control over the behavior of
the exception, similar to the way in which SQL Server uses error levels. For the most part, the same
exception ranges apply: exception levels between 1 and 10 result in a warning, levels between 11 and 18
are considered normal user errors, and those above 18 are considered serious and can only be raised by
members of the sysadmin fixed-server role. User exceptions raised over level 20, just like those raised by
SQL Server, cause the connection to break. Beyond these ranges, there is no real control afforded to
user-raised exceptions, and all are considered to be statement level—this is even true with XACT_ABORT
set.

 Note XACT_ABORT does not impact the behavior of the RAISERROR statement.

The state argument can be any value between 1 and 127, and has no effect on the behavior of the
exception. It can be used to add additional coded information to be carried by the exception—but it’s
probably just as easy to add that data to the error message itself in most cases.

The simplest way to use RAISERROR is to pass in a string containing an error message, and set the
appropriate error level and state. For general exceptions, I usually use severity 16 and a value of 1 for
state:

RAISERROR('General exception', 16, 1);

This results in the following output:

Msg 50000, Level 16, State 1, Line 1
General exception

Note that the error number generated in this case is 50000, which is the generic user-defined error
number that will be used whenever passing in a string for the first argument to RAISERROR.

81

CHAPTER 4 ERRORS AND EXCEPTIONS

 Caution Previous versions of SQL Server allowed RAISERROR syntax specifying the error number and message
number as follows: RAISERROR 50000 'General exception'. This syntax is deprecated in SQL Server 2008 and
should not be used.

Formatting Error Messages
When defining error messages, it is generally useful to format the text in some way. For example, think
about how you might write code to work with a number of product IDs, dynamically retrieved, in a loop.
You might have a local variable called @ProductId, which contains the ID of the product that the code is
currently working with. If so, you might wish to define a custom exception that should be thrown when a
problem occurs—and it would probably be a good idea to return the current value of @ProductId along
with the error message.

In this case, there are a couple of ways of sending back the data with the exception. The first is to
dynamically build an error message string:

DECLARE @ProductId int;
SET @ProductId = 100;

/* ... problem occurs ... */

DECLARE @ErrorMessage varchar(200);
SET @ErrorMessage =
 'Problem with ProductId ' + CONVERT(varchar, @ProductId);

RAISERROR(@ErrorMessage, 16, 1);

Executing this batch results in the following output:

Msg 50000, Level 16, State 1, Line 10
Problem with ProductId 100

While this works for this case, dynamically building up error messages is not the most elegant
development practice. A better approach is to make use of a format designator and to pass @ProductId as
an optional parameter, as shown in the following code listing:

DECLARE @ProductId int;
SET @ProductId = 100;

/* ... problem occurs ... */

RAISERROR('Problem with ProductId %i', 16, 1, @ProductId);

Executing this batch results in the same output as before, but requires quite a bit less code, and you
don’t have to worry about defining extra variables or building up messy conversion code. The %i

82

 CHAPTER 4 ERRORS AND EXCEPTIONS

embedded in the error message is a format designator that means “integer.” The other most commonly
used format designator is %s, for “string.”

You can embed as many designators as necessary in an error message, and they will be substituted
in the order in which optional arguments are appended. For example:

DECLARE @ProductId1 int;
SET @ProductId1 = 100;

DECLARE @ProductId2 int;
SET @ProductId2 = 200;

DECLARE @ProductId3 int;
SET @ProductId3 = 300;

/* ... problem occurs ... */

RAISERROR('Problem with ProductIds %i, %i, %i',
 16, 1, @ProductId1, @ProductId2, @ProductId3);

This results in the following output:

Msg 50000, Level 16, State 1, Line 12
Problem with ProductIds 100, 200, 300

 Note Readers familiar with C programming will notice that the format designators used by RAISERROR are the
same as those used by the C language’s printf function. For a complete list of the supported designators, see the
“RAISERROR (Transact-SQL)” topic in SQL Server 2008 Books Online.

Creating Persistent Custom Error Messages
Formatting messages using format designators instead of building up strings dynamically is a step in the
right direction, but it does not solve one final problem: what if you need to use the same error message
in multiple places? You could simply use the same exact arguments to RAISERROR in each routine in
which the exception is needed, but that might cause a maintenance headache if you ever needed to
change the error message. In addition, each of the exceptions would only be able to use the default user-
defined error number, 50000, making programming against these custom exceptions much more
difficult.

Luckily, SQL Server takes care of these problems quite nicely, by providing a mechanism by which
custom error messages can be added to sys.messages. Exceptions using these error messages can then
be raised by using RAISERROR and passing in the custom error number as the first parameter.

To create a persistent custom error message, use the sp_addmessage stored procedure. This stored
procedure allows the user to specify custom messages for message numbers over 50000. In addition to
an error message, users can specify a default severity. Messages added using sp_addmessage are scoped
at the server level, so if you have multiple applications hosted on the same server, be aware of whether

83

CHAPTER 4 ERRORS AND EXCEPTIONS

they define custom messages and whether there is any overlap—you may need to set up a new instance
of SQL Server for one or more of the applications in order to allow them to create their exceptions. When
developing new applications that use custom messages, try to choose a well-defined range in which to
create your messages, in order to avoid overlaps with other applications in shared environments.
Remember that you can use any number between 50000 and 2147483647, and you don’t need to stay in
the 50000 range.

Adding a custom message is as easy as calling sp_addmessage and defining a message number and
the message text. The following T-SQL defines the message from the previous section as error message
number 50005:

EXEC sp_addmessage
 @msgnum = 50005,
 @severity = 16,
 @msgtext = 'Problem with ProductIds %i, %i, %i';
GO

Once this T-SQL is executed, an exception can be raised using this error message, by calling
RAISERROR with the appropriate error number:

RAISERROR(50005, 15, 1, 100, 200, 300);

This causes the following output to be sent back to the client:

Msg 50005, Level 15, State 1, Line 1
Problem with ProductIds 100, 200, 300

Note that when calling RAISERROR in this case, severity 15 was specified, even though the custom
error was originally defined as severity level 16. This brings up an important point about severities of
custom errors: whatever severity is specified in the call to RAISERROR will override the severity that was
defined for the error. However, the default severity will be used if you pass a negative value for that
argument to RAISERROR:

RAISERROR(50005, -1, 1, 100, 200, 300);

This produces the following output (notice that Level is now 16, as was defined when the error
message was created):

Msg 50005, Level 16, State 1, Line 1
Problem with ProductIds 100, 200, 300

It is recommended that, unless you are overriding the severity for a specific reason, you always use -
1 for the severity argument when raising a custom exception.

Changing the text of an exception once defined is also easy using sp_addmessage. To do so, pass the
optional @Replace argument, setting its value to 'Replace', as in the following T-SQL:

EXEC sp_addmessage
 @msgnum = 50005,
 @severity = 16,
 @msgtext = 'Problem with ProductId numbers %i, %i, %i',

84

 CHAPTER 4 ERRORS AND EXCEPTIONS

 @Replace = 'Replace';
GO

 Note In addition to being able to add a message and set a severity, sp_addmessage supports localization of
messages for different languages. The examples here do not show localization; instead, messages will be created
for the user’s default language. For details on localized messages, refer to SQL Server 2008 Books Online.

Logging User-Thrown Exceptions
Another useful feature of RAISERROR is the ability to log messages to SQL Server’s error log. This can come
in handy especially when working with automated code, such as T-SQL run via a SQL Server agent job.
In order to log any exception, use the WITH LOG option of the RAISERROR function, as in the following T-
SQL:

RAISERROR('This will be logged.', 16, 1) WITH LOG;

Note that specific access rights are required to log an error. The user executing the RAISERROR
function must either be a member of the sysadmin fixed server role or have ALTER TRACE permissions.

Monitoring Exception Events with Traces
Some application developers go too far in handling exceptions, and end up creating applications that
hide problems by catching every exception that occurs and not reporting it. In such cases it can be
extremely difficult to debug issues without knowing whether an exception is being thrown. Should you
find yourself in this situation, you can use a Profiler trace to monitor for exceptions occurring in SQL
Server.

In order to monitor for exceptions, start a trace and select the Exception and User Error Message
events. For most exceptions with a severity greater than 10, both events will fire. The Exception event will
contain all of the data associated with the exception except for the actual message. This includes the
error number, severity, state, and line number. The User Error Message event will contain the formatted
error message as it was sent to the client.

For warnings (messages with a severity of less than 11), only the User Error Message event will fire.
You may also notice error 208 exceptions (“Object not found”) without corresponding error message
events. These exceptions are used internally by the SQL Server query optimizer during the scope-
resolution phase of compilation, and can be safely ignored.

Exception Handling
Understanding when, why, and how SQL Server throws exceptions is great, but the real goal is to actually
do something when an exception occurs. Exception handling refers to the ability to catch an exception
when it occurs, rather than simply letting it bubble up to the next level of scope.

85

CHAPTER 4 ERRORS AND EXCEPTIONS

Why Handle Exceptions in T-SQL?
Exception handling in T-SQL should be thought of as no different from exception handling in any other
language. A generally accepted programming practice is to handle exceptions at the lowest possible
scope, in order to keep them from interacting with higher levels of the application. If an exception can be
caught at a lower level and dealt with there, higher-level modules will not require special code to handle
the exception, and therefore can concentrate on whatever their purpose is. This means that every
routine in the application becomes simpler, more maintainable, and therefore quite possibly more
robust.

Put another way, exceptions should be encapsulated as much as possible—knowledge of the
internal exceptions of other modules is yet another form of coupling, not so different from some of the
types discussed in the first chapter of this book.

Keep in mind that encapsulation of exceptions is really something that must be handled on a case-
by-case basis. But the basic rule is, if you can “fix” the exception one way or another without letting the
caller ever know it even occurred, that is probably a good place to encapsulate.

Exception “Handling” Using @@ERROR
Versions of SQL Server prior to SQL Server 2005 did not have true exception-handling capabilities. Any
exception that occurred would be passed back to the caller, regardless of any action taken by the code of
the stored procedure or query in which it was thrown. Although for the most part SQL Server 2008 now
provides better alternatives, the general method used to “handle” errors in those earlier versions of SQL
Server is still useful in some cases—and a lot of legacy code will be around for quite a while—so a quick
review is definitely warranted.

 Note If you’re following the examples in this chapter in order, make sure that you have turned off the
XACT_ABORT setting before trying the following examples.

The @@ERROR function is quite simple: it returns 0 if the last statement in the batch did not throw an
error of severity 11 or greater. If the last statement did throw an error, it returns the error number. For
example, consider the following T-SQL:

SELECT 1/0 AS DivideByZero;
SELECT @@ERROR AS ErrorNumber;
GO

The first statement returns the following message:

Msg 8134, Level 16, State 1, Line 1
Divide by zero error encountered.

86

 CHAPTER 4 ERRORS AND EXCEPTIONS

and the second statement returns a result set containing a single value, containing the error number
associated with the previous error:

ErrorNumber
8134

By checking to see whether the value of @@ERROR is nonzero, it is possible to perform some very
primitive error handling. Unfortunately, this is also quite error prone due to the nature of @@ERROR and
the fact that it only operates on the last statement executed in the batch. Many developers new to T-SQL
are quite surprised by the output of the following batch:

SELECT 1/0 AS DivideByZero;
IF @@ERROR <> 0
 SELECT @@ERROR AS ErrorNumber;
GO

The first line of this code produces the same error message as before, but on this occasion, the result
of SELECT @@ERROR is

ErrorNumber
0

The reason is that the statement executed immediately preceding @@ERROR was not the divide by
zero, but rather the line IF @@ERROR <> 0, which did not generate an error. The solution to this problem
is to set a variable to the value of @@ERROR after every statement in a batch that requires error handling,
and then check that variable rather than the value of @@ERROR itself. Of course, if even a single statement
is missed, holes may be left in the strategy, and some errors may escape notice.

Even with these problems, @@ERROR arguably still has a place in SQL Server 2008. It is a simple,
lightweight alternative to the full-blown exception-handling capabilities that have been added more
recently to the T-SQL language, and it has the additional benefit of not catching the exception. In some
cases, full encapsulation is not the best option, and using @@ERROR will allow the developer to take some
action—for instance, logging of the exception—while still passing it back to the caller.

SQL Server’s TRY/CATCH Syntax
The standard error-handling construct in many programming languages, including T-SQL, is known as
try/catch. The idea behind this construct is to set up two sections (aka blocks) of code. The first section,
the try block, contains exception-prone code to be “tried.” The second section contains code that should
be executed in the event that the code in the try block fails, and an exception occurs. This is called the
catch block. As soon as any exception occurs within the try block, code execution immediately jumps
into the catch block. This is also known as catching an exception.

In T-SQL, try/catch is implemented using the following basic form:

BEGIN TRY
 --Code to try here
END TRY

87

CHAPTER 4 ERRORS AND EXCEPTIONS

BEGIN CATCH
 --Catch the exception here
END CATCH

Any type of exception—except for connection- or server-level exceptions—that occurs between
BEGIN TRY and END TRY will cause the code between BEGIN CATCH and END CATCH to be immediately
executed, bypassing any other code left in the try block.

As a first example, consider the following T-SQL:

BEGIN TRY
 SELECT 1/0 AS DivideByZero;
END TRY
BEGIN CATCH
 SELECT 'Exception Caught!' AS CatchMessage;
END CATCH

Running this batch produces the following output:

DivideByZero

CatchMessage

Exception Caught!

The interesting things to note here are that, first and foremost, there is no reported exception. We
can see that an exception occurred because code execution jumped to the CATCH block, but the exception
was successfully handled, and the client is not aware that an exception occurred. Second, notice that an
empty result set is returned for the SELECT statement that caused the exception. Had the exception not
been handled, no result set would have been returned. By sending back an empty result set, the implied
contract of the SELECT statement is honored (more or less, depending on what the client was actually
expecting).

Although already mentioned, it needs to be stressed that when using TRY/CATCH, all exceptions
encountered within the TRY block will immediately abort execution of the remainder of the TRY block.
Therefore, the following T-SQL has the exact same output as the last example:

BEGIN TRY
 SELECT 1/0 AS DivideByZero;
 SELECT 1 AS NoError;
END TRY
BEGIN CATCH
 SELECT 'Exception Caught!' AS CatchMessage;
END CATCH

88

 CHAPTER 4 ERRORS AND EXCEPTIONS

Finally, it is worth noting that parsing and compilation exceptions will not be caught using
TRY/CATCH, nor will they ever have a chance to be caught—an exception will be thrown by SQL Server
before any of the code is ever actually executed.

Getting Extended Error Information in the Catch Block
In addition to the ability to catch an exception, SQL Server 2008 offers a range of additional functions
that are available for use within the CATCH block. These functions, a list of which follows, enable the
developer to write code that retrieves information about the exception that occurred in the TRY block.

• ERROR_MESSAGE

• ERROR_NUMBER

• ERROR_SEVERITY

• ERROR_STATE

• ERROR_LINE

• ERROR_PROCEDURE

These functions take no input arguments and are fairly self-explanatory based on their names.
However, it is important to point out that unlike @@ERROR, the values returned by these functions are not
reset after every statement. They are persistent for the entire CATCH block. Therefore, logic such as that
used in the following T-SQL works:

BEGIN TRY
 SELECT CONVERT(int, 'ABC') AS ConvertException;
END TRY
BEGIN CATCH
 IF ERROR_NUMBER() = 123
 SELECT 'Error 123';
 ELSE
 SELECT ERROR_NUMBER() AS ErrorNumber;
END CATCH

As expected, in this case the error number is correctly reported:

ConvertException

ErrorNumber

245

89

CHAPTER 4 ERRORS AND EXCEPTIONS

These functions, especially ERROR_NUMBER, allow for coding of specific paths for certain exceptions.
For example, if a developer knows that a certain piece of code is likely to cause an exception that can be
programmatically fixed, that exception number can be checked for in the CATCH block.

Rethrowing Exceptions
A common feature in most languages that have try/catch capabilities is the ability to rethrow exceptions
from the catch block. This means that the exception that originally occurred in the try block will be
raised again, as if it were not handled at all. This is useful when you need to do some handling of the
exception but also let the caller know that something went wrong in the routine.

T-SQL does not include any kind of built-in rethrow functionality. However, it is fairly easy to create
such behavior based on the CATCH block error functions, in conjunction with RAISERROR. The following
example shows a basic implementation of rethrow in T-SQL:

BEGIN TRY
 SELECT CONVERT(int, 'ABC') AS ConvertException;
END TRY
BEGIN CATCH
 DECLARE
 @ERROR_SEVERITY int = ERROR_SEVERITY(),
 @ERROR_STATE int = ERROR_STATE(),
 @ERROR_NUMBER int = ERROR_NUMBER(),
 @ERROR_LINE int = ERROR_LINE(),
 @ERROR_MESSAGE varchar(245) = ERROR_MESSAGE();

 RAISERROR('Msg %d, Line %d: %s',
 @ERROR_SEVERITY,
 @ERROR_STATE,
 @ERROR_NUMBER,
 @ERROR_LINE,
 @ERROR_MESSAGE);
END CATCH
GO

Due to the fact that RAISERROR cannot be used to throw exceptions below 13000, in this case
“rethrowing” the exception requires raising a user-defined exception and sending back the data in a
specially formed error message. As functions are not allowed within calls to RAISERROR, it is necessary to
define variables and assign the values of the error functions before calling RAISERROR to rethrow the
exception. Following is the output message of this T-SQL:

(0 row(s) affected)

Msg 50000, Level 16, State 1, Line 19

Msg 245, Line 2: Conversion failed when converting the varchar value 'ABC'

to data type int.

90

 CHAPTER 4 ERRORS AND EXCEPTIONS

Keep in mind that, based on your interface requirements, you may not always want to rethrow the
same exception that was caught to begin with. It might make more sense in many cases to catch the
initial exception, and then throw a new exception that is more relevant (or more helpful) to the caller.
For example, if you’re working with a linked server and the server is not responding for some reason,
your code will throw a timeout exception. It might make more sense to pass back a generic “data not
available” exception than to expose the actual cause of the problem to the caller. This is something that
should be decided on a case-by-case basis, as you work out optimal designs for your stored procedure
interfaces.

When Should TRY/CATCH Be Used?
As mentioned previously, the general use case for handling exceptions in T-SQL routines (such as within
stored procedures) is to encapsulate as much as possible at as low a level as possible, in order to simplify
the overall code of the application. A primary example of this is logging of database exceptions. Instead
of sending an exception that cannot be properly handled back to the application tier where it will be
logged back to the database, it probably makes more sense to log it while already in the scope of a
database routine.

Another use case involves temporary fixes for problems stemming from application code. For
instance, the application—due to a bug—might occasionally pass invalid keys to a stored procedure that
is supposed to insert them into a table. It might be simple to temporarily “fix” the problem by simply
catching the exception in the database rather than throwing it back to the application where the user will
receive an error message. Putting quick fixes of this type into place is often much cheaper than
rebuilding and redeploying the entire application.

It is also important to consider when not to encapsulate exceptions. Make sure not to overhandle
security problems, severe data errors, and other exceptions that the application—and ultimately, the
user—should probably be informed of. There is definitely such a thing as too much exception handling,
and falling into that trap can mean that problems will be hidden until they cause enough of a
commotion to make themselves impossible to ignore.

Long-term issues hidden behind exception handlers usually pop into the open in the form of
irreparable data corruption. These situations are usually highlighted by a lack of viable backups because
the situation has been going on for so long, and inevitably end in lost business and developers getting
their resumes updated for a job search. Luckily, avoiding this issue is fairly easy. Just use a little bit of
common sense, and don’t go off the deep end in a quest to stifle any and all exceptions.

Using TRY/CATCH to Build Retry Logic
An interesting example of where TRY/CATCH can be used to fully encapsulate an exception is when dealing
with deadlocks. Although it’s better to try to find and solve the source of a deadlock than to code around
it, this is often a difficult and time-consuming task. Therefore, it’s common to deal with deadlocks—at
least temporarily—by having the application reissue the request that caused the deadlock. Eventually
the deadlock condition will resolve itself (i.e., when the other transaction finishes), and the DML
operation will go through as expected. Note that I do not recommend this as a long-term solution to
solving recurring deadlock situations!

By using T-SQL’s TRY/CATCH syntax, the application no longer needs to reissue a request or even
know that a problem occurred. A retry loop can be set up, within which the deadlock-prone code can be
tried in a TRY block and the deadlock caught in a CATCH block in order to try again.

91

CHAPTER 4 ERRORS AND EXCEPTIONS

A basic implementation of a retry loop follows:

DECLARE @Retries int;
SET @Retries = 3;

WHILE @Retries > 0
BEGIN
 BEGIN TRY
 /*
 Put deadlock-prone code here
 */

 --If execution gets here, success
 BREAK;
 END TRY
 BEGIN CATCH
 IF ERROR_NUMBER() = 1205
 BEGIN
 SET @Retries = @Retries - 1;

 IF @Retries = 0
 RAISERROR('Could not complete transaction!', 16, 1);
 END
 ELSE
 RAISERROR('Non-deadlock condition encountered', 16, 1);
 BREAK;
 END CATCH
END;
GO

In this example, the deadlock-prone code is retried as many times as the value of @Retries. Each
time through the loop, the code is tried. If it succeeds without an exception being thrown, the code gets
to the BREAK and the loop ends. Otherwise, execution jumps to the CATCH block, where a check is made to
ensure that the error number is 1205 (deadlock victim). If so, the counter is decremented so that the loop
can be tried again. If the exception is not a deadlock, another exception is thrown so that the caller
knows that something went wrong. It’s important to make sure that the wrong exception does not trigger
a retry.

Exception Handling and Defensive Programming

Exception handling is extremely useful, and its use in T-SQL is absolutely invaluable. However, I hope that
all readers keep in mind that exception handling is no substitute for proper checking of error conditions
before they occur. Whenever possible, code defensively—proactively look for problems, and if they can be
both detected and handled, code around them.

Remember that it’s generally a better idea to handle exceptions rather than errors. If you can predict a
condition and write a code path to handle it during development, that will usually provide a much more
robust solution than trying to trap the exception once it occurs and handle it then.

92

 CHAPTER 4 ERRORS AND EXCEPTIONS

Exception Handling and SQLCLR
The .NET Framework provides its own exception-handling mechanism, which is quite separate from the
mechanism used to deal with exceptions encountered in T-SQL. So, how do the two systems interact
when an exception occurs in CLR code executed within the SQLCLR process hosted by SQL Server?

Let’s look at an example—the following C# code illustrates a simple CLR user-defined function
(UDF) to divide one number by another:

 [Microsoft.SqlServer.Server.SqlFunction()]
public static SqlDecimal Divide(SqlDecimal x, SqlDecimal y)
{
 return x / y;
}

When cataloged and called from SQL Server with a value of 0 for the y parameter, the result is as
follows:

Msg 6522, Level 16, State 2, Line 1

A .NET Framework error occurred during execution of user-defined routine or

aggregate "Divide":

System.DivideByZeroException: Divide by zero error encountered.

System.DivideByZeroException:

 at System.Data.SqlTypes.SqlDecimal.op_Division(SqlDecimal x, SqlDecimal y)

 at ExpertSQLServer.UserDefinedFunctions.Divide(SqlDecimal x, SqlDecimal y)

.

SQL Server automatically wraps an exception handler around any managed code executed from
within SQL Server. That means that if the managed code throws an exception, it is caught by the
wrapper, which then generates an error. The error message contains details of the original exception,
together with a stack trace of when it occurred.

In this case, the original CLR exception, System.DivideByZeroException, propagated a 6522 error,
which is the generic error message for any unhandled exception that occurs within a SQLCLR function.

As previously stated, the best approach to deal with such exceptions is to tackle them at the lowest
level possible. In the case of a UDF such as this, the exception should be handled within the CLR code
itself (using try…catch, for example), in which case it never needs to be caught at the T-SQL level.

One interesting point this raises is how to deal with exceptions arising in system-defined CLR
routines, such as any methods defined by the geometry, geography, or hierarchyid types. Consider the
following example, which attempts to instantiate variables of the hierarchyid and geography datatypes
with invalid values:

93

CHAPTER 4 ERRORS AND EXCEPTIONS

DECLARE @HierarchyId hierarchyid = '/1/1';
DECLARE @Geography geography = 'POLYGON((0 51, 0 52, 1 52, 1 51 ,0 51))';
GO

Both of these statements will lead to CLR exceptions, reported as follows:

Msg 6522, Level 16, State 2, Line 1

A .NET Framework error occurred during execution of user-defined routine or

 aggregate "hierarchyid":

Microsoft.SqlServer.Types.HierarchyIdException: 24001: SqlHierarchyId.Parse

failed because the input string '/1/1' is not a valid string representation of a

SqlHierarchyId node.

Microsoft.SqlServer.Types.HierarchyIdException:

 at Microsoft.SqlServer.Types.SqlHierarchyId.Parse(SqlString input)

.

Msg 6522, Level 16, State 1, Line 2

A .NET Framework error occurred during execution of user-defined routine or

 aggregate "geography":

Microsoft.SqlServer.Types.GLArgumentException: 24205: The specified input does

not represent a valid geography instance because it exceeds a single hemisphere.

Each geography instance must fit inside a single hemisphere. A common reason for

this error is that a polygon has the wrong ring orientation.

Microsoft.SqlServer.Types.GLArgumentException:

 at Microsoft.SqlServer.Types.GLNativeMethods.ThrowExceptionForHr(GL_HResult

errorCode)

 at Microsoft.SqlServer.Types.GLNativeMethods.GeodeticIsValid(GeoData g)

94

 CHAPTER 4 ERRORS AND EXCEPTIONS

 at Microsoft.SqlServer.Types.SqlGeography.IsValidExpensive()

 at Microsoft.SqlServer.Types.SqlGeography.ConstructGeographyFromUserInput(

GeoData g, Int32 srid)

 at Microsoft.SqlServer.Types.SqlGeography.GeographyFromText(OpenGisType type,

SqlChars taggedText, Int32 srid)

 at Microsoft.SqlServer.Types.SqlGeography.STGeomFromText(SqlChars

geometryTaggedText, Int32 srid)

 at Microsoft.SqlServer.Types.SqlGeography.Parse(SqlString s)

 Note As demonstrated by the preceding example code, exceptions generated by managed code are statement-
level exceptions—the second statement was allowed to run even after the first had generated a 6522 error.

How do we create specific code paths to handle such exceptions? Despite the fact that they relate to
very different situations, as both exceptions occurred within managed code, the T-SQL error generated
in each case is the same—generic error 6522. This means that we cannot use ERROR_NUMBER() to
differentiate between these cases. Furthermore, we cannot easily add custom error-handling to the
original function code, since these are system-defined methods defined within the precompiled
Microsoft.SqlServer.Types.dll assembly.

One approach would be to define new custom CLR methods that wrap around each of the system-
defined methods in SqlServer.Types.dll, which check for and handle any CLR exceptions before
passing the result back to SQL Server. An example of such a wrapper placed around the geography
Parse() method is shown in the following code listing:

 [Microsoft.SqlServer.Server.SqlFunction()]
 public static SqlGeography GeogTryParse(SqlString Input)
 {
 SqlGeography result = new SqlGeography();
 try
 {
 result = SqlGeography.Parse(Input);
 }
 catch
 {
 // Exception Handling code here

 // Optionally, rethrow the exception
 // throw new Exception("An exception occurred that couldn't be handled");

95

CHAPTER 4 ERRORS AND EXCEPTIONS

 }

 return result;
 }

Alternatively, you could create code paths that rely on parsing the contents of ERROR_MESSAGE() to
identify the details of the original CLR exception specified in the stack trace. The exceptions generated
by the system-defined CLR types have five-digit exception numbers in the range 24000 to 24999, so can
be distilled from the ERROR_MESSSAGE() string using the T-SQL PATINDEX function. The following code
listing demonstrates this approach when applied to the hierarchyid example given previously:

DECLARE @errorMsg nvarchar(max);
BEGIN TRY
 SELECT hierarchyid::Parse('/1/1');
END TRY
BEGIN CATCH
 SELECT @errorMsg = ERROR_MESSAGE();
 SELECT SUBSTRING(@errorMsg, PATINDEX('%: 24[0-9][0-9][0-9]%', @errorMsg) + 2,
5);
END CATCH
GO

The resulting value, 24001, relates to the specific CLR exception that occurred (“the input string is
not a valid string representation of a SqlHierarchyId node”), rather than the generic T-SQL error 6522,
and can be used to write specific code paths to deal with such an exception.

Transactions and Exceptions
No discussion of exceptions in SQL Server can be complete without mentioning the interplay between
transactions and exceptions. This is a fairly simple area, but one that often confuses developers who
don’t quite understand the role that transactions play.

SQL Server is a database management system (DBMS), and as such one of its main goals is
management and manipulation of data. Therefore, at the heart of every exception-handling scheme
within SQL Server must live the idea that these are not mere exceptions—they’re also data issues.

The Myths of Transaction Abortion
The biggest mistake that some developers make is the assumption that if an exception occurs during a
transaction, that transaction will be aborted. By default, that is almost never the case. Most transactions
will live on even in the face of exceptions, as running the following T-SQL will show:

BEGIN TRANSACTION;
GO
SELECT 1/0 AS DivideByZero;
GO
SELECT @@TRANCOUNT AS ActiveTransactionCount;
GO

96

 CHAPTER 4 ERRORS AND EXCEPTIONS

The output from this T-SQL is as follows:

DivideByZero

Msg 8134, Level 16, State 1, Line 1

Divide by zero error encountered.

ActiveTransactionCount

1

(1 row(s) affected)

Another mistake is the belief that stored procedures represent some sort of atomic unit of work,
complete with their own implicit transaction that will get rolled back in case of an exception. Alas, this is
also not the case, as the following T-SQL proves:

--Create a table for some data
CREATE TABLE SomeData
(
 SomeColumn int
);
GO

--This procedure will insert one row, then throw a divide-by-zero exception
CREATE PROCEDURE NoRollback
AS
BEGIN
 INSERT INTO SomeData VALUES (1);

 INSERT INTO SomeData VALUES (1/0);
END;
GO

--Execute the procedure
EXEC NoRollback;
GO

--Select the rows from the table

97

CHAPTER 4 ERRORS AND EXCEPTIONS

SELECT *
FROM SomeData;
GO

The result is that, even though there is an error, the row that didn’t throw an exception is still in the
table; there is no implicit transaction arising from the stored procedure:

SomeColumn
1

Even if an explicit transaction is begun in the stored procedure before the inserts and committed
after the exception occurs, this example will still return the same output. By default, unless a rollback is
explicitly issued, in most cases an exception will not roll anything back. It will simply serve as a message
that something went wrong.

XACT_ABORT: Turning Myth into (Semi-)Reality
As mentioned in the section on XACT_ABORT and its effect on exceptions, the setting also has an impact on
transactions, as its name might indicate (it is pronounced transact abort). In addition to making
exceptions act like batch-level exceptions, the setting also causes any active transactions to immediately
roll back in the event of an exception. This means that the following T-SQL results in an active
transaction count of 0:

SET XACT_ABORT ON;
BEGIN TRANSACTION;
GO
SELECT 1/0 AS DivideByZero;
GO
SELECT @@TRANCOUNT AS ActiveTransactionCount;
GO

The output is now

ActiveTransactionCount
0

XACT_ABORT does not create an implicit transaction within a stored procedure, but it does cause any
exceptions that occur within an explicit transaction within a stored procedure to cause a rollback. The
following T-SQL shows a much more atomic stored procedure behavior than the previous example:

--Empty the table
TRUNCATE TABLE SomeData;
GO

--This procedure will insert one row, then throw a divide-by-zero exception
CREATE PROCEDURE XACT_Rollback
AS

98

 CHAPTER 4 ERRORS AND EXCEPTIONS

BEGIN
 SET XACT_ABORT ON;

 BEGIN TRANSACTION;
 INSERT INTO SomeData VALUES (1);

 INSERT INTO SomeData VALUES (1/0);
 COMMIT TRANSACTION;
END;
GO

--Execute the procedure
EXEC XACT_Rollback;
GO

--Select the rows from the table
SELECT *
FROM SomeData;
GO

This T-SQL results in the following output, which shows that no rows were inserted:

Msg 8134, Level 16, State 1, Procedure XACT_Rollback, Line 10

Divide by zero error encountered.

SomeColumn

(0 row(s) affected)

XACT_ABORT is a very simple yet extremely effective means of ensuring that an exception does not
result in a transaction committing with only part of its work done. I recommend turning this setting on
in any stored procedure that uses an explicit transaction, in order to guarantee that it will get rolled back
in case of an exception.

TRY/CATCH and Doomed Transactions
One interesting outcome of using TRY/CATCH syntax is that it is possible for transactions to enter a state in
which they can only be rolled back. In this case the transaction is not automatically rolled back, as it is
with XACT_ABORT; instead, SQL Server throws an exception letting the caller know that the transaction

99

CHAPTER 4 ERRORS AND EXCEPTIONS

100

cannot be committed, and must be manually rolled back. This condition is known as a doomed
transaction, and the following T-SQL shows one way of producing it:

BEGIN TRANSACTION;

BEGIN TRY
 --Throw an exception on insert
 INSERT INTO SomeData VALUES (CONVERT(int, 'abc'));
END TRY
BEGIN CATCH
 --Try to commit...
 COMMIT TRANSACTION;
END CATCH
GO

This results in the following output:

Msg 3930, Level 16, State 1, Line 10

The current transaction cannot be committed and cannot support

operations that write to the log file. Roll back the transaction.

Should a transaction enter this state, any attempt to either commit the transaction or roll forward
(do more work) will result in the same exception. This exception will keep getting thrown until the
transaction is rolled back.

In order to determine whether an active transaction can be committed or rolled forward, check the
value of the XACT_STATE function. This function returns 0 if there are no active transactions, 1 if the
transaction is in a state in which more work can be done, and –1 if the transaction is doomed. It is a good
idea to always check XACT_STATE in any CATCH block that involves an explicit transaction.

Summary
It’s a fact of life for every developer: sometimes things just go wrong.

A solid understanding of how exceptions behave within SQL Server makes working with them much
easier. Especially important is the difference between statement-level and batch-level exceptions, and
the implications of exceptions that are thrown within transactions.

SQL Server’s TRY/CATCH syntax makes dealing with exceptions much easier, but it’s important to use
the feature wisely. Overuse can make detection and debugging of problems exceedingly difficult. And
whenever dealing with transactions in CATCH blocks, make sure to check the value of XACT_STATE.

Errors and exceptions will always occur, but by thinking carefully about how to handle them, you
can deal with them easily and effectively.

C H A P T E R 5

Privilege and Authorization

SQL Server security is a broad subject area, with enough potential avenues of exploration that entire
books have been written on the topic. This chapter’s goal is not to cover the whole spectrum of security
knowledge necessary to create a product that is secure from end to end, but rather to focus on those
areas that are most important during the software design and development process.

Broadly speaking, data security can be broken into two areas:

• Authentication: The act of verifying the identity of a user of a system

• Authorization: The act of giving a user access to the resources that a system
controls

These two realms can be delegated separately in many cases; so long as the authentication piece
works properly, the user can be handed off to authorization mechanisms for the remainder of a session.

SQL Server authentication on its own is a big topic, with a diverse range of subtopics including
network security, operating system security, and so-called surface area control over the server. While
production DBAs should be very concerned with these sorts of issues, authentication is an area that
developers can mostly ignore. Developers need to be much more concerned with what happens after
authentication: that is, how the user is authorized for data access and how data is protected from
unauthorized users.

This chapter introduces some of the key issues of data privilege and authorization in SQL Server
from a development point of view. Included here is an initial discussion on privileges and general
guidelines and practices for securing data using SQL Server permissions. A related security topic is that
of data encryption, which is covered in detail in the next chapter.

Note that although authentication issues are generally ignored in these pages, you should try to not
completely disregard them in your day-to-day development work. Development environments tend to
be set up with very lax security in order to keep things simple, but a solid development process should
include a testing phase during which full authentication restrictions are applied. This helps to ensure
that rollout to a production system does not end in spectacular failure in which users aren’t even able to
log in!

101

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

User VS. Application Logins

The topics covered in this chapter relate to various privilege and authorization scenarios handled within
SQL Server itself. However, in many database application designs, authorization is handled in the
application layer rather than at the database layer. In such applications, users typically connect and log
into the application using their own personal credentials, but the application then connects to the database
using a single shared application login. This login is given permission to execute all of the stored
procedures in the database related to that application, and it is up to authorization routines in the
application itself to determine those actions that can be performed by any given user.

There are some benefits to using this approach, such as being able to take advantage of connection
pooling between different sessions. However, it means that any features provided by SQL Server to handle
per-user security do not apply. If a bug were to exist in the application, or if the credentials associated with
the application login were to become known, it would be possible for users to execute any queries against
the database that the application had permission to perform.

For the examples in this chapter, I assume a scenario in which users are connecting to the database using
their own personal credentials.

The Principle of Least Privilege
The key to locking down resources in any kind of system—database or otherwise—is quite simple in
essence: any given user should have access to only the bare minimum set of resources required, and for
only as much time as access to those resources is needed. Unfortunately, in practice this is more of an
ideal goal than an actual prescription for data security; many systems do not allow for the set of
permissions allocated to a user to be easily escalated dynamically, and the Microsoft Windows family of
operating systems have not historically been engineered to use escalation of privilege as a means by
which to gain additional access at runtime.

Many multiuser operating systems implement the ability to impersonate other users when access to
a resource owned by that user is required. Impersonation is slightly different than reauthentication;
instead of logging out and resending credentials, thereby forcing any running processes to be stopped,
impersonation allows a process to temporarily escalate its privileges, taking on the rights held by the
impersonated principal. The most common example of this at an operating system level is UNIX’s su
command, which allows a user to temporarily take on the identity of another user, easily reverting back
when done. Windows systems can also handle some degree of impersonation, such as provided by the
.NET WindowsIdentity class.

Permissions in Windows systems are typically provided using access control lists (ACLs). Granting
permission to a resource means adding a user to the list, after which the user can access the resource
again and again, even after logging in and out of the system. This kind of access control provides no
additional security if, for instance, an attacker takes over an account in the system. By taking control of
an account, the attacker automatically has full access to every resource that the account has permission
to access.

By controlling access with impersonation, the user is required to effectively request access to the
resource dynamically, each time access is required. In addition, rights to the resource will only be
maintained during the course of impersonation. Once the user reverts (i.e., turns off impersonation), the
additional access rights are no longer granted. In effect, this means that if an account is compromised,

102

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

the attacker will akso have to compromise the impersonation context in order to gain access to more
secure resources.

The idea of security through least privilege involves creating users with few or no permissions, and
allowing them to briefly escalate their privileges when greater access is required. This is generally
implemented using proxies—users (or other security principals) that have access to a resource but
cannot be authenticated externally. Use of low-privileged external users together with higher-privileged
proxy users provides a buffer against attack, due to the fact that the only accounts that an attacker can
directly compromise from the outside have no permissions directly associated with them. Accessing
more valuable resources requires additional work on the part of the attacker, giving you that much more
of a chance to detect problems before they occur.

Creating Proxies in SQL Server
SQL Server 2008 allows creation of security principals at both the server-level and database-level that
can be used via proxy.

• At the server level, proxy logins can be created that cannot log in.

• At the database level, proxy users can be created that are not associated with a
login.

The only way to switch into the execution context of either of these types of proxy principals is via
impersonation, which makes them ideal for privilege escalation scenarios.

Server-Level Proxies
In order to create a proxy login (which can be used to delegate server-level permissions such as BULK
INSERT or ALTER DATABASE), you must first create a certificate in the master database. Certificates are
covered in more detail in Chapter 6, but for now think of a certificate as a trusted way to verify the
identity of a principal without a password. The following syntax can be used to create a certificate in
master. (Note that before a certificate can be created in any database, a master key must be created.
Again, see Chapter 6.)

USE master;
GO

CREATE CERTIFICATE Dinesh_Certificate
ENCRYPTION BY PASSWORD = 'stR0n_G paSSWoRdS, pLE@sE!'
WITH SUBJECT = 'Certificate for Dinesh';
GO

Once the certificate has been created, a proxy login can be created using the CREATE LOGIN FROM
CERTIFICATE syntax as follows:

CREATE LOGIN Dinesh
FROM CERTIFICATE Dinesh_Certificate;
GO

This login can be granted permissions, just like any other login. However, to use the permissions,
the login must be mapped to a database user. This is done by creating a user using the same certificate

103

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

that was used to create the login, using the CREATE USER FOR CERTIFICATE syntax. See the section “Stored
Procedure Signing Using Certificates” later in this chapter for more information on how to use a proxy
login for server-level permissions.

Database-Level Proxies
Proxy principals that operate at the database level can be created by adding a user to the database that is
not associated with a server login. This is done using CREATE USER WITHOUT LOGIN, as shown in the
following code listing:

CREATE USER Bob
WITHOUT LOGIN;
GO

This user, like any database user, can be assigned ownership and other permissions. However, it is
impossible to log into the server and authenticate as Bob. Instead, you must log in using a valid server-
level login and authenticate to the database with whatever database user is associated with your login.
Only then can you impersonate Bob, taking on whatever permissions the user is assigned. This is
discussed in detail in the section “Basic Impersonation Using EXECUTE AS” later in this chapter.

Data Security in Layers: The Onion Model
Generally speaking, the more levels that an attacker must penetrate in order to access a valuable
resource, the better the chance of being able to prevent their attack. Developers should strive to
construct multiple layers of protection for any sensitive data, in order to ensure that if one security
measure is breached, other obstacles will keep an attacker at bay.

The first layer of defense is everything outside of the database server, all of which falls into the realm
of authentication. Once a user is authenticated, SQL Server’s declarative permissions system kicks in,
and a login is authorized to access one or more databases, based on user mappings.

From there, each user is authorized to access specific resources in the database. Another layer that
can be added for additional security here is use of stored procedures. By assigning permissions only via
stored procedures, it is possible to maintain greater control over when and why escalation should take
place—but more on that will be covered later in this chapter.

Of course, the stored procedure itself must have access to whatever tables and columns are
required, and these resources can be further locked down if necessary, using encryption or row-level
security schemes.

Figure 5-1 shows some of the layers that should be considered when defining a SQL Server security
scheme, in order to maximize the protection with which sensitive data is secured. The remainder of this
chapter deals primarily with how best to control access to resources using stored procedures as the
primary access layer into the data once a user is authenticated.

A stored procedure layer provides an ideal layer of abstraction between data access methods and
the data itself, allowing for additional security to be programmed in via parameters or other inline logic.
For instance, it is trivial to log every access to sensitive data via a stored procedure, by including logging
code in the procedure. Likewise, a stored procedure might be used to force users to access data on a
granular basis by requiring parameters that are used as predicates to filter data. These security checks
are difficult or impossible to force on callers without using stored procedures to encapsulate the data
access logic.

104

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

Figure 5-1. Layering security provides multiple levels of protection against attack.

Data Organization Using Schemas
SQL Server 2008 supports ANSI standard schemas, which provide a method by which tables and other
objects can be segmented into logical groups. Schemas are essentially containers into which any
database object can be placed, and certain actions or rules applied en masse to every item in the
schema. This makes tasks such as managing authorization considerably easier since, by dividing your
database into schemas, you can easily group related objects and control permissions without having to
worry about what objects might be added or removed from that collection in the future. As new objects
are added to a schema, existing permissions propagate, thereby allowing you to set up access rights for a
given schema once, and not have to manipulate them again as the database changes.

To create a schema, use the CREATE SCHEMA command. The following T-SQL creates a schema called
Sales:

CREATE SCHEMA Sales;
GO

Optionally you can specify a schema owner by using the AUTHORIZATION clause. If an owner is not
explicitly specified, SQL Server will assign ownership to the user that creates the schema.

Once a schema is created, you can begin creating database objects within the schema, using two-
part naming as follows:

CREATE TABLE Sales.SalesData
(
 SaleNumber int,
 SaleDate datetime
);
GO

If an object belongs to a schema, then it must be referenced with its associated schema name; so to
select from the SalesData table, the following SQL is used:

105

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

SELECT *
FROM Sales.SalesData;
GO

 Caution In previous versions of SQL Server, references to tables were prefixed with the name of their owner
(e.g., Owner.SalesData). This syntax is deprecated, and two-part naming in SQL Server 2008 references a
schema rather than an object owner.

The beauty of schemas becomes obvious when it is time to apply permissions to the objects in the
schema. Assuming that each object should be treated identically from a permissions point of view, only
a single grant is necessary to give a user access to every object within a schema. For instance, after the
following T-SQL is run, the Alejandro user will have access to select rows from every table in the Sales
schema, even if new tables are added later:

CREATE USER Alejandro
WITHOUT LOGIN;
GO

GRANT SELECT ON SCHEMA::Sales
TO Alejandro;
GO

It’s important to note that, when initially created, the owner of any object in a schema will be the
same as the owner of the schema itself. The individual object owners can be changed later, but in most
cases I recommend that you keep everything in any given schema owned by the same user. This is
especially important for ownership chaining, covered later in this chapter. To explicitly set the owner of
an object requires the ALTER AUTHORIZATION command, as shown in the following T-SQL:

--Create a user
CREATE USER Javier
WITHOUT LOGIN;
GO

--Create a table
CREATE TABLE JaviersData
(
 SomeColumn int
);
GO

--Set Javier as the owner of the table
ALTER AUTHORIZATION ON JaviersData
TO Javier;
GO

106

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

As a final note on schemas, there is also a command that can be used to move objects between
them. By using ALTER SCHEMA with the TRANSFER option, you can specify that a table should be moved to
another schema:

--Create a new schema
CREATE SCHEMA Purchases;
GO

--Move the SalesData table into the new schema
ALTER SCHEMA Purchases
TRANSFER Sales.SalesData;
GO

--Reference the table by its new schema name
SELECT *
FROM Purchases.SalesData;
GO

Schemas are a powerful feature, and I recommend that you consider using them any time you’re
dealing with sets of tables that are tightly related to one another. Legacy database applications that use
multiple databases in order to create logical boundaries between objects might also benefit from
schemas. The multiple databases can be consolidated to a single database that uses schemas. The
benefit is that the same logical boundaries will exist, but because the objects are in the same database,
they can participate in declarative referential integrity and can be backed up together.

Basic Impersonation Using EXECUTE AS
Switching to a different user’s execution context has long been possible in SQL Server, using the SETUSER
command, as shown in the following code listing:

SETUSER 'Alejandro';
GO

To revert back to the previous context, call SETUSER again without specifying a username:

SETUSER;
GO

The SETUSER command is only available to members of the sysadmin or db_owner roles (at the server and
database levels, respectively), and is therefore not useful for setting up least-privilege scenarios.
Furthermore, although still implemented by SQL Server 2008, the Microsoft Books Online
documentation states that SETUSER may not be supported in future versions of SQL Server, and
recommends usage of the EXECUTE AS command instead.

The EXECUTE AS command can be used by any user, and access to impersonate a given user or
server login is controlled by a permissions setting rather than a fixed role. The other benefit over SETUSER
is that EXECUTE AS automatically reverts to the original context at the end of a module. SETUSER, on the
other hand, leaves the impersonated context active when control is returned to the caller. This means
that it is impossible to encapsulate impersonation within a stored procedure using SETUSER and
guarantee that the caller will not be able to take control of the impersonated credentials.

107

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

To show the effects of EXECUTE AS, start by creating a new user and a table owned by the user:

CREATE USER Tom
WITHOUT LOGIN;
GO

CREATE TABLE TomsData
(
 AColumn int
);
GO

ALTER AUTHORIZATION ON TomsData TO Tom;
GO

Once the user is created, it can be impersonated using EXECUTE AS, and the impersonation context
can be verified using the USER_NAME() function:

EXECUTE AS USER = 'Tom';
GO

SELECT USER_NAME();
GO

 Note In order to use the EXECUTE AS statement to impersonate another user or login, a user must have been
granted IMPERSONATE permissions on the specified target.

The SELECT statement returns the value Tom, indicating that this is the currently impersonated user.
Any action performed after running EXECUTE AS will use Tom’s credentials. For example, the user can
alter the TomsData table, since Tom owns the table. However, an attempt to create a new table will fail,
since Tom does not have permission to do so:

--This statement will succeed
ALTER TABLE TomsData
ADD AnotherColumn datetime;
GO

--This statement will fail with CREATE TABLE PERMISSION DENIED
CREATE TABLE MoreData
(
 YetAnotherColumn int
);
GO

Once you have completed working with the database in the context of Tom’s permissions, you can
return to the outer context by using the REVERT command. If you have impersonated another user inside
of that context (i.e., called EXECUTE AS more than once), REVERT will have to be called multiple times in

108

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

order to return context to your login. The USER_NAME() function can be checked at any time to find out
whose context you are executing under.

To see the effects of nested impersonation, first be sure to revert back out of Tom’s context, and
then create a second user as shown following. The user will be given the right to impersonate Tom, using
GRANT IMPERSONATE:

CREATE USER Paul
WITHOUT LOGIN;
GO

GRANT IMPERSONATE ON USER::Tom TO Paul;
GO

If Paul is impersonated, the session will have no privileges to select rows from the TomsData table. In
order to get those permissions, Tom must be impersonated from within Paul’s context:

EXECUTE AS USER='Paul';
GO

--Fails
SELECT *
FROM TomsData;
GO

EXECUTE AS USER='Tom';
GO

--Succeeds
SELECT *
FROM TomsData;
GO

REVERT;
GO

--Returns 'Paul' -- REVERT must be called again to fully revert
SELECT USER_NAME();
GO

REVERT;
GO

The most important thing to understand is that when EXECUTE AS is called, all operations will run as
if you are logged in as the impersonated user. You will lose any permissions that the outer user has that
the impersonated user does not have, in addition to gaining any permissions that the impersonated user
has that the outer user lacks.

For logging purposes, it is sometimes important to record the actual logged-in principal. Since both
the USER_NAME() function and the SUSER_NAME() function will return the names associated with the
impersonated user, the ORIGINAL_LOGIN() function must be used to return the name of the outermost
server login. Use of ORIGINAL_LOGIN() will allow you to get the name of the logged-in server principal, no
matter how nested their impersonation scope is.

109

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

What is a module?

Each of the privilege escalation examples that follow use stored procedures to demonstrate a particular
element of functionality. However, please be aware that these methods work for any kind of module that
SQL Server supports, not just stored procedures. A module is defined as any kind of code container that
can be created inside of SQL Server: a stored procedure, view, user-defined function, trigger, or CLR
assembly.

Ownership Chaining
The most common method of securing SQL Server resources is to deny database users any direct access
to SQL Server resources and provide access only via stored procedures or views. If a database user has
access to execute a stored procedure, and the stored procedure is owned by the same database user that
owns a resource being referenced within the stored procedure, the user executing the stored procedure
will be given access to the resource via the stored procedure. This is called an ownership chain.

To illustrate, start by creating and switching to a new database:

CREATE DATABASE OwnershipChain;
GO

USE OwnershipChain;
GO

Now create two database users, Louis and Hugo:

CREATE USER Louis
WITHOUT LOGIN;
GO

CREATE USER Hugo
WITHOUT LOGIN;
GO

 Note For this and subsequent examples in this chapter, you should connect to SQL Server using a login that is
a member of the sysadmin server role.

Note that both of these users are created using the WITHOUT LOGIN option, meaning that although
these users exist in the database, they are not tied to a SQL Server login, and therefore no one can
authenticate as one of them by logging into the server. This option is one way of creating the kind of
proxy users mentioned previously.

Once the users have been created, create a table owned by Louis:

CREATE TABLE SensitiveData

110

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

(
 IntegerData int
);
GO

ALTER AUTHORIZATION ON SensitiveData TO Louis;
GO

At this point, Hugo has no access to the table. To create an access path without granting direct
permissions to the table, a stored procedure could be created, also owned by Louis:

CREATE PROCEDURE SelectSensitiveData
AS
BEGIN
 SET NOCOUNT ON;

 SELECT *
 FROM dbo.SensitiveData;
END;
GO

ALTER AUTHORIZATION ON SelectSensitiveData TO Louis;
GO

Hugo still has no permissions on the table at this point; the user needs to be given permission to
execute the stored procedure:

GRANT EXECUTE ON SelectSensitiveData TO Hugo;

At this point Hugo can execute the SelectSensitiveData stored procedure, thereby selecting from
the SensitiveData table. However, this only works when the following conditions are met:

1. The table and the stored procedure are both owned by the same user (in this case,
Louis).

2. The table and the stored procedure are both in the same database.

If either of those conditions were not true, the ownership chain would break, and Hugo would have
to be authorized another way to select from the table. The ownership chain would also fail if the
execution context changed within the stored procedure. For example, ownership chaining will not work
with dynamic SQL (for more information on dynamic SQL, refer to Chapter 8).

In the case of a stored procedure in one database requesting access to an object in another
database, it is possible to maintain an ownership chain, but it gets quite a bit more complex, and
security is much more difficult to maintain. To set up cross-database ownership chaining, the user that
owns the stored procedure and the referenced table(s) must be associated with a server-level login, and
each database must have the DB_CHAINING property set using the ALTER DATABASE command. That
property tells SQL Server that either database can participate in a cross-database ownership chain,
either as source or target—but there is no way to control the direction of the chain, so setting the option
could open up security holes inadvertently.

I recommend that you avoid cross-database ownership chaining whenever possible, and instead
call stored procedures in the remote database. Doing so will result in a more secure, more flexible
solution. For example, moving databases to separate servers is much easier if they do not depend on one
another for authentication. In addition, by using schemas appropriately, splitting objects into multiple

111

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

databases is no longer as important as it once was. Consider avoiding multiple databases altogether, if at
all possible.

Privilege Escalation Without Ownership Chains
Ownership chaining will not work if the object owner does not match the module owner, or if dynamic
SQL is used. In these cases, you’ll have to use one of the two other kinds of privilege escalation provided
by SQL Server: an extension to stored procedures using the EXECUTE AS clause, or module signing using
certificates.

Using the EXECUTE AS clause with stored procedures is an easy and effective method of escalating
permissions, but is not nearly as flexible as that which can be achieved using certificates. With
certificates, permissions are additive rather than impersonated—the additional permissions provided by
the certificate extend rather than replace the permissions of the calling principal. In the following
sections, I’ll discuss these alternative methods of privilege escalation in more detail.

Stored Procedures and EXECUTE AS
As described in a previous section in this chapter, the EXECUTE AS command can be used on its own in T-
SQL batches in order to temporarily impersonate other users. However, EXECUTE AS is also available for
stored procedures, functions, and triggers. The examples in this section only focus on stored procedures,
but the same principles can also be applied to the other object types.

To use EXECUTE AS to change the impersonation context of an entire stored procedure, add it to the
CREATE PROCEDURE statement as in the following example:

CREATE PROCEDURE SelectSensitiveDataByImpersonation
WITH EXECUTE AS 'Louis'
AS
BEGIN
 SET NOCOUNT ON;

 SELECT *
 FROM dbo.SensitiveData;
END;
GO

When this stored procedure is executed by a user, all operations within the procedure will be
evaluated as if they are being run by the Louis user rather than by the calling user (as is the default
behavior). This includes any dynamic SQL operations, or manipulation of data in tables that the Louis
user has access to. When the stored procedure has completed execution, context will be automatically
reverted back to that of the caller.

Keep in mind that use of EXECUTE AS does not break ownership chains, but rather can be used to add
to them and create additional flexibility. For instance, consider the following two users and associated
tables:

CREATE USER Kevin
WITHOUT LOGIN;
GO

CREATE TABLE KevinsData

112

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

(
 SomeData int
);
GO

ALTER AUTHORIZATION ON KevinsData TO Kevin;
GO

CREATE USER Hilary
WITHOUT LOGIN;
GO

CREATE TABLE HilarysData
(
 SomeOtherData int
);
GO

ALTER AUTHORIZATION ON HilarysData TO Hilary;
GO

Both users, Kevin and Hilary, own tables. A stored procedure might need to be created that accesses
both tables, but using ownership chaining will not work; if the procedure is owned by Kevin, ownership
chaining would only allow the executing user to access KevinsData, and would grant no permissions on
HilarysData. Likewise, if the procedure was owned by Hilary, then ownership chaining would not permit
access to the KevinsData table.

One solution in this case is to combine EXECUTE AS with ownership chaining and create a stored
procedure that is owned by one of the users, but executes under the context of the other. The following
stored procedure shows how this might look:

CREATE PROCEDURE SelectKevinAndHilarysData
WITH EXECUTE AS 'Kevin'
AS
BEGIN
 SET NOCOUNT ON;

 SELECT *
 FROM KevinsData

 UNION ALL

 SELECT *
 FROM HilarysData;
END;
GO

ALTER AUTHORIZATION ON SelectKevinAndHilarysData TO Hilary;
GO

Because Hilary owns the stored procedure, ownership chaining will kick in and allow selection of
rows from the HilarysData table. But because the stored procedure is executing under the context of the

113

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

Kevin user, permissions will also cascade for the KevinsData table. In this way, both permission sets can
be used, combined within a single module.

Unfortunately, this is about the limit of what can be achieved using EXECUTE AS. For more complex
permissions scenarios, it is necessary to consider signing stored procedures using certificates.

Stored Procedure Signing Using Certificates
As mentioned previously in the chapter, proxy logins and users can be created based on certificates.
Creating a certificate-based proxy is by far the most flexible way of applying permissions using a stored
procedure, as permissions granted via certificate are additive. One or more certificates can be used to
sign a stored procedure, and each certificate will apply its permissions on top of the others already
present, rather than replacing the permissions as happens when impersonation is performed using
EXECUTE AS.

To create a proxy user for a certificate, you must first ensure that your database has a database
master key (DMK). If you do not already have a DMK in your database, you can create one using the
following code listing:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '5Tr()nG_|)MK_p455woRD';

 Note The DMK forms an important part of the SQL Server encryption key hierarchy, which is discussed in the
next chapter.

Then create the certificate, followed by the associated user using the FOR CERTIFICATE syntax:

CREATE CERTIFICATE Greg_Certificate
WITH SUBJECT='Certificate for Greg';
GO

CREATE USER Greg
FOR CERTIFICATE Greg_Certificate;
GO

Once the proxy user is created, it can be granted permissions to resources in the database, just like
any other database user. But a side effect of having created the user based on a certificate is that the
certificate itself can also be used to propagate permissions granted to the user. This is where stored
procedure signing comes into play.

114

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

To illustrate this concept, create a table and grant SELECT access to the Greg user, as follows:

CREATE TABLE GregsData
(
 DataColumn int
);
GO

GRANT SELECT ON GregsData
TO Greg;
GO

A stored procedure can then be created that selects from the GregsData table, but for the sake of this
example, the stored procedure will be owned by a user called Steve, in order to break any possible
ownership chain that might result from creating both the table and the stored procedure in the same
default schema:

CREATE PROCEDURE SelectGregsData
AS
BEGIN
 SET NOCOUNT ON;

 SELECT *
 FROM GregsData;
END;
GO

CREATE USER Steve
WITHOUT LOGIN;
GO

ALTER AUTHORIZATION ON SelectGregsData TO Steve;
GO

Note that at this point Steve cannot select from GregsData—Steve just owns the stored procedure
that attempts to select data from the table. Even if granted permission to execute this stored procedure,
any user (other than Greg) will be unable to do so successfully, as the stored procedure does not
propagate permissions to the GregsData table:

CREATE USER Linchi
WITHOUT LOGIN;
GO

GRANT EXECUTE ON SelectGregsData TO Linchi;
GO

EXECUTE AS USER='Linchi';
GO

EXEC SelectGregsData;
GO

115

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

This attempt fails with the following error:

Msg 229, Level 14, State 5, Procedure SelectGregsData, Line 6

The SELECT permission was denied on the object 'GregsData', database

'OwnershipChain', schema 'dbo'.

In order to make the stored procedure work for the Linchi user, permissions to the GregsData table
must be propagated through the stored procedure. This can be done by signing the procedure using the
same certificate that was used to create the Greg user. Signing a stored procedure is done using the ADD
SIGNATURE command (be sure to REVERT back out of the Linchi context before executing the following
listing):

ADD SIGNATURE TO SelectGregsData
BY CERTIFICATE Greg_Certificate;
GO

Once the procedure is signed with the certificate, the procedure has the same permissions that the
Greg user has; in this case, that means that any user with permission to execute the procedure will be
able to select rows from the GregsData table when running the stored procedure.

The flexibility of certificate signing becomes apparent when you consider that you can sign a given
stored procedure with any number of certificates, each of which can be associated with different users
and therefore different permission sets. This means that even in an incredibly complex system with
numerous security roles, it will still be possible to write stored procedures to aggregate data across
security boundaries.

Keep in mind when working with certificates that any time the stored procedure is altered, all
signatures will be automatically revoked by SQL Server. Therefore, it is important to keep signatures
scripted with stored procedures, such that when the procedure is modified, the permissions can be
easily kept in sync.

It is also important to know how to find out which certificates, and therefore which users, are
associated with a given stored procedure. SQL Server’s catalog views can be queried to find this
information, but getting the right query is not especially obvious. The following query, which returns all
stored procedures, the certificates they are signed with, and the users associated with the certificates,
can be used as a starting point:

SELECT
 OBJECT_NAME(cp.major_id) AS signed_module,
 c.name AS certificate_name,
 dp.name AS user_name
FROM sys.crypt_properties AS cp
INNER JOIN sys.certificates AS c ON c.thumbprint = cp.thumbprint
INNER JOIN sys.database_principals dp
 ON SUBSTRING(dp.sid, 13, 32) = c.thumbprint;

This query is somewhat difficult to understand, so it is worth explaining here. The
sys.crypt_properties view contains information about which modules have been signed by certificates.
Each certificate has a 32-byte cryptographic hash, its thumbprint, which is used to find out which
certificate was used to sign the module, via the sys.certificates view. Finally, each database principal

116

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

has a security identifier, the final 32 bytes of which is the thumbprint if the principal was created from a
certificate.

When this query is executed, the results show the signed module just created as follows:

signed_module certificate_name user_name
SelectGregsData Greg_Certificate Greg

Assigning Server-Level Permissions
The previous example showed only how to assign database-level permissions using a certificate. Signing
a stored procedure can also be used to propagate server-level permissions, such as BULK INSERT or ALTER
DATABASE. Doing so requires creation of a proxy login from a certificate, followed by creation of a
database user using the same certificate. To accomplish this, the certificate must be backed up after
being created, and restored in the database in which you are creating the user. Once the database user is
created, the procedure to apply permissions is the same as when propagating database-level
permissions.

To begin with, create a certificate in the master database. Unlike previous examples, this certificate
must be encrypted by a password rather than by the database master key, in order to ensure its private
key remains encrypted when removed from the database. Once the certificate has been created, you can
use it to create a proxy login as follows:

USE MASTER;
GO

CREATE CERTIFICATE alter_db_certificate
 ENCRYPTION BY PASSWORD = 'stR()Ng_PaSSWoRDs are?BeST!'
 WITH SUBJECT = 'ALTER DATABASE permission';
GO

CREATE LOGIN alter_db_login FROM CERTIFICATE alter_db_certificate;
GO

This login, in case you can’t tell from the name, will be used to propagate ALTER DATABASE
permissions. The next step is to grant the appropriate permissions to the login:

GRANT ALTER ANY DATABASE TO alter_db_login;
GO

At this point, you must back up the certificate to a file. The certificate can then be restored from the
file into the database of your choosing, and from there it can be used to create a database user that will
have the same permissions as the server login, by virtue of having been created using the same
certificate.

BACKUP CERTIFICATE alter_db_certificate
TO FILE = 'C:\alter_db.cer'
WITH PRIVATE KEY
(
 FILE = 'C:\alter_db.pvk',

117

CHAPTER 5 PRIVILEGE AND AUTHORIZATION

 ENCRYPTION BY PASSWORD = 'YeTan0tHeR$tRoNGpaSSWoRd?',
 DECRYPTION BY PASSWORD = 'stR()Ng_PaSSWoRDs are?BeST!'
);
GO

Once backed up, the certificate can be restored to any user database. For the purpose of this
example, we’ll create a new database specifically for this purpose:

CREATE DATABASE alter_db_example;
GO

USE alter_db_example;
GO

CREATE CERTIFICATE alter_db_certificate
FROM FILE = 'C:\alter_db.cer'
WITH PRIVATE KEY
(
 FILE = 'C:\alter_db.pvk',
 DECRYPTION BY PASSWORD = 'YeTan0tHeR$tRoNGpaSSWoRd?',
 ENCRYPTION BY PASSWORD = 'stR()Ng_PaSSWoRDs are?BeST!'
);
GO

 Note For more information on the CREATE CERTIFICATE statement, see Chapter 6.

It is worth noting that at this point, the certificate’s physical file should probably be either deleted or
backed up to a safe storage repository. Although the private key is encrypted with the password, it would
certainly be possible for a dedicated attacker to crack it via brute force. And since the certificate is being
used to grant ALTER DATABASE permissions, such an attack could potentially end in some damage being
done—so play it safe with these files.

After the certificate has been created in the database, the rest of the process is just as before. Create
a stored procedure that requires the privilege escalation (in this case, the stored procedure will set the
database to MULTI_USER access mode), create a user based on the certificate, and sign the stored
procedure with the certificate:

CREATE PROCEDURE SetMultiUser
AS
BEGIN
 ALTER DATABASE alter_db_example
 SET MULTI_USER;
END;
GO

CREATE USER alter_db_user
FOR CERTIFICATE alter_db_certificate;
GO

ADD SIGNATURE TO SetMultiUser

118

 CHAPTER 5 PRIVILEGE AND AUTHORIZATION

119

BY CERTIFICATE alter_db_certificate
WITH PASSWORD = 'stR()Ng_PaSSWoRDs are?BeST!';
GO

The permissions can now be tested. In order for propagation of server-level permissions to work,
the user executing the stored procedure must be associated with a valid server login, and it is the server-
level login that must be impersonated rather than the user. So this time, CREATE USER WITHOUT LOGIN will
not suffice:

CREATE LOGIN test_alter WITH PASSWORD = 'iWanT2ALTER!!';
GO

CREATE USER test_alter FOR LOGIN test_alter;
GO

GRANT EXECUTE ON SetMultiUser TO test_alter;
GO

Finally, the test_alter login can be impersonated, and the stored procedure executed:

EXECUTE AS LOGIN='test_alter';
GO

EXEC SetMultiUser;
GO

The command completes successfully, demonstrating that the test_alter login had been able to
exercise the ALTER DATABASE permissions granted via the stored procedure. This example was obviously
quite simplistic, but it should serve as a basic template that you can adapt as necessary when you need
to provide escalation of server-level privilege to database users.

Summary
SQL Server’s impersonation features allow developers to create secure, granular authorization schemes.
By keeping authorization layered and following a least-privilege mentality, resources in the database can
be made more secure, requiring attackers to do more work in order to retrieve data they are not
supposed to access. A stored procedure layer can be used to control security, delegating permissions as
necessary based on a system of higher-privileged proxy users.

Schemas should be used when it is necessary to logically break apart a database into groups of
objects that are similar in scope. Schemas can also be used to make assignment of permissions an easier
task, as permissions may not have to be maintained over time as the objects in the schema change.

The EXECUTE AS clause can be a very useful and simple way of propagating permissions based on
stored procedures, but certificates provide much more flexibility and control. That said, you should try
to keep systems as simple and understandable as possible, in order to avoid creating maintainability
nightmares.

A final note along those lines: Try not to go overboard when it comes to security. Many of the
techniques laid out in this chapter are probably not necessary for the majority of applications. If your
application does not store sensitive data, try to not go too far in creating complex privilege escalation
schemes; they will only make your application more difficult to deal with.

C H A P T E R 6

Encryption

Encryption is the process of encoding data in such a way as to render it unusable to anyone except those
in possession of the appropriate secret knowledge (the key) required to decrypt that data again. The
encryption capabilities provided by SQL Server 2008 are powerful features, and you should always
consider using them as part of your overall security strategy. If all other security mechanisms fail,
encryption can prove to be a very effective last line of defense in protecting confidential data.

Encryption should not be considered lightly, however; it is a complex subject, and the successful
implementation of encryption almost invariably requires some degree of consideration at the
architecture and design phase of an application. The physical act of encrypting data is relatively
straightforward, but without the appropriate procedures in place to securely manage access to that data,
and the keys required to decrypt it, any attempt to implement encryption is worthless. A failure to
implement encryption properly can actually do more harm than good, as it leads you into a false sense
of security believing that your data is safe, when in fact it is exposed to potential hackers.

Furthermore, the additional protection afforded by encryption has an associated performance cost.
Typically, the database has to do more work to encrypt written data, and to decrypt it again when that
data is required. This means that, particularly in large-scale environments, careful attention must be
paid to ensure that encryption does not adversely affect application performance.

In this chapter I do not aim to provide a definitive guide to database encryption. Rather, I will
provide a practical guide to using the main encryption features of SQL Server 2008 to create a secure,
scalable database application that is capable of working with confidential data. Such a solution clearly
assumes that other aspects of security, including user access control and network protection, have
already been adequately addressed. I will particularly focus on the two main issues identified in the
preceding paragraphs—namely, how to securely store and manage access to encryption keys, and how
to design a database application architecture that protects sensitive data while minimizing the negative
impact on performance.

Do You Really Need Encryption?
Before addressing the question of how to implement encryption for a given data set, it is necessary to
consider whether encryption is required at all. Encryption is a method of protecting data, so the key
questions to ask are what data are you trying to protect, and who (or what) are you trying to protect it
from.

What Should Be Protected?
All data is important. If it were not, then we wouldn’t bother storing it in a database in the first place. But
that doesn’t necessarily mean that all data needs to be encrypted.

121

CHAPTER 6 ENCRYPTION

Most of the encryption methods in SQL Server 2008 provide cell-level encryption, which is applied
to individual items of data, or columns of a table that contain sensitive information. In contrast,
transparent data encryption, a new feature in SQL Server 2008, applies database-level encryption to an
entire database by encrypting the underlying database files on the file system. Not only do these
approaches operate at a different scope, but they have significantly different implications for the design
of any application working with encrypted data.

Before deciding on an encryption strategy, it is very important to classify data in order to identify the
risk of exposure, and the severity of consequences should that data become exposed. Some examples of
the types of data that might require encryption are as follows:

• Many organizations define one or more levels of sensitive data—that is,
information that could negatively harm the business if it were allowed into the
wrong hands. Such information might include pricing information, profit
forecasts, or upcoming marketing plans. If a competitor were to get hold of such
information, it could have severe consequences on future sales.

• Increasingly, many governments are passing laws and regulatory requirements
specifying certain minimum levels of security that must be put in place to protect
confidential customer data, and this can include encryption. A failure to meet
these standards may result in a company facing severe fines, or even being forced
to cease trading.

• Certain clients may specify minimum levels of protection required as part of a
customer service level agreement. In some cases, detailed requirements specify
exactly those data items that must be encrypted, the type of encryption algorithm
used, the minimum length of encryption key, and the schedule by which keys
must be rotated.

• In many cases it may be beneficial to encrypt employee records, particularly those
that contain payroll information or other personal information, in order to
prevent casual snooping by systems administrators or other users who have
access to such data.

Conducting a thorough analysis of business requirements to identify all data elements that require
protection and determining how that data should be protected are crucial to ensure that any proposed
encryption solution adequately addresses security requirements while balancing the need for
performance. In addition, the required changes to application design and business processes associated
with encryption generally come at a cost, and it is important to be able to justify that cost against the
perceived benefits to be gained from encryption.

What Are You Protecting Against?
Perhaps the most basic protection that encryption can offer is against the risk posed to data at rest. In
SQL Server, data at rest refers to the underlying database files stored on the filesystem, including
transaction logs and backups. If an unauthorized third party could gain access to those files, it would be
possible for them to copy and restore the database onto their own system, allowing them to browse
through your data at their leisure. If sensitive data were stored in the database in an encrypted format,
however, the attacker would also need to know the relevant keys or passwords to decrypt the stolen data,
without which it would be worthless to them.

Besides physical theft of database files, hackers and external threats pose a continuing risk to
database security. Hackers are often very knowledgeable, and well-equipped with a range of tools to try

122

 CHAPTER 6 ENCRYPTION

to sniff out and exploit any weaknesses in your security systems. By ensuring that all data transmitted
over a network is securely encrypted, you can be sure that it can only be understood by its intended
recipient, reducing the chance of it being successfully intercepted and used against you.

Many organizations also recognize the threat to data security arising from internal sources.
Disgruntled DBAs and developers testing the limits of their authorization can access data they do not
require in order to do their jobs. Such information could easily find its way out of the organization and
into the wrong hands if the right price were offered. If properly designed and deployed, an encryption
strategy can prevent this risk from occurring.

Remember that encryption is not a replacement for other security measures, such as appropriate
authentication and authorization procedures. However, if implemented correctly, it can provide an
additional level of security that might be the difference between your data becoming exposed and
remaining secret as intended.

SQL Server 2008 Encryption Key Hierarchy
All of the encryption methods in SQL Server, as in almost all civilian cryptography, are based on
standardized, publicly available encryption algorithms. In many ways, this is a good thing: these
algorithms have been developed by some of the world’s leading information theorists and, in general,
have been proven to withstand concentrated, deliberate attack. However, this use of public knowledge
places an interesting assumption on the design of any database application that deals with confidential
data, namely, The enemy knows the system.

Shannon’s maxim, as the preceding statement is commonly known, is a restatement of earlier work
by the Dutch cryptographer Auguste Kerchoffs. Kerchoffs proposed a number of principles that, if
followed, ensured that military ciphers could remain secure, even when some facts about the system
became revealed. Originally published in a French journal, le Journal des Sciences Militaires, in 1883,
these principles are still very relevant in modern cryptography.

All of the SQL Server encryption methods use an algorithm based on a secret key, or a password
from which a key is generated. If we assume that Shannon’s maxim holds (i.e., that the details of any
encryption algorithm used are public knowledge), then the security of your encrypted data rests entirely
on protection of the secret key that the algorithm uses to decrypt and encrypt data. Creating a safe
environment in which to store your keys must therefore be considered a top priority of any encryption
strategy. Indeed, the issues of secure key management and distribution are among the most important
areas of modern cryptography, as a failure to properly protect encryption keys compromises your entire
security strategy. Before investigating the different types of encryption available in SQL Server, it is first
necessary to consider how to manage the keys on which those encryption methods are based.

The Automatic Key Management Hierarchy
The way in which SQL Server addresses the problem of secure key management is to implement a
hierarchy of encryption keys, with each key providing protection for those keys below it. The automatic
key management hierarchy is illustrated in Figure 6-1.

123

CHAPTER 6 ENCRYPTION

Figure 6-1. The default automatic key management hierarchy in SQL Server 2008

The main features of the automatic key management hierarchy are described under the headings that
follow.

Symmetric Keys, Asymmetric Keys, and Certificates
At the lowest level, items of data are encrypted with a symmetric key, the public key of an asymmetric
key pair, or a certificate. These keys and certificates are stored in the user database in which they were
created. Each of these three methods offers different advantages and disadvantages, which will be
discussed later in this chapter.

The syntax for creating each type of key differs slightly, but follows the same basic pattern: listing
the name of the key, the encryption algorithm to be used, the name of the database user who will own
the key, and the method by which the key will be protected. For example, the following code listing
demonstrates the syntax required to create an asymmetric 1,024 bit key using the Rivest, Shamir, and
Adleman (RSA) algorithm, owned by the database user Tom:

CREATE ASYMMETRIC KEY ExampleAsymKey
AUTHORIZATION Tom
WITH ALGORITHM = RSA_1024;

In this example, there is no explicitly specified method of protection, so the key will be protected by
the automatic key hierarchy. By default, this means that keys and certificates are protected by the
database master key (DMK) of the database in which they reside.

124

 CHAPTER 6 ENCRYPTION

Database Master Key
Each user database on a server can have its own DMK, which is a symmetric key stored in both the
master database and the user database. The DMK is protected by two different forms of encryption: an
encryption using the Triple DES (Data Encryption Standard) algorithm based on the service master key
(SMK) of the server, and also encryption by a password.

Even though protected by both the SMK and a password, by default SQL Server can automatically
open the DMK when required by decrypting with the SMK alone, without needing to be supplied with
the password. This means that users of any dependent private keys protected by the DMK do not need to
be granted explicit rights to open the DMK. Users only require permissions on the individual dependent
keys or certificates, as SQL Server will open the DMK to access those keys as necessary. This has some
implications for protecting data from sysadmins and db_owners, which will be discussed later.

A DMK can be created by running the CREATE MASTER KEY statement in the database in which the key
is to be stored, as follows:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '5Tr()ng_p455woRD_4_dA_DMK!!!';

 Note Each database can have only one associated DMK. If you followed the examples in Chapter 5, you may
have already created a DMK in order to create a proxy database user from a certificate.

Service Master Key
The SMK is a symmetric key that sits at the top of the SQL Server encryption hierarchy, and is used to
encrypt all DMKs stored on the server, as well as protect logins and credentials associated with linked
servers.

The SMK is protected by the Data Protection API (DPAPI) of the operating system, using the service
account credentials and the machine credentials of the SQL Server. If either one of these credentials
becomes invalid (such as, for example, if the service account is changed), SQL Server will re-create the
invalid key based on the remaining valid key. This ensures that the SMK will remain robust from all but
the most severe of failures. There is no command to create an SMK; it is created automatically the first
time it is required and stored in the master database.

The SMK provides the top level of control over all encryption keys that are contained within the
automatic key hierarchy implemented by SQL Server 2008. The hierarchical structure protected by the
SMK provides sufficient security for most situations, and makes key access relatively easy: permissions
to use individual keys or subtrees of keys within the hierarchy are granted to individuals or groups using
the GRANT command, and such keys can be opened and used by authorized users as required.

Alternative Encryption Management Structures
There are some occasions where you may want to augment or replace the default automatic key
management with alternative methods to protect your encryption keys. The flexible encryption key
management structure in SQL Server 2008 provides several ways for doing this, as I’ll now discuss.

125

CHAPTER 6 ENCRYPTION

Symmetric Key Layering and Rotation
Symmetric keys within a database may themselves be layered to provide additional levels of hierarchy.
For example, a symmetric key may be encrypted by another symmetric key, which is then protected by a
certificate protected by the DMK. Layering keys in this way can provide additional control and security,
and makes it easier to facilitate key rotation, where middle layers of keys can be changed without having
to decrypt and reencrypt all of the underlying data.

Key rotation using a flat model, which is based on only a single encryption key, is very cumbersome.
To understand why, suppose that you had a very large amount of data encrypted by a single symmetric
key. Now suppose that, as a result of a new client requirement, that encryption key had to be rotated
every month. Rotation would require decrypting and reencrypting all of the data with a new key, which
could require a considerable amount of effort, and may require the data to at least temporarily enter an
unencrypted state before reencryption with the new key. In a layered model, you can rotate higher keys
very easily, since the only encrypted data they contain is the symmetric key used by the next lower level
of encryption.

Not all keys need to be rotated at once; rotation of any key in the hierarchy will reencrypt all
dependent keys, which makes it significantly harder for any brute force attacks to break through your
encryption hierarchy and obtain access to your sensitive data. However, bear in mind that, although
properly handled key rotation generally improves security, key rotation does involve a certain level of
inherent risk. Archived encrypted data stored on a tape backup, for example, may be kept safer by being
left in a physically secure location than by having the tape retrieved in order to perform reencryption of
the data with a new key.

When creating additional layers of keys, you should try to ensure that higher levels of keys have the
same or greater encryption strength than the keys that they protect. Protecting a strong key with a
weaker key does not add any additional security to the system.

Removing Keys from the Automatic Encryption Hierarchy
When a DMK is protected by both the SMK and a password, as in the default hierarchy, you do not need
to explicitly provide the password in order to open the DMK; when a user with appropriate permissions
requests a key protected by the DMK, SQL Server opens the DMK automatically using the SMK to access
the required dependent keys. One interesting feature of this behavior is that system administrators or
DBAs in the db_owner role, who have GRANT permission on the database, therefore have permission to
view all dependent keys in the hierarchy.

In cases where you want to restrict access to encrypted data from individuals in these roles, it is
necessary to drop the DMK protection by SMK, which will enforce the DMK protection by password
instead. The following T-SQL, when run in a database on which the user has CONTROL permission, will
drop the SMK protection on the DMK associated with that database:

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY;

When protected only by a password, a DMK is removed from the default automatic key
management hierarchy, and must be explicitly opened by a user with the appropriate password every
time it is required:

OPEN MASTER KEY DECRYPTION BY PASSWORD = '5Tr()ng_p455woRD_4_dA_DMK!!!';

-- Perform some action on properties dependent on the DMK

CLOSE MASTER KEY;

126

 CHAPTER 6 ENCRYPTION

Individual symmetric keys, asymmetric keys, and certificates may also be protected by passwords to
prevent them from being opened unless supplied with the appropriate password on every occasion.

The problem with removing keys from the automatic key hierarchy is that it then becomes
necessary to have a system that protects the passwords that secure those keys. Unless this system is
designed with adequate security measures, the encrypted data becomes no more secure (and possibly
less secure) with password protected keys than it was when encrypted with keys held under automatic
key management.

Extensible Key Management
SQL Server 2008 supports management of encryption keys by extensible key management (EKM)
methods. EKM uses an external hardware security module (HSM) to hold symmetric or asymmetric keys
outside of SQL Server, and delegates the management of those keys to the HSM.

The following code listing illustrates the syntax required to create an asymmetric key in SQL Server
mapped to a key stored on an EKM device:

CREATE ASYMMETRIC KEY EKMAsymKey
 FROM PROVIDER EKM_Provider
 WITH
 ALGORITHM = RSA_1024,
 CREATION_DISPOSITION = OPEN_EXISTING,
 PROVIDER_KEY_NAME = 'EKMKey1';
GO

EKM provides a total encryption management solution using dedicated hardware, which means
that SQL Server can leave the process of encryption to the HSM and concentrate on other tasks.
Implementing EKM involves using vendor-specific libraries to configure the connection between SQL
Server and the HSM unit, and is not covered in this chapter.

Figure 6-2 illustrates the different encryption configurations discussed in this section that provide
alternatives to the default automatic key management hierarchy.

Each of these possible encryption configurations has different implications on the level of security
offered, the ease with which keys can be managed, and the performance impacts for accessing and
manipulating the underlying data. To understand more about these differences, it’s necessary to have a
more detailed look at the various methods by which individual items of data can be encrypted, which
will be covered in the next part of this chapter.

Before going any further, run the following code listing to create a new database and associated
DMK:

CREATE DATABASE ExpertSqlEncryption;
GO
USE ExpertSqlEncryption;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = '-=+I_aM-tH3-DMK_P45sW0rd+=-';
GO

This database will be used for all of the examples following in this chapter.

127

CHAPTER 6 ENCRYPTION

Figure 6-2. Alternative encryption key management structures (from left to right): symmetric key
protection by EKM; layered symmetric keys; symmetric key encrypted by password-protected certificate;
DMK protected by password rather than SMK

Data Protection and Encryption Methods
SQL Server 2008 provides a range of encryption methods that provide differing levels of protection
together with differing associated performance and architecture implications. I will not attempt to
describe the full details of every method here; readers who are interested in a detailed description of
each method should consult a book dedicated to the subject, such as Expert SQL Server 2008 Encryption,
by Michael Coles (Apress, 2009). However, I will give a brief overview of the following methods:

• Hashing

• Symmetric key encryption

• Asymmetric key encryption

• Transparent data encryption

128

 CHAPTER 6 ENCRYPTION

Hashing
A hashing function allows you to perform a one-way encryption of any data, with deterministic results.
By “deterministic,” I mean that a given input into the hashing function will always produce the same
output. Hashing, in itself, is arguably not a true method of encryption, because once a value has been
hashed there is no way to reverse the process to obtain the original input. However, hashing methods
are often used in conjunction with encryption, as will be demonstrated later in this chapter.

SQL Server 2008 provides the HASHBYTES function, which produces a binary hash of any supplied
data using one of a number of standard hashing algorithms. For any given input x, HASHBYTES(x) will
always produce the same output y, but there is no method provided to retrieve x from the resulting value
y. Figure 6-3 illustrates the HASHBYTES function in action.

HASHBYTES is useful in situations where you need to compare whether two secure values are the
same, but when you are not concerned with what the actual values are: for example, to verify that the
password supplied by a user logging into an application matches the stored password for that user. In
such cases, instead of comparing the two values directly, you can compare the hashes of each value; if
any two given values are equal, then the hashes of those values produced using a given algorithm will
also be the same.

Although hash algorithms are deterministic, so that a given input value will always generate the
same hash, it is theoretically possible that two different source inputs will share the same hash. Such
occurrences, known as hash collisions, are relatively rare but important to bear in mind from a security
point of view. In a totally secure environment, you cannot be certain that simply because two hashes are
equal, the values that generated those hashes were the same.
The HASHBYTES function supports the Message Digest (MD) algorithms MD2, MD4, MD5, and the Secure
Hash Algorithm (SHA) algorithms SHA, and SHA1. Of these, SHA1 is the strongest, and is the algorithm
you should specify in all cases unless you have a good reason otherwise. The following code listing
illustrates the result of the HASHBYTES function used to hash a plain text string using the SHA1 algorithm:

SELECT HASHBYTES('SHA1', 'The quick brown fox jumped over the lazy dog');
GO

The hash generated in this case is as follows:

0xF6513640F3045E9768B239785625CAA6A2588842

Figure 6-3. The HASHBYTES function in action

This result is entirely repeatable—you can execute the preceding query as many times as you want
and you will always receive the same output. This deterministic property of hash functions is both their
greatest strength and their greatest weakness.

129

CHAPTER 6 ENCRYPTION

The advantage of obtaining consistent output is that, from a data architecture point of view, hashed
data can be stored, indexed, and retrieved just like any other binary data, meaning that queries of
hashed data can be designed to operate efficiently with a minimum amount of query redesign. However,
there is a risk that potential attackers can compile a dictionary of known hashes for different algorithms
and use these to perform reverse-lookups against your data in order to try to guess the source values.
This risk becomes even more plausible in cases where attackers can make reasonable assumptions in
order to reduce the list of likely source values. For example, in systems where password strength is not
enforced, users who are not security-minded typically choose short, simple passwords or easily
predicted variations on common words. If a hacker were to obtain a dataset containing hashes of such
passwords generated using the MD5 algorithm, they would only have to search for occurrences of
0x2AC9CB7DC02B3C0083EB70898E549B63 to identify all those users who had chosen to use “Password1” as
their password, for example.

Hashes can be made more secure by adding a secret salt value to the plain text prior to hashing, as
will be shown later in this chapter.

Symmetric Key Encryption
Symmetric key encryption methods use the same single key to perform both encryption and decryption
of data. This is illustrated in Figure 6-4.

Figure 6-4. Symmetric key encryption

Unlike hashing, which is deterministic, symmetric encryption is a nondeterministic process. That is
to say, you will obtain different results from encrypting the same item of data on different occasions,
even if it is encrypted with the same key each time.

SQL Server 2008 supports a number of common symmetric encryption algorithms, including Triple
DES, and keys with bit lengths of 128, 192, and 256 based on the Advanced Encryption Standard (AES).
The strongest symmetric key supported is AES256.

Symmetric keys themselves can be protected either by a certificate, password, asymmetric key, or
another symmetric key, or they can be protected outside SQL Server by an EKM provider.

The following example illustrates how to create a new symmetric key, SymKey1, that is protected by a
password:

CREATE SYMMETRIC KEY SymKey1
WITH ALGORITHM = AES_256
ENCRYPTION BY PASSWORD = '5yMm3tr1c_K3Y_P@$$w0rd!';
GO

130

 CHAPTER 6 ENCRYPTION

 Note By default, symmetric keys created using the CREATE SYMMETRIC KEY statement are randomly generated.
If you want to generate a specific, reproduceable key, you must explicitly specify the KEY_SOURCE and
IDENTITY_VALUE options when the key is generated, such as follows: CREATE SYMMETRIC KEY StaticKey WITH
KEY_SOURCE = ‘#K3y_50urc£#’, IDENTITY_VALUE = ‘-=1d3nt1ty_VA1uE!=-’, ALGORITHM = TRIPLE_DES

ENCRYPTION BY PASSWORD = ‘P@55w0rD’;

To encrypt data using a symmetric key, you must first open the key. Since SymKey1 is protected by a
password, to open this key you must provide the associated password using the OPEN SYMMETRIC KEY
DECRYPTION BY PASSWORD syntax. Having opened the key, you can use it to encrypt data by providing the
plain text to be encrypted, together with the GUID of the symmetric key, to the ENCRYPTBYKEY method.
Once you are finished using the key, you should close it again using CLOSE SYMMETRIC KEY (if you fail to
explicitly close any open symmetric keys, they will automatically be closed at the end of a session). These
steps are illustrated in the following code listing:

-- Open the key
OPEN SYMMETRIC KEY SymKey1
DECRYPTION BY PASSWORD = '5yMm3tr1c_K3Y_P@$$w0rd!';

-- Declare the cleartext to be encrypted
DECLARE @Secret nvarchar(255) = 'This is my secret message';

-- Encrypt the message
SELECT ENCRYPTBYKEY(KEY_GUID(N'SymKey1'), @secret);

-- Close the key again
CLOSE SYMMETRIC KEY SymKey1;
GO

The result of the preceding code listing is an encrypted binary value, such as that shown following:

0x007937851F763944BD71F451E4E50D520100000097A76AED7AD1BD77E04A4BE68404AA3B48FF6179A
D9FD74E10EE8406CC489D7CD8407F7EC34A879BB34BA9AF9D6887D1DD2C835A71B760A527B0859D47B3
8EED

 Note Remember that encryption is a nondeterministic process, so the results that you obtain will differ from
those just shown.

Decrypting data that has been encrypted using a symmetric key follows a similar process as for
encryption, but using the DECRYPTBYKEY method rather than the ENCRYPTBYKEY method. A further
difference to note is that the only parameter required by DECRYPTBYKEY is the ciphertext to be decrypted;

131

CHAPTER 6 ENCRYPTION

there is no need to specify the GUID of the symmetric key that was used to encrypt the data, as this value
is stored as part of the encrypted data itself.

The following code listing illustrates how to decrypt the data encrypted with a symmetric key in the
previous example:

OPEN SYMMETRIC KEY SymKey1
DECRYPTION BY PASSWORD = '5yMm3tr1c_K3Y_P@$$w0rd!';

DECLARE @Secret nvarchar(255) = 'This is my secret message';
DECLARE @Encrypted varbinary(max);

SET @Encrypted = ENCRYPTBYKEY(KEY_GUID(N'SymKey1'),@secret);

SELECT CAST(DECRYPTBYKEY(@Encrypted) AS nvarchar(255));

CLOSE SYMMETRIC KEY SymKey1;
GO

This results in the original plain text message being retrieved:

This is my secret message

On occasions, you may wish to encrypt data without having to deal with the issues associated with
creating and securely storing a permanent symmetric key. In such cases, the ENCRYPTBYPASSPHRASE
function may prove useful.

ENCRYPTBYPASSPHRASE generates a symmetric key using the Triple DES algorithm based on the value
of a supplied password, and uses that key to encrypt a supplied plain text string. The main benefit of this
method is that it does not require the creation or storage of any keys or certificates; when the data needs
to be decrypted, you simply supply the same password to the DECRYPTBYPASSPHRASE method, which
enables the identical symmetric key to be generated to decrypt the ciphertext. The key itself is never
stored at any point, and is only generated transiently as and when it is required.

To encrypt data using a passphrase, supply a passphrase followed by a clear text string to the
ENCRYPTBYPASSPHRASE function as follows:

SELECT ENCRYPTBYPASSPHRASE('PassPhrase', 'My Other Secret Message');
GO

When I ran this code listing, I obtained the binary value shown following. However, remember that
ENCRYPTBYPASSPHRASE uses nondeterministic symmetric encryption, so you will obtain different results
every time you execute this query.

0x010000007A65B54B1797E637F3F018C4100468B115CB5B88BEA1A7C36432B0B93B8F616AC8D3BA7307D5005E

To decrypt the data again, pass the same passphrase and the encrypted text into the
DECRYPTBYPASSPHRASE function. As with all the asymmetric and symmetric encryption methods provided
by SQL Server, the resulting decrypted data is returned using the varbinary datatype, and may need to

132

 CHAPTER 6 ENCRYPTION

be converted into the appropriate format for your application. In this case, CASTing the result to a
varchar returns the original plain text string:

SELECT CAST(DECRYPTBYPASSPHRASE('PassPhrase',
0x010000007A65B54B1797E637F3F018C4100468B115CB5B88BEA1A7C36432B0B93B8F616AC8D3BA7307
D5005E) AS varchar(32));
GO

My Other Secret Message

As demonstrated, ENCRYPTBYPASSPHRASE is a very simple method of implementing symmetric
encryption without the issues associated with key management. However, it is not without its
drawbacks:

Firstly, ciphertext generated by ENCRYPTBYPASSPHRASE can be decrypted only when
used in conjunction with the passphrase used to encrypt it. This may seem like an
obvious point, but bear in mind that SQL Server provides no mechanism for
backing up or recreating the passphrase, so, if it is ever lost, the original data can
never be restored. This means that you need to consider strategies for how to
backup the passphrase in a secure manner; there is not much point encrypting
your data if the passphrase containing the only knowledge required to access that
data is stored in an openly accessible place.

Secondly, the ENCRYPTBYPASSPHRASE function always encrypts data using the Triple
DES algorithm. Although this is a well-recognized and widely used standard, some
business requirements or client specifications may require stronger encryption
algorithms, such as those based on AES. Although AES symmetric keys of bit
lengths 128, 192, and 256 may be created in SQL Server 2008, these cannot be used
by ENCRYPTBYPASSPHRASE.

The strength of the symmetric key is entirely dependent on the passphrase from
which it is generated, but SQL Server does not enforce any degree of password
complexity on the passphrase supplied to ENCRYPTBYPASSPHRASE. This may lead to
weak encryption strength based on a poorly chosen key.

The supplied clear text can only be varchar or nvarchar type (although this
limitation is fairly easily overcome by CASTing any other datatype prior to
encryption).

Despite these weaknesses, ENCRYPTBYPASSPHRASE can still be a useful choice in certain situations, such as
when it is necessary to encrypt data from users in the sysadmin and db_owner roles. See the sidebar
entitled “Protecting Information from the DBA” for more information on this topic.

133

CHAPTER 6 ENCRYPTION

Protecting Information from the DBA

The recent trend in outsourcing or offshoring of corporate IT departments, combined with ever more
stringent regulations about who should be allowed access to sensitive data, has meant that it is an
increasingly common requirement to restrict access to sensitive data, even from those users in the
sysadmin and db_owner roles.

DBAs have permissions to view, insert, update, and delete data from any database table, and any DBAs in
the sysadmin role have control over every key and certificate held on a SQL Server instance. How then do
you design database architecture that secures data from these users? Any solution that relies upon the
automatic key management hierarchy will not work; the only approach is to rely on a password that is kept
secret from these users. This password can either be used with the ENCRYPTBYPASSPHRASE function, or it
can be used to secure a certificate or asymmetric key that protects the symmetric key with which the data
is encrypted.

Even then, there are risks to be aware of; the sysadmin can still DROP any keys, and you must ensure that
whenever the password is supplied, it is done so in a secure manner that cannot be detected as it passes
across the network or by profiling of the database.

Asymmetric Key Encryption
Asymmetric encryption is performed using a pair of related keys: the public key is used to encrypt data,
and the associated private key is used to decrypt the resulting ciphertext. The public and private keys of
an asymmetric key pair are related, but the mathematical relationship between them is sufficiently
complex that it is not feasible to derive one key from knowledge of the other. Figure 6-5 illustrates the
asymmetric encryption model.

Figure 6-5. Asymmetric key encryption

In addition to asymmetric key pairs, asymmetric encryption may also be implemented using a
certificate. Certificates based on the X.509 standard are used to bind a public key to a given identity
entitled to encrypt data using the associated key. Certificates may be issued by a third-party certification
authority (CA), and self-signed certificates can be created within SQL Server 2008 itself. Self-signed

134

 CHAPTER 6 ENCRYPTION

certificates were used in the last chapter to demonstrate one method of assigning permissions to stored
procedures.

Encryption by certificate and encryption by asymmetric key use the same algorithm and, assuming
equal key length, provide exactly the same encryption strength. For every method that deals with
asymmetric key encryption in SQL Server, an equivalent method provides the same functionality for
certificate encryption.

Asymmetric Keys or Certificates?

Certificate and asymmetric key encryption both use the same widely used RSA algorithm. Assuming equal
key length, certificate and asymmetric encryption will provide the same encryption strength, and there are
no significant differences between the functionality available with either type. So, which should you
choose?

The decision may be influenced by whether you choose to generate the key within SQL Server itself or
from an outside source. Self-signed certificates in SQL Server can only have a key length of 1024 bits,
whereas stronger asymmetric keys may be created with a private key length of 512, 1024, or 2048 bits.
However, asymmetric keys and certificates may both be imported from external sources, in which case the
key length may be up to 3456 bits.

I recommend asymmetric encryption using certificates rather than asymmetric key pairs, as certificates
allow for additional metadata to be stored alongside the key (such as expiry dates), and certificates can
easily be backed up to a CER file using the BACKUP CERTIFICATE command, whereas a method to provide
the equivalent functionality for an asymmetric key pair is strangely lacking.

As explained previously, by default the private keys of asymmetric key pairs and certificates are

protected by the DMK, which is automatically used to open these keys as and when they are required by
any users who have been granted permission to the relevant securable.

The following code listing illustrates how to create a 1024-bit asymmetric key using the RSA
algorithm:

CREATE ASYMMETRIC KEY AsymKey1
WITH Algorithm = RSA_1024;
GO

Encrypting data using the asymmetric key follows a slightly different process than for symmetric
encryption, as there is no need to explicitly open an asymmetric key prior to encryption or decryption.
Instead, you pass the ID of the asymmetric key and the plain text to be encrypted to the
ENCRYPTBYASYMKEY method, as demonstrated in the following code listing:

DECLARE @Secret nvarchar(255) = 'This is my secret message';
DECLARE @Encrypted varbinary(max);

SET @Encrypted = ENCRYPTBYASYMKEY(ASYMKEY_ID(N'AsymKey1'), @Secret);

GO

135

CHAPTER 6 ENCRYPTION

The DECRYPTBYASYMKEY (and the equivalent DECRYPTBYCERT) functions can be used to return the
varbinary representation of any asymmetrically encrypted data, by supplying the key ID and encrypted
ciphertext, as follows:

DECLARE @Secret nvarchar(255) = 'This is my secret message';
DECLARE @Encrypted varbinary(max);

SET @Encrypted = ENCRYPTBYASYMKEY(ASYMKEY_ID(N'AsymKey1'), @secret);

SELECT
 CAST(DECRYPTBYASYMKEY(ASYMKEY_ID(N'AsymKey1'), @Encrypted) AS nvarchar(255));

GO

You may have noticed when running the preceding code samples that, even when only dealing with
a very small amount of data, asymmetric encryption and decryption methods are much slower than the
equivalent symmetric functions. This is one of the reasons that, even though asymmetric encryption
provides stronger protection than symmetric encryption, it is not recommended for encrypting any
column that will be used to filter rows in a query, or where more than one or two records will be
decrypted at a time. Instead, asymmetric encryption is most useful as a method to protect other
encryption keys, as will be discussed later in this chapter.

Transparent Data Encryption
Transparent data encryption (TDE) is a new feature available in the Developer and Enterprise editions of
SQL Server 2008. It is “transparent” in that, unlike all of the previous methods listed, it requires no
explicit change to database architecture, and it doesn’t necessitate queries to be rewritten using specific
methods to encrypt or decrypt data. In addition, generally speaking, it is not necessary to deal with any
key management issues relating to TDE. So how does TDE work?

Rather than operating on chosen values or columns of data, transparent encryption provides
automatic symmetric encryption and decryption of all data passing from the file system layer to the SQL
Server process. In other words, the MDF and LDF files in which database information is saved are stored
in an encrypted state. When SQL Server makes a request for data in these files, it is automatically
decrypted at the I/O level. The query engine can therefore operate on it just as it does any other kind of
data. When the data is written back to disk, TDE automatically encrypts it again.

TDE provides encryption of (almost) all data within any database for which it is enabled, based on
the database encryption key (DEK) stored in the user database. The DEK is a symmetric key protected
by a server certificate stored in the master database, which, in turn, is protected by the DMK of the
master database and the SMK.

To enable TDE on a database, you first need to create a server certificate in the master database
(assuming that the master database already has a DMK):

USE MASTER;
GO

CREATE CERTIFICATE TDE_Cert
WITH SUBJECT = 'Certificate for TDE Encryption';
GO

136

 CHAPTER 6 ENCRYPTION

Then use the CREATE DATABASE ENCRYPTION KEY statement to create the DEK in the appropriate user
database:

USE ExpertSqlEncryption;
GO

CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TDE_Cert;
GO

 Note The preceding code listing will generate a warning message advising you to make a backup of the server
certificate with which the DEK is encrypted. In a production environment, I suggest that you read this message
carefully and follow its advice. Should the certificate become unavailable, you will be unable to decrypt the DEK,
and all data in the associated database will be lost.

Having created the necessary keys, TDE can be enabled using a single T-SQL statement, as follows:

ALTER DATABASE ExpertSqlEncryption
SET ENCRYPTION ON;
GO

To check the encryption status of all the databases on a server, you can query the
sys.dm_database_encryption_keys view, as follows:

SELECT
 DB_NAME(database_id) AS database_name,
 CASE encryption_state
 WHEN 0 THEN 'Unencrypted (No database encryption key present)'
 WHEN 1 THEN 'Unencrypted'
 WHEN 2 THEN 'Encryption in Progress'
 WHEN 3 THEN 'Encrypted'
 WHEN 4 THEN 'Key Change in Progress'
 WHEN 5 THEN 'Decryption in Progress'
 END AS encryption_state,
 key_algorithm,
 key_length
 FROM sys.dm_database_encryption_keys;
GO

The results indicate that both the ExpertSqlEncryption user database and the tempdb system
database are now encrypted:

137

CHAPTER 6 ENCRYPTION

database_name encryption_state key_algorithm key_length

tempdb Encrypted AES 256

ExpertSqlEncryption Encrypted AES 128

This demonstrates an important point: since tempdb is a shared system resource utilized by all user
databases, if any user database on a SQL Server instance is encrypted with TDE, then the tempdb
database must also be encrypted, as in this case.

Disabling TDE is as simple as the process to enable it:

ALTER DATABASE ExpertSqlEncryption
SET ENCRYPTION OFF;
GO

Note that, even after TDE has been turned off all user databases, the tempdb database will remain
encrypted until it is re-created, such as when the server is next restarted.

 Note For more information on the columns available in sys.dm_database_encryption_keys, please consult
http://msdn.microsoft.com/en-us/library/bb677274.aspx.

The benefits of TDE are as follows:

• Data at rest is encrypted (well, not quite all data at rest; see the following section).
If your primary goal is to prevent physical theft of your data, TDE ensures that
your database files (including transaction logs and backups) cannot be stolen and
restored onto another machine without the necessary DKM.

• TDE can be applied to existing databases without requiring any application
recoding. As a result, TDE can be applied in cases where it would not be viable to
redesign existing production applications to incorporate cell-level encryption.

• Performing encryption and decryption at the I/O level is efficient, and the overall
impact on database performance is small. Microsoft estimates average
performance degradation as a result of enabling TDE to be in the region of 3 to 5
percent.

TDE is certainly a useful addition to the cell-level encryption methods provided by SQL Server, and
if used correctly can serve to strengthen protection of your data. However, it would be a gross mistake to
believe that merely by enabling TDE your data will be protected. Although on the surface TDE appears to
simplify the process of encryption, in practice it hides the complexity that is necessary to ensure a truly
secure solution.

There are almost no cases in which it is a business requirement to encrypt every item of data in an
entire database. However, the ease with which TDE can be enabled means that, in some cases, it is a
simpler option to turn on TDE than perform a proper analysis of each data element. Such actions

138

 CHAPTER 6 ENCRYPTION

indicate a lack of planning toward a secure encryption strategy, and are unlikely to provide the level of
protection required in a high-security application.

There are also some important differences between TDE and the cell-level methods discussed
previously:

• TDE only protects data at rest. When data is requested by SQL Server, it is
decrypted, so all in-process data is unencrypted. All data that a user has
permission to access will always be presented to the user in an unencrypted state.

• Encryption cannot be controlled at a granular level—either the whole database is
encrypted or it is not.

• There is a performance impact on every query run against a database that has TDE
enabled, whether that query contains “confidential” items of data or not. In fact,
because the tempdb database must be encrypted when TDE is enabled, there is a
performance hit against every query of every database on a server that has at least
one TDE-enabled database on it.

• TDE negates any reduction in size of database files achieved from using SQL
Server 2008’s compression options. Compression algorithms only work effectively
when there are recognizable patterns in the data, which TDE encryption removes.

• Not all data can be encrypted. For example, the filestream datatype stores BLOB
data directly to the filesystem. Since this data does not pass through the SQL OS, it
cannot be encrypted by TDE.

It is important to realize that TDE provides a totally different model of encryption than the other
encryption methods discussed in this chapter. Cell-level encryption methods, such as ENCRYPTBYKEY and
ENCRYPTBYASYMKEY, encrypt an individual item or column of data. TDE, in contrast, applies to the
database level. As such, TDE has more in common with encryption methods provided at the operating
system level, such as encrypting file system (EFS) technology and Windows BitLocker.

Although useful in some situations, I do not consider TDE to provide sufficient security or control
over encrypted data to be relied upon for high-security applications. I will therefore not consider it in the
remaining sections in this chapter.

Balancing Performance and Security
Symmetric keys, asymmetric keys, passwords, and certificates . . . each have their own advantages and
disadvantages, so how do you choose between them? In this section I’ll describe an architecture that
means that you don’t have to make a compromise between different individual encryption methods;
rather, you can combine the best features of each approach into a single hybrid model.

The hybrid model of encryption described in this section is illustrated in Figure 6-6.

139

CHAPTER 6 ENCRYPTION

Figure 6-6. A hybrid approach to encryption.

The elements of the hybrid encryption structure can be described as follows:

• Data is encrypted using a symmetric key, which provides the best-performing
encryption method. I recommend encryption based on the AES algorithm, and
choosing a key length appropriate for your needs. Longer keys provide more
protection, but also require more processing overhead.

• The symmetric key is protected by one or more certificates, which provide the
strength of asymmetric encryption together with additional benefits, such as the
ability to back up and restore certificates from T-SQL, as well as the option to set
explicit start and expiration dates for the validity of the certificate. I tend to create
one certificate for each user or group of users that need access to the symmetric
key. Those same certificates can also be used to encrypt other keys required by
that user or group of users.

• Each certificate is protected with a (strong) password, so that it can only be
accessed by individuals with knowledge of the password. This means that
encrypted information is kept secret from sysadmins, who could otherwise use the
DMK to open the certificate and underlying symmetric key.

• Further layers of encryption can be added to this model by protecting the
symmetric key with further symmetric keys prior to encryption by the certificate.
Each additional layer creates a further barrier for potential hackers to break, and
also makes key rotation much easier to facilitate.

To illustrate how to create the hybrid encryption model just described, first create two users:

CREATE USER FinanceUser WITHOUT LOGIN;
CREATE USER MarketingUser WITHOUT LOGIN;
GO

Then create a certificate for each user, each with their own password:

140

 CHAPTER 6 ENCRYPTION

CREATE CERTIFICATE FinanceCertificate
 AUTHORIZATION FinanceUser
 ENCRYPTION BY PASSWORD = '#F1n4nc3_P455w()rD#'
 WITH SUBJECT = 'Certificate for Finance',
 EXPIRY_DATE = '20101031';

CREATE CERTIFICATE MarketingCertificate
 AUTHORIZATION MarketingUser
 ENCRYPTION BY PASSWORD = '-+M@Rket1ng-P@s5w0rD!+-'
 WITH SUBJECT = 'Certificate for Marketing',
 EXPIRY_DATE = '20101105';
GO

We’ll also create a sample table and give both users permission to select and insert data into the
table:

CREATE TABLE Confidential (
 EncryptedData varbinary(255)
);
 GO

GRANT SELECT, INSERT ON Confidential TO FinanceUser, MarketingUser;
GO

Now that we have the basic structure set up, we will create a shared symmetric key that will be
encrypted by both the finance and marketing certificates. However, you cannot directly create a key in
this manner. Instead, we will create the key with protection by the first certificate, and then open and
alter the key to add encryption by the second certificate too:

-- Create a symmetric key protected by the first certificate
CREATE SYMMETRIC KEY SharedSymKey
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE FinanceCertificate;
GO

-- Then OPEN and ALTER the key to add encryption by the second certificate
OPEN SYMMETRIC KEY SharedSymKey
DECRYPTION BY CERTIFICATE FinanceCertificate
WITH PASSWORD = '#F1n4nc3_P455w()rD#';

ALTER SYMMETRIC KEY SharedSymKey
ADD ENCRYPTION BY CERTIFICATE MarketingCertificate;

CLOSE SYMMETRIC KEY SharedSymKey;
GO

141

CHAPTER 6 ENCRYPTION

Finally, we need to grant permissions on the symmetric key for each user:

GRANT VIEW DEFINITION ON SYMMETRIC KEY::SharedSymKey TO FinanceUser
GRANT VIEW DEFINITION ON SYMMETRIC KEY::SharedSymKey TO MarketingUser
GO

To encrypt data using the shared symmetric key, either user must first open the key by specifying
the name and password of their certificate that is protecting it. They can then use the ENCRYPTBYKEY
function as demonstrated earlier in this chapter. The following listing demonstrates how FinanceUser
can insert data into the Confidential table, encrypted using the shared symmetric key:

EXECUTE AS USER = 'FinanceUser';

OPEN SYMMETRIC KEY SharedSymKey
DECRYPTION BY CERTIFICATE FinanceCertificate
WITH PASSWORD = '#F1n4nc3_P455w()rD#';

INSERT INTO Confidential
SELECT ENCRYPTBYKEY(KEY_GUID(N'SharedSymKey'), N'This is shared information
accessible to finance and marketing');

CLOSE SYMMETRIC KEY SharedSymKey;

REVERT;
GO

To decrypt this data, either the marketing user or the finance user can explicitly open the
SharedSymKey key prior to decryption, similar to the pattern used for encryption, or they can take
advantage of the DECRYPTBYKEYAUTOCERT function, which allows you to automatically open a symmetric
key protected by a certificate as part of the inline function that performs the decryption.

To demonstrate the DECRYPTBYKEYAUTOCERT function, the following code listing shows how
MarketingUser can decrypt the value in the Confidential table inserted by FinanceUser, opening the
shared symmetric key using their own certificate name and password protecting the symmetric key:

EXECUTE AS USER = 'MarketingUser';

SELECT
 CAST(
 DECRYPTBYKEYAUTOCERT(
 CERT_ID(N'MarketingCertificate'),
 N'-+M@Rket1ng-P@s5w0rD!+-',
 EncryptedData)
 AS nvarchar(255))
FROM Confidential;

REVERT;
GO

The result shows that MarketingUser can use the MarketingCertificate to access data encrypted by
FinanceUser using the shared symmetric key:

142

 CHAPTER 6 ENCRYPTION

This is shared information accessible to finance and marketing

To extend this example a little further, suppose that in addition to storing encrypted data that is
shared between finance and marketing, the Confidential table also holds data to which only the finance
user should be granted access. Using the hybrid model described here, this is very easy to achieve—
simply create a new symmetric key that is protected by the existing finance certificate and grant
permissions on that key to the finance user.

CREATE SYMMETRIC KEY FinanceSymKey
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE FinanceCertificate;
GO

GRANT VIEW DEFINITION ON SYMMETRIC KEY::FinanceSymKey TO FinanceUser
GO

As this new symmetric key is protected using the existing FinanceCertificate, the finance user can
open it using exactly the same syntax as for the shared key, and encrypt data using the key by specifying
the appropriate KEY_GUID to the ENCRYPTBYKEY method:

EXECUTE AS USER = 'FinanceUser';

OPEN SYMMETRIC KEY FinanceSymKey
DECRYPTION BY CERTIFICATE FinanceCertificate
WITH PASSWORD = '#F1n4nc3_P455w()rD#';

INSERT INTO Confidential
SELECT ENCRYPTBYKEY(
 KEY_GUID(N'FinanceSymKey'),
 N'This information is only accessible to finance');

CLOSE SYMMETRIC KEY FinanceSymKey;
REVERT;
GO

The Confidential table now contains two rows of data: one row is encrypted using the shared
symmetric key, SharedSymKey, to which both MarketingUser and FinanceUser have access; the second row
is encrypted using FinanceSymKey, which is only accessible by FinanceUser.

The beauty of this approach is that, since all of the keys to which a given user has access are
protected by a single certificate, the DECRYPTBYKEYAUTOCERT method can be used to decrypt the entire
column of data, whatever key was used to encrypt the individual values.

For example, the following code listing demonstrates how FinanceUser can automatically decrypt all
values in the EncryptedData column by using DECRYPTBYKEYAUTOCERT in conjunction with the
FinanceCertificate:

EXECUTE AS USER = 'FinanceUser';

SELECT
 CAST(

143

CHAPTER 6 ENCRYPTION

 DECRYPTBYKEYAUTOCERT(
 CERT_ID(N'FinanceCertificate'),
 N'#F1n4nc3_P455w()rD#',
 EncryptedData
) AS nvarchar(255))
FROM Confidential;

REVERT;
GO

The results show that FinanceUser can use DECRYPTBYKEYAUTOCERT to decrypt values encrypted by
both the FinanceSymKey and the SharedSymKey, because they are both protected using the same
FinanceCertificate:

This is shared information accessible to finance and marketing
This information is only accessible to finance

If MarketingUser were to attempt to perform exactly the same query using the
MarketingCertificate, they would be able to decrypt only those values encrypted using the
SharedSymKey; the result of attempting to decrypt values that had been encrypted using FinanceSymKey
would be NULL:

EXECUTE AS USER = 'MarketingUser';

SELECT
 CAST(
 DECRYPTBYKEYAUTOCERT(
 CERT_ID(N'MarketingCertificate'),
 N'-+M@Rket1ng-P@s5w0rD!+-',
 EncryptedData) AS nvarchar(255))
FROM Confidential;

REVERT;
GO

This is shared information accessible to finance and marketing
NULL

I hope that this has demonstrated how the hybrid model of encryption achieves a balance between
security and maintainability for the majority of situations in which encryption is required, and how it
can be extended to deal with a range of different use scenarios.

In the following section, I’ll show you how to write efficient queries against encrypted data held in
such a model.

144

 CHAPTER 6 ENCRYPTION

Implications of Encryption on Query Design
Having discussed the relative merits of different encryption architecture decisions, the remainder of this
chapter will focus on methods to optimize the performance of applications that deal with encrypted
data.

The security of encryption always comes with an associated performance cost. As previously
mentioned, reads and writes of encrypted data are more resource-intensive and typically take longer to
perform. However, the special nature of encrypted data has wider-ranging implications than accepting a
simple performance hit, and particular attention needs to be paid to any activities that involve ordering,
filtering, or performing joins on encrypted data.

Indexing, sorting, and filtering data relies on identifying ordered patterns within that data. Most
data can be assigned a logical order: for example, varchar or char data can be arranged alphabetically;
datetime data can be ordered chronologically; and int, decimal, float, and money data can be arranged in
numeric order. The very purpose of encryption, however, is to remove any kind of logical pattern that
might expose information about the underlying data, which makes it very tricky to assign order to
encrypted data. This creates a number of issues for efficient query design.

To demonstrate these issues, let’s create a table containing some example confidential data. The
following code listing will create a table and populate it with 100,000 rows of randomly generated 16-
digit numbers, representing dummy credit card numbers.

Among the random data, we will also insert one predetermined value representing the credit card
number 4005-5500-0000-0019. It is this known value that we will use to test various methods of searching
for values within encrypted data.

CREATE TABLE CreditCards (
 CreditCardID int IDENTITY(1,1) NOT NULL,
 CreditCardNumber_Plain nvarchar(32)
);
GO

WITH RandomCreditCards AS (
 SELECT
 CAST(9E+15 * RAND(CHECKSUM(NEWID())) + 1E+15 AS bigint) AS CardNumber
)
INSERT INTO CreditCards (CreditCardNumber_Plain)
 SELECT TOP 100000
 CardNumber
 FROM
 RandomCreditCards,
 MASTER..spt_values a,
 MASTER..spt_values b
 UNION ALL SELECT
 '4005550000000019' AS CardNumber;
GO

145

CHAPTER 6 ENCRYPTION

 Note Before you rush out on a spending spree, I regret to inform you that the credit card number listed in this
example, 4005-5500-0000-0019, is a test card number issued by VISA for testing payment processing systems
and cannot be used to make purchases. Of course, the 100,000 randomly generated rows might by chance
contain valid credit card details, but good luck finding them!

To protect this information, we’ll follow the hybrid encryption model described in the previous
section. To do so first requires the creation of a certificate encrypted by password:

CREATE CERTIFICATE CreditCard_Cert
 ENCRYPTION BY PASSWORD = '#Ch0o53_@_5Tr0nG_P455w0rD#'
 WITH SUBJECT = 'Secure Certificate for Credit Card Information',
 EXPIRY_DATE = '20101031';
GO

and then a symmetric key protected by the certificate:

CREATE SYMMETRIC KEY CreditCard_SymKey
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE CreditCard_Cert;
GO

As we’re only concerned with testing the performance of different methods, we won’t bother
creating different users with access to the key this time—we’ll do everything as the dbo user.

To begin, add a new column to the CreditCards table, CreditCardNumber_Sym, and populate it with
values encrypted using the CreditCard_SymKey symmetric key:

ALTER TABLE CreditCards ADD CreditCardNumber_Sym varbinary(100);
GO

OPEN SYMMETRIC KEY CreditCard_SymKey
 DECRYPTION BY CERTIFICATE CreditCard_Cert
 WITH PASSWORD = '#Ch0o53_@_5Tr0nG_P455w0rD#';

UPDATE CreditCards
 SET CreditCardNumber_Sym =
 ENCRYPTBYKEY(KEY_GUID('CreditCard_SymKey'),CreditCardNumber_Plain);

CLOSE SYMMETRIC KEY CreditCard_SymKey;
GO

Now let’s assume that we are designing an application that requires searching for specific credit
numbers that have been encrypted in the CreditCardNumber_Sym column. Firstly, let’s create an index to
support the search:

CREATE NONCLUSTERED INDEX idxCreditCardNumber_Sym
 ON CreditCards (CreditCardNumber_Sym);
GO

146

 CHAPTER 6 ENCRYPTION

Let’s try performing a simple search against the encrypted data. We’ll search for our chosen credit
card number by decrypting the CreditCardNumber_Sym column and comparing the result to the search
string:

DECLARE @CreditCardNumberToSearch nvarchar(32) = '4005550000000019';

SELECT * FROM CreditCards
WHERE DECRYPTBYKEYAUTOCERT(
 CERT_ID('CreditCard_Cert'),
 N'#Ch0o53_@_5Tr0nG_P455w0rD#',
 CreditCardNumber_Sym) = @CreditCardNumberToSearch;
GO

A quick glance at the execution plan shown in Figure 6-7 reveals that, despite the index, the query
must scan the whole table, decrypting each row in order to see if it satisfies the predicate.

Figure 6-7. A query scan performed on encrypted data

The need for a table scan is caused by the nondeterministic nature of encrypted data. Since the
values in the CreditCard_Sym column are encrypted, we cannot tell which rows match the search criteria
without decrypting every value. Nor can we simply encrypt the search value 4005550000000019 and
search for the corresponding encrypted value in the CreditCard_Sym column, because the result is
nondeterministic and will differ every time.

Even though we are using symmetric encryption, the faster-performing cell-encryption and -
decryption method, the requirement to conduct an entire table scan means that the query does not
perform well. We can obtain a quick measure of the overall performance by inspecting
sys.dm_exec_query_stats, as follows:

SELECT
 st.text,
 CAST(qs.total_worker_time AS decimal(18,9)) / qs.execution_count / 1000
 AS Avg_CPU_Time_ms,
 qs.total_logical_reads
 FROM
 sys.dm_exec_query_stats qs
 CROSS APPLY sys.dm_exec_sql_text(qs.plan_handle) st

WHERE
 st.text LIKE '%CreditCardNumberToSearch%';

The results I obtain are given here:

147

CHAPTER 6 ENCRYPTION

text Avg_CPU_Time_ms total_logical_reads

DECLARE @CreditCardNumberToSearch nvarchar(32)

 = '4005550000000019'; --*SELECT------------- 1389.079 71623

The SELECT query is taking nearly 1.5 seconds of CPU time to query only 100,000 rows of encrypted
data. Also notice that the query text contained in the text column of sys.dm_exec_sql_text is blanked
out, as it is for all queries that reference encrypted objects.

The appropriate solution to the problem of searching encrypted data differs depending on how the
data will be queried—whether it will be searched for a single exact matching row to the search string (an
equality match), a pattern match using a wildcard (i.e., LIKE %), or a range search (i.e., using the BETWEEN,
>, or < operators).

Equality Matching Using Hashed Message
Authentication Codes
One method to facilitate the efficient searching and filtering of individual rows of encrypted data is to
make use of hashed message authentication codes (HMACs), which are created using a hashing
function, as introduced earlier in this chapter. Remember that the output of a hashing function is
deterministic—any given input will always lead to the same output, which is a crucial property to allow
encrypted data to be efficiently searched for any given search value. Binary hash values stored in a
database can be indexed, and filtering data can be performed by creating the hash value of the search
criteria and searching for that value in the column containing the precalculated hash values.

However, we don’t want to store the simple hash of each credit card number as returned by
HASHBYTES—as explained previously, hash values can be attacked using dictionaries or rainbow tables,
especially if, as in the case of a credit card number, they follow a predetermined format. This would
weaken the strength of the existing solution implemented using symmetric encryption.

HMACs, designed to validate the authenticity of a message, overcome this problem by combining a
hash function with a secret key (salt). By combining the plain text with a strong salt prior to hashing, the
resulting hash can be made virtually invulnerable to a dictionary attack because any lookup would have
to combine every possible source value with every possible salt value, leading to an unfeasibly large list
of possible hash values against which a hacker would have to compare.

Message Authentication Codes

HMACs are a method of verifying the authenticity of a message to prove that it has not been tampered with
in transmission. They work like this:

 1. The sender and the receiver agree on a secret value, known only to them. For example, let’s say that
they agree on the word salt.

 2. When the sender creates their message, they append the secret value onto the end of the message.
They then create a hash of the combined message with the salt value:

148

 CHAPTER 6 ENCRYPTION

 HMAC = HASH(“This is the original message” + “salt”)

 3. The sender transmits the original message to the receiver, together with the HMAC.

 4. When the receiver receives the message, they append the agreed salt value to the received
message, and then hash the result themselves. They then check to make sure that the result is the
same as the supplied HMAC value.

HMACS are a relatively simple but very effective method of ensuring that messages can be verified as
authentic by the intended receiver. If somebody had attempted to intercept and tamper with the message,
it would no longer match the supplied HMAC value. Nor could the attacker generate a new matching HMAC
value, as they would not know the secret salt that had to be applied.

The first step toward implementing an HMAC-based solution is to define a secure way of storing the

salt value (or key). For the purpose of this example, we’ll store the salt in a separate table and encrypt it
using a secure asymmetric key.

CREATE ASYMMETRIC KEY HMACASymKey
 WITH ALGORITHM = RSA_1024
 ENCRYPTION BY PASSWORD = N'4n0th3r_5tr0ng_K4y!';
GO

CREATE TABLE HMACKeys (
 HMACKeyID int PRIMARY KEY,
 HMACKey varbinary(255)
);
GO

INSERT INTO HMACKeys
SELECT
 1,
 ENCRYPTBYASYMKEY(ASYMKEY_ID(N'HMACASymKey'), N'-->Th15_i5_Th3_HMAC_kEy!');
GO

Now we can create an HMAC value based on the key. You could create a simple HMAC in T-SQL by
simply using HASHBYTES with the salt value appended onto the original message, as follows:

DECLARE @HMAC varbinary(max) = HASHBYTES('SHA1', 'PlainText' + 'Salt')

However, there are a number of ways in which this method could be improved:

• The HASHBYTES function only creates a hash based on the first 8000 bytes of any
input. If the message length equals or exceeds this value, then any salt value
appended after the message content will be disregarded. It would therefore be
better to supply the salt value first, and then the message to be hashed.

• The HMAC specification, as defined by the Federal Information Processing
Standard (FIPS PUB 198, http://csrc.share

149

CHAPTER 6 ENCRYPTION

nist.gov/publications/fips/fips198/fips-198a.pdf), actually hashes the plain
text value twice, as follows:

HMAC = HASH(Key1 + HASH(Key2 + PlainText))

According to the FIPS standard, Key1 and Key2 are calculated by padding the
supplied salt value to the size of the block size of the hash function keys. Key1 is
padded with the byte 0x5c and Key2 is padded with the byte 0x36. These two values
are deliberately chosen to have a large hamming distance—that is, the resulting
padded keys will be significantly different from each other, so that the
strengthening effect of hashing with both keys is maximized.

• The HMAC standard does not specify which hashing algorithm is used to perform
the hashing, but the strength of the resulting HMAC is directly linked to the
cryptographic strength of the underlying hash function on which it is based. The
HASHBYTES function only supports hashing using the MD2, MD4, MD5, SHA, and
SHA1 algorithms. The hashing methods provided by the .NET Framework, in
contrast, support the more secure SHA2 family of algorithms, and also the 160-bit
RIPEMD160 algorithm.

It seems that SQL Server’s basic HASHBYTES function leaves a little bit to be desired, but fortunately
there is an easy solution. In order to create an HMAC compliant with the FIPS standard, based on a
strong hashing algorithm, we can employ a CLR user-defined function that uses methods provided by
the .NET System.Security namespace instead. The following code listing illustrates the C# required to
create a reusable class that can be used to generate HMAC values for all supported hash algorithms for a
given key:

 [SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]
 public static SqlBytes GenerateHMAC
 (
 SqlString Algorithm,
 SqlBytes PlainText,
 SqlBytes Key
)
 {
 if (Algorithm.IsNull || PlainText.IsNull || Key.IsNull) {
 return SqlBytes.Null;
 }
 HMAC HMac = null;
 switch (Algorithm.Value)
 {
 case "MD5":
 HMac = new HMACMD5(Key.Value);
 break;
 case "SHA1":
 HMac = new HMACSHA1(Key.Value);
 break;
 case "SHA256":
 HMac = new HMACSHA256(Key.Value);
 break;
 case "SHA384":
 HMac = new HMACSHA384(Key.Value);
 break;

150

 CHAPTER 6 ENCRYPTION

 case "SHA512":
 HMac = new HMACSHA512(Key.Value);
 break;
 case "RIPEMD160":
 HMac = new HMACRIPEMD160(Key.Value);
 break;
 default:
 throw new Exception("Hash algorithm not recognised");
 }
 byte[] HMacBytes = HMac.ComputeHash(PlainText.Value);
 return new SqlBytes(HMacBytes);
 }

 Caution For completeness, the GenerateHMAC function supports all hashing algorithms available within the
Security.Cryptography namespace. In practice, it is not recommended to use the MD5 algorithm in production
applications, since it has been proven to be vulnerable to hash collisions.

Build the assembly and catalog it in SQL Server. Then create a new column in the CreditCards table
and populate it with an HMAC-SHA1 value using the GenerateHMAC function. I’ll create the HMAC
column as a varbinary(255) type—the actual length of the HMAC values stored in this column will
depend on the hashing algorithm used: 128 bits (16 bytes) for MD5; 160 bits (20 bytes) for RIPEMD160
and SHA1, and up to 64 bytes for SHA512. These steps are demonstrated in the following code listing:

ALTER TABLE CreditCards
ADD CreditCardNumber_HMAC varbinary(255);
GO

-- Retrieve the HMAC salt value from the MACKeys table
DECLARE @salt varbinary(255);
SET @salt = (
 SELECT DECRYPTBYASYMKEY(
 ASYMKEY_ID('HMACASymKey'),
 HMACKey,
 N'4n0th3r_5tr0ng_K4y!'
)
FROM HMACKeys
WHERE HMACKeyID = 1);

-- Update the HMAC value using the salt
UPDATE CreditCards
SET CreditCardNumber_HMAC = (
 SELECT dbo.GenerateHMAC(
 'SHA256',
 CAST(CreditCardNumber_Plain AS varbinary(max)),
 @salt
)

151

CHAPTER 6 ENCRYPTION

);
GO

 Note If you were implementing the HMAC solution proposed here in a production application, you’d want to
create triggers to ensure that the integrity of the CreditCardNumber_HMAC column was maintained during INSERTs
and UPDATEs to the CreditCards table. Because I’m only concentrating on evaluating the performance of HMACs, I
won’t bother with this step.

We can now issue queries that search for credit cards based on their HMAC; but before we do, let’s
create an index to help support the search. Queries issued against the CreditCards table will filter rows
based on CreditCardNumber_HMAC column, but we’ll want to return the CreditCardNumber_Sym column so
that we can decrypt the original credit card number.

To ensure that these queries are covered by an index, we’ll create a new nonclustered index based
on CreditCardNumber_HMAC, and we’ll include CreditCard_Sym in the index as a nonkey column.

CREATE NONCLUSTERED INDEX idxCreditCardNumberHMAC
ON CreditCards (CreditCardNumber_HMAC)
INCLUDE (CreditCardNumber_Sym);
GO

 Note A covering index contains all of the columns required by a query within a single index. This means that
the database engine can fulfill the query based on the index alone, without needing to issue additional seeks or
lookups on the data page to retrieve additional columns.

Let’s test the performance of the new HMAC-based solution by searching for our known credit card
in the CreditCards table:

-- Select a credit card to search for
DECLARE @CreditCardNumberToSearch nvarchar(32) = '4005550000000019';

-- Retrieve the secret salt value
DECLARE @salt varbinary(255);
SET @salt = (
 SELECT DECRYPTBYASYMKEY(
 ASYMKEY_ID('HMACASymKey'),
 MACKey,
 N'4n0th3r_5tr0ng_K4y!'
)
FROM MACKeys);

-- Generate the HMAC of the credit card to search for

152

 CHAPTER 6 ENCRYPTION

DECLARE @HMACToSearch varbinary(255);
SET @HMACToSearch = dbo.GenerateHMAC(
 'SHA256',
 CAST(@CreditCardNumberToSearch AS varbinary(max)),
 @salt);

-- Retrieve the matching row from the CreditCards table
SELECT
 CAST(
 DECRYPTBYKEYAUTOCERT(
 CERT_ID('CreditCard_Cert'),
 N'#Ch0o53_@_5Tr0nG_P455w0rD#',
 CreditCardNumber_Sym) AS nvarchar(32)) AS CreditCardNumber_Decrypted
FROM CreditCards
WHERE CreditCardNumber_HMAC = @HMACToSearch
 AND
 CAST(
 DECRYPTBYKEYAUTOCERT(
 CERT_ID('CreditCard_Cert'),
 N'#Ch0o53_@_5Tr0nG_P455w0rD#',
 CreditCardNumber_Sym) AS nvarchar(32)) = @CreditCardNumberToSearch;
GO

This query generates the HMAC hash of the supplied search value and then uses the
idxCreditCardNumberHMAC index to search for this value in the CreditCardNumber_HMAC column. Having
found a matching row, it then decrypts the value contained in the CreditCardNumber_Sym column to
make sure that it matches the original supplied search value (to prevent the risk of hash collisions, where
an incorrect result is returned because it happened to share the same hash as our search string).

The execution plan shown in Figure 6-8 illustrates that the entire query can be satisfied by a single
index seek.

Figure 6-8. Performing a clustered index seek on an HMAC hash column

The performance counters contained in sys.dm_exec_query_stats reveal that the query is

substantially more efficient than direct querying of the CreditCardNumber_Sym column, taking only
253ms of CPU time and requiring nine logical reads.

Wildcard Searches Using HMAC Substrings
There are many occasions where a database needs to support queries that require an element of
flexibility in the search criteria. This applies to searches of encrypted data just as with any other type of
data. For example, perhaps you need to search for all customers whose credit cards expire in a certain
month, or perform a search based on the last four digits of their social security number.

153

CHAPTER 6 ENCRYPTION

The HMAC solution just proposed cannot be used in these cases, since the HMAC hash values are
unique to an exact value. The hash generated from a partial string will be completely different from the
hash generated from a complete string, as demonstrated here:

SELECT
 HASHBYTES('SHA1', 'The quick brown fox jumped over the lazy dog')
UNION SELECT
 HASHBYTES('SHA1', 'The quick brown fox jumped over the lazy dogs');

Despite the fact that the input strings differ by only one character, the resulting hash values are
substantially different:

0xF6513640F3045E9768B239785625CAA6A2588842
0xFBADA4676477322FB3E2AE6353E8BD32B6D0B49C

In order to facilitate pattern matching of partial strings, we can still use HMACs, but we need to
create a hash based on a section of the string that will remain consistent across all searches. In other
words, to support a query to find values LIKE 'The quick brown fox jumped over the lazy%', it would
be necessary to search for all rows matching the hash value of the trimmed string The quick brown fox
jumped over the lazy. This exact substring must be used consistently across all queries, and it should be
sufficiently selective to ensure the query is efficient.

To relate this back to the example used in this chapter, suppose that we wanted to create a method
of allowing users to search for a row of data in the CreditCards table based on the last four digits of the
credit card number. To do so, we’ll add a new column to the table, and populate it by using the
GenerateHMAC function to create an HMAC based on the last four digits of each credit card number. This
new column, CreditCardNumber_Last4HMAC, will only be used to support wildcard searches, while the
existing CreditCardNumber_HMAC column will continue to be used for equality searches on the whole
credit card number.

To start, let’s add a new key to the HMACKeys table:

CREATE ASYMMETRIC KEY HMACSubStringASymKey
 WITH ALGORITHM = RSA_1024
 ENCRYPTION BY PASSWORD = N'~Y3T_an0+h3r_5tR()ng_K4y~';
GO

INSERT INTO HMACKeys
SELECT
 2,
 ENCRYPTBYASYMKEY(
 ASYMKEY_ID(N'HMACSubStringASymKey'),
 N'->Th15_i$_Th3_HMAC_Sub5Tr1ng_k3y');
GO

Now let’s use the new key to create an HMAC based on the last four characters of each credit card
number:

ALTER TABLE CreditCards
ADD CreditCardNumber_Last4HMAC varbinary(255);
GO

154

 CHAPTER 6 ENCRYPTION

-- Retrieve the HMAC salt value from the MACKeys table
DECLARE @salt varbinary(255);
SET @salt = (
 SELECT DECRYPTBYASYMKEY(
 ASYMKEY_ID('HMACSubStringASymKey'),
 HMACKey,
 N'~Y3T_an0+h3r_5tR()ng_K4y~'
)
FROM HMACKeys
WHERE HMACKeyID = 2);

-- Update the Last4HMAC value using the salt
UPDATE CreditCards
SET CreditCardNumber_Last4HMAC = (SELECT dbo.GenerateHMAC(
 'SHA256',
 CAST(RIGHT(CreditCardNumber_Plain, 4) AS varbinary(max)), @salt));
GO

And, to support queries issued against the new substring HMAC, we’ll add a new index:

CREATE NONCLUSTERED INDEX idxCreditCardNumberLast4HMAC
ON CreditCards (CreditCardNumber_Last4HMAC)
INCLUDE (CreditCardNumber_Sym);
GO

Suppose that we wanted to issue a query to find all those credit cards ending in the digits 0019. Such
a pattern-matching query could now be issued by comparing the HMAC of these digits with the HMAC
value stored in the CreditCardNumber_Last4HMAC column, as follows:

-- Select the last 4 digits of the credit card to search for
DECLARE @CreditCardLast4ToSearch nchar(4) = '0019';

-- Retrieve the secret salt value
DECLARE @salt varbinary(255);
SET @salt = (
 SELECT DECRYPTBYASYMKEY(
 ASYMKEY_ID('HMACSubStringASymKey'),
 HMACKey,
 N'~Y3T_an0+h3r_5tR()ng_K4y~'
)
FROM HMACKeys
WHERE HMACKeyID = 2);

-- Generate the HMAC of the last 4 digits to search for
DECLARE @HMACToSearch varbinary(255);
SET @HMACToSearch = dbo.GenerateHMAC(
 'SHA256',
 CAST(@CreditCardLast4ToSearch AS varbinary(max)),
 @salt);

155

CHAPTER 6 ENCRYPTION

-- Retrieve the matching row from the CreditCards table
SELECT
 CAST(
 DECRYPTBYKEYAUTOCERT(
 CERT_ID('CreditCard_Cert'),
 N'#Ch0o53_@_5Tr0nG_P455w0rD#',
 CreditCardNumber_Sym)
 AS nvarchar(32)) AS CreditCardNumber_Decrypted
FROM
 CreditCards
WHERE
 CreditCardNumber_Last4HMAC = @HMACToSearch
 AND
 CAST(
 DECRYPTBYKEYAUTOCERT(
 CERT_ID('CreditCard_Cert'),
 N'#Ch0o53_@_5Tr0nG_P455w0rD#',
 CreditCardNumber_Sym)
 AS nvarchar(32)) LIKE '%' + @CreditCardLast4ToSearch;
GO

The results obtained on my system list the following ten credit cards, including the
4005550000000019 credit card number that we were originally searching for (your list will differ since the
records contained in the CreditCards table were randomly generated, but you should still find the
intended matching value):

6823807913290019

5804462948450019

6742201580250019

7572953718590019

4334945301620019

7859588437020019

3490887629240019

5801804774470019

4005550000000019

2974981474970019

156

 CHAPTER 6 ENCRYPTION

An examination of the query execution plan shown in Figure 6-9 reveals that, so long as the
substring chosen is sufficiently selective, as in this case, wildcard searches of encrypted data can be
achieved using an efficient index seek.

Figure 6-9. Index seek of an HMAC substring

The performance of this query on my machine is almost identical to the full equality match against
the CreditCard_HMAC column, taking 301ms of CPU time and requiring nine logical reads.

While this technique demonstrates that it is possible to perform wildcard searches on encrypted
data, it is not a very flexible solution. The CreditCardNumber_Last4HMAC column used in this example can
only be used to satisfy queries that specify the last four digits of a credit card. If you wanted to search on
the last six digits of a credit card number, say, you would need to create a whole new HMAC column to
support that type of query.

The more flexibility your application demands in its search criteria, the more untenable this
solution becomes, and the more additional columns of data must be created. Not only does this become
a maintenance headache, it means greater storage requirements, and also increases the risk of your data
becoming exposed. Even when storing relatively secure HMAC hash values, every additional column
provides a hacker with more information about your data, which can be used to launch a targeted attack.

Range Searches
The last scenario of searching encrypted data I will consider in this chapter is that of the range query. For
example, how do we identify those rows of data that contain credit card numbers in the range of
4929100012347890 and 4999100012349999?

These types of searches are perhaps the most difficult to implement with encrypted data, and there
are few obvious solutions: The HMAC solution, or its substring derivative, does not help here—
sequential plain text numbers clearly do not lead to sequential ciphertext values. In fact, when you’re
looking at cell-level encryption, there is no way to avoid scanning and decrypting every row in the table
to fulfill a range query.

If the range to be searched were very constrained (e.g., +/–10 of a supplied value), it might be
possible to forego encryption and store partial plain text values, such as the last two digits of the credit
card, in a new column. With some query redesign, queries could be made to facilitate certain range
queries based on this column, but this obviously involves a huge amount of risk by disclosing even
partial plain text of your sensitive information.

The only other alternative, if range queries absolutely must be supported, is to rely on one of the
forms of encryption performed at the I/O level, such as database encryption using TDE, EFS, or
Windows BitLocker. In such cases, decryption is performed at such a low level that the database engine
can operate on data without consideration of any encryption to which it may have been subjected prior
to processing.

157

CHAPTER 6 ENCRYPTION

158

Summary
Encryption forms an important part of any security strategy, and can provide the crucial last line of
defense in thwarting attackers from gaining access to sensitive or confidential data. However, it comes at
a cost—encryption requires carefully planned strategy and security policies, and almost invariably
requires design changes to be made at a database or application level in order to be implemented
successfully. Added security also has a necessary negative impact on performance.

Encrypted data that results from a nondeterministic algorithm does not exhibit the same structure
or patterns as normal data. This means that many standard database tasks, such as sorting, filtering, and
joining, must be redesigned in order to work effectively. Although there are methods to work around
some of the limitations of dealing with encrypted data, such as searching and matching using HMACs,
they are not satisfactory in all cases, and if possible, applications should be designed to avoid direct
querying of encrypted data.

C H A P T E R 7

SQLCLR: Architecture and
Design Considerations

When Microsoft first announced that SQL Server would host the .NET Common Language Runtime
(CLR) back in SQL Server 2005, it created a lot of excitement in the database world. Some of that
excitement was enthusiastic support voiced by developers who envisaged lots of database scenarios that
could potentially benefit from the methods provided by the .NET Base Class Library. However, there was
also considerable nervousness and resistance from DBAs concerned about the threats posed by the new
technology and the rumors that rogue developers would be able to create vast worlds of DBA-
impenetrable, compiled in-process data access code.

When it came to it, SQLCLR integration turned out to be neither such a scary nor such a useful idea
as many thought. Those hoping to use the SQLCLR features as a wholesale replacement for T-SQL were
quickly put off by the fact that writing CLR routines generally requires more code, and performance and
reliability suffer due to the continual cost of marshaling data across the CLR boundaries. And for the
DBAs who were not .NET developers to begin with, there was a somewhat steep learning curve involved
for a feature that really didn’t have a whole lot of uses.

We’ve been living with SQLCLR for over four years now, and although it appears that CLR
integration features are still not being used that heavily, their adoption is certainly growing. SQL Server
2008 lifts the previous restriction that constrained CLR User-Defined Types (UDTs) to hold a maximum
of only 8KB of data, which seriously crippled many potential usage scenarios; all CLR UDTs may now
hold up to a maximum 2GB of data in a single item. This opens up lots of potential avenues for new
types of complex object-based data to be stored in the database, for which SQLCLR is better suited than
the predominantly set-based T-SQL engine. Indeed, SQL Server 2008 introduces three new system-
defined datatypes (geometry, geography, and hierarchyid) that provide an excellent demonstration of the
ways in which SQLCLR can extend SQL Server to efficiently store and query types of data beyond the
standard numeric and character-based data typically associated with SQL databases.

I will cover the system-defined CLR datatypes in detail in Chapters 10 and 12, which discuss spatial
data and hierarchical data, respectively. This chapter, however, concentrates on design and
performance considerations for exploiting user-defined functions based on managed code in SQL
Server, and discussion of when you should consider using SQLCLR over more traditional T-SQL
methods. It is my opinion that the primary strength of SQLCLR integration is in the ability to both move
and share code between tiers—so this chapter’s primary focus is on maintainability and reuse scenarios.

 Note This chapter assumes that you are already familiar with basic SQLCLR topics, including how to create and
deploy functions and catalog new assemblies, in addition to the C# programming language.

159

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

Bridging the SQL/CLR Gap: The SqlTypes Library
The native datatypes exposed by the .NET Framework and by SQL Server are in many cases similar, but
generally incompatible. A few major issues come up when dealing with SQL Server and .NET
interoperability from the perspective of data types:

• First and foremost, all native SQL Server data types are nullable—that is, an
instance of any given type can either hold a valid value in the domain of the type
or represent an unknown (NULL). Types in .NET generally do not support this idea
(note that C#’s null and VB .NET’s nothing are not the same as SQL Server’s NULL).
Even though the .NET Framework supports nullable types for value type variables,
these do not behave in the same way as their SQL Server equivalents.

• The second difference between the type systems has to do with implementation.
Format, precision, and scale of the types involved in each system differ
dramatically. For example, .NET’s DateTime type supports a much larger range and
much greater precision than does SQL Server’s datetime type.

• The third major difference has to do with runtime behavior of types in
conjunction with operators. For example, in SQL Server, virtually all operations
involving at least one NULL instance of a type results in NULL. However, this is not
the same behavior as that of an operation acting on a null value in .NET. Consider
the following T-SQL:

 DECLARE @a int = 10;
 DECLARE @b int = null;
 IF (@a != @b)
 PRINT 'test is true';
 ELSE
 PRINT 'test is false';

The result of any comparison to a NULL value in T-SQL is undefined, so the
preceding code will print “test is false.” However, consider the equivalent function
implemented using nullable int types in C# (denoted by the ? character after the
type declaration):

 int? a = 10;
 int? b = null;
 if (a != b)
 Console.Write("test is true");
 else
 Console.Write("test is false");

In .NET, the comparison between 10 and null takes place, resulting in the code
printing “test is true.” In addition to nullability, differences may result from
handling overflows, underflows, and other potential errors inconsistently. For
instance, adding 1 to a 32-bit integer with the value of 2147483647 (the maximum
32-bit integer value) in a .NET language may result in the value “wrapping
around,” producing -2147483648. In SQL Server, this behavior will never occur—
instead, an overflow exception will result.

In order to provide a layer of abstraction between the two type paradigms, the .NET Framework
ships with a namespace called System.Data.SqlTypes. This namespace includes a series of structures

160

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

that map SQL Server types and behaviors into .NET. Each of these structures implements nullability
through the INullable interface, which exposes an IsNull property that allows callers to determine
whether a given instance of the type is NULL. Furthermore, these types conform to the same range,
precision, and operator rules as SQL Server’s native types.

Properly using the SqlTypes types is, simply put, the most effective way of ensuring that data
marshaled into and out of SQLCLR routines is handled correctly by each type system. It is my
recommendation that, whenever possible, all methods exposed as SQLCLR objects use SqlTypes types as
both input and output parameters, rather than standard .NET types. This will require a bit more
development work up front, but it should future-proof your code to some degree and help avoid type
incompatibility issues.

Wrapping Code to Promote Cross-Tier Reuse
One of the primary selling points for SQLCLR integration, especially for shops that use the .NET
Framework for application development, is the ability to move or share code easily between tiers when it
makes sense to do so. It’s not so easy, however, to realize that objective.

The Problem
Unfortunately, some of the design necessities of working in the SQLCLR environment do not translate
well to the application tier, and vice versa. One such example is use of the SqlTypes described in the
preceding section; although it is recommended that they be used for all interfaces in SQLCLR routines,
that prescription does not make sense in the application tier, because the SqlTypes do not support the
full range of operators and options that the native .NET types support. Using them in every case might
make data access simple, but would rob you of the ability to do many complex data manipulation tasks,
and would therefore be more of a hindrance than a helpful change.

Rewriting code or creating multiple versions customized for different tiers simply does not promote
maintainability. In the best-case scenario, any given piece of logic used by an application should be
coded in exactly one place—regardless of how many different components use the logic or where it’s
deployed. This is one of the central design goals of object-oriented programming, and it’s important to
remember that it also applies to code being reused inside of SQL Server.

One Reasonable Solution
Instead of rewriting routines and types to make them compatible with the SqlTypes and implement
other database-specific logic, I recommend that you get into the habit of designing wrapper methods
and classes. These wrappers should map the SqlTypes inputs and outputs to the .NET types actually
used by the original code, and call into the underlying routines via assembly references. Wrappers are
also a good place to implement database-specific logic that may not exist in routines originally designed
for the application tier.

In addition to the maintainability benefits for the code itself, creating wrappers has a couple of
other advantages. First of all, unit tests will not need to be rewritten—the same tests that work in the
application tier will still apply in the data tier (although you may want to write secondary unit tests for
the wrapper routines). Secondly—and perhaps more importantly—wrapping your original assemblies
can help maintain a least-privileged coding model and enhance security, as is discussed later in this
chapter in the sections “Working with Code Access Security Privileges” and “Working with Host
Protection Privileges.”

161

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

A Simple Example: E-Mail Address Format Validation
It is quite common for web forms to ask for your e-mail address, and you’ve no doubt encountered
forms that tell you if you’ve entered an e-mail address that does not comply with the standard format
expected. This sort of validation provides a quicker—but less effective—way to test an e-mail address
than actually sending an e-mail and waiting for a response, and it gives the user immediate feedback if
something is obviously incorrect.

In addition to using this logic for front-end validation, it makes sense to implement the same
approach in the database in order to drive a CHECK constraint. That way, any data that makes its way to
the database—regardless of whether it already went through the check in the application—will be
double-checked for correctness.

Following is a simple .NET method that uses a regular expression to validate the format of an e-mail
address:

public static bool IsValidEmailAddress(string emailAddress)
{
 //Validate the e-mail address
 Regex r =
 new Regex(@"\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*");

 return (r.IsMatch(emailAddress));
}

This code could, of course, be used as-is in both SQL Server and the application tier—using it in SQL
Server would simply require loading the assembly and registering the function. But this has some issues,
the most obvious of which is the lack of proper NULL handling. As-is, this method will return an
ArgumentException when a NULL is passed in. Depending on your business requirements, a better choice
would probably be either NULL or false. Another potential issue occurs in methods that require slightly
different logic in the database vs. the application tier. In the case of e-mail validation, it’s difficult to
imagine how you might enhance the logic for use in a different tier, but for other methods, such
modification would present a maintainability challenge.

The solution is to catalog the assembly containing this method in SQL Server, but not directly
expose the method as a SQLCLR UDF. Instead, create a wrapper method that uses the SqlTypes and
internally calls the initial method. This means that the underlying method will not have to be modified
in order to create a version that properly interfaces with the database, and the same assembly can be
deployed in any tier. Following is a sample that shows a wrapper method created over the
IsValidEmailAddress method, in order to expose a SQLCLR UDF version that properly supports NULL
inputs and outputs. Assume that I’ve created the inner method in a class called UtilityMethods and have
also included a using statement for the namespace used in the UtilityMethods assembly.

[Microsoft.SqlServer.Server.SqlFunction]
public static SqlBoolean IsValidEmailAddress(
 SqlString emailAddress)
{
 // Return NULL on NULL input
 if (emailAddress.IsNull)
 return (SqlBoolean.Null);

 bool isValid = UtilityMethods.IsValidEmailAddress(emailAddress.Value);
 return (new SqlBoolean(isValid));
}

162

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

Note that this technique can be used not only for loading assemblies from the application tier into
SQL Server, but also for going the other way—migrating logic back out of the data tier. Given the nature
of SQLCLR, the potential for code mobility should always be considered, and developers should consider
designing methods using wrappers even when creating code specifically for use in the database—this
will maximize the potential for reuse later, when or if the same logic needs to be migrated to another tier,
or even if the logic needs to be reused more than once inside of the data tier itself.

Cross-assembly references have other benefits as well, when working in the SQLCLR environment.
By properly leveraging references, it is possible to create a much more robust, secure SQLCLR solution.
The following sections introduce the security and reliability features that are used by SQLCLR, and show
how to create assembly references that exploit these features to manage security on a granular level.

SQLCLR Security and Reliability Features
Unlike stored procedures, triggers, UDFs, and other types of code modules that can be exposed within
SQL Server, a given SQLCLR routine is not directly related to a database, but rather to an assembly
cataloged within the database. Cataloging of an assembly is done using SQL Server’s CREATE ASSEMBLY
statement, and unlike their T-SQL equivalents, SQLCLR modules get their first security restrictions not
via grants, but rather at the same time their assemblies are cataloged. The CREATE ASSEMBLY statement
allows the DBA or database developer to specify one of three security and reliability permission sets that
dictate what the code in the assembly is allowed to do.

The allowed permission sets are SAFE, EXTERNAL_ACCESS, and UNSAFE. Each increasingly permissive
level includes and extends permissions granted by lower permission sets. The restricted set of
permissions allowed for SAFE assemblies includes limited access to math and string functions, along with
data access to the host database via the context connection. The EXTERNAL_ACCESS permission set adds
the ability to communicate outside of the SQL Server instance, to other database servers, file servers,
web servers, and so on. And the UNSAFE permission set gives the assembly the ability to do pretty much
anything—including running unmanaged code.

Although exposed as only a single user-controllable setting, internally each permission set’s rights
are actually enforced by two distinct methods:

• Assemblies assigned to each permission set are granted access to perform certain
operations via .NET’s Code Access Security (CAS) technology.

• At the same time, access is denied to certain operations based on checks against
a.NET 3.5 attribute called HostProtectionAttribute (HPA).

On the surface, the difference between HPA and CAS is that they are opposites: CAS permissions
dictate what an assembly can do, whereas HPA permissions dictate what an assembly cannot do. The
combination of everything granted by CAS and everything denied by HPA makes up each of the three
permission sets.

Beyond this basic difference is a much more important distinction between the two access control
methods. Although violation of a permission enforced by either method will result in a runtime
exception, the actual checks are done at very different times. CAS grants are checked dynamically at
runtime via a stack walk performed as code is executed. On the other hand, HPA permissions are
checked at the point of just-in-time compilation—just before calling the method being referenced.

To observe how these differences affect the way code runs, a few test cases will be necessary, which
are described in the following sections.

163

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 Tip You can download the source code of the examples in this chapter, together with all associated project files
and libraries, from the Source Code/Download area of the Apress web site, www.apress.com.

Security Exceptions
To begin with, let’s take a look at how a CAS exception works. Create a new assembly containing the
following CLR stored procedure:

[SqlProcedure]
public static void CAS_Exception()
{
 SqlContext.Pipe.Send("Starting...");

 using (FileStream fs =
 new FileStream(@"c:\b.txt", FileMode.Open))
 {
 //Do nothing...
 }

 SqlContext.Pipe.Send("Finished...");

 return;
}

Catalog the assembly as SAFE and execute the stored procedure. This will result in the following
output:

Starting...

Msg 6522, Level 16, State 1, Procedure CAS_Exception, Line 0

A .NET Framework error occurred during execution of user-defined routine or

aggregate "CAS_Exception":

System.Security.SecurityException: Request for the permission of type

'System.Security.Permissions.FileIOPermission, mscorlib, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089' failed.

System.Security.SecurityException:

 at System.Security.CodeAccessSecurityEngine.Check(Object demand,

164

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

StackCrawlMark& stackMark, Boolean isPermSet)

 at System.Security.CodeAccessPermission.Demand()

 at System.IO.FileStream.Init(String path, FileMode mode, FileAccess access, Int32

rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options,

SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy)

 at System.IO.FileStream..ctor(String path, FileMode mode)

 at udf_part2.CAS_Exception()

.

The exception thrown in this case is a SecurityException, indicating that this was a CAS violation (of
the FileIOPermission type). But the exception is not the only thing that happened; notice that the first
line of the output is the string “Starting...” which was output by the SqlPipe.Send method used in the
first line of the stored procedure. So before the exception was hit, the method was entered and code
execution succeeded until the actual permissions violation was attempted.

 Note File I/O is a good example of access to a resource—local or otherwise—that is not allowed within the
context connection. Avoiding this particular violation using the SQLCLR security buckets would require cataloging
the assembly using the EXTERNAL_ACCESS permission.

Host Protection Exceptions
To see how HPA exceptions behave, let’s repeat the same experiment described in the previous section,
this time with the following stored procedure (again, cataloged as SAFE):

[SqlProcedure]
public static void HPA_Exception()
{
 SqlContext.Pipe.Send("Starting...");

 //The next line will throw an HPA exception...
 Monitor.Enter(SqlContext.Pipe);

 //Release the lock (if the code even gets here)...
 Monitor.Exit(SqlContext.Pipe);

 SqlContext.Pipe.Send("Finished...");

165

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 return;
}

Just like before, an exception occurs. But this time, the output is a bit different:

Msg 6522, Level 16, State 1, Procedure HPA_Exception, Line 0

A .NET Framework error occurred during execution of user-defined routine or

aggregate "HPA_Exception":

System.Security.HostProtectionException: Attempted to perform an operation that

was forbidden by the CLR host.

The protected resources (only available with full trust) were: All

The demanded resources were: Synchronization, ExternalThreading

System.Security.HostProtectionException:

 at System.Security.CodeAccessSecurityEngine.ThrowSecurityException(Assembly

asm,

PermissionSet granted, PermissionSet refused, RuntimeMethodHandle rmh,

SecurityAction action, Object demand, IPermission permThatFailed)

 at System.Security.CodeAccessSecurityEngine.ThrowSecurityException(Object

assemblyOrString, PermissionSet granted, PermissionSet refused, RuntimeMethodHandle

rmh, SecurityAction action, Object demand, IPermission permThatFailed)

 at System.Security.CodeAccessSecurityEngine.CheckSetHelper(PermissionSet

grants,

PermissionSet refused, PermissionSet demands, RuntimeMethodHandle rmh, Object

assemblyOrString, SecurityAction action, Boolean throwException)

166

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 at System.Security.CodeAccessSecurityEngine.CheckSetHelper(CompressedStack

cs,

PermissionSet grants, PermissionSet refused, PermissionSet demands,

RuntimeMethodHandle rmh, Assembly asm, SecurityAction action)

 at udf_part2.HPA_Exception()

.

Unlike when executing the CAS_Exception stored procedure, this time we do not see the “Starting...”
message, indicating that the SqlPipe.Send method was not called before hitting the exception. As a
matter of fact, the HPA_Exception method was not ever entered at all during the code execution phase
(you can verify this by attempting to set a breakpoint inside of the function and starting a debug session
in Visual Studio). The reason that the breakpoint can’t be hit is that the permissions check was
performed and the exception thrown immediately after just-in-time compilation.

You should also note that the wording of the exception has a different tone than in the previous
case. The wording of the CAS exception is a rather benign “Request for the permission ... failed.” On the
other hand, the HPA exception carries a much sterner warning: “Attempted to perform an operation that
was forbidden.” This difference in wording is not accidental. CAS grants are concerned with security—to
keep code from being able to access something protected because it’s not supposed to have access. HPA
permissions, on the other hand, are concerned with server reliability and keeping the CLR host running
smoothly and efficiently. Threading and synchronization are considered potentially threatening to
reliability and are therefore limited to assemblies marked as UNSAFE.

 Note Using a .NET disassembler (such as Red Gate Reflector, www.red-gate.com/products/reflector/), it is
possible to explore the Base Class Library to see which HPA attributes are assigned to various classes and
methods. For instance, the Monitor class is decorated with the following attributes that control host access:
[ComVisible(true), HostProtection(SecurityAction.LinkDemand, Synchronization=true,

ExternalThreading=true)].

A full list of what is and is not allowed based on the CAS and HPA models is beyond the scope of this
chapter, but is well documented by Microsoft. Refer to the following MSDN topics:

• Host Protection Attributes and CLR Integration Programming
(http://msdn2.microsoft.com/en-us/library/ms403276.aspx)

• CLR Integration Code Access Security (http://msdn2.microsoft.com/en-
us/library/ms345101.aspx)

167

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

The Quest for Code Safety
You might be wondering why I’m covering the internals of the SQLCLR permission sets and how their
exceptions differ, when fixing the exceptions is so easy: simply raise the permission level of the
assemblies to EXTERNAL_ACCESS or UNSAFE and give the code access to do what it needs to do. The fact is,
raising the permission levels will certainly work, but by doing so you may be circumventing the security
policy, instead of working with it to make your system more secure.

As mentioned in the previous section, code access permissions are granted at the assembly level
rather than the method or line level. Therefore, raising the permission of a given assembly in order to
make a certain module work can actually affect many different modules contained within the assembly,
giving them all enhanced access. Granting additional permissions on several modules within an
assembly can in turn create a maintenance burden: if you want to be certain that there are no security
problems, you must review each and every line of code in every module in the assembly to make sure it’s
not doing anything it’s not supposed to do—you can no longer trust the engine to check for you.

You might now be thinking that the solution is simple: split up your methods so that each resides in
a separate assembly, and then grant permissions that way. Then each method really will have its own
permission set. But even in that case, permissions may not be granular enough to avoid code review
nightmares. Consider a complex 5,000-line module that requires a single file I/O operation to read some
lines from a text file. By giving the entire module EXTERNAL_ACCESS permissions, it can now read the lines
from that file. But of course, you still have to check all of the 4,999 remaining code lines to make sure
they’re not doing anything unauthorized.

Then there is the question of the effectiveness of manual code review. Is doing a stringent review
every time any change is made enough to ensure that the code won’t cause problems that would be
detected by the engine if the code was marked SAFE? And do you really want to have to do a stringent
review before deployment every time any change is made? In the following section, I will show you how
to eliminate many of these problems by taking advantage of assembly dependencies in your SQLCLR
environment.

Selective Privilege Escalation via Assembly References
In an ideal world, SQLCLR module permissions could be made to work like T-SQL module permissions
as described in Chapter 5: outer modules would be granted the least possible privileges, but would be
able to selectively and temporarily escalate their privileges in order to perform certain operations that
require more access. This would lessen the privileged surface area significantly, which would mean that
there would be less need to do a stringent security review on outer (less-privileged) module layers, which
undoubtedly constitute the majority of code written for a given system—the engine would make sure
they behave.

The general solution to this problem is to split up code into separate assemblies based on
permissions requirements, but not to do so without regard for both maintenance overhead and reuse.
For example, consider the 5,000-line module mentioned in the previous section, which needs to read a
few lines from a text file. The entire module could be granted a sufficiently high level of privileges to read
the file, or the code to read the file could be taken out and placed into its own assembly. This external
assembly would expose a method that takes a file name as input and returns a collection of lines. As I’ll
show in the following sections, this solution would let you catalog the bulk of the code as SAFE yet still do
the file I/O operation. Plus, future modules that need to read lines from text files could reference the
same assembly, and therefore not have to reimplement this logic.

The encapsulation story is, alas, not quite as straightforward as creating a new assembly with the
necessary logic and referencing it. Due to the different behavior of CAS and HPA exceptions, you might
have to perform some code analysis in order to properly encapsulate the permissions of the inner

168

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

modules. In the following sections, I’ll cover each of the permission types separately in order to illustrate
how to design a solution.

Working with Host Protection Privileges
A fairly common SQLCLR pattern is to create static collections that can be shared among callers.
However, as with any shared data set, proper synchronization is essential in case you need to update
some of the data after its initial load. From a SQLCLR standpoint, this gets dicey due to the fact that
threading and synchronization require UNSAFE access—granting such an open level of permission is not
something to be taken lightly.

For an example of a scenario that might make use of a static collection, consider a SQLCLR UDF
used to calculate currency conversions based on exchange rates:

[SqlFunction]
public static SqlDecimal GetConvertedAmount(
 SqlDecimal InputAmount,
 SqlString InCurrency,
 SqlString OutCurrency)
{
 //Convert the input amount to the base
 decimal BaseAmount =
 GetRate(InCurrency.Value) *
 InputAmount.Value;

 //Return the converted base amount
 return (new SqlDecimal(
 GetRate(OutCurrency.Value) * BaseAmount));
}

The GetConvertedAmount method internally makes use of another method, GetRate:

private static decimal GetRate(string Currency)
{
 decimal theRate;
 rwl.AcquireReaderLock(100);

 try
 {
 theRate = rates[Currency];
 }
 finally
 {
 rwl.ReleaseLock();
 }

 return (theRate);
}

GetRate performs a lookup in a static generic instance of Dictionary<string, decimal>, called
rates. This collection contains exchange rates for the given currencies in the system. In order to protect

169

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

against problems that will occur if another thread happens to be updating the rates, synchronization is
handled using a static instance of ReaderWriterLock, called rwl. Both the dictionary and the
ReaderWriterLock are instantiated when a method on the class is first called, and both are marked
readonly in order to avoid being overwritten after instantiation:

static readonly Dictionary<string, decimal>
 rates = new Dictionary<string, decimal>();
static readonly ReaderWriterLock
 rwl = new ReaderWriterLock();

If cataloged using either the SAFE or EXTERNAL_ACCESS permission sets, this code fails due to its use of
synchronization (the ReaderWriterLock), and running it produces a HostProtectionException. The
solution is to move the affected code into its own assembly, cataloged as UNSAFE. Because the host
protection check is evaluated at the moment of just-in-time compilation of a method in an assembly,
rather than dynamically as the method is running, the check is done as the assembly boundary is being
crossed. This means that an outer method can be marked SAFE and temporarily escalate its permissions
by calling into an UNSAFE core.

 Note You might be wondering about the validity of this example, given the ease with which this system could
be implemented in pure T-SQL, which would eliminate the permissions problem outright. I do feel that this is a
realistic example, especially if the system needs to do a large number of currency translations on any given day.
SQLCLR code will generally outperform T-SQL for even simple mathematical work, and caching the data in a
shared collection rather than reading it from the database on every call is a huge efficiency win. I’m confident that
this solution would easily outperform any pure T-SQL equivalent.

When designing the UNSAFE assembly, it is important from a reuse point of view to carefully analyze
what functionality should be made available. In this case, it’s not the use of the dictionary that is causing
the problem—synchronization via the ReaderWriterLock is throwing the actual exception. However, a
wrapping method placed solely around a ReaderWriterLock would probably not promote very much
reuse. A better tactic, in my opinion, is to wrap the Dictionary and the ReaderWriterLock together,
creating a new ThreadSafeDictionary class. This class could be used in any scenario in which a shared
data cache is required.

Following is my implementation of the ThreadSafeDictionary; I have not implemented all of the
methods that the generic Dictionary class exposes, but rather only those I commonly use—namely, Add,
Remove, and ContainsKey:

using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;

namespace SafeDictionary
{
 public class ThreadSafeDictionary<K, V>
 {

170

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 private readonly Dictionary<K, V> dict = new Dictionary<K,V>();
 private readonly ReaderWriterLock theLock = new ReaderWriterLock();

 public void Add(K key, V value)
 {
 theLock.AcquireWriterLock(2000);

 try
 {
 dict.Add(key, value);
 }
 finally
 {
 theLock.ReleaseLock();
 }
 }

 public V this[K key]
 {
 get
 {
 theLock.AcquireReaderLock(2000);
 try
 {
 return (this.dict[key]);
 }
 finally
 {
 theLock.ReleaseLock();
 }
 }

 set
 {
 theLock.AcquireWriterLock(2000);
 try
 {
 dict[key] = value;
 }
 finally
 {
 theLock.ReleaseLock();
 }
 }
 }

 public bool Remove(K key)
 {
 theLock.AcquireWriterLock(2000);
 try
 {
 return (dict.Remove(key));

171

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 }
 finally
 {
 theLock.ReleaseLock();
 }
 }

 public bool ContainsKey(K key)
 {
 theLock.AcquireReaderLock(2000);
 try
 {
 return (dict.ContainsKey(key));
 }
 finally
 {
 theLock.ReleaseLock();
 }
 }
 }
}

This class should be placed into a new assembly, which should then be compiled and cataloged in
SQL Server as UNSAFE. A reference to the UNSAFE assembly should be used in the exchange rates
conversion assembly, after which a few lines of the previous example code will have to change. First of
all, the only static object that must be created is an instance of ThreadSafeDictionary:

static readonly ThreadSafeDictionary<string, decimal> rates =
 new ThreadSafeDictionary<string, decimal>();

Since the ThreadSafeDictionary is already thread safe, the GetRate method no longer needs to be
concerned with synchronization. Without this requirement, its code becomes greatly simplified:

private static decimal GetRate(string Currency)
{
 return (rates[Currency]);
}

The exchange rates conversion assembly can still be marked SAFE, and can now make use of the
encapsulated synchronization code without throwing a HostProtectionException. And none of the code
actually contained in the assembly will be able to use resources that violate the permissions allowed by
the SAFE bucket—quite an improvement over the initial implementation, from a security perspective.

172

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 Note Depending on whether your database has the TRUSTWORTHY option enabled and whether your assemblies
are strongly named, things may not be quite as simple as I’ve implied here. The examples in both this and the next
section may fail either at deployment time, if your core assembly doesn’t have the correct permissions; or at
runtime, if you’ve decided to go with a strongly named assembly. See the section “Granting Cross-Assembly
Privileges” later in this chapter for more information. In the meantime, if you’re following along, work in a
database with the TRUSTWORTHY option turned on, and forgo the strong naming for now.

Working with Code Access Security Privileges
HPA-protected resources are quite easy to encapsulate, thanks to the fact that permissions for a given
method are checked when the method is just-in-time compiled. Alas, things are not quite so simple
when working with CAS-protected resources, due to the fact that grants are checked dynamically at
runtime via a stack walk. This means that simply referencing a second assembly is not enough—the
entire stack is walked each time, without regard to assembly boundaries.

To illustrate this issue, create a new assembly containing the following method, which reads all of
the lines from a text file and returns them as a collection of strings:

public static string[] ReadFileLines(string FilePath)
{
 List<string> theLines = new List<string>();

 using (System.IO.StreamReader sr =
 new System.IO.StreamReader(FilePath))
 {
 string line;
 while ((line = sr.ReadLine()) != null)
 theLines.Add(line);
 }

 return (theLines.ToArray());
}

Catalog the assembly in SQL Server with the EXTERNAL_ACCESS permission set. Now let’s revisit the
CAS_Exception stored procedure created earlier this chapter, which was contained in a SAFE assembly,
and threw an exception when used to access a local file resource. Edit the CAS_Exception assembly to
include a reference to the assembly containing the ReadFileLines method, and modify the stored
procedure as follows:

[SqlProcedure]
public static void CAS_Exception()
{
 SqlContext.Pipe.Send("Starting...");

173

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 string[] theLines =
 FileLines.ReadFileLines(@"C:\b.txt");

 SqlContext.Pipe.Send("Finished...");

 return;
}

Note that I created my ReadFileLines method inside a class called FileLines; reference yours
appropriately depending on what class name you used. Once you’ve finished the modifications,
redeploy the outer assembly, making sure that it is cataloged as SAFE.

Running the modified version of this stored procedure, you’ll find that even though an assembly
boundary is crossed, you will receive the same exception as before. The CAS grant did not change simply
because a more highly privileged assembly was referenced, due to the fact that the stack walk does not
take into account permissions held by referenced assemblies.

Working around this issue requires taking control of the stack walk within the referenced assembly.
Since the assembly has enough privilege to do file operations, it can internally demand that the stack
walk discontinue checks for file I/O permissions, even when called from another assembly that does not
have the requisite permissions. This is done by using the Assert method of the IStackWalk interface,
exposed in .NET’s System.Security namespace.

Taking a second look at the CAS violation shown previously, note that the required permission is
FileIOPermission, which is in the System.Security.Permissions namespace. The FileIOPermission
class—in addition to other “permission” classes in that namespace—implements the IStackWalk
interface. To avoid the CAS exception, simply instantiate an instance of the FileIOPermission class and
call the Assert method. The following code is a modified version of the ReadFileLines method that uses
this technique:

public static string[] ReadFileLines(string FilePath)
{
 //Assert that anything File IO-related that this
 //assembly has permission to do, callers can do
 FileIOPermission fp = new FileIOPermission(
 PermissionState.Unrestricted);
 fp.Assert();

 List<string> theLines = new List<string>();

 using (System.IO.StreamReader sr =
 new System.IO.StreamReader(FilePath))
 {
 string line;
 while ((line = sr.ReadLine()) != null)
 theLines.Add(line);
 }

 return (theLines.ToArray());
}

This version of the method instantiates the FileIOPermission class with the
PermissionState.Unrestricted enumeration, thereby enabling all callers to do whatever file I/O–related
activities the assembly has permission to do. The use of the term “unrestricted” in this context is not as

174

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

dangerous as it sounds; the access is unrestricted in the sense that permission is allowed for only as
much access as the assembly already has to the file system. After making the modifications shown here
and redeploying both assemblies, the CAS exception will no longer be an issue.

To allow you to control things on a more granular level, the FileIOPermission class exposes other
constructor overloads with different options. The most useful of these for this example uses an
enumeration called FileIOPermissionAccess in conjunction with the path to a file, allowing you to limit
the permissions granted to the caller to only specific operations on a named file. For instance, to limit
access so that the caller can only read the file specified in this example, use the following constructor:

FileIOPermission fp = new FileIOPermission(
 FileIOPermissionAccess.Read,
 "C:\b.txt");

File I/O is only one of many kinds of permissions for which you might see a CAS exception. The
important thing is being able to identify the pattern. In all cases, violations will throw a
SecurityException and reference a permission class in the System.Security.Permissions namespace.
Each class follows the same basic pattern outlined here, so you should be able to easily use this
technique in order to design any number of privilege escalation solutions.

Granting Cross-Assembly Privileges
The examples in the preceding sections were simplified a bit in order to focus the text on a single issue at
a time. There are two other issues you need to be concerned with when working with cross-assembly
calls: database trustworthiness and strong naming.

Database Trustworthiness
The idea of a “trustworthy” database is a direct offshoot of Microsoft’s heightened awareness of security
issues in recent years. Marking a database as trustworthy is a simple matter of setting an option using
ALTER DATABASE:

ALTER DATABASE AdventureWorks2008
SET TRUSTWORTHY ON;
GO

Unfortunately, as simple as enabling this option is, the repercussions of this setting are far from it.
Effectively, it comes down to the fact that code running in the context of a trustworthy database can
access resources outside of the database more easily than code running in a database not marked as
such. This means access to the file system, remote database servers, and even other databases on the
same server—all of this access is controlled by this one option, so be careful.

Turning off the TRUSTWORTHY option means that rogue code will have a much harder time accessing
resources outside of the database, but it also means that, as a developer, you will have to spend more
time dealing with security issues. That said, I highly recommend leaving the TRUSTWORTHY option turned
off unless you really have a great reason to enable it. Dealing with access control in a nontrustworthy
database is not too difficult; the module-signing techniques discussed in Chapter 5 should be applied,
which puts access control squarely in your hands and does not make life easy for code that shouldn’t
have access to a given resource.

In the SQLCLR world, you’ll see a deploy-time exception if you catalog an assembly that references
an assembly using the EXTERNAL_ACCESS or UNSAFE permission sets in a nontrustworthy database.

175

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

Following is the exception I get when trying to catalog the assembly I created that contains the
GetConvertedAmount method, after setting my database to nontrustworthy mode:

CREATE ASSEMBLY for assembly 'CurrencyConversion' failed because
assembly 'SafeDictionary' is not authorized for PERMISSION_SET = UNSAFE.
The assembly is authorized when either of the following is true: the database
owner (DBO) has UNSAFE ASSEMBLY permission and the database has the TRUSTWORTHY
database property on; or the assembly is signed with a certificate or an asymmetric
key that has a corresponding login with UNSAFE ASSEMBLY permission.
If you have restored or attached this database, make sure the database owner is
mapped to the correct login on this server. If not, use sp_changedbowner to fix
 the problem.

This rather verbose exception is rare and to be treasured: it describes exactly how to solve the
problem! Following the procedure described in Chapter 5, you can grant the UNSAFE ASSEMBLY
permission by using certificates. To begin, create a certificate and a corresponding login in the master
database, and grant the login UNSAFE ASSEMBLY permission:

USE master;
GO

CREATE CERTIFICATE Assembly_Permissions_Certificate
ENCRYPTION BY PASSWORD = 'uSe_a STr()nG PaSSW0rD!'
WITH SUBJECT = 'Certificate used to grant assembly permission';
GO

CREATE LOGIN Assembly_Permissions_Login
FROM CERTIFICATE Assembly_Permissions_Certificate;
GO

GRANT UNSAFE ASSEMBLY TO Assembly_Permissions_Login;
GO

Next, back up the certificate to a file:

BACKUP CERTIFICATE Assembly_Permissions_Certificate
TO FILE = 'C:\assembly_permissions.cer'
WITH PRIVATE KEY
(
 FILE = 'C:\assembly_permissions.pvk',
 ENCRYPTION BY PASSWORD = 'is?tHiS_a_VeRySTronGP4ssWoR|)?',
 DECRYPTION BY PASSWORD = 'uSe_a STr()nG PaSSW0rD!'
);
GO

Now, in the database in which you’re working—AdventureWorks2008, in my case—restore the
certificate and create a local database user from it:

USE AdventureWorks2008;
GO

176

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

CREATE CERTIFICATE Assembly_Permissions_Certificate
FROM FILE = 'C:\assembly_permissions.cer'
WITH PRIVATE KEY
(
 FILE = 'C:\assembly_permissions.pvk',
 DECRYPTION BY PASSWORD = 'is?tHiS_a_VeRySTronGP4ssWoR|)?',
 ENCRYPTION BY PASSWORD = 'uSe_a STr()nG PaSSW0rD!'
);
GO

CREATE USER Assembly_Permissions_User
FOR CERTIFICATE Assembly_Permissions_Certificate;
GO

Finally, sign the assembly with the certificate, thereby granting access and allowing the assembly to
be referenced:

ADD SIGNATURE TO ASSEMBLY::SafeDictionary
BY CERTIFICATE Assembly_Permissions_Certificate
WITH PASSWORD='uSe_a STr()nG PaSSW0rD!';
GO

Strong Naming
The other issue you might encounter has to do with strongly named assemblies. Strong naming is a .NET
security feature that allows you to digitally sign your assembly, allocating a version number and ensuring
its validity to users. For most SQLCLR code, strong naming is probably overkill—code running in
secured, managed databases probably doesn’t need the additional assurances that strong naming
provides. However, vendors looking at distributing applications that include SQLCLR components will
definitely want to look at strong naming.

After signing the assembly that contains the ReadFileLines method and redeploying both it and the
assembly containing the CAS_Exception stored procedure, I receive the following error when I call the
procedure:

Msg 6522, Level 16, State 1, Procedure CAS_Exception, Line 0

A .NET Framework error occurred during execution of user-defined routine or

aggregate "CAS_Exception":

System.Security.SecurityException: That assembly does not allow partially trusted

callers.

System.Security.SecurityException:

 at System.Security.CodeAccessSecurityEngine.ThrowSecurityException(Assembly asm,

177

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

PermissionSet granted, PermissionSet refused, RuntimeMethodHandle rmh,

SecurityAction action, Object demand, IPermission permThatFailed)

 at udf_part2.CAS_Exception()

.

The solution is to add an AllowPartiallyTrustedCallersAttribute (often referred to merely as
APTCA in articles) to the code. This attribute should be added to a single file in the assembly, after the
using declarations and before definition of any classes or namespaces. In the case of the FileLines
assembly, the file looks like the following after adding the attribute:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Collections.Generic;
using System.Security.Permissions;

[assembly: System.Security.AllowPartiallyTrustedCallers]

public partial class FileLines
{

Once this attribute has been added, any caller can use the methods in the FileLines class, without
receiving an exception. Keep in mind that this attribute must be specified for a reason, and by using it
you may be allowing callers to circumvent security. If the assembly performs operations that not all
users should be able to access, make sure to implement other security measures, such as by creating
groups of assemblies with different owners, to ensure that nongrouped assemblies cannot reference the
sensitive methods.

Performance Comparison: SQLCLR vs. TSQL
Having discussed some of the security and architecture considerations behind implementing a SQLCLR-
based solution, you may be wondering about what sort of situations could actually benefit from using
SQLCLR.

It is important to realize that SQLCLR is not, and was never intended to be, a replacement for T-SQL
as a data manipulation language in SQL Server. In order to read data from the database, and to perform
most standard data operations, T-SQL is the only choice. Also, although I’ve stressed the importance of
creating portable code that may be easily moved and shared between tiers, you should not try to use
SQLCLR as a way of moving logic that rightly belongs in the application into the database. Although
allowing the potential for code reuse between tiers can be beneficial, remember that database servers
are typically the most expensive tier to scale, so moving too much logic into the database is an inefficient
use of precious database resources, which could have been provided by a much cheaper application

178

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

server. For a further discussion of the correct placement of data and application logic, refer back to
Chapter 1.

Examples of commonly cited situations in which SQLCLR is perhaps a better choice than TSQL
include manipulation of string or XML data, certain math functions that are provided by dedicated
methods in the .NET Base Class Library, and situations where procedural code is more efficient than set-
based logic. In order to test the validity of these claims, I decided to set up some simple test cases to
compare the relative performance of T-SQL against SQLCLR, which are described in the following
sections.

Creating a “Simple Sieve” for Prime Numbers
For this test, I created two simple procedures that return a list of all prime numbers up to a supplied
maximum value—one implemented in T-SQL, and one using SQLCLR. The logic of these tests was made
as simple as possible: each is supplied with a maximum value that is decremented in a loop, and in each
iteration of the loop, the modulo operator is used to determine the remainder when that value is divided
by every lesser number. If the remainder of the division is 0 (in other words, we have found a factor), we
know that the current value is not a prime number. The loop therefore moves on to test the next possible
value. If the inner loop tests every possible divisor and has not found any factors, then we know the
value must be a prime. Using this kind of “simple sieve” algorithm for finding prime numbers relies on
basic mathematical functions and procedural logic, which makes it a good test to compare the
performance of T-SQL and SQLCLR. Here’s the T-SQL implementation:

CREATE PROCEDURE ListPrimesTSQL (
 @Limit int
)
AS BEGIN
DECLARE
 -- @n is the number we're testing to see if it's a prime
 @n int = @Limit,
 --@m is all the possible numbers that could be a factor of @n
 @m int = @Limit - 1;
 -- Loop descending through the candidate primes
 WHILE (@n > 1)
 BEGIN
 -- Loop descending through the candidate factors
 WHILE (@m > 0)
 BEGIN
 -- We've got all the way to 2 and haven't found any factors
 IF(@m = 1)
 BEGIN
 PRINT CAST(@n AS varchar(32)) + ' is a prime'
 BREAK;
 END
 -- Is this @m a factor of this prime?
 IF(@n%@m) <> 0
 BEGIN
 -- Not a factor, so move on to the next @m
 SET @m = @m - 1;
 CONTINUE;
 END

179

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 ELSE BREAK;
 END
 SET @n = @n-1;
 SET @m = @n-1;
 END
END;
GO

And here’s the SQLCLR implementation using exactly the same logic:

 [SqlProcedure]
public static void ListPrimesCLR(SqlInt32 Limit)
{
 int n = (int)Limit;
 int m = (int)Limit - 1;

 while(n > 1)
 {
 while(m > 0)
 {
 if(m == 1)
 {
 SqlContext.Pipe.Send(n.ToString() + " is a prime");
 }

 if(n%m != 0)
 {
 m = m - 1;
 continue;
 }
 else
 {
 break;
 }
 }
 n = n - 1;
 m = n - 1;
 }
}

 Note Clearly, if you actually wanted to get a list of the prime numbers, you would NOT use such a naive
approach as this. The example used here is intended to provide a simple procedure that can be implemented
consistently across both T-SQL and SQLCLR.

180

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

I tested each solution several times, supplying different values for the maximum limit from which
the loop starts. The average execution time for each solution is shown in the graph illustrated in Figure
7-1.

Figure 7-1. Comparison of prime number sieve implemented in T-SQL and SQLCLR

The results should come as no surprise—since the approach taken relies on mathematical
operations in an iterative loop, SQLCLR is always likely to outperform set-based T-SQL. However, you
might be surprised by the magnitude of the difference between the two solutions, especially as the
number of iterations increases. If we were to compare simple inline, or nonprocedural, calculations then
there would likely not be such a stark contrast between the two methods.

Calculating Running Aggregates
Few practical database applications need to produce a list of prime numbers—a more common type of
mathematical query operation that might benefit from the use of SQLCLR is when you need to calculate
a value in a row based on the value of previous rows’ data. The most common example of such a linear
query is in the calculation of aggregates, such as running sums of columns.

The typical approach using T-SQL is to make use of a self-join on the table, such as follows:

SELECT
 T1.x,
 SUM(T2.x) AS running_x
FROM
 T AS T1 INNER JOIN T AS T2
 ON T1.x >= T2.x
GROUP BY
 T1.x;

181

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

Unfortunately, the process required to satisfy this query is not very efficient. Assuming that an index
exists on the x column of the table, the preceding query generates the execution plan shown in Figure
7-2.

Figure 7-2. A nested index seek used to create a running sum in T-SQL

To sum all of the previous values in the column requires a nested loop containing an index seek. The
number of rows returned by this seek increases exponentially as more rows are processed. On the first
row, this seek must only sum one value, but to find the running sum over a set of 100 rows, 5,050 total
rows need to be read. For a set of 200 rows, the query processor needs to process 20,100 total rows—four
times the amount of work required to satisfy the previous query. Thus, the performance of this approach
to calculate running aggregates degrades rapidly as more rows are added to the table.

An alternative solution, which can yield some significant performance benefits, is to make use of a
cursor. There is a commonly held perception in the SQL Server development world that cursors are a
bad thing, but they do have valid use cases, and this might be one of them. However, there are a number
of good reasons why many developers are reluctant to use cursors, and I’m certainly not advocating their
use in general.

A better approach would be to use SQLCLR to loop through and store the running values using local
variables, and then stream the results one row at a time via the SqlPipe. An example of such a solution is
given in the following code listing:

[Microsoft.SqlServer.Server.SqlProcedure]
public static void RunningSum()
{
 using (SqlConnection conn = new SqlConnection("context connection=true;"))
 {
 SqlCommand comm = new SqlCommand();
 comm.Connection = conn;
 comm.CommandText = "SELECT x FROM T ORDER BY x";

 SqlMetaData[] columns = new SqlMetaData[2];
 columns[0] = new SqlMetaData("Value", SqlDbType.Int);
 columns[1] = new SqlMetaData("RunningSum", SqlDbType.Int);

 int RunningSum = 0;

 SqlDataRecord record = new SqlDataRecord(columns);

182

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 SqlContext.Pipe.SendResultsStart(record);

 conn.Open();

 SqlDataReader reader = comm.ExecuteReader();

 while (reader.Read())
 {
 int Value = (int)reader[0];
 RunningSum += Value;

 record.SetInt32(0, (int)reader[0]);
 record.SetInt32(1, RunningSum);

 SqlContext.Pipe.SendResultsRow(record);
 }

 SqlContext.Pipe.SendResultsEnd();
 }
}

I’ve used this solution on a number of occasions and find it to be very efficient and maintainable,
and it avoids the need for any temp tables to be used to hold the running sums as required by the
alternatives. When testing against a table containing 100,000 rows, I achieve an average execution time
of 2.7 seconds for the SQLCLR query, compared to over 5 minutes for the TSQL equivalent.

String Manipulation
To compare the performance of string-handling functions between T-SQL and SQLCLR, I wanted to
come up with a fair, practical test. The problem is that there are lots of ingenious techniques for working
with string data: in T-SQL, some of the best performing methods use one or more common table
expressions (CTEs), CROSS APPLY operators, or number tables; or convert text strings to XML in or order
to perform nontrivial manipulation of character data. Likewise, in SQLCLR, the techniques available
differ considerably depending on whether you use the native String methods or those provided by the
StringBuilder class.

I decided that, rather than try to define a scenario that required a string-handling technique, the
only fair test was to perform a direct comparison of two built-in methods that provided the equivalent
functionality in either environment. I decided to settle on the T-SQL CHARINDEX and .NET’s
String.IndexOf(), each of which searches for and returns the position of one string inside another
string. For the purposes of the test, I created nvarchar(max) strings of different lengths, each composed
entirely of the repeating character a. I then appended a single character x onto the end of each string,
and timed the performance of the respective methods to find the position of that character over 10,000
iterations.

183

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

The following code listing demonstrates the T-SQL method:

CREATE PROCEDURE SearchCharTSQL
(
 @needle nchar(1),
 @haystack nvarchar(max)
)
AS BEGIN
 PRINT CHARINDEX(@needle, @haystack);
END;

And here’s the() CLR equivalent:

[SqlProcedure]
public static void SearchCharCLR(SqlString needle, SqlString haystack)
{
 SqlContext.Pipe.Send(
 haystack.ToString().IndexOf(needle.ToString()).ToString()
);
}

Note that the starting position for CHARINDEX is 1-based, whereas the index numbering used by
IndexOf() is 0-based. The results of each method will therefore differ, but they will have done the same
amount of work obtaining that result. I tested each procedure as follows, substituting different
parameter values for the REPLICATE method to change the length of the string to be searched:

DECLARE @needle nvarchar(1) = 'x';
DECLARE @haystack nvarchar(max);
SELECT @haystack = REPLICATE(CAST('a' AS varchar(max)), 8000) + 'x';
EXEC dbo.SearchCharTSQL @needle, @haystack;

The execution times required for 10,000 runs of each method are shown in Figure 7-3.

Figure 7-3. Comparing performance of CHARINDEX against String. ()IndexOf()

184

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

As with the prime number sieve example given earlier, the logic required for string searching,
matching, and replacing is best suited to the highly efficient routines provided by the .NET Base Class
Library. If you currently have code logic that relies heavily on T-SQL string functionality including
CHARINDEX, PATINDEX, or REPLACE, I highly recommend that you investigate the alternative options
available through SQLCLR—you might be surprised by the performance gain you achieve.

Enhancing Service Broker Scale-Out with SQLCLR
Having discussed some of the theory behind working with the SQLCLR and given some isolated
performance comparisons, let’s now turn our attention to a more detailed example that puts these ideas
into practice. Service Broker is frequently mentioned as an excellent choice for helping to scale out
database services. One of the more compelling use cases is a Service Broker service that can be used to
asynchronously request data from a remote system. In such a case, a request message would be sent to
the remote data service from a local stored procedure, which could do some other work while waiting for
the response—the requested data—to come back.

There are many ways to architect such a system, and given that Service Broker allows messages to
be sent either as binary or XML, I wondered which would provide the best overall performance and
value from a code reuse perspective. In the following sections, I’ll guide you through my investigations
into XML and binary serialization using SQLCLR.

XML Serialization
I started working with the HumanResources.Employee table from the AdventureWorks2008 database as a
sample data set, imagining a remote data service requesting a list of employees along with their
attributes. After some experimentation, I determined that the FOR XML RAW option is the easiest way to
serialize a table in XML format, and I used the ROOT option to make the XML valid:

DECLARE @x xml;
SET @x = (
 SELECT *
 FROM HumanResources.Employee
 FOR XML RAW, ROOT('Employees')
);
GO

XML is, of course, known to be an extremely verbose data interchange format, and I was not
surprised to discover that the data size of the resultant XML is 105KB, despite the fact that the
HumanResources.Employee table itself has only 56KB of data. I experimented with setting shorter column
names, but it had very little effect on the size and created what I feel to be unmaintainable code.

Next, I set up a trace to gather some idea of the performance of the XML serialization (for more
information on traces, refer to Chapter 3). The trace results revealed that the average execution time for
the preceding query on my system, averaged over 1,000 iterations, was a decidedly unimpressive 3.9095
seconds per iteration.

After some trial and error, I discovered that XML serialization could be made to perform better by
using the TYPE directive, as follows:

DECLARE @x xml;
SET @x = (

185

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 SELECT *
 FROM HumanResources.Employee
 FOR XML RAW, ROOT('Employees'), TYPE
);
GO

This change brought the average time per iteration down slightly, to 3.6687 seconds—an
improvement, but still not a very good result.

XML Deserialization
Even though XML serialization had not yielded impressive performance, I decided to carry on and test
deserialization. The first problem was the code required to deserialize the XML back into a table. In
order to get back the same table I started with, I had to explicitly define every column for the result set;
this made the code quite a bit more complex than I’d hoped for. Furthermore, since the XQuery value
syntax does not support the hierarchyid datatype, the values in the OrganizationNode column must be
read as nvarchar and then CAST to hierarchyid. The resulting code is as follows:

DECLARE @x xml;
SET @x = (
 SELECT *
 FROM HumanResources.Employee
 FOR XML RAW, ROOT('Employees'), TYPE
);

SELECT
 col.value('@BusinessEntityID', 'int') AS BusinessEntityID,
 col.value('@NationalIDNumber', 'nvarchar(15)') AS NationalIDNumber,
 col.value('@LoginID', 'nvarchar(256)') AS LoginID,
 CAST(col.value('@OrganizationNode', 'nvarchar(256)') AS hierarchyid)
 AS OrganizationNode,
 col.value('@JobTitle', 'nvarchar(50)') AS JobTitle,
 col.value('@BirthDate', 'datetime') AS BirthDate,
 col.value('@MaritalStatus', 'nchar(1)') AS MaritalStatus,
 col.value('@Gender', 'nchar(1)') AS Gender,
 col.value('@HireDate', 'datetime') AS HireDate,
 col.value('@SalariedFlag', 'bit') AS SalariedFlag,
 col.value('@VacationHours', 'smallint') AS VacationHours,
 col.value('@SickLeaveHours', 'smallint') AS SickLeaveHours,
 col.value('@CurrentFlag', 'bit') AS CurrentFlag,
 col.value('@rowguid', 'uniqueidentifier') AS rowguid,
 col.value('@ModifiedDate', 'datetime') AS ModifiedDate
FROM @x.nodes ('/Employees/row') x (col);
GO

The next problem was performance. When I tested deserializing the XML using the preceding query,
performance went from poor to downright abysmal—averaging 6.8157 seconds per iteration.

At this point, I decided to investigate SQLCLR options for solving the problem, focusing on both
reuse potential and performance.

186

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

Binary Serialization with SQLCLR
My first thought was to return binary serialized DataTables; in order to make that happen, I needed a
way to return binary-formatted data from my CLR routines. This of course called for .NET’s
BinaryFormatter class, so I created a class called serialization_helper, cataloged in an EXTERNAL_ACCESS
assembly (required for System.IO access):

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Security.Permissions;
using System.Runtime.Serialization.Formatters.Binary;

public partial class serialization_helper
{
 public static byte[] getBytes(object o)
 {
 SecurityPermission sp =
 new SecurityPermission(
 SecurityPermissionFlag.SerializationFormatter);
 sp.Assert();

 BinaryFormatter bf = new BinaryFormatter();

 using (System.IO.MemoryStream ms =
 new System.IO.MemoryStream())
 {
 bf.Serialize(ms, o);

 return(ms.ToArray());
 }
 }

 public static object getObject(byte[] theBytes)
 {
 using (System.IO.MemoryStream ms =
 new System.IO.MemoryStream(theBytes, false))
 {
 return(getObject(ms));
 }
 }

 public static object getObject(System.IO.Stream s)
 {
 SecurityPermission sp =
 new SecurityPermission(
 SecurityPermissionFlag.SerializationFormatter);
 sp.Assert();

187

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 BinaryFormatter bf = new BinaryFormatter();

 return (bf.Deserialize(s));
 }
};

Use of this class is fairly straightforward: to serialize an object, pass it into the getBytes method. This
method first uses an assertion, as discussed previously, to allow SAFE callers to use it, and then uses the
binary formatter to serialize the object to a Stream. The stream is then returned as a collection of bytes.
Deserialization can be done using either overload of the getObject method. I found that depending on
the scenario, I might have ready access to either a Stream or a collection of bytes, so creating both
overloads made sense instead of duplicating code to produce one from the other. Deserialization also
uses an assertion before running, in order to allow calling code to be cataloged as SAFE.

My first shot at getting the data was to simply load the input set into a DataTable and run it through
the serialization_helper methods. The following code implements a UDF called GetDataTable_Binary,
which uses this logic:

[Microsoft.SqlServer.Server.SqlFunction(
 DataAccess = DataAccessKind.Read)]
public static SqlBytes GetDataTable_Binary(string query)
{
 SqlConnection conn =
 new SqlConnection("context connection = true;");

 SqlCommand comm = new SqlCommand();
 comm.Connection = conn;
 comm.CommandText = query;

 SqlDataAdapter da = new SqlDataAdapter();
 da.SelectCommand = comm;

 DataTable dt = new DataTable();
 da.Fill(dt);

 //Serialize and return the output
 return new SqlBytes(
 serialization_helper.getBytes(dt));
}

This method is used by passing in a query for the table that you’d like to get back in binary serialized
form, as in the following example:

DECLARE @sql nvarchar(max);
SET @sql = 'SELECT
 BusinessEntityID,
 NationalIDNumber,
 LoginID,
 OrganizationNode.ToString(),
 OrganizationLevel,
 JobTitle,
 BirthDate,

188

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 MaritalStatus,
 Gender,
 HireDate,
 SalariedFlag,
 VacationHours,
 SickLeaveHours,
 CurrentFlag,
 rowguid,
 ModifiedDate
 FROM HumanResources.Employee';

DECLARE @x varbinary(max);
SET @x = dbo.GetDataTable_Binary(@sql);
GO

 Note The hierarchyid CLR datatype is not marked as serializable, so in the preceding query I use the
ToString() method to serialize the string representation of the OrganizationNode value.

The results of the initial performance test were very encouraging, revealing that average
serialization speed had been reduced to just 0.1437 seconds—a massive improvement over the XML
serialization method.

The performance of the binary method could be improved yet further by setting the RemotingFormat
property of the DataTable to Binary before serialization:

dt.RemotingFormat = SerializationFormat.Binary;

Making this change resulted in even faster performance—just 0.0576 seconds. What’s more, the
resulting binary data was now only 68KB in size.

Encouraged by the success of my first shot, I decided to investigate whether there were other
SQLCLR methods that would improve the performance still further. After several more attempts that I
won’t bore you with the details of, I decided to forgo the DataTable in favor of an alternative class:
SqlDataReader. I worked on pulling the data out into object collections, and initial tests showed
serialization performance with SqlDataReader to be just as good as the DataTable, but with a reduced
output size. However, this approach was not without its own difficulties.

The advantage of a DataTable is that it’s one easy-to-use unit that contains all of the data, as well as
the associated metadata. You don’t have to be concerned with column names, types, and sizes, as
everything is automatically loaded into the DataTable for you. Working with a SqlDataReader requires a
bit more work, since it can’t be serialized as a single unit, but must instead be split up into its
component parts.

Since the code I implemented is somewhat complex, I will walk you through it section by section. To
begin with, I set the DataAccessKind.Read property on the SqlFunctionAttribute in order to allow the
method to access data via the context connection. A generic List is instantiated, which will hold one
object collection per row of data, in addition to one for the metadata. Finally, the SqlConnection is
instantiated and the SqlCommand is set up and executed:

[Microsoft.SqlServer.Server.SqlFunction(
 DataAccess = DataAccessKind.Read)]

189

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

public static SqlBytes GetBinaryFromQueryResult(string query)
{
 List<object[]> theList = new List<object[]>();

 using (SqlConnection conn =
 new SqlConnection("context connection = true;"))
 {
 SqlCommand comm = new SqlCommand();
 comm.Connection = conn;
 comm.CommandText = query;

 conn.Open();

 SqlDataReader read = comm.ExecuteReader();

The next step is to pull the metadata for each column out of the SqlDataReader. A method called
GetSchemaTable is used to return a DataTable populated with one row per column. The available fields
are documented in the MSDN Library, but I’m using the most common of them in the code that follows.
After populating the object collection with the metadata, it is added to the output List:

 DataTable dt = read.GetSchemaTable();

 //Populate the field list from the schema table
 object[] fields = new object[dt.Rows.Count];
 for (int i = 0; i < fields.Length; i++)
 {
 object[] field = new object[5];
 field[0] = dt.Rows[i]["ColumnName"];
 field[1] = dt.Rows[i]["ProviderType"];
 field[2] = dt.Rows[i]["ColumnSize"];
 field[3] = dt.Rows[i]["NumericPrecision"];
 field[4] = dt.Rows[i]["NumericScale"];

 fields[i] = field;
 }

 //Add the collection of fields to the output list
 theList.Add(fields);

Finally, the code loops over the rows returned by the query, using the GetValues method to pull each
row out into an object collection that is added to the output. The List is converted into an array of
object[] (object[][], to be more precise), which is serialized and returned to the caller.

 //Add all of the rows to the output list
 while (read.Read())
 {
 object[] o = new object[read.FieldCount];
 read.GetValues(o);
 theList.Add(o);
 }
 }

190

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 //Serialize and return the output
 return new SqlBytes(
 serialization_helper.getBytes(theList.ToArray()));
}

Once this function is created, calling it is almost identical to calling GetDataTable_Binary:

DECLARE @sql nvarchar(max);
SET @sql = 'SELECT BusinessEntityID,
 NationalIDNumber,
 LoginID,
 OrganizationNode.ToString(),
 OrganizationLevel,
 JobTitle,
 BirthDate,
 MaritalStatus,
 Gender,
 HireDate,
 SalariedFlag,
 VacationHours,
 SickLeaveHours,
 CurrentFlag,
 rowguid,
 ModifiedDate FROM HumanResources.Employee'

DECLARE @x varbinary(max);
SET @x = dbo.GetBinaryFromQueryResult(@sql);
GO

The result, 57KB worth of binary data, represented a 15 percent reduction in size compared to the
DataTable method. If using this method to transfer data between broker instances on remote servers, the
associated decrease in network traffic could make a big difference to performance. What’s more, the
serialization performance using SqlDataReader was the fastest yet, with an average query execution time
of just 0.0490 seconds.

Binary Deserialization
Pleased with the results of binary serialization using SQLCLR, I decided to go ahead with deserialization.
Continuing with my stress on reuse potential, I decided that a stored procedure would be a better choice
than a UDF. A stored procedure does not have a fixed output as does a UDF, so any input table can be
deserialized and returned without worrying about violating column list contracts.

The first part of the stored procedure follows:

[Microsoft.SqlServer.Server.SqlProcedure]
public static void GetTableFromBinary(SqlBytes theTable)
{
 //Deserialize the input
 object[] dt = (object[])(
 serialization_helper.getObject(theTable.Value));

191

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 //First, get the fields
 object[] fields = (object[])(dt[0]);
 SqlMetaData[] cols = new SqlMetaData[fields.Length];

 //Loop over the fields and populate SqlMetaData objects
 for (int i = 0; i<fields.Length; i++)
 {
 object[] field = (object[])(fields[i]);
 SqlDbType dbType = (SqlDbType)field[1];

After deserializing the input bytes back into a collection of objects, the first item in the collection—
which is assumed to be the column metadata—is converted into a collection of objects. This collection is
looped over item by item in order to create the output SqlMetaData objects that will be used to stream
back the data to the caller.

The trickiest part of setting this up is the fact that each SQL Server data type requires a different
SqlMetaData overload. decimal needs a precision and scale setting; character and binary types need a
size; and for other types, size, precision, and scale are all inappropriate inputs. The following switch
statement handles creation of the SqlMetaData instances:

 //Different SqlMetaData overloads are required
 //depending on the data type
 switch (dbType)
 {
 case SqlDbType.Decimal:
 cols[i] = new SqlMetaData(
 (string)field[0],
 dbType,
 (byte)field[3],
 (byte)field[4]);
 break;
 case SqlDbType.Binary:
 case SqlDbType.Char:
 case SqlDbType.NChar:
 case SqlDbType.NVarChar:
 case SqlDbType.VarBinary:
 case SqlDbType.VarChar:
 switch ((int)field[2])
 {
 //If it's a MAX type, use -1 as the size
 case 2147483647:
 cols[i] = new SqlMetaData(
 (string)field[0],
 dbType,
 -1);
 break;
 default:
 cols[i] = new SqlMetaData(
 (string)field[0],
 dbType,
 (long)((int)field[2]));
 break;

192

 CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

 }
 break;
 default:
 cols[i] = new SqlMetaData(
 (string)field[0],
 dbType);
 break;
 }
 }

Once population of the columns collection has been completed, the data can be sent back to the
caller using the SqlPipe class’s SendResults methods. After starting the stream, the remainder of the
objects in the input collection are looped over, cast to object[], and sent back as SqlDataRecords:

 //Start the result stream
 SqlDataRecord rec = new SqlDataRecord(cols);
 SqlContext.Pipe.SendResultsStart(rec);

 for (int i = 1; i < dt.Length; i++)
 {
 rec.SetValues((object[])dt[i]);
 SqlContext.Pipe.SendResultsRow(rec);
 }

 //End the result stream
 SqlContext.Pipe.SendResultsEnd();
}

Not only had the binary serialization test yielded positive results, it turns out that deserialization of
data prepared in this manner is exceptionally fast compared with the alternatives. The performance test
revealed that average time for deserialization of the SqlDataReader data was just 0.2666 seconds—an
order of magnitude faster than deserialization of similar XML.

The results of the fastest refinements of each of the three methods discussed in this section are
shown in Table 7-1.

Table 7-1. Results of different serialization approaches

Method Average Serialization Time Average Deserialization Time Size

XML (with TYPE) 3.6687 6.8157 105KB

Binary (DataTable) 0.0576 68KB

Binary (SqlDataReader) 0.0490 0.2666 57KB

The combination of better network utilization and much faster serialization/deserialization

demonstrated in this example shows how SQLCLR can be a great technique for transferring tabular data
between Service Broker instances in scale-out and distributed processing scenarios.

193

CHAPTER 7 SQLCLR: ARCHITECTURE AND DESIGN CONSIDERATIONS

194

Summary
Getting the most out of SQLCLR routines involves a bit of thought investment. Up-front design and
architecture considerations will yield great benefits in terms of security, reliability, and performance.
You should also consider reuse at every stage, in order to minimize the amount of work that must be
done when you need the same functionality six months or a year down the road. If you’ve already coded
it once, why code it again?

To illustrate these concepts, I showed an example that serialized tables using the BinaryFormatter,
which could be used to extend SQL Server Service Broker. I used a common, core set of more highly
privileged utility assemblies in order to limit the outer surface area, and tried to design the solution to
promote flexibility and potential for use in many projects throughout the lifetime of the code.

C H A P T E R 8

Dynamic T-SQL

The general objective of any software application is to provide consistent, reliable functionality that
allows users to perform given tasks in an effective manner. The first step in meeting this objective is
therefore to keep the application bug-free and working as designed, to expected standards. However,
once you’ve gotten past these basic requirements, the next step is to try to create a great user experience,
which raises the question, “What do the users want?” More often than not, the answer is that users want
flexible interfaces that let them control the data the way they want to. It’s common for software
customer support teams to receive requests for slightly different sort orders, filtering mechanisms, or
outputs for data, making it imperative that applications be designed to support extensibility along these
lines.

As with other data-related development challenges, such requests for flexible data output tend to
fall through the application hierarchy, eventually landing on the database (and, therefore, the database
developer). This is especially true in web-based application development, where client-side grid controls
that enable sorting and filtering are still relatively rare, and where many applications still use a
lightweight two-tier model without a dedicated business layer to handle data caching and filtering.

“Flexibility” in the database can mean many things, and I have encountered some very interesting
approaches in applications I’ve worked with over the years, often involving creation of a multitude of
stored procedures or complex, nested control-of-flow blocks. These solutions invariably seem to create
more problems than they solve, and make application development much more difficult than it needs to
be by introducing a lot of additional complexity in the database layer.

In this chapter, I will discuss how dynamic SQL can be used to solve these problems as well as to
create more flexible stored procedures. Some DBAs and developers scorn dynamic SQL, often believing
that it will cause performance, security, or maintainability problems, whereas in many cases it is simply
that they don’t understand how to use it properly. Dynamic SQL is a powerful tool that, if used correctly,
is a tremendous asset to the database developer’s toolbox. There is a lot of misinformation floating
around about what it is and when or why it should be used, and I hope to clear up some myths and
misconceptions in these pages.

 Note Throughout this chapter, I will illustrate the discussion of various methods with performance measures
and timings recorded on my laptop. For more information on how to capture these measures on your own system
environment, please refer to the discussion of performance monitoring tools in Chapter 3.

195

CHAPTER 8 DYNAMIC T-SQL

Dynamic T-SQL vs. Ad Hoc T-SQL
Before I begin a serious discussion about how dynamic SQL should be used, it’s first important to
establish a bit of terminology. Two terms that are often intermingled in the database world with regard
to SQL are dynamic and ad hoc. When referring to these terms in this chapter, I define them as follows:

• Ad hoc SQL is any batch of SQL generated within an application layer and sent to
SQL Server for execution. This includes almost all of the code samples in this
book, which are entered and submitted via SQL Server Management Studio.

• Dynamic SQL, on the other hand, is a batch of SQL that is generated within T-SQL
and executed using the EXECUTE statement or, preferably, via the sp_executesql
system stored procedure (which is covered later in this chapter).

Most of this chapter focuses on how to use dynamic SQL effectively using stored procedures.
However, if you are one of those working with systems that do not use stored procedures, I advise you to
still read the “SQL Injection” and “Compilation and Parameterization” sections at a minimum. Both
sections are definitely applicable to ad hoc scenarios and are extremely important.

All of that said, I do not recommend the use of ad hoc SQL in application development, and feel that
many potential issues, particularly those affecting application security and performance, can be
prevented through the use of stored procedures.

The Stored Procedure vs. Ad Hoc SQL Debate
A seemingly never-ending battle among members of the database development community concerns
the question of whether database application development should involve the use of stored procedures.
This debate can become quite heated, with proponents of rapid software development methodologies
such as test-driven development (TDD) claiming that stored procedures slow down their process, and
fans of object-relational mapping (ORM) technologies making claims about the benefits of those
technologies over stored procedures. I highly recommend that you search the Web to find these debates
and reach your own conclusions. Personally, I heavily favor the use of stored procedures, for several
reasons that I will briefly discuss here.

First and foremost, stored procedures create an abstraction layer between the database and the
application, hiding details about the schema and sometimes the data. The encapsulation of data logic
within stored procedures greatly decreases coupling between the database and the application, meaning
that maintenance of or modification to the database will not necessitate changing the application
accordingly. Reducing these dependencies and thinking of the database as a data API rather than a
simple application persistence layer enables a flexible application development process. Often, this can
permit the database and application layers to be developed in parallel rather than in sequence, thereby
allowing for greater scale-out of human resources on a given project. For more information on concepts
such as encapsulation, coupling, and treating the database as an API, see Chapter 1.

If stored procedures are properly defined, with well-documented and consistent outputs, testing is
not at all hindered—unit tests can be easily created, as shown in Chapter 3, in order to support TDD.
Furthermore, support for more advanced testing methodologies also becomes easier, not more difficult,
thanks to stored procedures. For instance, consider use of mock objects—façade methods that return
specific known values. Mock objects can be substituted for real methods in testing scenarios so that any
given method can be tested in isolation, without also testing any methods that it calls (any calls made
from within the method being tested will actually be a call to a mock version of the method). This
technique is actually much easier to implement when stored procedures are used, as mock stored

196

 CHAPTER 8 DYNAMIC T-SQL

procedures can easily be created and swapped in and out without disrupting or recompiling the
application code being tested.

Another important issue is security. Ad hoc SQL (as well as dynamic SQL) presents various security
challenges, including opening possible attack vectors and making data access security much more
difficult to enforce declaratively, rather than programmatically. This means that by using ad hoc SQL,
your application may be more vulnerable to being hacked, and you may not be able to rely on SQL
Server to secure access to data. The end result is that a greater degree of testing will be required in order
to ensure that security holes are properly patched and that users—both authorized and not—are unable
to access data they’re not supposed to see. See the section “Dynamic SQL Security Considerations” for
further discussion of these points.

Finally, I will address the hottest issue that online debates always seem to gravitate toward, which,
of course, is the question of performance. Proponents of ad hoc SQL make the valid claim that, thanks to
better support for query plan caching in recent versions of SQL Server, stored procedures no longer have
a significant performance benefit when compared to ad hoc queries. Although this sounds like a great
argument for not having to use stored procedures, I personally believe that it is a nonissue. Given
equivalent performance, I think the obvious choice is the more maintainable and secure option (i.e.,
stored procedures).

In the end, the stored procedure vs. ad hoc SQL question is really one of purpose. Many in the ORM
community feel that the database should be used as nothing more than a very simple object persistence
layer, and would probably be perfectly happy with a database that only had a single table with only two
columns: a GUID to identify an object’s ID and an XML column for the serialized object graph.

In my eyes, a database is much more than just a collection of data. It is also an enforcer of data rules,
a protector of data integrity, and a central data resource that can be shared among multiple applications.
For these reasons, I believe that a decoupled, stored procedure–based design is the best way to go.

Why Go Dynamic?
As mentioned in the introduction for this chapter, dynamic SQL can help create more flexible data
access layers, thereby helping to enable more flexible applications, which makes for happier users. This
is a righteous goal, but the fact is that dynamic SQL is just one means by which to attain the desired end
result. It is quite possible—in fact, often preferable—to do dynamic sorting and filtering directly on the
client in many desktop applications, or in a business layer (if one exists) to support either a web-based or
client-server–style desktop application. It is also possible not to go dynamic at all, by supporting static
stored procedures that supply optional parameters—but that’s not generally recommended because it
can quickly lead to very unwieldy code that is difficult to maintain, as will be demonstrated in the
“Optional Parameters via Static T-SQL” section later in this chapter .

Before committing to any database-based solution, determine whether it is really the correct course
of action. Keep in mind the questions of performance, maintainability, and most important, scalability.
Database resources are often the most taxed of any used by a given application, and dynamic sorting
and filtering of data can potentially mean a lot more load put on the database. Remember that scaling
the database can often be much more expensive than scaling other layers of an application.

For example, consider the question of sorting data. In order for the database to sort data, the data
must be queried. This means that it must be read from disk or memory, thereby using I/O and CPU time,
filtered appropriately, and finally sorted and returned to the caller. Every time the data needs to be
resorted a different way, it must be reread or sorted in memory and refiltered by the database engine.
This can add up to quite a bit of load if there are hundreds or thousands of users all trying to sort data in
different ways, and all sharing resources on the same database server.

Due to this issue, if the same data is resorted again and again (for instance, by a user who wants to
see various high or low data points), it often makes sense to do the work in a disconnected cache. A

197

CHAPTER 8 DYNAMIC T-SQL

desktop application that uses a client-side data grid, for example, can load the data only once, and then
sort and resort it using the client computer’s resources rather than the database server’s resources. This
can take a tremendous amount of strain off the database server, meaning that it can use its resources for
other data-intensive operations.

Aside from the scalability concerns, it’s important to note that database-based solutions can be
tricky and difficult to test and maintain. I offer some suggestions in the section “Going Dynamic: Using
EXECUTE,” but keep in mind that procedural code may be easier to work with for these purposes than
T-SQL.

Once you’ve exhausted all other resources, only then should you look at the database as a solution
for dynamic operations. In the database layer, the question of using dynamic SQL instead of static SQL
comes down to issues of both maintainability and performance. The fact is, dynamic SQL can be made
to perform much better than simple static SQL for many dynamic cases, but more complex (and
difficult-to-maintain) static SQL will generally outperform maintainable dynamic SQL solutions. For the
best balance of maintenance vs. performance, I always favor the dynamic SQL solution.

Compilation and Parameterization
Any discussion of dynamic SQL and performance would not be complete without some basic
background information concerning how SQL Server processes queries and caches their plans. To that
end, I will provide a brief discussion here, with some examples to help you get started in investigating
these behaviors within SQL Server.

Every query executed by SQL Server goes through a compilation phase before actually being
executed by the query processor. This compilation produces what is known as a query plan, which tells
the query processor how to physically access the tables and indexes in the database in order to satisfy
the query. However, query compilation can be expensive for certain queries, and when the same queries
or types of queries are executed over and over, there is generally no reason to compile them each time.
In order to save on the cost of compilation, SQL Server caches query plans in a memory pool called the
query plan cache.

The query plan cache uses a simple hash lookup based on the exact text of the query in order to find
a previously compiled plan. If the exact query has already been compiled, there is no reason to
recompile it, and SQL Server skips directly to the execution phase in order to get the results for the caller.
If a compiled version of the query is not found, the first step taken is parsing of the query. SQL Server
determines which operations are being conducted in the SQL, validates the syntax used, and produces a
parse tree, which is a structure that contains information about the query in a normalized form. The
parse tree is further validated and eventually compiled into a query plan, which is placed into the query
plan cache for future invocations of the query.

The effect of the query plan cache on execution time can be seen even with simple queries. To
demonstrate this, first use the DBCC FREEPROCCACHE command to empty out the cache:

DBCC FREEPROCCACHE;
GO

Keep in mind that this command clears out the cache for the entire instance of SQL Server—doing
this is not generally recommended in production environments. Then, to see the amount of time spent
in the parsing and compilation phase of a query, turn on SQL Server’s SET STATISTICS TIME option,
which causes SQL Server to output informational messages about time spent in parsing/compilation
and execution:

SET STATISTICS TIME ON;
GO

198

 CHAPTER 8 DYNAMIC T-SQL

Now consider the following T-SQL, which queries the HumanResources.Employee table from the
AdventureWorks2008 database:

 Note As of SQL Server 2008, SQL Server no longer ships with any included sample databases. To follow the
code listings in this chapter, you will need to download and install the AdventureWorks2008 database from the
CodePlex site, available at http://msftdbprodsamples.codeplex.com.

SELECT *
FROM HumanResources.Employee
WHERE BusinessEntityId IN (1, 2);
GO

Executing this query in SQL Server Management Studio on my system produces the following
output messages the first time the query is run:

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 12 ms.

(2 row(s) affected)

SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 1 ms.

This query took 12ms to parse and compile. But subsequent runs produce the following output,
indicating that the cached plan is being used:

199

CHAPTER 8 DYNAMIC T-SQL

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 1 ms.

(2 row(s) affected)

SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 1 ms.

Thanks to the cached plan, each subsequent invocation of the query takes 11ms less than the first
invocation—not bad, when you consider that the actual execution time is less than 1ms (the lowest
elapsed time reported by time statistics).

Auto-Parameterization
An important part of the parsing process that enables the query plan cache to be more efficient in some
cases involves determination of which parts of the query qualify as parameters. If SQL Server determines
that one or more literals used in the query are parameters that may be changed for future invocations of
a similar version of the query, it can auto-parameterize the query. To understand what this means, let’s
first take a glance at the contents of the query plan cache, via the sys.dm_exec_cached_plans dynamic
management view and the sys.dm_exec_sql_text function. The following query finds all cached queries
that contain the string “HumanResources,” excluding those that contain the name of the
sys.dm_exec_cached_plans view itself—this second predicate is necessary so that the results do not
include the plan for this query itself.

SELECT
 cp.objtype,
 st.text
FROM sys.dm_exec_cached_plans cp
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
WHERE
 st.text LIKE '%HumanResources%'
 AND st.text NOT LIKE '%sys.dm_exec_cached_plans%';
GO

 Note I’ll be reusing this code several times in this section to examine the plan cache for different types of
query, so you might want to keep it open in a separate Management Studio tab.

200

 CHAPTER 8 DYNAMIC T-SQL

Running this code listing after executing the previous query against HumanResources.Employee gives
the following results:

objtype text
Adhoc SELECT * FROM HumanResources.Employee WHERE BusinessEntityId IN (1, 2);

The important things to note here are that the objtype column indicates that the query is being
treated as Adhoc, and that the Text column shows the exact text of the executed query. Queries that
cannot be auto-parameterized are classified by the query engine as “ad hoc” (note that this is a slightly
different definition from the one I use).

The previous example query was used to keep things simple, precisely because it could not be auto-
parameterized. The following query, on the other hand, can be auto-parameterized:

SELECT *
FROM HumanResources.Employee
WHERE BusinessEntityId = 1;
GO

Clearing the execution plan cache, running this query, and then querying
sys.dm_exec_cached_plans as before results in the output shown following:

objtype text

Adhoc SELECT * FROM HumanResources.Employee WHERE BusinessEntityId = 1;

Prepared (@1 tinyint)SELECT * FROM [HumanResources].[Employee]

 WHERE [BusinessEntityId]=@1

In this case, two plans have been generated: an Adhoc plan for the query’s exact text and a Prepared
plan for the auto-parameterized version of the query. Looking at the text of the latter plan, notice that
the query has been normalized (the object names are bracket-delimited, carriage returns and other
extraneous whitespace have been removed, and so on) and that a parameter has been derived from the
text of the query.

The benefit of this auto-parameterization is that subsequent queries submitted to SQL Server that
can be auto-parameterized to the same normalized form may be able to make use of the prepared query
plan, thereby avoiding compilation overhead.

201

CHAPTER 8 DYNAMIC T-SQL

 Note The auto-parameterization examples shown here were based on the default settings of the
AdventureWorks2008 database, including the “simple parameterization” option. SQL Server 2008 includes a more
powerful form of auto-parameterization, called “forced parameterization.” This option makes SQL Server work
much harder to auto-parameterize queries, which means greater query compilation cost in some cases. This can
be very beneficial to applications that use a lot of nonparameterized ad hoc queries, but may cause performance
degradation in other cases. See http://msdn.microsoft.com/en-us/library/ms175037.aspx for more
information on forced parameterization.

Application-Level Parameterization
Auto-parameterization is not the only way that a query can be parameterized. Other forms of
parameterization are possible at the application level for ad hoc SQL, or within T-SQL when working
with dynamic SQL in a stored procedure. The section “sp_executesql: A Better EXECUTE,” later in this
chapter, describes how to parameterize dynamic SQL, but I will briefly discuss application-level
parameterization here.

Every query framework that can communicate with SQL Server supports the idea of remote
procedure call (RPC) invocation of queries. In the case of an RPC call, parameters are bound and
strongly typed, rather than encoded as strings and passed along with the rest of the query text.
Parameterizing queries in this way has one key advantage from a performance standpoint: the
application tells SQL Server what the parameters are; SQL Server does not need to (and will not) try to
find them itself.

To see application-level parameterization in action, the following code listing demonstrates the C#
code required to issue a parameterized query via ADO.NET, by populating the Parameters collection on
the SqlCommand object when preparing a query.

SqlConnection sqlConn = new SqlConnection(
 "Data Source=localhost;
 Initial Catalog=AdventureWorks2008;
 Integrated Security=SSPI");
sqlConn.Open();
SqlCommand cmd = new SqlCommand(
 "SELECT * FROM HumanResources.Employee WHERE BusinessEntityId IN (@Emp1,
 @Emp2)", sqlConn);

SqlParameter param = new SqlParameter("@Emp1", SqlDbType.Int);
param.Value = 1;
cmd.Parameters.Add(param);

SqlParameter param2 = new SqlParameter("@Emp2", SqlDbType.Int);
param2.Value = 2;
cmd.Parameters.Add(param2);

cmd.ExecuteNonQuery();

sqlConn.Close();

202

 CHAPTER 8 DYNAMIC T-SQL

 Note You will need to change the connection string used by the SqlConnection object in the previous code
listing to match your server.

Notice that the underlying query is the same as the first query shown in this chapter, which, when
issued as a T-SQL query via Management Studio, was unable to be auto-parameterized by SQL Server.
However, in this case, the literal employee IDs have been replaced with the variables @EmpId1 and
@EmpId2.

Executing this code listing and then examining the sys.dm_exec_cached_plans view once again using
the query from the previous section gives the following results:

objtype text

Prepared (@Emp1 int,@Emp2 int)SELECT * FROM HumanResources.Employee

 WHERE BusinessEntityId IN (@Emp1, @Emp2)

Just like with auto-parameterized queries, the plan is prepared and the text is prefixed with the
parameters. However, notice that the text of the query is not normalized. The object name is not
bracket-delimited, and although it may not be apparent, whitespace has not been removed. This fact is
extremely important! If you were to run the same query, but with slightly different formatting, you would
get a second plan—so when working with parameterized queries, make sure that the application
generating the query produces the exact same formatting every time. Otherwise, you will end up wasting
both the CPU cycles required for needless compilation and memory for caching the additional plans.

 Note Whitespace is not the only type of formatting that can make a difference in terms of plan reuse. The
cache lookup mechanism is nothing more than a simple hash on the query text and is case sensitive. So the exact
same query submitted twice with different capitalization will be seen by the cache as two different queries—even
on a case-insensitive server. It’s always a good idea when working with SQL Server to try to be consistent with
your use of capitalization and formatting. Not only does it make your code more readable, but it may also wind up
improving performance!

Performance Implications of Parameterization and Caching
Now that all of the background information has been covered, the burning question can be answered:
why should you care, and what does any of this have to do with dynamic SQL? The answer, of course, is
that this has everything to do with dynamic SQL if you care about performance (and other issues, but
we’ll get to those shortly).

Suppose, for example, that we placed the previous application code in a loop—calling the same
query 2,000 times and changing only the supplied parameter values on each iteration:

203

CHAPTER 8 DYNAMIC T-SQL

SqlConnection sqlConn = new SqlConnection(
 "Data Source=localhost;
 Initial Catalog=AdventureWorks2008;
 Integrated Security=SSPI");
sqlConn.Open();

for (int i = 1; i <= 2000; i++)
{
 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM HumanResources.Employee
 WHERE BusinessEntityId IN (@Emp1, @Emp2)",
 sqlConn);

 SqlParameter param = new SqlParameter("@Emp1", SqlDbType.Int);
 param.Value = i;
 cmd.Parameters.Add(param);

 SqlParameter param2 = new SqlParameter("@Emp2", SqlDbType.Int);
 param2.Value = i + 1;
 cmd.Parameters.Add(param2);

 cmd.ExecuteNonQuery();
}

sqlConn.Close();

Once again, return to SQL Server Management Studio and query the sys.dm_exec_cached_plans
view, and you will see that the results have not changed. There is only one plan in the cache for this form
of the query, even though it has just been run 2,000 times with different parameter values:

objtype text

Prepared (@Emp1 int,@Emp2 int)SELECT * FROM HumanResources.Employee

 WHERE BusinessEntityId IN (@Emp1, @Emp2)

This result indicates that parameterization is working, and the server does not need to do extra work
to compile the query every time a slightly different form of it is issued.

Now that a positive baseline has been established, let’s investigate what happens when queries are
not properly parameterized. Consider what would happen if we had instead designed the application
code loop as follows:

SqlConnection sqlConn = new SqlConnection(
 "Data Source=localhost;
 Initial Catalog=AdventureWorks2008;
 Integrated Security=SSPI");
sqlConn.Open();

for (int i = 1; i < 2000; i++)

204

 CHAPTER 8 DYNAMIC T-SQL

{
 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM HumanResources.Employee
 WHERE BusinessEntityId IN (" + i + ", " + (i+1) + ")",
 sqlConn);

 cmd.ExecuteNonQuery();
}

sqlConn.Close();

The abridged results of querying the query plan cache after running this code are shown here:

objtype text

Adhoc SELECT * FROM HumanResources.Employee WHERE BusinessEntityId IN (1, 2)

Adhoc SELECT * FROM HumanResources.Employee WHERE BusinessEntityId IN (2, 3)

Adhoc SELECT * FROM HumanResources.Employee WHERE BusinessEntityId IN (3, 4)

...1,995 rows later...

Adhoc SELECT * FROM HumanResources.Employee WHERE BusinessEntityId IN (1998...

Adhoc SELECT * FROM HumanResources.Employee WHERE BusinessEntityId IN (1999...

Running 2,000 nonparameterized ad hoc queries with different parameters resulted in 2,000
additional cached plans. That means that not only will the query execution experience slowdown
resulting from the additional compilation, but also quite a bit of RAM will be wasted in the query plan
cache. In SQL Server 2008, queries are aged out of the plan cache on a least-recently-used basis, and
depending on the server’s workload, it can take quite a bit of time for unused plans to be removed.

In large production environments, a failure to use parameterized queries can result in gigabytes of
RAM being wasted caching query plans that will never be used again. This is obviously not a good thing!
So please—for the sake of all of that RAM—learn to use your connection library’s parameterized query
functionality and avoid falling into this trap.

Supporting Optional Parameters
The most commonly cited use case for dynamic SQL is the ability to write stored procedures that can
support optional parameters for queries in an efficient, maintainable manner. Although it is quite easy

205

CHAPTER 8 DYNAMIC T-SQL

to write static stored procedures that handle optional query parameters, these are generally grossly
inefficient or highly unmaintainable—as a developer, you can take your pick.

Optional Parameters via Static T-SQL
Before presenting the dynamic SQL solution to the optional parameter problem, a few demonstrations
are necessary to illustrate why static SQL is not the right tool for the job. There are a few different
methods of creating static queries that support optional parameters, with varying complexity and
effectiveness, but each of these solutions contains flaws.

As a baseline, consider the following query, which selects one row of data from the
HumanResources.Employee table in the AdventureWorks2008 database:

SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM
 HumanResources.Employee
WHERE
 BusinessEntityID = 28
 AND NationalIDNumber = N'14417807';
GO

This query uses predicates to filter on both the BusinessEntityID and NationalIDNumber columns.
Executing the query produces the execution plan shown in Figure 8-1, which has an estimated cost of
0.0032831, and which requires two logical reads. This plan involves a seek of the table’s clustered index,
which uses the BusinessEntityID column as its key.

Figure 8-1. Base execution plan with seek on BusinessEntityID clustered index

Since the query uses the clustered index, it does not need to do a lookup to get any additional data.
Furthermore, since BusinessEntityID is the primary key for the table, the NationalIDNumber predicate is
not used when physically identifying the row. Therefore, the following query, which uses only the
BusinessEntityId predicate, produces the exact same query plan with the same cost and same number
of reads:

SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM
 HumanResources.Employee
WHERE
 BusinessEntityID = 28;
GO

206

 CHAPTER 8 DYNAMIC T-SQL

Another form of this query involves removing BusinessEntityID and querying based only on
NationalIDNumber:

SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM
 HumanResources.Employee
WHERE
 NationalIDNumber = N'14417807';
GO

This query results in a very different plan from the other two, due to the fact that a different index
must be used to satisfy the query. Figure 8-2 shows the resultant plan, which involves a seek on a
nonclustered index on the NationalIDNumber column, followed by a lookup to get the additional rows for
the SELECT list. This plan has an estimated cost of 0.0065704, and performs four logical reads.

Figure 8-2. Base execution plan with seek on NationalIDNumber nonclustered index followed by a lookup

into the clustered index

The final form of the base query has no predicates at all:

SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM
 HumanResources.Employee;
GO

As shown in Figure 8-3, the query plan in this case is a simple clustered index scan, with an
estimated cost of 0.0080454, and nine logical reads. Since all of the rows need to be returned and no
index covers every column required, a clustered index scan is the most efficient way to satisfy this query.

207

CHAPTER 8 DYNAMIC T-SQL

Figure 8-3. Base execution plan with scan on the clustered index

These baseline figures will be used to compare the relative performance of various methods of
creating a dynamic stored procedure that returns the same columns, but that optionally filters the rows
returned based on one or both predicates of BusinessEntityID and NationalIDNumber. To begin with, the
query can be wrapped in a stored procedure:

CREATE PROCEDURE GetEmployeeData
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

 SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
 FROM
 HumanResources.Employee
 WHERE
 BusinessEntityID = @BusinessEntityID
 AND NationalIDNumber = @NationalIDNumber;

END;
GO

This stored procedure uses the parameters @BusinessEntityID and @NationalIDNumber to support
the predicates. Both of these parameters are optional, with NULL default values. However, this stored
procedure does not really support the parameters optionally; not passing one of the parameters will
mean that no rows will be returned by the stored procedure at all, since any comparison with NULL in a
predicate will not result in a true answer.

As a first shot at making this stored procedure enable the optional predicates, a developer might try
to rewrite the procedure using control-of-flow statements as follows:

ALTER PROCEDURE GetEmployeeData
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar (15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

 IF (@BusinessEntityID IS NOT NULL AND @NationalIDNumber IS NOT NULL)
 BEGIN
 SELECT
 BusinessEntityID,

208

 CHAPTER 8 DYNAMIC T-SQL

 LoginID,
 JobTitle
 FROM
 HumanResources.Employee
 WHERE
 BusinessEntityID = @BusinessEntityID
 AND NationalIDNumber = @NationalIDNumber;
 END

 ELSE IF (@BusinessEntityID IS NOT NULL)
 BEGIN
 SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
 FROM
 HumanResources.Employee
 WHERE
 BusinessEntityID = @BusinessEntityID;
 END

 ELSE IF (@NationalIDNumber IS NOT NULL)
 BEGIN
 SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
 FROM
 HumanResources.Employee
 WHERE
 NationalIDNumber = @NationalIDNumber;
 END

 ELSE
 BEGIN
 SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
 FROM
 HumanResources.Employee;
 END

END;
GO

Although executing this stored procedure produces the exact same query plans—and, therefore, the
exact same performance—as the equivalent individual query created in the test batch, it has an
unfortunate problem. Namely, taking this approach turns what was a very simple 10-line stored
procedure into a 42-line monster.

209

CHAPTER 8 DYNAMIC T-SQL

Adding one more column to the SELECT list for this procedure would require a change to be made in
four places. Now consider what would happen if a third predicate were needed—the number of cases
would jump from four to eight, meaning that any change such as adding or removing a column would
have to be made in eight places. Now consider 10 or 20 predicates, and it’s clear that this method has no
place in the SQL Server developer’s toolbox. It is simply not a manageable solution.

The next most common technique is one that has appeared in articles on several SQL Server web
sites over the past few years. As a result, a lot of code has been written against it by developers who don’t
seem to realize that they’re creating a performance time bomb. This technique takes advantage of the
COALESCE function, as shown in the following rewritten version of the stored procedure:

ALTER PROCEDURE GetEmployeeData
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

 SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
 FROM
 HumanResources.Employee
 WHERE
 BusinessEntityID = COALESCE(@BusinessEntityID, BusinessEntityID)
 AND NationalIDNumber = COALESCE(@NationalIDNumber, NationalIDNumber);

END;
GO

This version of the stored procedure looks great and is easy to understand. The COALESCE function
returns the first non-NULL value passed into its parameter list. So if either of the arguments to the stored
procedure are NULL, the COALESCE will “pass through,” comparing the value of the column to itself—and
at least in theory, that seems like it should not require any processing since it will always be true.

Unfortunately, because the COALESCE function uses a column from the table as an input, it cannot be
evaluated deterministically before execution of the query. The result is that the function is evaluated
once for every row of the table, whatever combination of parameters is supplied. This means consistent
performance results, but probably not in a good way; all four combinations of parameters result in the
same query plan: a clustered index scan with an estimated cost of 0.0080454 and nine logical reads. This
is over four times the I/O for the queries involving the BusinessEntityID column—quite a performance
drain.

Similar to the version that uses COALESCE is a version that uses OR to conditionally set the parameter
only if the argument is not NULL:

ALTER PROCEDURE GetEmployeeData
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

210

 CHAPTER 8 DYNAMIC T-SQL

 SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
 FROM
 HumanResources.Employee
 WHERE
 (@BusinessEntityID IS NULL OR BusinessEntityID = @BusinessEntityID)
 AND (@NationalIDNumber IS NULL OR @NationalIDNumber = NationalIDNumber);

END;
GO

This version, while similar in idea to the version that uses COALESCE, has some interesting
performance traits. Depending on which parameters you use the first time you call it, you’ll see vastly
different results. If you’re lucky enough to call it the first time with no arguments, the result will be an
index scan, producing nine logical reads—and the same number of reads will result for any combination
of parameters passed in thereafter. If, however, you first call the stored procedure using only the
@BusinessEntityID parameter, the resultant plan will use only four logical reads—until you happen to
call the procedure with no arguments, which will produce a massive 582 reads.

Given the surprisingly huge jump in I/O that the bad plan can produce, as well as the unpredictable
nature of what performance characteristics you’ll end up with, this is undoubtedly the worst possible
choice.

The final method that can be used is a bit more creative, and also can result in somewhat better
results. The following version of the stored procedure shows how it is implemented:

ALTER PROCEDURE GetEmployeeData
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

 SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
 FROM
 HumanResources.Employee
 WHERE
 BusinessEntityID BETWEEN COALESCE(@BusinessEntityID, -2147483648) AND
 COALESCE(@BusinessEntityID, 2147483647)
 AND NationalIDNumber LIKE COALESCE(@NationalIDNumber, N'%');

END;
GO

If you’re a bit confused by the logic of this stored procedure, you’re now familiar with the first
reason that I don’t recommend this technique: it’s relatively unmaintainable if you don’t understand
exactly how it works. Using it almost certainly guarantees that you will produce stored procedures that

211

CHAPTER 8 DYNAMIC T-SQL

will stump others who attempt to maintain them in the future. And while that might be good for job
security, using it for that purpose is probably not a virtuous goal.

This stored procedure operates by using COALESCE to cancel out NULL arguments by substituting in
minimum and maximum conditions for the integer predicate (BusinessEntityID) and a LIKE expression
that will match anything for the string predicate (NationalIDNumber). This approach works as follows:

If @BusinessEntityID is NULL, the BusinessEntityID predicate effectively becomes
BusinessEntityID BETWEEN -2147483648 AND 2147483647—in other words, all
possible integers. If @BusinessEntityID is not NULL, the predicate becomes
BusinessEntityID BETWEEN @BusinessEntityID AND @BusinessEntityID. This is
equivalent to BusinessEntityID=@BusinessEntityID.

The same basic logic is true for the NationalIDNumber predicate, although because
it’s a string instead of an integer, LIKE is used instead of BETWEEN. If
@NationalIDNumber is NULL, the predicate becomes NationalIDNumber LIKE N'%'.
This will match any string in the NationalIDNumber column. On the other hand, if
@NationalIDNumber is not NULL, the predicate becomes NationalIDNumber LIKE
@NationalIDNumber, which is equivalent to NationalIDNumber=@NationalIDNumber—
assuming that @NationalIDNumber contains no string expressions. This predicate
can also be written using BETWEEN to avoid the string expression issue (for instance,
BETWEEN N'' AND REPLICATE(nchar(1000), 15)). However, that method is both
more difficult to read than the LIKE expression and fraught with potential problems
due to collation issues (which is why I only went up to nchar(1000) instead of
nchar(65535) in the example).

The real question, of course, is one of performance. Unfortunately, this stored procedure manages
to confuse the query optimizer, resulting in the same plan being generated for every invocation. The
plan, in every case, involves a clustered index seek on the table, with an estimated cost of 0.0033107, as
shown in Figure 8-4. Unfortunately, this estimate turns out to be highly inconsistent, as the number of
actual logical reads varies widely based on the arguments passed to the procedure.

Figure 8-4. Every set of arguments passed to the stored procedure results in the same execution plan.

If both arguments are passed, or @BusinessEntityID is passed but @NationalIDNumber is not, the
number of logical reads is three. While this is much better than the nine logical reads required by the
previous version of the stored procedure, it’s still 50 percent more I/O than the two logical reads
required by the baseline in both of these cases. This estimated plan really breaks down when passing
only @NationalIDNumber, since there is no way to efficiently satisfy a query on the NationalIDNumber
column using the clustered index. In both that case and when passing no arguments, nine logical reads
are reported. For the NationalIDNumber predicate this is quite a failure, as the stored procedure does over
twice as much work for the same results as the baseline.

Going Dynamic: Using EXECUTE
The solution to all of the aforementioned static SQL problems is, of course, to go dynamic. Building
dynamic SQL inside of a stored procedure is simple, the code is relatively easy to understand and, as I’ll

212

 CHAPTER 8 DYNAMIC T-SQL

show, it can provide excellent performance. However, there are various potential issues to note, not the
least of which being security concerns. I’ll explain how to deal with these as the examples progress.

The real benefit of dynamic SQL is that the execution plans generated for each invocation of the
query will be optimized for only the predicates that are actually being used at that moment. The main
issue with the static SQL solutions, aside from maintainability, was that the additional predicates
confused the query optimizer, causing it to create inefficient plans. Dynamic SQL gets around this issue
by not including anything extra in the query.

The simplest way to implement dynamic SQL in a stored procedure is with the EXECUTE statement.
This statement takes a string input and executes whatever SQL the string contains. The following batch
shows this in its simplest—and least effective—form:

EXEC('SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM HumanResources.Employee');
GO

Note that in this example (and all other examples in this chapter), I use the truncated form of
EXECUTE. This seems to be a de facto standard for SQL Server code; I very rarely see code that uses the full
form with the added “UTE.” Although this is only a savings of three characters, I am very used to seeing
it, and for some reason it makes a lot more sense to me when reading SQL than seeing the full EXECUTE
keyword.

In this case, a string literal is passed to EXECUTE, and this doesn’t really allow for anything very
“dynamic.” For instance, to add a predicate on BusinessEntityID to the query, the following would not
work:

DECLARE @BusinessEntityID int = 28;

EXEC('SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM HumanResources.Employee
WHERE BusinessEntityID = ' + CONVERT(varchar, @BusinessEntityID));
GO

This fails (with an “incorrect syntax” exception) because of the way EXECUTE is parsed by the SQL
Server engine. SQL Server performs only one pass to parse the syntax, and then tries to concatenate and
execute the SQL in a second step. But due to the fact that the first step does not include a stage for inline
expansion, the CONVERT is still a CONVERT, rather than a literal, when it’s time for concatenation.

The solution to this issue is quite simple. Define a variable and assign the dynamic SQL to it, and
then call EXECUTE:

DECLARE @BusinessEntityID int = 28;

DECLARE @sql nvarchar(max);

SET @sql = 'SELECT
 BusinessEntityID,
 LoginID,

213

CHAPTER 8 DYNAMIC T-SQL

 JobTitle
FROM HumanResources.Employee
WHERE BusinessEntityID = ' + CONVERT(VARCHAR, @BusinessEntityID);

EXEC (@sql);
GO

The string variable, @sql, can be manipulated in any way in order to form the desired dynamic SQL
string, and since it’s a variable, various code paths can be created using control-of-flow statements. In
other words, forming the dynamic SQL is now limited only by the tools available within the T-SQL
language for string manipulation.

A first shot at optional inclusion of both the BusinessEntityID and NationalIDNumber predicates
follows:

DECLARE @BusinessEntityID int = 28;
DECLARE @NationalIDNumber nvarchar(15) = N'14417807';

DECLARE @sql nvarchar(max);

SET @sql = 'SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM HumanResources.Employee ';

IF (@BusinessEntityID IS NOT NULL AND @NationalIDNumber IS NOT NULL)
BEGIN
 SET @sql = @sql +
 'WHERE BusinessEntityID = ' + CONVERT(nvarchar, @BusinessEntityID) +
 ' AND NationalIDNumber = N''' + @NationalIDNumber + '''';
END

ELSE IF (@BusinessEntityID IS NOT NULL)
BEGIN
 SET @sql = @sql +
 'WHERE BusinessEntityID = ' +
 CONVERT(nvarchar, @BusinessEntityID);
END

ELSE IF (@NationalIDNumber IS NOT NULL)
BEGIN
 SET @sql = @sql +
 'WHERE NationalIDNumber = N''' + @NationalIDNumber + '''';
END

EXEC(@sql);
GO

If this looks sickeningly familiar, you’ve been doing a good job of paying attention as the chapter has
progressed; this example has the same maintenance issues as the first shot at a static SQL stored
procedure. Adding additional parameters will create a combinatorial explosion, making this solution

214

 CHAPTER 8 DYNAMIC T-SQL

completely unmaintainable. In addition, the SQL statement has been broken up into two component
parts, making it lack a good sense of flow. Think about how bad this might get if you had to add ORDER BY
or GROUP BY clauses.

To solve this problem, I like to concatenate my dynamic SQL in one shot, using CASE expressions
instead of control-of-flow statements in order to optionally concatenate sections. The following example
should serve to illustrate how this works:

DECLARE @BusinessEntityID int = 28;
DECLARE @NationalIDNumber nvarchar(15) = N'14417807';

DECLARE @sql nvarchar(max);

SET @sql = 'SELECT
 BusinessEntityID,
 LoginID,
 JobTitle
FROM HumanResources.Employee
WHERE 1=1' +
CASE
 WHEN @BusinessEntityID IS NULL THEN ''
 ELSE 'AND BusinessEntityID = ' + CONVERT(nvarchar, @BusinessEntityID)
END +
CASE
 WHEN @NationalIDNumber IS NULL THEN ''
 ELSE 'AND NationalIDNumber = N''' + @NationalIDNumber + ''''
END;

EXEC(@sql);
GO

In this example, the CASE expressions concatenate an empty string if one of the parameters is NULL.
Otherwise, the parameter is formatted as a string and concatenated to the predicate.

Thanks to the CASE expressions, the code is much more compact, and the query is still generally
formatted like a query instead of like procedural code. But the real trick here is the addition of 1=1 to the
WHERE clause, in order to avoid the combinatorial explosion problem. The query optimizer will “optimize
out” (i.e., discard) 1=1 in a WHERE clause, so it has no effect on the resultant query plan. What it does do is
allow the optional predicates to use AND without having to be aware of whether other optional predicates
are being concatenated. Each predicate can therefore be listed only once in the code, and combinations
are not a problem.

The final maintainability issue with this code is one of formatting, and this is an area that I feel is
extremely important when working with dynamic SQL. Careful, consistent formatting can mean the
difference between quick changes to stored procedures and spending several hours trying to decipher
messy code.

To see the problem with the way the code is currently formatted, add PRINT @sql to the end of the
batch to see the final string:

SELECT
 BusinessEntityID,
 LoginID,
 JobTitle

215

CHAPTER 8 DYNAMIC T-SQL

FROM HumanResources.Employee
WHERE 1=1AND BusinessEntityID = 28AND NationalIDNumber = N'14417807'

Although this SQL is valid and executes as-is without exception, it has the potential for problems
due to the lack of spacing between the predicates. Debugging spacing issues in dynamic SQL can be
maddening, so I recommend adopting a consistent formatting standard to combat the issue. When I am
working with dynamic SQL, I concatenate every line separately, ensuring that each line is terminated
with a space. This adds a bit more complexity to the code, but I’ve found that it makes it much easier to
debug. Following is an example of how I like to format my dynamic SQL:

DECLARE @BusinessEntityID int = 28;
DECLARE @NationalIDNumber nvarchar(15) = N'14417807';

DECLARE @sql nvarchar(max);

SET @sql = '' +
 'SELECT ' +
 'BusinessEntityID, ' +
 'LoginID, ' +
 'JobTitle ' +
 'FROM HumanResources.Employee ' +
 'WHERE 1=1 ' +
 CASE
 WHEN @BusinessEntityID IS NULL THEN ''
 ELSE 'AND BusinessEntityID = ' + CONVERT(nvarchar, @BusinessEntityID) + ' '
 END +
 CASE
 WHEN @NationalIDNumber IS NULL THEN ''
 ELSE 'AND NationalIDNumber = N''' + @NationalIDNumber + ''' '
 END;

EXEC(@sql);
GO

 Note I developed this style when working with older versions of SQL Server, which did not have the max data
types and therefore had stringent variable size limitations. Cutting everything up into individual tokens greatly
reduced the amount of whitespace, meaning that I could fit a lot more code in each variable. Removal of
extraneous whitespace is not necessary in SQL Server 2008, but I still feel that this technique is great for ensuring
proper spacing, which both improves readability and ensures consistency to enable reuse of cached plans.

Now that the code fragment is properly formatted, it can be transferred into a new version of the
GetEmployeeData stored procedure:

ALTER PROCEDURE GetEmployeeData
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL

216

 CHAPTER 8 DYNAMIC T-SQL

AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT ' +
 'BusinessEntityID, ' +
 'LoginID, ' +
 'JobTitle ' +
 'FROM HumanResources.Employee ' +
 'WHERE 1=1 ' +
 CASE
 WHEN @BusinessEntityID IS NULL THEN ''
 ELSE 'AND BusinessEntityID = ' + CONVERT(nvarchar, @BusinessEntityID) + ' '
 END +
 CASE
 WHEN @NationalIDNumber IS NULL THEN ''
 ELSE 'AND NationalIDNumber = N''' + @NationalIDNumber + ''' '
 END

 EXEC(@sql);
END;
GO

So that’s it—a dynamic stored procedure with optional parameters. At first glance, this might look
like a great solution, but it is still fraught with problems.

From a performance point of view, this procedure appears to be great when taken for a few test
runs. Each set of input parameters produces the same execution plan as the baseline examples, with the
same estimated costs and number of reads. However, under the covers, a major issue still exists:
parameterization is not occurring. To illustrate this, execute the following T-SQL, which clears the query
plan cache and then runs the procedure with the same optional parameter, for three different input
values:

DBCC FREEPROCCACHE;
GO

EXEC GetEmployeeData
 @BusinessEntityID = 1;
GO

EXEC GetEmployeeData
 @BusinessEntityID = 2;
GO
EXEC GetEmployeeData
 @BusinessEntityID = 3;
GO

Now, query the sys.dm_exec_cached_plans view using the query introduced earlier this chapter, and
you will see the output as follows:

217

CHAPTER 8 DYNAMIC T-SQL

objtype text

Proc CREATE PROCEDURE GetEmployeeData @BusinessEntityID int = NULL ...

Adhoc SELECT BusinessEntityID, LoginID, JobTitle FROM HumanResources.Employee

 WHERE 1=1 AND BusinessEntityID = 3

Adhoc SELECT BusinessEntityID, LoginID, JobTitle FROM HumanResources.Employee

 WHERE 1=1 AND BusinessEntityID = 2

Adhoc SELECT BusinessEntityID, LoginID, JobTitle FROM HumanResources.Employee

 WHERE 1=1 AND BusinessEntityID = 1

Notice that there is one Proc cached plan for the procedure itself—which is expected for any stored
procedure—and an additional ad hoc plan cached for each invocation of the stored procedure. This
means that every time a new argument is passed, a compilation occurs, which is clearly going to kill
performance.

The other issue with this stored procedure, as it currently stands, is a serious security hole. A stored
procedure implemented similarly to this one but with a minor modification would open a simple attack
vector that a hacker could exploit to easily pull information out of the database, or worse.

SQL Injection
Concatenating string parameters such as @NationalIDNumber directly onto queries can open your
applications to considerable problems. The issue is a hacking technique called a SQL injection attack,
which involves passing bits of semiformed SQL to the database, typically via values entered in web
forms, in order to try to manipulate dynamic or ad hoc SQL on the other side.

The example GetEmployeeData stored procedure doesn’t actually have much of a problem as-is,
because @NationalIDNumber is only 15 characters long—this doesn’t give a hacker much room to work
with (although bear in mind that it only takes 8 characters to issue the SHUTDOWN command). But what if
you were working with another stored procedure that had to be a bit more flexible? The following
example procedure, which might be used to search for addresses in the AdventureWorks2008 database,
gives an attacker more than enough characters to do some damage:

CREATE PROCEDURE FindAddressByString
 @String nvarchar(60)
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT AddressID ' +

218

 CHAPTER 8 DYNAMIC T-SQL

 'FROM Person.Address ' +
 'WHERE AddressLine1 LIKE ''%' + @String + '%'''

 EXEC(@sql);

END;
GO

This stored procedure can be executed with a string such as “Stone” used for the parameter value:

EXEC FindAddressByString
 @String = 'Stone';
GO

This outputs the result set you might expect, with all of the address IDs that use that string in the
AddressLine1 column. The abridged list of results is as follows:

AddressID

16475

21773

23244

23742

16570

6

...

1042

Consider what actually happened inside of the stored procedure. The WHERE clause for the query was
concatenated, such that it literally became WHERE AddressLine1 LIKE '%Stone%'. But nothing is stopping
someone from passing a string into the stored procedure that has a more profound effect. For instance,
consider what happens in the following case:

EXEC FindAddressByString
 @String = ''' ORDER BY AddressID --';
GO

After concatenation, the WHERE clause reads, WHERE AddressLine1 LIKE '%' ORDER BY AddressID --
%'. The effect is that filtering is no longer applied, and an ORDER BY clause—which was not there before—
has been added to the query. When supplied with this input, the results of the query now list every
AddressID in the Person.Address table, in order, as follows:

219

CHAPTER 8 DYNAMIC T-SQL

AddressID

1

2

3

6

...

32521

This is, of course, a fairly mundane example. How about something a bit more interesting, such as
getting back the full pay history for every employee in the database?

EXEC FindAddressByString
 @String = 'Fake address'; SELECT * FROM HumanResources.EmployeePayHistory --';
GO

Assuming that the account used for the query has access to the HumanResources.EmployeePayHistory
table, running the stored procedure now produces two result sets—the first is an empty result set from
the Person.Address table, but the second lists all details from the EmployeePayHistory table:

BusinessEntityID RateChangeDate Rate PayFrequency ModifiedDate

1 1999-02-15 125.50 2 2004-07-31

...

290 2002-07-01 23.0769 2 2004-07-31

The fact is the attacker can do anything in the database that the authenticated account has access to
do and that can be done in 60 characters (the size of the string parameter). This includes viewing data,
deleting data, and inserting fake data. Such an attack can often be waged from the comfort of a web
browser, and intrusion can be incredibly difficult to detect.

The solution is not to stop using dynamic SQL. Rather, it’s to make sure that your dynamic SQL is
always parameterized. Let me repeat that for effect: always, always, always parameterize your dynamic
SQL! The next section shows you how to use sp_executesql to do just that.

sp_executesql: A Better EXECUTE
In the previous sections, I identified two major problems with building dynamic SQL statements and
executing them using EXECUTE: first, there is the issue of extraneous compilation and query plan caching,

220

 CHAPTER 8 DYNAMIC T-SQL

which makes performance drag and uses up valuable system resources. Second, and perhaps more
important, is the threat of SQL injection attacks.

Query parameterization, mentioned earlier in this chapter in the context of application
development, is the key to fixing both of these problems. Parameterization is a way to build a query such
that any parameters are passed as strongly typed variables, rather than formatted as strings and
appended to the query. In addition to the performance benefits this brings by reducing the amount of
work to process the query, parameterization also has the benefit of virtually eliminating SQL injection
attacks.

The first step in parameterizing a query is to replace literals with variable names. For instance, the
injection-vulnerable query from the previous section could be rewritten in a parameterized manner as
follows (I’ve removed the stored procedure–creation code for simplicity):

DECLARE @String nvarchar(60) = 'Stone';

DECLARE @sql nvarchar(max);

SET @sql = '' +
 'SELECT AddressID ' +
 'FROM Person.Address ' +
 'WHERE AddressLine1 LIKE ''%'' + @String + ''%''';

The only thing that has changed about this query compared to the version in the last section is that
two additional single quotes have been added such that the literal value of @String is no longer
concatenated with the rest of the query. Previously, the literal value of @sql after concatenation would
have been as follows:

SELECT AddressID FROM Person.Address WHERE AddressLine1 LIKE '%Stone%'

As a result of this change, the literal value after concatenation is now the following:

SELECT AddressID FROM Person.Address WHERE AddressLine1 LIKE '%' + @String + '%'

Trying to execute this SQL using EXECUTE results in the following exception:

Msg 137, Level 15, State 2, Line 1
Must declare the scalar variable "@String".

The reason for this is that EXECUTE runs the SQL in a different context than that in which it was
created. In the context in which the statement is run, the variable @String has not been declared and is
therefore unknown. Since the value of the variable is not concatenated directly into the query, the type
of SQL injection described in the previous section is impossible in this scenario. However, we need to
find an alternative way to pass legitimate, strongly typed parameters to the query.

The solution to this problem is to use the sp_executesql system stored procedure, which allows you
to pass parameters to dynamic SQL, much as you can to a stored procedure. The parameters for
sp_executesql are a Unicode (nvarchar or nchar) string containing a dynamic SQL batch, a second
Unicode string that defines the data types of the variables referenced in the dynamic SQL, and a list of
values or variables from the calling scope that correspond to the variables defined in the data type list.
The following T-SQL shows how to execute the Person.Address query using sp_executesql:

DECLARE @String nvarchar(60) = 'Stone'

DECLARE @sql nvarchar(max);

221

CHAPTER 8 DYNAMIC T-SQL

SET @sql = '' +
 'SELECT AddressID ' +
 'FROM Person.Address ' +
 'WHERE AddressLine1 LIKE ''%'' + @String + ''%'''

EXEC sp_executesql
 @sql,
 N'@String nvarchar(60)',
 @String;
GO

Running this batch will produce the same results as calling FindAddressByString and passing the
string “Stone.” The parameters to sp_executesql serve to map the @String variable from the outer scope
into the new scope spawned when the dynamic SQL is executed—without having to concatenate the
literal value of the variable.

For an example that uses multiple parameters, consider again the GetEmployeeData stored
procedure, now rewritten to use sp_executesql instead of EXECUTE:

ALTER PROCEDURE GetEmployeeData
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT ' +
 'BusinessEntityID, ' +
 'LoginID, ' +
 'JobTitle ' +
 'FROM HumanResources.Employee ' +
 'WHERE 1=1 ' +
 CASE
 WHEN @BusinessEntityID IS NULL THEN ''
 ELSE 'AND BusinessEntityID = @BusinessEntityID '
 END +
 CASE
 WHEN @NationalIDNumber IS NULL THEN ''
 ELSE 'AND NationalIDNumber = @NationalIDNumber '
 END

 EXEC sp_executesql
 @sql,
 N'@BusinessEntityID int, @NationalIDNumber nvarchar(60)',
 @BusinessEntityID,
 @NationalIDNumber;

END;
GO

222

 CHAPTER 8 DYNAMIC T-SQL

For multiple parameters, simply comma-delimit their data type definitions in the second
parameter, and then pass as many outer parameters as necessary to define every variable listed in the
second parameter. Note that you can use a string variable for the second parameter, which might make
sense if you are defining a long list—but I usually keep the list in a string literal so that I can easily match
the definitions with the variables passed in from the outer scope.

Another important thing to note here is that even though both parameters are optional, they will
both get passed to the query every time it is executed. This is perfectly OK! There is very little overhead in
passing parameters into sp_executesql, and trying to work around this issue would either bring back the
combinatorial explosion problem or require some very creative use of nested dynamic SQL. Neither
solution is maintainable or worth the time required, so save your energy for more interesting pursuits.

To verify that sp_executesql really is reusing query plans as expected, run the same code that was
used to show that the EXECUTE method was not reusing plans:

DBCC FREEPROCCACHE;
GO

EXEC GetEmployeeData
 @BusinessEntityID = 1;
GO

EXEC GetEmployeeData
 @BusinessEntityID = 2;
GO

EXEC GetEmployeeData
 @BusinessEntityID = 3;
GO

After running this code, query the sys.dm_exec_cached_plans view as before. The results should
show two rows, as follows:

objtype text

Proc CREATE PROCEDURE GetEmployeeData @BusinessEntityID int = NULL...

Prepared (@BusinessEntityID INT, @NationalIDNumber nvarchar(60))SELECT ...

One plan is cached for the procedure itself, and one is cached for the invocation of the dynamic
query with the @BusinessEntityID parameter. Invoking the query with a different combination of
parameters will result in creation of more cached plans, because the resultant query text will be
different. However, the maximum number of plans that can be cached for the stored procedure is five:
one for the procedure itself and one for each possible combination of parameters.

Performance Comparison
Having considered the implications for maintenance and cache plan reuse, let’s now conduct some
simple load testing to see how the three different approaches (static, EXECUTE, and sp_executesql)
compare in terms of actual performance.

223

CHAPTER 8 DYNAMIC T-SQL

To begin, create a renamed version of the best-performing (but hardest-to-maintain) static SQL
version of the stored procedure. Call it GetEmployeeData_Static:

CREATE PROCEDURE GetEmployeeData_Static
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

 IF (@BusinessEntityID IS NOT NULL AND @NationalIDNumber IS NOT NULL)
 BEGIN
 SELECT
 LoginID,
 JobTitle
 FROM HumanResources.Employee
 WHERE
 BusinessEntityID = @BusinessEntityID
 AND NationalIDNumber = @NationalIDNumber;
 END

 ELSE IF (@BusinessEntityID IS NOT NULL)
 BEGIN
 SELECT
 LoginID,
 JobTitle
 FROM HumanResources.Employee
 WHERE
 BusinessEntityID = @BusinessEntityID;
 END

 ELSE IF (@NationalIDNumber IS NOT NULL)
 BEGIN
 SELECT
 LoginID,
 JobTitle
 FROM HumanResources.Employee
 WHERE
 NationalIDNumber = @NationalIDNumber;
 END

 ELSE
 BEGIN
 SELECT
 LoginID,
 JobTitle
 FROM HumanResources.Employee;
 END

END;
GO

224

 CHAPTER 8 DYNAMIC T-SQL

This version produces the best possible query plans, but of course has the issue of being very
difficult to maintain. It also has no additional overhead associated with context switching, which may
make it slightly faster than a dynamic SQL solution if the queries are very simple. For more complex
queries that take longer to run, any context switching overhead will be overshadowed by the actual
runtime of the query.

To test the performance of the GetEmployeeData_Static stored procedure, we’ll call it from a simple
C# application via ADO.NET. But first we need to obtain a set of values to supply for the
@NationalIDNumber and @BusinessEntityID parameters. For each row in the HumanResources.Employee
table, we’ll call the procedure with every combination of those two parameters: once supplying just the
BusinessEntityID, once supplying just the NationalIDNumber, once supplying both, and once providing
NULL for both parameters. There are 290 rows in the HumanResources.Employee table, so this provides (290
x 3) + 1 = 871 combinations. To increase the sample size, we’ll place the procedure call in a loop that will
call every combination ten times—leading to 8,710 iterations of the query.

The following code listing illustrates the C# code required to perform the test just described. It first
fills a DataTable with the possible set of parameter values, and then steps through the rows of the table,
calling the GetEmployeeData_static with each combination:

SqlConnection sqlConn = new SqlConnection(
 "Data Source=localhost;
 Initial Catalog=AdventureWorks2008;
 Integrated Security=SSPI");

sqlConn.Open();

/* Grab every combination of parameters */
SqlCommand cmd = new SqlCommand(@"
 SELECT BusinessEntityId, NationalIDNumber FROM HumanResources.Employee
 UNION ALL SELECT NULL, NationalIDNumber FROM HumanResources.Employee
 UNION ALL SELECT BusinessEntityId, NULL FROM HumanResources.Employee
 UNION ALL SELECT NULL, NULL", sqlConn);

SqlDataAdapter da = new SqlDataAdapter();
da.SelectCommand = cmd;
DataTable dt = new DataTable();
da.Fill(dt);

for (int i = 0; i < 10; i++)
{
 foreach (DataRow r in dt.Rows)
 {

 SqlCommand cmd2 = new SqlCommand("GetEmployeeData_static", sqlConn);
 cmd2.CommandType = CommandType.StoredProcedure;

 SqlParameter param = new SqlParameter("@BusinessEntityID", SqlDbType.Int);
 param.Value = r[0];
 cmd2.Parameters.Add(param);

 SqlParameter param2 = new SqlParameter("@NationalIDNumber",
 SqlDbType.NVarChar, 16);
 param2.Value = r[1];

225

CHAPTER 8 DYNAMIC T-SQL

 cmd2.Parameters.Add(param2);

 cmd2.ExecuteNonQuery();

 }
}
sqlConn.Close();

Before running the code, be sure to clear out the stored procedure cache by issuing the following
command:

DBCC FREEPROCCACHE;
GO

Then execute the C# code to call the static procedure in a loop. Once it’s run, we’ll investigate the
performance by once again interrogating the system DMVs. This time, we’ll amend our original cache
plan query to add in performance counter columns from the sys.dm_exec_query_stats view as follows:

SELECT
 cp.objtype AS type,
 COUNT(DISTINCT st.text) AS plans,
 SUM(qs.execution_count) AS execution_count,
 CAST(SUM(qs.total_worker_time) AS decimal(18,9)) / SUM(qs.execution_count)
 / 1000 AS avg_CPU_ms
FROM sys.dm_exec_query_stats qs
 JOIN sys.dm_exec_cached_plans cp ON cp.plan_handle = qs.plan_handle
 CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
WHERE
 st.text LIKE '%HumanResources.Employee%'
 AND st.text NOT LIKE '%sys.dm_exec_sql_text%'
GROUP BY
 cp.objtype

The results obtained when I run this on my laptop are as follows:

type plans execution_count avg_CPU_ms

Adhoc 1 1 3.00000000000000000000000000000

Proc 1 8710 0.08829402985074626865671641791

As expected, the cache contains a single execution plan, which was compiled once and then reused
for all 8,710 queries. Each static query took, on average, 0.08829ms to run. Not bad.

Next, create a renamed version of the EXECUTE solution, called GetEmployeeData_Execute:

CREATE PROCEDURE GetEmployeeData_Execute
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL

226

 CHAPTER 8 DYNAMIC T-SQL

AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT ' +
 'LoginID, ' +
 'JobTitle ' +
 'FROM HumanResources.Employee ' +
 'WHERE 1=1 ' +
 CASE
 WHEN @BusinessEntityID IS NULL THEN ''
 ELSE
 'AND BusinessEntityID = ' +
 CONVERT(nvarchar, @BusinessEntityID) + ' '
 END +
 CASE
 WHEN @NationalIDNumber IS NULL THEN ''
 ELSE
 'AND NationalIDNumber = N''' +
 @NationalIDNumber + ''' '
 END;

 EXEC(@sql);

END

Testing this stored procedure against the static solution, and later, the sp_executesql solution, will
create a nice means by which to compare static SQL against both parameterized and nonparameterized
dynamic SQL, and will show the effects of parameterization on performance. Back in the C# application,
change the SqlCommand to reflect the name of the new procedure, as follows:

SqlCommand cmd2 = new SqlCommand("GetEmployeeData_execute", sqlConn);

Once you’ve made this change, clear the stored procedure cache with another call to DBCC
FREEPROCCACHE, and then run the tests again. Interrogating the DMV tables after the test runs on my
system gives the following results:

type plans execution_count avg_CPU_ms
Adhoc 872 8711 0.11204224543680404086786821260

Using the EXECUTE method, the cache contains 872 different Adhoc plans—one for the original
creation of the stored procedure, and one for each time it is called with a different set of parameters. The
overall average CPU time for this method is 0.112ms per query—over ten times slower than the static
solution.

The final stored procedure to test is, of course, the sp_executesql solution. Once again, create a
renamed version of the stored procedure in order to differentiate it. This time, call it
GetEmployeeData_sp_executesql:

227

CHAPTER 8 DYNAMIC T-SQL

CREATE PROCEDURE GetEmployeeData_sp_executesql
 @BusinessEntityID int = NULL,
 @NationalIDNumber nvarchar(15) = NULL
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT ' +
 'LoginID, ' +
 'JobTitle ' +
 'FROM HumanResources.Employee ' +
 'WHERE 1=1 ' +
 CASE
 WHEN @BusinessEntityID IS NULL THEN ''
 ELSE 'AND BusinessEntityID = @BusinessEntityID '
 END +
 CASE
 WHEN @NationalIDNumber IS NULL THEN ''
 ELSE 'AND NationalIDNumber = @NationalIDNumber '
 END;

 EXEC sp_executesql
 @sql,
 N'@BusinessEntityID int, @NationalIDNumber nvarchar(15)',
 @BusinessEntityID,
 @NationalIDNumber;

END

In the C# code, change the SqlCommand text to the following:

SqlCommand cmd2 = new SqlCommand("GetEmployeeData_sp_executesql", sqlConn);

Clear the query plan cache and run the tests. When finished, check the performance results one last
time. The results from my system are as follows:

type plans execution_count avg_CPU_ms

Adhoc 1 1 3.00000000000000000000000000000

Prepared 4 8710 0.09541297359357060849598163030

Interestingly, the results of the two dynamic SQL solutions are very close, with the sp_executesql
solution only just beating the EXECUTE solution, even given the benefits of parameterization for
performance. Runs with fewer iterations or against stored procedures that are more expensive for SQL
Server to compile will highlight the benefits more clearly.

228

 CHAPTER 8 DYNAMIC T-SQL

The static SQL version, as expected, still wins from a performance point of view (although all three
are extremely fast). Again, more complex stored procedures with longer runtimes will naturally
overshadow the difference between the dynamic SQL and static SQL solutions, leaving the dynamic SQL
vs. static SQL question purely one of maintenance.

 Note When running these tests on my system, I restarted my SQL Server service between each run in order to
ensure absolute consistency. Although this may be overkill for this case, you may find it interesting to experiment
on your end with how restarting the service affects performance. This kind of test can also be useful for general
scalability testing, especially in clustered environments. Restarting the service before testing is a technique that
you can use to simulate how the application will behave if a failover occurs, without requiring a clustered testing
environment.

Output Parameters

Although it is somewhat of an aside to this discussion, I would like to point out one other feature that
sp_executesql brings to the table as compared to EXECUTE—one that is often overlooked by users who
are just getting started using it. sp_executesql allows you to pass parameters to dynamic SQL just like to
a stored procedure—and this includes output parameters.

Output parameters become quite useful when you need to use the output of a dynamic SQL statement that
perhaps only returns a single scalar value. An output parameter is a much cleaner solution than having to
insert the value into a table and then read it back into a variable.

To define an output parameter, simply append the OUTPUT keyword in both the parameter definition list
and the parameter list itself. The following T-SQL shows how to use an output parameter with
sp_executesql:

DECLARE @SomeVariable int;

EXEC sp_executesql
 N'SET @SomeVariable = 123',
 N'@SomeVariable int OUTPUT',
 @SomeVariable OUTPUT;

As a result of this T-SQL, the @SomeVariable variable will have a value of 123.

Since this is an especially contrived example, I will add that in practice I often use output parameters with
sp_executesql in stored procedures that perform searches with optional parameters. A common user
interface requirement is to return the number of total rows found by the selected search criteria, and an
output parameter is a quick way to get the data back to the caller.

229

CHAPTER 8 DYNAMIC T-SQL

Dynamic SQL Security Considerations
To finish up this chapter, a few words on security are important. Aside from the SQL injection example
shown in a previous section, there are a couple of other security topics that are important to consider. In
this section, I will briefly discuss permissions issues and a few interface rules to help you stay out of
trouble when working with dynamic SQL.

Permissions to Referenced Objects
As mentioned a few times throughout this chapter, dynamic SQL is invoked in a different scope than
static SQL. This is extremely important from an authorization perspective, because upon execution,
permissions for all objects referenced in the dynamic SQL will be checked. Therefore, in order for the
dynamic SQL to run without throwing an authorization exception, the user executing the dynamic SQL
must either have access directly to the referenced objects or be impersonating a user with access to the
objects.

This creates a slightly different set of challenges from those you get when working with static SQL
stored procedures, due to the fact that the change of context that occurs when invoking dynamic SQL
breaks any ownership chain that has been established. If you need to manage a permissions hierarchy
such that users should have access to stored procedures that use dynamic SQL, but not to the base tables
they reference, make sure to become intimately familiar with certificate signing and the EXECUTE AS
clause, both described in detail in Chapter 4.

Interface Rules
This chapter has focused on optional parameters of the type you might pass to enable or disable a
certain predicate for a query. However, there are other types of optional parameters that developers
often try to use with dynamic SQL. These parameters involve passing table names, column lists, ORDER
BY lists, and other modifications to the query itself into a stored procedure for concatenation.

If you’ve read Chapter 1 of this book, you know that these practices are incredibly dangerous from a
software development perspective, leading to tight coupling between the database and the application,
in addition to possibly distorting stored procedures’ implied output contracts, therefore making testing
and maintenance extremely arduous.

As a general rule, you should never pass any database object name from an application into a stored
procedure (and the application should not know the object names anyway). If you absolutely must
modify a table or some other object name in a stored procedure, try to encapsulate the name via a set of
parameters instead of allowing the application to dictate.

For instance, assume you were working with the following stored procedure:

CREATE PROC SelectDataFromTable
 @TableName nvarchar(200)
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT ' +

230

 CHAPTER 8 DYNAMIC T-SQL

 'ColumnA, ' +
 'ColumnB, ' +
 'ColumnC ' +
 'FROM ' + @TableName;

 EXEC(@sql);

END;
GO

Table names cannot be parameterized, meaning that using sp_executesql in this case would not
help in any way. However, in virtually all cases, there is a limited subset of table names that can (or will)
realistically be passed into the stored procedure. If you know in advance that this stored procedure will
only ever use tables TableA, TableB, and TableC, you can rewrite the stored procedure to keep those table
names out of the application while still providing the same functionality.

The following code listing provides an example of how you might alter the previous stored
procedure to provide dynamic table functionality while abstracting the names somewhat to avoid
coupling issues:

ALTER PROC SelectDataFromTable
 @UseTableA bit = 0,
 @UseTableB bit = 0,
 @UseTableC bit = 0
AS
BEGIN
 SET NOCOUNT ON;

 IF (
 CONVERT(tinyint, COALESCE(@UseTableA, 0)) +
 CONVERT(tinyint, COALESCE(@UseTableB, 0)) +
 CONVERT(tinyint, COALESCE(@UseTableC, 0))
) <> 1
 BEGIN
 RAISERROR('Must specify exactly one table', 16, 1);
 RETURN;
 END

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT ' +
 'ColumnA, ' +
 'ColumnB, ' +
 'ColumnC ' +
 'FROM ' +
 CASE
 WHEN @UseTableA = 1 THEN 'TableA'
 WHEN @UseTableB = 1 THEN 'TableB'
 WHEN @UseTableC = 1 THEN 'TableC'
 END

231

CHAPTER 8 DYNAMIC T-SQL

232

 EXEC(@sql);

END;
GO

This version of the stored procedure is obviously quite a bit more complex, but it is still relatively
easy to understand. The IF block validates that exactly one table is selected (i.e., the value of the
parameter corresponding to the table is set to 1), and the CASE expression handles the actual dynamic
selection of the table name.

If you find yourself in a situation in which even this technique is not possible, and you absolutely
must support the application passing in object names dynamically, you can at least do a bit to protect
from the possibility of SQL injection problems. SQL Server includes a function called QUOTENAME, which
bracket-delimits any input string such that it will be treated as an identifier if concatenated with a SQL
statement. For instance, QUOTENAME('123') returns the value [123].

By using QUOTENAME, the original version of the dynamic table name stored procedure can be
modified such that there will be no risk of SQL injection:

ALTER PROC SelectDataFromTable
 @TableName nvarchar(200);
AS
BEGIN
 SET NOCOUNT ON;

 DECLARE @sql nvarchar(max);

 SET @sql = '' +
 'SELECT ' +
 'ColumnA, ' +
 'ColumnB, ' +
 'ColumnC ' +
 'FROM ' + QUOTENAME(@TableName);

 EXEC(@sql);

END;
GO

Unfortunately, this does nothing to fix the interface issues, and modifying the database schema may
still necessitate a modification to the application code.

Summary
Dynamic SQL can be an extremely useful tool for working with stored procedures that require flexibility.
However, it is important to make sure that you are using dynamic SQL properly in order to ensure the
best balance of performance, maintainability, and security. Make sure to always parameterize queries
and never trust any input from a caller, lest a nasty payload is waiting, embedded in an otherwise
innocent search string.

C H A P T E R 9

Designing Systems for
Application Concurrency

It is hardly surprising how well applications tend to both behave and scale when they have only one
concurrent user. Many developers are familiar with the wonderful feeling of checking in complex code at
the end of an exhaustingly long release cycle and going home confident in the fact that everything works
and performs according to specification. Alas, that feeling can be instantly ripped away, transformed
into excruciating pain, when the multitude of actual end users start hammering away at the system, and
it becomes obvious that just a bit more testing of concurrent utilization might have been helpful. Unless
your application will be used by only one user at a time, it simply can’t be designed and developed as
though it will be.

Concurrency can be one of the toughest areas in application development, because the problems
that occur in this area often depend on extremely specific timing. An issue that causes a test run to end
with a flurry of exceptions on one occasion may not fire any alarms on the next run because some other
module happened to take a few milliseconds longer than usual, lining up the cards just right. Even worse
is when the opposite happens, and a concurrency problem pops up seemingly out of nowhere, at odd
and irreproducible intervals (but always right in the middle of an important demo).

While it may be difficult or impossible to completely eliminate these kinds of issues from your
software, proper up-front design can help you greatly reduce the number of incidents you see. The key is
to understand a few basic factors:

• What kinds of actions can users perform that might interfere with the activities of
others using the system?

• What features of the database (or software system) will help or hinder your users
performing their work concurrently?

• What are the business rules that must be obeyed in order to make sure that
concurrency is properly handled?

This chapter delves into the different types of application concurrency models you might need to
implement in the database layer, the tools SQL Server offers to help you design applications that work
properly in concurrent scenarios, and how to go beyond what SQL Server offers out of the box.

235

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

The Business Side: What Should Happen
When Processes Collide?
Before getting into the technicalities of dealing with concurrency in SQL Server, it’s important to define
both the basic problem areas and the methods by which they are commonly handled. In the context of a
database application, problems arising as a result of concurrent processes generally fall into one of three
categories:

• Overwriting of data occurs when two or more users edit the same data
simultaneously, and the changes made by one user are lost when replaced by the
changes from another. This can be a problem for several reasons: first of all, there
is a loss of effort, time, and data (not to mention considerable annoyance for the
user whose work is lost). Additionally, a more serious potential consequence is
that, depending on what activity the users were involved in at the time,
overwriting may result in data corruption at the database level. A simple example
is a point-of-sale application that reads a stock number from a table into a
variable, adds or subtracts an amount based on a transaction, and then writes the
updated number back to the table. If two sales terminals are running and each
processes a sale for the same product at exactly the same time, there is a chance
that both terminals will retrieve the initial value and that one terminal will
overwrite instead of update the other’s change.

• Nonrepeatable reading is a situation that occurs when an application reads a set
of data from a database and performs some calculations on it, and then needs to
read the same set of data again for another purpose—but the original set has
changed in the interim. A common example of where this problem can manifest
itself is in drill-down reports presented by analytical systems. The reporting
system might present the user with an aggregate view of the data, calculated based
on an initial read. As the user clicks summarized data items on the report, the
reporting system might return to the database in order to read the corresponding
detail data. However, there is a chance that another user may have changed some
data between the initial read and the detail read, meaning that the two sets will no
longer match.

• Blocking may occur when one process is writing data and another tries to read or
write the same data. Blocking can be (and usually is) a good thing—it prevents
many types of overwriting problems and ensures that only consistent data is read
by clients. However, excessive blocking can greatly decrease an application’s
ability to scale, and therefore it must be carefully monitored and controlled.

There are several ways of dealing with these issues, with varying degrees of ease of technical
implementation. But for the sake of this section, I’ll ignore the technical side for now and keep the
discussion focused on the business rules involved. There are four main approaches to addressing
database concurrency issues that should be considered:

• Anarchy: Assume that collisions and inconsistent data do not matter. Do not block
readers from reading inconsistent data, and do not worry about overwrites or
repeatable reads. This methodology is often used in applications in which users
have little or no chance of editing the same data point concurrently, and in which
repeatable read issues are unimportant.

236

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

• Pessimistic concurrency control: Assume that collisions will be frequent; stop
them from being able to occur. Block readers from reading inconsistent data, but
do not necessarily worry about repeatable reads. To avoid overwrites, do not allow
anyone to begin editing a piece of data that’s being edited by someone else.

• Optimistic concurrency control: Assume that there will occasionally be some
collisions, but that it’s OK for them to be handled when they occur. Block readers
from reading inconsistent data, and let the reader know what version of the data is
being read. This enables the reader to know when repeatable read problems occur
(but not avoid them). To avoid overwrites, do not allow any process to overwrite a
piece of data if it has been changed in the time since it was first read for editing by
that process.

• Multivalue concurrency control (MVCC): Assume that there will be collisions, but
that they should be treated as new versions rather than as collisions. Block readers
both from reading inconsistent data and encountering repeatable read problems
by letting the reader know what version of the data is being read and allowing the
reader to reread the same version multiple times. To avoid overwrites, create a
new version of the data each time it is saved, keeping the old version in place.

Each of these methodologies represents a different user experience, and the choice must be made
based on the necessary functionality of the application at hand. For instance, a message board
application might use a more-or-less anarchic approach to concurrency, since it’s unlikely or impossible
that two users would be editing the same message at the same time—overwrites and inconsistent reads
are acceptable.

On the other hand, many applications cannot bear overwrites. A good example of this is a source
control system, where overwritten source code might mean a lot of lost work. However, the best way to
handle the situation for source control is up for debate. Two popular systems, Subversion and Visual
SourceSafe, each handle this problem differently. Subversion uses an optimistic scheme in which
anyone can edit a given file, but you receive a collision error when you commit if someone else has
edited it in the interim. Visual SourceSafe, on the other hand, uses a pessimistic model where you must
check out a given file before editing it, thereby restricting anyone else from doing edits until you check it
back in.

Finally, an example of a system that supports MVCC is a wiki. Although some wiki packages use an
optimistic model, many others allow users to make edits at any time, simply incrementing the version
number for a given page to reflect each change, but still saving past versions. This means that if two
users are making simultaneous edits, some changes might get overwritten. However, users can always
look back at the version history to restore overwritten content—in an MVCC system, nothing is ever
actually deleted.

In later sections of this chapter I will describe solutions based on each of these methodologies in
greater detail.

Isolation Levels and Transactional Behavior
This chapter assumes that you have some background in working with SQL Server transactions and
isolation levels, but in case you’re not familiar with some of the terminology, this section presents a very
basic introduction to the topic.

Isolation levels are set in SQL Server in order to tell the database engine how to handle locking and
blocking when multiple transactions collide, trying to read and write the same data. Selecting the correct

237

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

isolation level for a transaction is extremely important in many business cases, especially those that
require consistency when reading the same data multiple times.

SQL Server’s isolation levels can be segmented into two basic classes: those in which readers are
blocked by writers, and those in which blocking of readers does not occur. The READ COMMITTED,
REPEATABLE READ, and SERIALIZABLE isolation levels are all in this first category, whereas READ
UNCOMMITTED and SNAPSHOT fall into the latter group. A special subclass of the SNAPSHOT isolation level, READ
COMMITTED SNAPSHOT, is also included in this second, nonblocking class.

All transactions, regardless of the isolation level used, take exclusive locks on data being updated.
Transaction isolation levels do not change the behavior of locks taken at write time, but rather only
those taken or honored by readers.

In order to see how the isolation levels work, create a table that will be accessed by multiple
concurrent transactions. The following T-SQL creates a table called Blocker in TempDB and populates it
with three rows:

USE TempDB;
GO

CREATE TABLE Blocker
(
 Blocker_Id int NOT NULL PRIMARY KEY
);
GO

INSERT INTO Blocker VALUES (1), (2), (3);
GO

Once the table has been created, open two SQL Server Management Studio query windows. I will
refer to the windows hereafter as the blocking window and the blocked window, respectively.

In each of the three blocking isolation levels, readers will be blocked by writers. To see what this
looks like, run the following T-SQL in the blocking window:

BEGIN TRANSACTION;

UPDATE Blocker
SET Blocker_Id = Blocker_Id + 1;

Now run the following in the blocked window:

SELECT *
FROM Blocker;

This second query will not return any results until the transaction started in the blocking window is
either committed or rolled back. In order to release the locks, roll back the transaction by running the
following in the blocking window:

ROLLBACK;

In the following section, I’ll demonstrate the effects of specifying different isolation levels on the
interaction between the blocking query and the blocked query.

238

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 Note Complete coverage of locking and blocking is out of the scope of this book. Refer to the topic “Locking in
the Database Engine” in SQL Server 2008 Books Online for a detailed explanation.

Blocking Isolation Levels
Transactions using the blocking isolation levels take shared locks when reading data, thereby blocking
anyone else trying to update the same data during the course of the read. The primary difference
between these three isolation levels is in the granularity and behavior of the shared locks they take,
which changes what sort of writes will be blocked and when.

READ COMMITTED Isolation
The default isolation level used by SQL Server is READ COMMITTED. In this isolation level, a reader will hold
its locks only for the duration of the statement doing the read, even inside of an explicit transaction. To
illustrate this, run the following in the blocking window:

BEGIN TRANSACTION;

SELECT *
FROM Blocker;

Now run the following in the blocked window:

BEGIN TRANSACTION;

UPDATE Blocker
SET Blocker_Id = Blocker_Id + 1;

In this case, the update runs without being blocked, even though the transaction is still active in the
blocking window. The reason is that as soon as the SELECT ended, the locks it held were released. When
you’re finished observing this behavior, don’t forget to roll back the transactions started in both
windows by executing the ROLLBACK statement in each.

REPEATABLE READ Isolation
Both the REPEATABLE READ and SERIALIZABLE isolation levels hold locks for the duration of an explicit
transaction. The difference is that REPEATABLE READ transactions take locks at a level of granularity that
ensures that data already read cannot be updated by another transaction, but that allows other
transactions to insert data that would change the results. On the other hand, SERIALIZABLE transactions
take locks at a higher level of granularity, such that no data can be either updated or inserted within the
locked range.

To observe the behavior of a REPEATABLE READ transaction, start by running the following T-SQL in
the blocking window:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

239

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

BEGIN TRANSACTION;

SELECT *
FROM Blocker;
GO

Running the following update in the blocked window will result in blocking behavior—the query
will wait until the blocking window’s transaction has completed:

BEGIN TRANSACTION;

UPDATE Blocker
SET Blocker_Id = Blocker_Id + 1;

Both updates and deletes will be blocked by the locks taken by the query. However, inserts such as
the following will not be blocked:

BEGIN TRANSACTION;

INSERT INTO Blocker VALUES (4);

COMMIT;

Rerun the SELECT statement in the blocking window, and you’ll see the new row. This phenomenon
is known as a phantom row, because the new data seems to appear like an apparition—out of nowhere.
Once you’re done investigating the topic of phantom rows, make sure to issue a ROLLBACK in both
windows.

SERIALIZABLE Isolation
The difference between the REPEATABLE READ and SERIALIZABLE isolation levels is that while the former
allows phantom rows, the latter does not. Any key—existent or not at the time of the SELECT—that is
within the range predicated by the WHERE clause will be locked for the duration of the transaction if the
SERIALIZABLE isolation level is used. To see how this works, first run the following in the blocking
window:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRANSACTION;

SELECT *
FROM Blocker;

Next, try either an INSERT or UPDATE in the blocked window. In either case, the operation will be
forced to wait for the transaction in the blocking window to commit, since the transaction locks all rows
in the table—whether or not they exist yet. To lock only a specific range of rows, add a WHERE clause to the
blocking query, and all DML operations within the key range will be blocked for the duration of the
transaction. When you’re done, be sure to issue a ROLLBACK.

240

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 Tip The REPEATABLE READ and SERIALIZABLE isolation levels will hold shared locks for the duration of a
transaction on whatever tables are queried. However, you might wish to selectively hold locks only on specific
tables within a transaction in which you’re working with multiple objects. To accomplish this, you can use the
HOLDLOCK table hint, applied only to the tables that you want to hold the locks on. In a READ COMMITTED
transaction, this will have the same effect as if the isolation level had been escalated just for those tables to
REPEATABLE READ. For more information on table hints, see SQL Server 2008 Books Online.

Nonblocking Isolation Levels
The nonblocking isolation levels, READ UNCOMMITTED and SNAPSHOT, each allow readers to read data
without waiting for writing transactions to complete. This is great from a concurrency standpoint—no
blocking means that processes spend less time waiting and therefore users get their data back faster—
but can be disastrous for data consistency.

READ UNCOMMITTED Isolation
READ UNCOMMITTED transactions do not apply shared locks as data is read and do not honor locks placed
by other transactions. This means that there will be no blocking, but the data being read might be
inconsistent (not yet committed). To see what this means, run the following in the blocking window:

BEGIN TRANSACTION;

UPDATE Blocker
SET Blocker_Id = 10
WHERE Blocker_Id = 1;
GO

This operation will place an exclusive lock on the updated row, so any readers should be blocked
from reading the data until the transaction completes. However, the following query will not be blocked
if run in the blocked window:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

SELECT *
FROM Blocker;
GO

The danger here is that because the query is not blocked, a user may see data that is part of a
transaction that later gets rolled back. This can be especially problematic when users are shown
aggregates that do not add up based on the leaf-level data when reconciliation is done later. I
recommend that you carefully consider these issues before using READ UNCOMMITTED (or the NOLOCK table
hint) in your queries.

241

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

SNAPSHOT Isolation
An alternative to READ UNCOMMITTED is SQL Server 2008’s SNAPSHOT isolation level. This isolation level
shares the same nonblocking characteristics as READ UNCOMMITTED, but only consistent data is shown.
This is achieved by making use of a row-versioning technology that stores previous versions of rows in
TempDB as data modifications occur in a database.

SNAPSHOT almost seems like the best of both worlds: no blocking, yet no danger of inconsistent data.
However, this isolation level is not without its problems. First and foremost, storing the previous row
values in TempDB can create a huge amount of load, causing many problems for servers that are not
properly configured to handle the additional strain. And secondly, for many apps, this kind of
nonblocking read does not make sense. For example, consider an application that needs to read updated
inventory numbers. A SNAPSHOT read might cause the user to receive an invalid quantity, because the
user will not be blocked when reading data, and may therefore see previously committed data rather
than the latest updated numbers.

If you do decide to use either nonblocking isolation level, make sure to think carefully through the
issues. There are many possible caveats with both approaches, and they are not right for every app, or
perhaps even most apps.

 Note SNAPSHOT isolation is a big topic, out of the scope of this chapter, but there are many excellent resources
available that I recommend readers investigate for a better understanding of the subject. One place to start is the
MSDN Books Online article “Understanding Row Versioning-Based Isolation Levels,” available at
http://msdn.microsoft.com/en-us/library/ms189050.aspx.

From Isolation to Concurrency Control
Some of the terminology used for the business logic methodologies mentioned in the previous section—
particularly the adjectives optimistic and pessimistic—are also often used to describe the behavior of
SQL Server’s own locking and isolation rules. However, you should understand that the behavior of the
SQL Server processes described by these terms is not quite the same as the definition used by the
associated business process. From SQL Server’s standpoint, the only concurrency control necessary is
between two transactions that happen to hit the server at the same time—and from that point of view, its
behavior works quite well. However, from a purely business-based perspective, there are no transactions
(at least not in the sense of a database transaction)—there are only users and processes trying to make
modifications to the same data. In this sense, a purely transactional mindset fails to deliver enough
control.

SQL Server’s default isolation level, READ COMMITTED, as well as its REPEATABLE READ and SERIALIZABLE
isolation levels, can be said to support a form of pessimistic concurrency. When using these isolation
levels, writers are not allowed to overwrite data in the process of being written by others. However, the
moment the blocking transaction ends, the data is fair game, and another session can overwrite it
without even knowing that it was modified in the interim. From a business point of view, this falls quite
short of the pessimistic goal of keeping two end users from ever even beginning to edit the same data at
the same time.

The SNAPSHOT isolation level is said to support a form of optimistic concurrency control. This
comparison is far easier to justify than the pessimistic concurrency of the other isolation levels: with
SNAPSHOT isolation, if you read a piece of data in order to make edits or modifications to it, and someone

242

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

else updates the data after you’ve read it but before you’ve had a chance to write your edits, you will get
an exception when you try to write. This is almost a textbook definition of optimistic concurrency, with
one slight problem: SQL Server’s isolation levels are transactional—so in order to make this work, you
would have to have held a transaction open for the entire duration of the read, edit, and rewrite attempt.
This doesn’t scale especially well if, for instance, the application is web-enabled and the user wants to
spend an hour editing the document.

Another form of optimistic concurrency control supported by SQL Server is used with updateable
cursors. The OPTIMISTIC options support a very similar form of optimistic concurrency to that of
SNAPSHOT isolation. However, given the rarity with which updateable cursors are actually used in properly
designed production applications, this isn’t an option you’re likely to see very often.

Although both SNAPSHOT isolation and the OPTIMISTIC WITH ROW VERSIONING cursor options work by
holding previous versions of rows in a version store, these should not be confused with MVCC. In both
the case of the isolation level and the cursor option, the previous versions of the rows are only held
temporarily in order to help support nonblocking reads. The rows are not available later—for instance,
as a means by which to merge changes from multiple writers—which is a hallmark of a properly
designed MVCC system.

Yet another isolation level that is frequently used in SQL Server application development scenarios
is READ UNCOMMITTED. This isolation level implements the anarchy business methodology mentioned in
the previous section, and does it quite well—readers are not blocked by writers, and writers are not
blocked by readers, whether or not a transaction is active.

Again, it’s important to stress that although SQL Server does not really support concurrency
properly from a business point of view, it wouldn’t make sense for it to do so. The goal of SQL Server’s
isolation levels is to control concurrency at the transactional level, ultimately helping to keep data in a
consistent state in the database.

Regardless of its inherent lack of provision for business-compliant concurrency solutions, SQL
Server provides all of the tools necessary to easily build them yourself. The following sections discuss
how to use SQL Server in order to help define concurrency models within database applications.

Preparing for the Worst: Pessimistic Concurrency
Imagine for a moment that you are tasked with building a system to help a life insurance company input
data from many years of paper-based customer profile update forms. The company sent out the forms to
each of its several hundred thousand customers on a biannual basis, in order to get the customers’ latest
information.

Most of the profiles were filled in by hand, so OCR is out of the question—they must be keyed in
manually. To make matters worse, a large percentage of the customer files were removed from the filing
system by employees and incorrectly refiled. Many were also photocopied at one time or another, and
employees often filed the photocopies in addition to the original forms, resulting in a massive amount of
duplication. The firm has tried to remove the oldest of the forms and bring the newer ones to the top of
the stack, but it’s difficult because many customers didn’t always send back the forms each time they
were requested—for one customer, 1994 may be the newest year, whereas for another, the latest form
may be from 2009.

Back to the challenge at hand—building the data input application is fairly easy, as is finding
students willing to do the data input for fairly minimal rates. The workflow is as follows: for each profile
update form, the person doing the data input will bring up the customer’s record based on that
customer’s Social Security number or other identification number. If the date on the profile form is more
recent than the last updated date in the system, the profile needs to be updated with the newer data. If
the dates are the same, the firm has decided that the operator should scan through the form and make
sure all of the data already entered is correct—as in all cases of manual data entry, the firm is aware that

243

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

typographical errors will be made. Each form is several pages long, and the larger ones will take hours to
type in.

As is always the case in projects like this, time and money are of the essence, and the firm is
concerned about the tremendous amount of profile form duplication as well as the fact that many of the
forms are filed in the wrong order. It would be a huge waste of time for the data input operators if, for
instance, one entered a customer’s 1996 update form at the same time another happened to be entering
the same customer’s 2002 form.

Progressing to a Solution
This situation all but cries out for a solution involving pessimistic concurrency control. Each time a

customer’s Social Security number is entered into the system, the application can check whether
someone else has entered the same number and has not yet persisted changes or sent back a message
saying there are no changes (i.e., hit the cancel button). If another operator is currently editing that
customer’s data, a message can be returned to the user telling him or her to try again later—this profile is
locked.

The problem then becomes a question of how best to implement such a solution. A scheme I’ve
seen attempted several times is to create a table along the lines of the following:

CREATE TABLE CustomerLocks
(
 CustomerId int NOT NULL PRIMARY KEY
 REFERENCES Customers (CustomerId),
 IsLocked bit NOT NULL DEFAULT (0)
);
GO

The IsLocked column could instead be added to the existing Customers table, but that is not
recommended in a highly transactional database system. I generally advise keeping locking constructs
separate from actual data in order to limit excessive blocking on core tables.

In this system, the general technique employed is to populate the table with every customer ID in
the system. The table is then queried when someone needs to take a lock, using code such as the
following:

DECLARE @LockAcquired bit = 0;

IF
 (
 SELECT IsLocked
 FROM CustomerLocks
 WHERE CustomerId = @CustomerId
) = 0
BEGIN
 UPDATE CustomerLocks
 SET IsLocked = 1
 WHERE CustomerId = @CustomerId;

 SET @LockAcquired = 1;
END

244

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Unfortunately, this approach is fraught with issues. The first and most serious problem is that
between the query in the IF condition that tests for the existence of a lock and the UPDATE, the row’s value
can be changed by another writer. If two sessions ask for the lock at the same moment, the result may be
that both writers will believe that they hold the exclusive lock. In order to remedy this issue, the IF
condition should be eliminated; instead, check for the ability to take the lock at the same time as you’re
taking it, in the UPDATE’s WHERE clause:

DECLARE @LockAcquired bit;

UPDATE CustomerLocks
SET IsLocked = 1
WHERE
 CustomerId = @CustomerId
 AND IsLocked = 0;

SET @LockAcquired = @@ROWCOUNT;

This pattern fixes the issue of two readers requesting the lock at the same time, but leaves open a
maintenance issue: my recommendation to separate the locking from the actual table used to store
customer data means that you must now ensure that all new customer IDs are added to the locks table
as they are added to the system.

To solve this issue, avoid modeling the table as a collection of lock statuses per customer. Instead,
define the existence of a row in the table as indication of a lock being held. Then the table becomes as
follows:

CREATE TABLE CustomerLocks
(
 CustomerId int NOT NULL PRIMARY KEY
 REFERENCES Customers (CustomerId)
);
GO

To take a lock with this new table, you can attempt an INSERT, using a TRY/CATCH block to find out
whether you’ve caused a primary key violation:

DECLARE @LockAcquired bit;

BEGIN TRY
 INSERT INTO CustomerLocks
 (
 CustomerId
)
 VALUES
 (
 @CustomerId
)

 --No exception: Lock acquired
 SET @LockAcquired = 1;
END TRY
BEGIN CATCH

245

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 --Caught an exception: No lock acquired
 SET @LockAcquired = 0;
END CATCH
GO

Releasing the lock is a simple matter of deleting the row:

DELETE FROM CustomerLocks
WHERE CustomerId = @CustomerId;
GO

We are now getting closer to a robust solution, but we haven’t quite gotten there yet. Imagine that a
buggy piece of code exists somewhere in the application, and instead of calling the stored procedure to
take a lock, it’s occasionally calling the other stored procedure, which releases the lock. In the system as
it’s currently designed, there is no protection against this kind of issue—anyone can request a lock
release at any time, whatever user holds the current lock on the record. This is very dangerous, as it will
invalidate the entire locking scheme for the system. In addition, the way the system is implemented as
shown, the caller will not know that a problem occurred and that the lock didn’t exist. Both of these
problems can be solved with some additions to the framework in place.

In order to help protect the locks from being prematurely invalidated, a lock token can be issued.
This token is nothing more than a randomly generated unique identifier for the lock, and will be used as
the key to release the lock instead of the customer ID. To implement this solution, the table’s definition
can be changed as follows:

CREATE TABLE CustomerLocks
(
 CustomerId int NOT NULL PRIMARY KEY
 REFERENCES Customers (CustomerId),
 LockToken uniqueidentifier NOT NULL UNIQUE
);
GO

With this table in place, the insert routine to request a lock becomes the following:

DECLARE @LockToken uniqueidentifier

BEGIN TRY
 --Generate the token
 SET @LockToken = NEWID();

 INSERT INTO CustomerLocks
 (
 CustomerId,
 LockToken
)
 VALUES
 (
 @CustomerId,
 @LockToken
)
END TRY

246

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

BEGIN CATCH
 --Caught an exception: No lock acquired
 SET @LockToken = NULL;
END CATCH
GO

Now, rather than checking whether @LockAcquired is 1 to find out if the lock was successfully
taken, check whether @LockToken is NULL. By using a GUID, this system greatly decreases the chance
that a buggy piece of application code will cause the lock to be released by a process that does not
hold it.

After taking the lock, the application should remember the lock token, passing it instead of the
customer ID when it comes time to release the lock:

DELETE FROM CustomerLocks
WHERE LockToken = @LockToken;
GO

Even better, the code used to release the lock can check to find out whether the lock was not
successfully released (or whether there was no lock to release to begin with) and return an exception to
the caller:

DELETE FROM CustomerLocks
WHERE LockToken = @LockToken;

IF @@ROWCOUNT = 0
 RAISERROR('Lock token not found!', 16, 1);

GO

The caller should do any updates to the locked resources and request the lock release in the same
transaction. That way, if the caller receives this exception, it can take appropriate action—rolling back
the transaction—ensuring that the data does not end up in an invalid state.

Almost all of the issues have now been eliminated from this locking scheme: two processes will not
erroneously be granted the same lock, there is no maintenance issue with regard to keeping the table
populated with an up-to-date list of customer IDs, and the tokens greatly eliminate the possibility of lock
release issues.

One final, slightly subtle problem remains: what happens if a user requests a lock, forgets to hit the
save button, and leaves for a two-week vacation? Or in the same vein, what should happen if the
application takes a lock and then crashes 5 minutes later, thereby losing its reference to the token?

Solving this issue in a uniform fashion that works for all scenarios is unfortunately not possible, and
one of the biggest problems with pessimistic schemes is that there will always be administrative
overhead associated with releasing locks that for some reason did not get properly handled. The general
method of solving this problem is to add an audit column to the locks table to record the date and time
the lock was taken:

CREATE TABLE CustomerLocks
(
 CustomerId int NOT NULL PRIMARY KEY
 REFERENCES Customers (CustomerId),
 LockToken uniqueidentifier NOT NULL UNIQUE,

247

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 LockGrantedDate datetime NOT NULL DEFAULT (GETDATE())
);
GO

None of the code already listed needs to be modified in order to accommodate the LockGrantedDate
column, since it has a default value. An external job must be written to poll the table on a regular basis,
“expiring” locks that have been held for too long. The code to do this is simple; the following T-SQL
deletes all locks older than 5 hours:

DELETE FROM CustomerLocks
WHERE LockGrantedDate < DATEADD(hour, -5, GETDATE());
GO

This code can be implemented in a SQL Server agent job, set to run occasionally throughout the
day. The actual interval depends on the amount of activity your system experiences, but once every 20 or
30 minutes is sufficient in most cases.

Although this expiration process works in most cases, it’s also where things can break down from
both administrative and business points of view. The primary challenge is defining a timeout period that
makes sense. If the average lock is held for 20 minutes, but there are certain long-running processes that
might need to hold locks for hours, it’s important to define the timeout to favor the later processes, even
providing padding to make sure that their locks will never automatically expire when not appropriate.
Unfortunately, no matter what timeout period you choose, it will never work for everyone. There is
virtually a 100 percent chance that at some point, a user will be working on a very high-profile action
that must be completed quickly, and the application will crash, leaving the lock in place. The user will
have no recourse available but to call for administrative support or wait for the timeout period—and of
course, if it’s been designed to favor processes that take many hours, this will not be a popular choice.

Although I have seen this problem manifest itself in pessimistic concurrency solutions, it has
generally not been extremely common and hasn’t caused any major issues aside from a few stressed-out
end users. I am happy to say that I have never received a panicked call at 2:00 a.m. from a user
requesting a lock release, although I could certainly see it happening. If this is a concern for your system,
the solution is to design the application such that it sends “heartbeat” notifications back to the database
on a regular basis as work is being done. These notifications should update the lock date/time column:

UPDATE CustomerLocks
SET LockGrantedDate = GETDATE()
WHERE LockToken = @LockToken;

The application can be made to send a heartbeat as often as necessary—for instance, once every 5
minutes—during times it detects user activity. This is easy even in web applications, thanks to AJAX and
similar asynchronous techniques. If this design is used, the timeout period can be shortened
considerably, but keep in mind that users may occasionally become temporarily disconnected while
working; buffer the timeout at least a bit in order to help keep disconnection-related timeouts at bay.

248

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 Tip As an alternative to keeping the LockGrantedDate in the locks table, you could instead model the column
as a LockExpirationDate. This might improve the flexibility of the system a bit by letting callers request a
maximum duration for a lock when it is taken, rather than being forced to take the standard expiration interval. Of
course, this has its downside: users requesting locks to be held for unrealistically large amounts of time. Should
you implement such a solution, carefully monitor usage to make sure that this does not become an issue.

Enforcing Pessimistic Locks at Write Time
A problem with the solution proposed previously, and other programmatic pessimistic concurrency
schemes, is the fact that the lock is generally not enforced outside of the application code. While that’s
fine in many cases, it is important to make sure that every data consumer follows the same set of rules
with regard to taking and releasing locks. These locks do not prevent data modification, but rather only
serve as a means by which to tell calling apps whether they are allowed to modify data. If an application
is not coded with the correct logic, violation of core data rules may result.

It may be possible to avoid some or all of these types of problems by double-checking locks using
triggers at write time, but this can be difficult to implement because you may not be able to tell which
user has taken which lock for a given row, let alone make a determination about which user is doing a
particular update, especially if your application uses only a single database login.

I have come up with a technique that can help get around some of these issues. To begin with, a new
candidate key should be added to the CustomerLocks table, based on the CustomerId and LockToken
columns:

ALTER TABLE CustomerLocks
ADD CONSTRAINT UN_Customer_Token
 UNIQUE (CustomerId, LockToken);
GO

This key can then be used as a reference in the Customers table once a LockToken column is added
there:

ALTER TABLE Customers
ADD
 LockToken uniqueidentifier NULL,
 CONSTRAINT FK_CustomerLocks
 FOREIGN KEY (CustomerId, LockToken)
 REFERENCES CustomerLocks (CustomerId, LockToken);
GO

Since the LockToken column in the Customers table is nullable, it is not required to reference a valid
token at all times. However, when it is actually set to a certain value, that value must exist in the
CustomerLocks table, and the combination of customer ID and token in the Customers table must
coincide with the same combination in the CustomerLocks table.

Once this is set up, enforcing the lock at write time, for all writers, can be done using a trigger:

CREATE TRIGGER tg_EnforceCustomerLocks
ON Customers

249

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

FOR UPDATE
AS
BEGIN
 SET NOCOUNT ON;

 IF EXISTS
 (
 SELECT *
 FROM inserted
 WHERE LockToken IS NULL
)
 BEGIN
 RAISERROR('LockToken is a required column', 16, 1);
 ROLLBACK;
 END

 UPDATE Customers
 SET LockToken = NULL
 WHERE
 LockToken IN
 (
 SELECT LockToken
 FROM inserted
);
END
GO

The foreign key constraint enforces that any non-NULL value assigned to the LockToken column must
be valid. However, it does not enforce NULL values; the trigger takes care of that, forcing writers to set the
lock token at write time. If all rows qualify, the tokens are updated back to NULL so that the locks can be
released—holding a reference would mean that the rows could not be deleted from the CustomerLocks
table.

This technique adds a bit of overhead to updates, as each row must be updated twice. If your
application processes a large number of transactions each day, make sure to test carefully in order to
ensure that this does not cause a performance issue.

Application Locks: Generalizing Pessimistic Concurrency
The example shown in the previous section can be used to pessimistically lock rows, but it requires some
setup per entity type to be locked and cannot easily be generalized to locking of resources that span
multiple rows, tables, or other levels of granularity supported within a SQL Server database.

Recognizing the need for this kind of locking construct, Microsoft included a feature in SQL Server
called application locks. Application locks are programmatic, named locks, which behave much like
other types of locks in the database: within the scope of a session or a transaction, a caller attempting to
acquire an incompatible lock with a lock already held by another caller causes blocking and queuing.

Application locks are acquired using the sp_getapplock stored procedure. By default, the lock is tied
to an active transaction, meaning that ending the transaction releases the lock. There is also an option to
tie the lock to a session, meaning that the lock is released when the user disconnects. To set a
transactional lock, begin a transaction and request a lock name (resource, in application lock parlance).
You can also specify a lock mode, such as shared or exclusive. A caller can also set a wait timeout period,

250

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

after which the stored procedure will stop waiting for other callers to release the lock. The following T-
SQL acquires an exclusive transactional lock on the customers resource, waiting up to 2 seconds for other
callers to release any locks they hold on the resource:

BEGIN TRAN;

EXEC sp_getapplock
 @Resource = 'customers',
 @LockMode = 'exclusive',
 @LockTimeout = 2000;

sp_getapplock does not throw an exception if the lock is not successfully acquired, but rather sets a
return value. The return will be 0 if the lock was successfully acquired without waiting, 1 if the lock was
acquired after some wait period had elapsed, and any of a number of negative values if the lock was not
successfully acquired. As a consumer of sp_getapplock, it’s important to know whether or not you
actually acquired the lock you asked for—so the preceding example call is actually incomplete. The
following call checks the return value to find out whether the lock was granted:

BEGIN TRAN;

DECLARE @ReturnValue int;

EXEC @ReturnValue = sp_getapplock
 @Resource = 'customers',
 @LockMode = 'exclusive',
 @LockTimeout = 2000;

IF @ReturnValue IN (0, 1)
 PRINT 'Lock granted';
ELSE
 PRINT 'Lock not granted';

To release the lock, you can commit or roll back the active transaction, or use the sp_releaseapplock
stored procedure, which takes the lock resource name as its input value:

EXEC sp_releaseapplock
 @Resource = 'customers';

SQL Server’s application locks are quite useful in many scenarios, but they suffer from the same
problems mentioned previously concerning the discrepancy between concurrency models offered by
SQL Server and what the business might actually require. Application locks are held only for the duration
of a transaction or a session, meaning that to lock a resource and perform a long-running business
transaction based on the lock, the caller would have to hold open a connection to the database the entire
time. This is clearly not a scalable option, so I set out to write a replacement, nontransactional
application lock framework.

My goal was to mimic most of the behavior of sp_getapplock, but for exclusive locks only—
pessimistic locking schemes do not generally require shared locks on resources. I especially wanted
callers to be able to queue and wait for locks to be released by other resources. Since this would not be a
transactional lock, I also wanted to handle all of the caveats I’ve discussed in this section, including
making sure that multiple callers requesting locks at the same time would not each think they’d been

251

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

granted the lock, returning tokens to avoid invalid lock release scenarios, and adding lock timeout
periods to ensure that orphaned locks would not be stranded until an admin removed them.

When considering the SQL Server 2008 features that would help me create this functionality, I
immediately thought of Service Broker. Service Broker provides asynchronous queuing that can cross
transactional and session boundaries, and the WAITFOR command allows callers to wait on a message
without having to continually poll the queue.

 Note For a thorough background on SQL Server Service Broker, see Pro SQL Server 2008 Service Broker, by
Klaus Aschenbrenner (Apress, 2008).

The architecture I developed to solve this problem begins with a central table used to keep track of
which locks have been taken:

CREATE TABLE AppLocks
(
 AppLockName nvarchar(255) NOT NULL,
 AppLockKey uniqueidentifier NULL,
 InitiatorDialogHandle uniqueidentifier NOT NULL,
 TargetDialogHandle uniqueidentifier NOT NULL,
 LastGrantedDate datetime NOT NULL DEFAULT(GETDATE()),
 PRIMARY KEY (AppLockName)
);
GO

The AppLockName column stores the names of locks that users have requested, and the AppLockKey
functions as a lock token. This token also happens to be the conversation handle for a Service Broker
dialog, but I’ll get to that shortly. The InitiatorDialogHandle and TargetDialogHandle columns are
conversation handles for another Service Broker dialog, which I will also explain shortly. Finally, the
LastGrantedDate column is used just as in the examples earlier, to keep track of when each lock in the
table was used. As you’ll see, this column is even more important than it was in the previous case,
because locks are reused instead of deleted in this scheme.

To support the Service Broker services, I created one message type and one contract:

CREATE MESSAGE TYPE AppLockGrant
VALIDATION = EMPTY;
GO

CREATE CONTRACT AppLockContract (
 AppLockGrant SENT BY INITIATOR
);
GO

If you’re wondering why there is a message used to grant locks but none used to request them, it’s
because this solution does not use a lock request service. Service Broker is used only because it happens
to provide the queuing, waiting, and timeout features I needed—a bit different from most Service Broker
samples.

252

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

I created two queues to support this infrastructure, along with two services. Here is where we get
closer to the meat of the system:

CREATE QUEUE AppLock_Queue;
GO

CREATE SERVICE AppLock_Service
ON QUEUE AppLock_Queue (AppLockContract);
GO

CREATE QUEUE AppLockTimeout_Queue;
GO

CREATE SERVICE AppLockTimeout_Service
ON QUEUE AppLockTimeOut_Queue;
GO

The AppLock_Queue queue and its associated service are used as follows: when a lock on a given
resource is requested by a caller, if no one has ever requested a lock on that resource before, a dialog is
started between the AppLock_Service service and itself. Both the initiator and target conversation
handles for that dialog are used to populate the InitiatorDialogHandle and TargetDialogHandle
columns, respectively. Later, when that caller releases its lock, an AppLockGrant message is sent on the
queue from the initiator dialog handle stored in the table. When another caller wants to acquire a lock
on the same resource, it gets the target dialog handle from the table and waits on it. This way callers can
wait for the lock to be released without having to poll, and will be able to pick it up as soon as it is
released if they happen to be waiting at that moment.

The AppLockTimeout_Queue is used a bit differently. You might notice that its associated service uses
the default contract. This is because no messages—except perhaps Service Broker system messages—
will ever be sent from or to it. Whenever a lock is granted, a new dialog is started between the service and
itself, and the initiator conversation handle for the dialog becomes the lock token.

In addition to being used as the lock token, the dialog serves another purpose: when it is started, a
lifetime is set. A dialog lifetime is a timer that, after its set period, sends a message to all active parties
involved in the conversation—in this case, since no messages will have been sent, only the initiator will
receive the message. Upon receipt, an activation procedure is used to release the lock. I found this to be
a more granular way of controlling lock expirations than using a SQL Server agent job, as I did in the
example in the previous section. Whenever a lock is released by a caller, the conversation is ended,
thereby clearing its lifetime timer.

To allow callers to request locks, I created a stored procedure called GetAppLock. As this stored
procedure is quite long, I will walk through it in sections in order to explain the details more thoroughly.
To begin with, the stored procedure exposes three parameters, each required: the name of the resource
to be locked, how long to wait for the lock in case someone else already has it, and an output
parameter—the lock key to be used later to release the lock. Following are the first several lines of the
stored procedure, ending where the transactional part of the procedure begins:

CREATE PROC GetAppLock
 @AppLockName nvarchar(255),
 @LockTimeout int,
 @AppLockKey uniqueidentifier = NULL OUTPUT
AS
BEGIN
 SET NOCOUNT ON;

253

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 SET XACT_ABORT ON;

 --Make sure this variable starts NULL
 SET @AppLockKey = NULL;

 DECLARE @LOCK_TIMEOUT_LIFETIME int = 18000; --5 hours

 DECLARE @startWait datetime = GETDATE();

 DECLARE @init_handle uniqueidentifier;
 DECLARE @target_handle uniqueidentifier;

 BEGIN TRAN;

The stored procedure defines a couple of important local variables. The @LOCK_TIMEOUT_LIFETIME is
the amount of time to wait until expiring an orphaned lock. It is currently hard-coded, but could easily
be converted into a parameter in order to allow callers to specify their own estimated times of
completion. This might be a more exact way of handling the lock expiration problem. The @startWait
variable is used in order to track lock wait time, so that the procedure does not allow callers to wait
longer than the requested lock timeout value.

Next, the stored procedure makes use of the very feature that I was attempting to supersede: SQL
Server’s native transactional application locks. There is a bit of a backstory to why I had to use them.
During development of this technique, I discovered that Service Broker waits are processed according to
last-in first-out (LIFO) rules: the most recent process waiting is the first to get a message off the queue.
This is counterintuitive if you’re used to working with first-in first-out (FIFO) queues, but is designed to
allow the minimum number of activation stored procedures to stay alive after bursts of activity. By
giving the message to the newest waiting process, the older processes are forced to eventually time out
and expire.

Obviously such a scheme, while useful in the world of activation stored procedures, does not follow
the requirements of a queued lock, so I made use of a transactional application lock in order to force
serialization of the waits. Following is the code used to take the lock:

 --Get the app lock -- start waiting
 DECLARE @RETURN int;
 EXEC @RETURN = sp_getapplock
 @resource = @AppLockName,
 @lockmode = 'exclusive',
 @LockTimeout = @LockTimeout;

 IF @RETURN NOT IN (0, 1)
 BEGIN
 RAISERROR(
 'Error acquiring transactional lock for %s', 16, 1, @AppLockName);
 ROLLBACK;
 RETURN;
 END

If the lock is successfully granted, the code will keep going; otherwise, it will roll back and the caller
will receive an error so that it knows it did not acquire the requested lock. Once inside the scope of the
transactional lock, it’s finally time to start thinking about the Service Broker queues. The next thing the

254

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

stored procedure does is get the target conversation handle, if one exists. If so, the stored procedure
starts a wait on the queue for a message:

 --Find out whether someone has requested this lock before
 SELECT
 @target_handle = TargetDialogHandle
 FROM AppLocks
 WHERE AppLockName = @AppLockName;

 --If we're here, we have the transactional lock
 IF @target_handle IS NOT NULL
 BEGIN
 --Find out whether the timeout has already expired...
 SET @LockTimeout = @LockTimeout - DATEDIFF(ms, @startWait, GETDATE());

 IF @LockTimeout > 0
 BEGIN
 --Wait for the OK message
 DECLARE @message_type nvarchar(255);

 --Wait for a grant message
 WAITFOR
 (
 RECEIVE
 @message_type = message_type_name
 FROM AppLock_Queue
 WHERE conversation_handle = @target_handle
), TIMEOUT @LockTimeout;

One thing to make note of in this section of the code is that the input lock timeout is decremented
by the length of time the stored procedure has already been waiting, based on the @startWait variable.
It’s possible that a caller could specify, say, a 2500ms wait time, and wait 2000ms for the transactional
lock. At that point, the caller should only be made to wait up to 500ms for the message to come in on the
queue. Therefore, the reduced timeout is used as the RECEIVE timeout on the WAITFOR command.

The procedure next checks the received message type. If it is an AppLockGrant message, all is good—
the lock has been successfully acquired. The timeout conversation is started, and the lock token is set. If
an unexpected message type is received, an exception is thrown and the transaction is rolled back:

 IF @message_type = 'AppLockGrant'
 BEGIN
 BEGIN DIALOG CONVERSATION @AppLockKey
 FROM SERVICE AppLockTimeout_Service
 TO SERVICE 'AppLockTimeout_Service'
 WITH
 LIFETIME = @LOCK_TIMEOUT_LIFETIME,
 ENCRYPTION = OFF;

 UPDATE AppLocks
 SET
 AppLockKey = @AppLockKey,
 LastGrantedDate = GETDATE()

255

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 WHERE
 AppLockName = @AppLockName;
 END

 ELSE IF @message_type IS NOT NULL
 BEGIN
 RAISERROR('Unexpected message type: %s', 16, 1, @message_type);
 ROLLBACK;
 END

 END
 END

The next section of code deals with the branch that occurs if the target handle acquired before
entering the IF block was NULL, meaning that no one has ever requested a lock on this resource before.
The first thing this branch does is begin a dialog on the AppLock_Service service. Since the target
conversation handle is required for others to wait on the resource, and since the target handle is not
generated until a message is sent, the first thing that must be done is to send a message on the dialog.
Once the message has been sent, the target handle is picked up from the sys.conversation_endpoints
catalog view, and the sent message is picked up so that no other callers can receive it:

 ELSE
 BEGIN
 --No one has requested this lock before
 BEGIN DIALOG @init_handle
 FROM SERVICE AppLock_Service
 TO SERVICE 'AppLock_Service'
 ON CONTRACT AppLockContract
 WITH ENCRYPTION = OFF;

 --Send a throwaway message to start the dialog on both ends
 SEND ON CONVERSATION @init_handle
 MESSAGE TYPE AppLockGrant;

 --Get the remote handle
 SELECT
 @target_handle = ce2.conversation_handle
 FROM sys.conversation_endpoints ce1
 JOIN sys.conversation_endpoints ce2 ON
 ce1.conversation_id = ce2.conversation_id
 WHERE
 ce1.conversation_handle = @init_handle
 AND ce2.is_initiator = 0;

 --Receive the throwaway message
 RECEIVE
 @target_handle = conversation_handle
 FROM AppLock_Queue
 WHERE conversation_handle = @target_handle;

256

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

After starting the lock grant dialog and initializing the target conversation handle, the timeout/token
dialog can finally be started and the lock inserted into the AppLocks table. Once that’s taken care of, the
stored procedure checks to find out whether the @AppLockKey variable was populated. If it was, the
transaction is committed. Otherwise, a timeout is assumed to have occurred, and all work is rolled back.

 BEGIN DIALOG CONVERSATION @AppLockKey
 FROM SERVICE AppLockTimeout_Service
 TO SERVICE 'AppLockTimeout_Service'
 WITH
 LIFETIME = @LOCK_TIMEOUT_LIFETIME,
 ENCRYPTION = OFF;

 INSERT INTO AppLocks
 (
 AppLockName,
 AppLockKey,
 InitiatorDialogHandle,
 TargetDialogHandle
)
 VALUES
 (
 @AppLockName,
 @AppLockKey,
 @init_handle,
 @target_handle
);
 END

 IF @AppLockKey IS NOT NULL
 COMMIT;
 ELSE
 BEGIN
 RAISERROR(
 'Timed out waiting for lock on resource: %s', 16, 1, @AppLockName);
 ROLLBACK;
 END
END;
GO

The bulk of the work required to set up these locks is done in the GetAppLock stored procedure.
Luckily, the accompanying ReleaseAppLock procedure is much simpler:

CREATE PROC ReleaseAppLock
 @AppLockKey uniqueidentifier
AS
BEGIN
 SET NOCOUNT ON;
 SET XACT_ABORT ON;

 BEGIN TRAN;

257

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 DECLARE @dialog_handle uniqueidentifier;

 UPDATE AppLocks
 SET
 AppLockKey = NULL,
 @dialog_handle = InitiatorDialogHandle
 WHERE
 AppLockKey = @AppLockKey;

 IF @@ROWCOUNT = 0
 BEGIN
 RAISERROR('AppLockKey not found', 16, 1);
 ROLLBACK;
 END

 END CONVERSATION @AppLockKey;

 --Allow another caller to acquire the lock
 SEND ON CONVERSATION @dialog_handle
 MESSAGE TYPE AppLockGrant;

 COMMIT;
END;
GO

The caller sends the acquired lock’s token to this procedure, which first tries to nullify its value in
the AppLocks table. If the token is not found, an error is raised and the transaction rolled back. Otherwise,
the conversation associated with the token is ended. Finally—and most importantly—an AppLockGrant
message is sent on the grant conversation associated with the lock. This message will be picked up by
any other process waiting for the lock, thereby granting it.

One final stored procedure is required to support this infrastructure: an activation stored procedure
that is used in case of dialog lifetime expirations on the AppLockTimeout_Queue queue. The following T-
SQL creates the procedure and enables activation on the queue:

CREATE PROC AppLockTimeout_Activation
AS
BEGIN
 SET NOCOUNT ON;
 SET XACT_ABORT ON;

 DECLARE @dialog_handle uniqueidentifier;

 WHILE 1=1
 BEGIN
 SET @dialog_handle = NULL;

 BEGIN TRAN;

 WAITFOR
 (
 RECEIVE @dialog_handle = conversation_handle

258

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 FROM AppLockTimeout_Queue
), TIMEOUT 10000;

 IF @dialog_handle IS NOT NULL
 BEGIN
 EXEC ReleaseAppLock @AppLockKey = @dialog_handle;
 END

 COMMIT;
 END
END;
GO

ALTER QUEUE AppLockTimeout_Queue
WITH ACTIVATION
(
 STATUS = ON,
 PROCEDURE_NAME = AppLockTimeout_Activation,
 MAX_QUEUE_READERS = 1,
 EXECUTE AS OWNER
);
GO

This procedure waits, on each iteration of its loop, up to 10 seconds for a message to appear on the
queue. Since no messages are expected other than timeout notifications, any message received is
assumed to be one, and spawns a call to the ReleaseAppLock stored procedure. If no message is received
within 10 seconds, the activation procedure exits.

Once this system is in place, application locks can be requested using the GetAppLock stored
procedure, as in the following example:

DECLARE @AppLockKey uniqueidentifier
EXEC GetAppLock
 @AppLockName = 'customers',
 @LockTimeout = 2000,
 @AppLockKey = @AppLockKey OUTPUT;
GO

In this example, the stored procedure will wait up to 2 seconds for the resource to become available
before returning an error. Just as with other pessimistic schemes, it’s important for the application to
keep the returned key in order to release the lock later, using the ReleaseAppLock stored procedure.

Note that ongoing maintenance of this approach to locks is somewhat different from the method
described for row-based pessimistic locks. After a lock has been requested once, its row in the AppLocks
table as well as its associated grant dialog will not expire. I designed the system this way in order to
minimize setup and break down a large number of dialogs in a system using and reusing a lot of locks,
but it is possible that due to this architecture, the number of dialogs could get quite large over time. If
this should become an issue, use the LastGrantedDate column to find locks that have not been recently
requested, and call END CONVERSATION for both the initiator and target handles.

259

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Hoping for the Best: Optimistic Concurrency
Compared with the complexity and overhead of pessimistic concurrency solutions, optimistic schemes
feel like a wonderful alternative. Indeed, even the word optimistic evokes a much nicer feeling, and the
name is quite appropriate to the methodology. Optimistic schemes use no read-time or edit-time locks,
instead only checking for conflicts just before the data is actually written to the table. This means none
of the administrative overhead of worrying about orphans and other issues that can occur with
pessimistic locks, but it also means that the system may not be as appropriate to many business
situations.

Consider the life insurance firm described in the section “Preparing for the Worst: Pessimistic
Concurrency.” For that firm, an optimistic scheme would mean many hours of lost time and money—
not a good idea. However, suppose that the firm had a new project: this time, instead of updating many
years’ worth of lengthy personal information forms, the firm merely wants some address change cards
input into the system. Just like with the personal information forms, these cards have not been well
managed by the employees of the insurance firm, and there is some duplication. Luckily, however, the
cards were filed using a much newer system, and the repetition of data is not nearly as serious as it was
for the personal information forms.

In this scenario, the management overhead associated with a pessimistic scheme is probably not
warranted. The chance for collision is much lower than in the personal information form scenario, and
should an operator’s input happen to collide with another’s, it will only cost a few minutes’ worth of lost
work, instead of potentially hours.

The basic setup for optimistic concurrency requires a column that is updated whenever a row gets
updated. This column is used as a version marker and retrieved along with the rest of the data by clients.
At update time, the retrieved value is sent back along with updates, and its value is checked to ensure
that it did not change between the time the data was read and the time of the update.

There are a few different choices for implementing this column, but to begin with I’ll discuss a
popular option: SQL Server’s rowversion type. The rowversion type is an 8-byte binary string that is
automatically updated by SQL Server every time a row is updated in the table. For example, consider the
following table:

CREATE TABLE CustomerNames
(
 CustomerId int NOT NULL PRIMARY KEY,
 CustomerName varchar(50) NOT NULL,
 Version rowversion NOT NULL
);
GO

The following T-SQL inserts two rows and then retrieves all rows from the table:

INSERT INTO CustomerNames
(
 CustomerId,
 CustomerName
)
VALUES
 (123, 'Mickey Mouse'),
 (456, 'Minnie Mouse');
GO

260

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

SELECT *
FROM CustomerNames;
GO

The output of this query is as follows:

CustomerId CustomerName Version

123 Mickey Mouse 0x00000000000007E3

456 Minnie Mouse 0x00000000000007E4

Updating either row automatically updates the rowversion column. The following T-SQL updates
one of the rows and then retrieves all of the rows in the table:

UPDATE CustomerNames
SET CustomerName = 'Pluto'
WHERE CustomerId = 456;
GO

SELECT *
FROM CustomerNames;
GO

The output of this query reveals the values in the table to be now as follows:

CustomerId CustomerName Version

123 Mickey Mouse 0x00000000000007E3

456 Pluto 0x00000000000007E5

It’s important to note that any committed update operation on the table will cause the Version
column to get updated—even if you update a column with the same value. Do not assume that the
version is tracking changes to the data; instead, it’s tracking actions on the row.

Using a column such as this to support an optimistic scheme is quite straightforward. An effective
first pass involves pulling back the Version column along with the rest of the data in the row when
reading, and checking it at write time:

DECLARE
 @CustomerIdToUpdate int = 456,
 @Version rowversion;

SET @Version =
(SELECT Version
FROM CustomerNames
WHERE CustomerId = @CustomerIdToUpdate);

261

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

UPDATE CustomerNames
SET CustomerName = 'Pluto'
WHERE
 CustomerId = @CustomerIdToUpdate
 AND Version = @Version;
IF @@ROWCOUNT = 0
RAISERROR(‘Version conflict encountered’, 16, 1);

This is a simple method of handling optimistic concurrency, but it has a couple of problems. First of
all, every update routine in the system must be made to comply with the requirements of checking the
version. As with the pessimistic schemes described in the previous section, even one buggy module will
cause the entire system to break down—not a good thing. Secondly, this setup does not leave you with
many options when it comes to providing a nice user experience. Getting a conflict error without any
means of fixing it is not especially fun—when possible, I prefer to send back enough data so that users
can perform a merge if they feel like it (and only if the application provides that capability, of course).

The solution to both of these problems starts with a change to the version column’s data type. Since
columns that use the rowversion type are not updateable by anything except SQL Server, it makes the
system difficult to control. Therefore, my first suggestion is to switch to either uniqueidentifier or
datetime. Following is an updated version of CustomerNames, which uses a uniqueidentifier column:

-- Recreate the CustomerNames table
CREATE TABLE CustomerNames
(
 CustomerId int NOT NULL PRIMARY KEY,
 CustomerName varchar(50) NOT NULL,
 Version uniqueidentifier NOT NULL
 DEFAULT (NEWID())
);
GO

-- Populate the new table
INSERT INTO CustomerNames
(
 CustomerId,
 CustomerName
)
VALUES
 (123, 'Mickey Mouse'),
 (456, 'Minnie Mouse');
GO

To solve the potential problem of routines not following the rules, a trigger can be used to enforce

the optimistic scheme. This is done by requiring that any updates to the table include an update to the
Version column, which is enforced by checking the UPDATE function in the trigger. The column should be
set to the value of whatever version was returned when the data was read. This way, the trigger can check
the value present in the inserted table against the value in the deleted table for each row updated. If the
two don’t match, there is a version conflict. Finally, the trigger can set a new version value for the
updated rows, thereby marking them as changed for anyone who has read the data. Following is the
definition for the trigger:

262

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

CREATE TRIGGER tg_UpdateCustomerNames
ON CustomerNames
FOR UPDATE AS
BEGIN
 SET NOCOUNT ON;

 IF NOT UPDATE(Version)
 BEGIN
 RAISERROR('Updating the Version column is required', 16, 1);
 ROLLBACK;
 END

 IF EXISTS
 (
 SELECT *
 FROM inserted i
 JOIN deleted d ON i.CustomerId = d.CustomerId
 WHERE i.Version <> d.Version
)
 BEGIN
 RAISERROR('Version conflict encountered', 16, 1);
 ROLLBACK;
 END

 ELSE
 --Set new versions for the updated rows
 UPDATE CustomerNames
 SET Version = NEWID()
 WHERE
 CustomerId IN
 (
 SELECT CustomerId
 FROM inserted
);
END;
GO

This trigger solves the problem of version control in an optimistic model, but it takes quite a blunt
approach—simply raising an error and rolling back the transaction if a version conflict is encountered.
Perhaps it would be better to extend this trigger to help provide users with more options when they get a
conflict. This is one place I find SQL Server’s XML capabilities to be useful. To create an output
document similar to an ADO.NET XML DiffGram, modify the IF block of the trigger as highlighted in the
following code listing:

ALTER TRIGGER tg_UpdateCustomerNames
ON CustomerNames
FOR UPDATE AS
BEGIN
 SET NOCOUNT ON;

263

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 IF NOT UPDATE(Version)
 BEGIN
 RAISERROR('Updating the Version column is required', 16, 1);
 ROLLBACK;
 END
 IF EXISTS
 (
 SELECT *
 FROM inserted i
 JOIN deleted d ON i.CustomerId = d.CustomerId
 WHERE i.Version <> d.Version
)
 BEGIN
 SELECT
 (
 SELECT
 ROW_NUMBER() OVER (ORDER BY CustomerId) AS [@row_number],
 *
 FROM inserted
 FOR XML PATH('customer_name'), TYPE
) new_values,
 (
 SELECT
 ROW_NUMBER() OVER (ORDER BY CustomerId) AS [@row_number],
 *
 FROM deleted
 FOR XML PATH('customer_name'), TYPE
) old_values
 FOR XML PATH('customer_name_rows');
 END

 ELSE
 --Set new versions for the updated rows
 UPDATE CustomerNames
 SET Version = NEWID()
 WHERE
 CustomerId IN
 (
 SELECT CustomerId
 FROM inserted
);
END;
GO

After making this modification, let’s try updating the table with an invalid version value, as shown in
the following T-SQL:

DECLARE
 @CustomerId int = 123,
 @Version uniqueidentifier;

264

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

-- Retrieve the current version value
SELECT @Version = Version
FROM CustomerNames
WHERE CustomerId = @CustomerId

-- Do something with the retrieved data here

-- Meanwhile, something else updates the version number
UPDATE CustomerNames
SET CustomerName = 'Popeye',
Version = @Version
WHERE CustomerId = @CustomerId;

-- Now try to write the changes back to the table
UPDATE CustomerNames
SET CustomerName = 'Top Cat',
Version = @Version
WHERE CustomerId = @CustomerId;
GO

Executing this code will produce output similar to that shown here:

<customer_name_rows>

 <new_values>

 <customer_name row_number="1">

 <CustomerId>123</CustomerId>

 <CustomerName>Top Cat</CustomerName>

 <Version>10E83AAD-B966-4250-A66D-FE0085706F9E</Version>

 </customer_name>

 </new_values>

 <old_values>

 <customer_name row_number="1">

 <CustomerId>123</CustomerId>

 <CustomerName>Popeye</CustomerName>

 <Version>DDEDE0D4-44FE-42EA-B605-7431098D8A24</Version>

 </customer_name>

 </old_values>

</customer_name_rows>

265

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Although this doesn’t exactly write the merge routine for you, I find that the XML format is very easy
to work with when it comes to doing these kinds of operations.

Since the document contains the newer version value that caused the conflict, you can let the end
user perform a merge or choose to override the other user’s change without having to go back to the
database to get the new rows a second time.

A Note on Triggers and Performance

Throughout the previous two sections, update triggers were employed as a mechanism by which to control
workflows around locking. Triggers are a great tool because the caller has no control over them—they will
fire on any update to the table, regardless of whether it was made in a stored procedure or an ad hoc
batch, and regardless of whether the caller has bothered to follow the locking rules. Unfortunately, triggers
also cause problems: most notably, they can have an acute effect on performance.

The major performance problems caused by triggers generally result from lengthened transactions and the
resultant blocking that can occur when low-granularity locks are held for a long period. In the case of
these triggers, that’s not much of an issue since they use the same rows that were already locked anyway
by the updates themselves. However, these triggers will slow down updates a bit. In SQL Server 2008, the
inserted and deleted tables are actually hidden temporary tables; the population of these tables does not
come for free—the data must be transferred into TempDB. In addition, each of these triggers incurs
additional index operations against the base table that are not necessary for a simple update.

In my testing, I’ve found that these triggers slow down updates by a factor of 2. However, that’s generally
the difference between a few milliseconds and a few more milliseconds—certainly not a big deal,
especially given the value that they bring to the application. It’s worth testing to make sure that these
triggers don’t cause severe performance issues for your application, but at the same time remember that
nothing is free—and if it’s a question of data integrity vs. performance, I personally would always choose
the former.

Embracing Conflict: Multivalue Concurrency Control
While optimistic and pessimistic concurrency are focused on enabling long-running business processes
to work together without mangling data that happens to be getting modified concurrently, MVCC is
based around the idea that performance is king.

MVCC is not concerned with making sure you can’t overwrite someone else’s data, because in an
MVCC scheme there is no overwriting of data—period. Instead of updating existing rows, every change is
done as an insert. This means that there’s no reason to check for data collisions; no data can get lost if
nothing is being updated. In an MVCC system, new rows are marked with a version number—generally a
date/time column or ascending key—so that newer versions can be readily identified and queried by
users.

Generally speaking, to benefit from MVCC, the cost of blocking for a given set of transactions must
outweigh all other resource costs, particularly with regard to disk I/O. Since new versions of rows will be
inserted as entirely new rows, the potential for massive amounts of disk utilization is quite huge.
However, due to the fact that no updates are taking place, blocking becomes almost nonexistent.

266

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Illustrating the performance gains possible from an insert-only architecture is fairly simple using a
load tool. To begin with, create a table and populate it with some sample data, as shown in the following
T-SQL:

CREATE TABLE Test_Updates
(
 PK_Col int NOT NULL PRIMARY KEY,
 Other_Col varchar(100) NOT NULL
);
GO

INSERT INTO Test_Updates (
 PK_Col,
 Other_Col)
SELECT DISTINCT
 Number,
 'Original Value'
FROM master..spt_values
WHERE number BETWEEN 1 AND 10;

Next, enter the following code into a new query window:

-- Choose an abitrary row to update
DECLARE @PK_Col int = CEILING(RAND() * 10)

BEGIN TRAN;

-- Update the table
UPDATE Test_Updates
SET Other_Col = 'new value set at ' + CAST(SYSDATETIME() AS varchar(32))
WHERE PK_Col = @PK_Col;

-- Add a delay
WAITFOR DELAY '00:00:00.25';

COMMIT;

This code simulates an UPDATE followed by a quarter of a second of other actions taking place in the
same transaction. It doesn’t matter what the other actions are; the important thing is that this is a
somewhat long-running transaction, and that the UPDATE will hold its locks for the duration of the
transaction, which is necessary in order to guarantee consistency of the updated data.

To simulate a concurrent environment, we will execute the preceding query simultaneously across
several parallel threads. To do this, we’ll use the ostress tool, which is available as part of the Microsoft
Replay Markup Language (RML) utilities for SQL Server, downloadable from
http://support.microsoft.com/default.aspx/kb/944837. Before using the ostress tool, save the
preceding query to a new file—I’ll assume that you’ll save it as c:\update_test.sql. To test the
performance of this query in a concurrent environment, open up the RML command prompt and enter
the following:

ostress.exe -Slocalhost -dtempDB -i"c:\update_test.sql" -n25 -100 -q

267

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

This will execute the contents of the update_test.sql file across 25 threads, each running the query
100 times. If necessary, you should change the ostress parameters supplied as follows:

• -S: Server name

• -d: Database name against which to execute the query

• -U: Login ID (only required if not using Windows Authentication)

• -P: password (only required if not using Windows Authentication)

After execution, the ostress tool reports the elapsed time on my system as 00:01:42.514. To compare
this performance with the relative performance of inserts in a highly concurrent scenario, create a
similar table to Test_Updates, this time designed to hold—and version—inserted rows:

CREATE TABLE Test_Inserts
(
 PK_Col int NOT NULL,
 Other_Col varchar(100) NOT NULL,
 Version int IDENTITY(1,1) NOT NULL,
 PRIMARY KEY (PK_Col, Version)
);
GO

Edit the previous query so that, rather than updating records, it inserts records into the new table as
follows:

DECLARE @PK_Col int = CEILING(RAND() * 10);

BEGIN TRAN;

-- Insert the values into a new table
INSERT INTO Test_Inserts (
 PK_Col,
 Other_Col
)
SELECT
 @PK_Col,
 'new value set at ' + CAST(SYSDATETIME() AS varchar(32));

-- Add a delay
WAITFOR DELAY '00:00:00.25';

COMMIT;

Save this query as insert_test.sql and execute it using the same ostress settings as before. The
elapsed time of this test when run on my laptop is 00:00:29.184—less than a third of the time taken for
the equivalent update test.

The results are fairly clear: when simulating a massive blocking scenario, inserts are the clear winner
over updates, thanks to the fact that processes do not block each other trying to write the same rows.
Admittedly, this example is contrived, but it should serve to illustrate the purported benefit of MVCC as a
concurrency technique.

268

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Of course, there is a bit more to MVCC than the idea of using inserts instead of updates. You still
need to be able to retrieve a consistent view of the data. A query such as the following can be used to get
the latest version of every row in the Test_Inserts table:

SELECT
 ti.PK_Col,
 ti.Other_Col,
 ti.Version
FROM Test_Inserts ti
WHERE
 Version =
 (
 SELECT MAX(ti1.Version)
 FROM Test_Inserts ti1
 WHERE
 ti1.PK_Col = ti.PK_Col
);

I will not cover MVCC queries extensively in this section—instead, I will refer you to Chapter 11,
which covers temporal data. The bitemporal techniques discussed in that chapter share many
similarities with MVCC, but with a greater overall value proposition thanks to the fact that they take
advantage of time as well as versioning, allowing you to pull back consistent views of the data based on
time rather than just version.

As you might guess, MVCC, while an interesting concept, cannot be applied as described here to
many real-world applications. Merging the MVCC concept with bitemporal data models can help make
this a much more interesting technique for highly concurrent applications in which versioning of data
collisions makes sense.

Sharing Resources Between Concurrent Users
So far in this chapter, we’ve looked at the business rules for protecting the integrity of data—preventing
overwrites and minimizing occurrences of blocking—and a brief consideration of performance
implications of different concurrent models. However, I have yet to address the important issue of how
to balance competing demand for limited resources in a concurrent environment.

By default, when multiple requests are made to a SQL Server instance, the database engine shares
resources between all concurrent users equally. As a result, every request will face more contention for
CPU, memory, and I/O resources, leading to longer average query times and greater risk of blocking
scenarios occurring. In practice, however, it is rare for all queries to be of equal importance. Some
requests may be classified as high-priority based on the urgency with which the data is needed, or on the
seniority of the user asking for that data. Maintenance tasks, in contrast, should sometimes run only in
the background, when there is idle resource to fulfill them. By using Resource Governor, a new feature
introduced in the Developer and Enterprise editions of SQL Server 2008, it is possible to classify and
prioritize incoming connections into categories to determine how resources are allocated between
them.

I don’t intend to cover every aspect of Resource Governor in these pages: for readers not familiar
with the topic, I recommend reading the introduction to Resource Governor on Books Online, at
http://msdn.microsoft.com/en-us/library/bb895232.aspx. In this section, I’ll concentrate only on
demonstrating some of the ways in which Resource Governor can be applied to benefit performance in
high-concurrency environments.

269

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Before continuing, create a new database and add two new users to that database that will be used
in the upcoming examples:

-- Create and switch to a new database
CREATE DATABASE ResourceGovernor;
GO
USE ResourceGovernor;
GO

-- Create two users and a DB login based on each
CREATE LOGIN UserA
WITH
 PASSWORD = 'password',
 CHECK_POLICY = OFF;
CREATE USER UserA FROM LOGIN UserA;
GO

CREATE LOGIN UserB WITH
 PASSWORD='password',
 CHECK_POLICY = OFF;
CREATE USER UserB FROM LOGIN UserB;
GO

-- For simplicity, make both users db_owners
EXEC sp_addrolemember 'db_owner', 'UserA';
EXEC sp_addrolemember 'db_owner', 'UserB';
GO

To keep the example simple, requests from each of these database users will be mapped to their
own workload group, which in turn has its own dedicated resource pool, as follows:

USE master;
GO

ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

-- Create two resource pools with default settings
CREATE RESOURCE POOL PoolA;
CREATE RESOURCE POOL PoolB;
GO

-- Create two workload groups
CREATE WORKLOAD GROUP GroupA USING PoolA;
CREATE WORKLOAD GROUP GroupB USING PoolB;
GO

Next, we must create the classifier function that will be used to assign the workload group into
which incoming requests are placed. For this example, we will classify all requests from UserA into the
GroupA workload group, and all requests from UserB into the GroupB workload group, as follows:

270

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

CREATE FUNCTION dbo.RGClassifier()
RETURNS sysname WITH SCHEMABINDING
AS
BEGIN
 DECLARE @grp_name AS sysname = N'default';
 DECLARE @login_name AS sysname = SUSER_NAME();

 IF @login_name = N'UserA'
 SET @grp_name = N'GroupA';
 ELSE IF @login_name = N'UserB'
 SET @grp_name = N'GroupB';
 RETURN @grp_name;
END;
GO

For the purposes of this demonstration, I’ve simply classified each incoming connection request
based on the login name of the user making the request. All requests from UserA are classified into the
GroupA workgroup, and all requests from UserB will be classified into the GroupB workgroup. All other
requests will use the default group.

You can also make classification decisions based on other factors, including the name of the host or
application supplied in the connection string (retrieved using HOST_NAME() and APP_NAME(), respectively),
and whether the user is a member of a particular role or group.

It is important to note that once Resource Governor is activated, the classifier function will be run to
classify every incoming connection to the server, and govern the resources available for that session. It is
therefore crucially important to make sure that this function is thoroughly tested and optimized or else
you risk potentially crippling your system.

 Tip All queries issued via a dedicated administrator connection (DAC) are run using the internal workload group
and resource pool, and are not subject to classification. You may find that you need to connect to SQL Server 2008
via DAC in order to investigate and repair issues if a classifier function goes awry.

Finally, Resource Governor will be bound to the classifier function and activated as follows:

ALTER RESOURCE GOVERNOR
 WITH (CLASSIFIER_FUNCTION = dbo.RGClassifier);
GO

ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Now that we have set up the basic resource governor infrastructure, we need some way of
monitoring the effects on performance in high-concurrency environments. To do so, open up the
system performance monitor console (perfmon.exe). Right-click the performance graph and select the
Add Counters menu option. Scroll down the list of available counters, and, when you get to the SQL

271

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Server:Workload Group Stats heading, click to add the CPU Usage % measure for both GroupA and
GroupB. These steps are illustrated in Figure 9-1.

Figure 9-1. Adding performance counters for GroupA and GroupB CPU usage percentage

Controlling Resource Allocation
One of the most fundamental uses of Resource Governor is to set explicit minimum and maximum levels
for CPU and server memory allocated to different resource pools. To demonstrate the effect of applying
these limits, we first need to place some load on the server. Open the RML command prompt and use
the ostress tool to set up a query issued by UserA, as follows:

ostress -U"UserA" -P"password" -Q"WHILE(1=1) SELECT REPLICATE('a',4000);" -n5 –q

Next, open a second RML command prompt and enter the following request issued by UserB:

ostress -U"UserB" -P"password" -Q"WHILE(1=1) SELECT REPLICATE('b',4000);" -n5 -q
-o"C:\UserB"

Each of these queries will issue a recurring, relatively CPU-intensive query that will repeat
indefinitely across five separate threads. We can confirm that the classifier function is working correctly

272

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

by checking the sys.dm_resource_governor_workload_groups DMV, as shown in the following code
listing:

SELECT
 name,
 total_request_count
FROM
 sys.dm_resource_governor_workload_groups
WHERE
 name IN ('GroupA', 'GroupB');

The results show that there are five requests running under each workload group. Now check on the
performance monitor graph. On my system, this appears as shown in Figure 9-2.

Figure 9-2. Balanced performance of two default workload groups

Perhaps unsurprisingly, as we have left all resource governor settings at their default values, the
graph shows an approximately equal split of CPU usage percentage between the two workloads. So now
let’s try to change things around a bit. Firstly, we’ll try to limit the CPU resources given to both resource
pools:

ALTER RESOURCE POOL PoolA
WITH (MAX_CPU_PERCENT = 10);

273

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

ALTER RESOURCE POOL PoolB
WITH (MAX_CPU_PERCENT = 10);

ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Executing this code, you might be surprised to find, makes no difference to the graph. So how come
the Resource Governor is seemingly ignoring our specified MAX_CPU_PERCENT and has failed to limit both
resource pools to 10 percent of CPU? This illustrates an important point concerning the way in which
resources are allocated by the Resource Governor—rather than prescribing a hard limit on CPU usage,
the MAX_CPU_PERCENT value is used to balance competing requests when there is contention for resources.
In this case, since the combined stated MAX_CPU_PERCENT of all resource pools is less than 100 percent,
there is no contention. The SQL Server OS will always attempt to maximize CPU resource usage, so if
there is spare CPU available, it will be assigned between the available pools. The MAX_CPU_PERCENT of a
resource pool is only enforced in situations where exceeding that limit would prevent another resource
pool from being granted its requested maximum CPU settings.

 Note When testing applications that execute using resource pools limited to a MAX_CPU_PERCENT, it is important
to remember that that limit will only be enforced if there is contention for that CPU resource from other resource
pools. You should therefore always test in environments with competing concurrent processes.

With this in mind, let’s now try another example. For this example, we’ll ensure that the total
MAX_CPU_PERCENT of the two resource pools adds up to 100 percent so that neither will be allowed to
exceed that limit (lest the other would be denied CPU resources):

ALTER RESOURCE POOL PoolA
WITH (MAX_CPU_PERCENT = 90);

ALTER RESOURCE POOL PoolB
WITH (MAX_CPU_PERCENT = 10);

ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Following the rules explained previously, you would perhaps now expect the CPU usage between
PoolA and PoolB to be split in the ratio 90:10, and depending on your system, this might be the outcome
that you now observe on the performance monitor graph. However, the graph on my system still shows
little discernible difference between the two workload groups, as shown in Figure 9-3.

274

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Figure 9-3. CPU usage percentage

The explanation of the behavior shown in Figure 9-3 is that the MAX_CPU_PERCENT limit (and other
resource pool options) used by the Resource Governor are specified at a per scheduler level. In other
words, the MAX_CPU_PERCENT setting is used to allocate the amount of CPU resource granted to a resource
pool, as a percent of the CPU on which the process is running. I’m running these tests on a
multiprocessor computer, which means that the queries under each workload group are split across
separate CPUs. I can confirm this by executing the following:

SELECT
 rgwg.name AS group_name,
 est.text AS SQL,
 ot.scheduler_id,
 cpu_id,
 er.status
FROM
 sys.dm_exec_requests er
 JOIN sys.dm_os_tasks ot on er.task_address = ot.task_address
 JOIN sys.dm_resource_governor_workload_groups rgwg
 ON er.group_id = rgwg.group_id
 JOIN sys.dm_os_schedulers os ON ot.scheduler_id = os.scheduler_id
 CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) est
WHERE
 rgwg.name IN ('GroupA', 'GroupB');

275

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

The results indicate that the two queries are being executed under different schedulers executing on
different CPUs:

group_name SQL scheduler_id cpu_id status

GroupA WHILE(1=1) SELECT REPLICATE('a'... 0 0 running

GroupB WHILE(1=1) SELECT REPLICATE('b'... 1 1 runnable

Since each query is executing against a separate scheduler, once again there is no contention for
CPU resource, and so the MAX_CPU_PERCENT limit is not enforced.

In order to be able to demonstrate the effects of the Resource Governor more clearly, it is necessary
to constrain the execution of SQL Server threads to a single CPU by setting the affinity mask as follows:

sp_configure 'show advanced options', 1;
RECONFIGURE;
GO

sp_configure 'affinity mask', 1;
RECONFIGURE;
GO

 Caution Calling sp_configure 'affinity mask' with the bitmask value 1 will assign all SQL Server threads
to Processor 0, irrespective of how many CPU cores are present on the system. You should exercise extreme
caution when setting this option, even in testing environments.

The results of changing the CPU affinity mask on my system are shown in Figure 9-4.
Finally, it appears that we are close to the result we were expecting, but rather than seeing the split

between the resource pools as 90:10, it appears to be 45:5—this is the correct ratio between the pools,
but what has happened to the other 50 percent of resource?

The reason for this is that the “CPU usage %” performance counter is normalized based on the
number of CPUs on the server. In this case, I am running the tests on a dual-processor machine, but I’ve
just set the SQL Server affinity mask to only allow SQL Server processor threads on one processor. As a
result, all measurements for CPU usage percentage are half their expected value, with a maximum CPU
usage figure of 50 percent.

276

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

Figure 9-4. CPU usage between resource pools after setting CPU affinity to a single processor

Calculating Effective and Shared Maximum Resource Allocation
In a highly concurrent environment, it is rare for every request to be treated equally. In many cases, it is
a business requirement to ensure that certain defined groups of users or specific sets of queries receive
preferential treatment to guarantee fast response times. Special treatment may be required for queries
from high-priority users or queries that must be completed within a certain timeframe in order to ensure
that customer service level agreements are met.

So far, I have demonstrated how the Resource Governor can be used to limit the maximum server
resource usage in certain scenarios, but a more practical situation involves guaranteeing the minimum
resource available to a query. By setting appropriate limits on the MAX_CPU_USAGE and MIN_CPU_USAGE of
different resource pools (and the corresponding MIN_MEMORY_PERCENT and MAX_MEMORY_PERCENT), it is easy
to classify preferential requests to a dedicated resource pool that receives a guaranteed minimum share
of the server CPU and memory resource while capping the resource given to other pools.

To understand the interplay between settings of different pools, suppose that we want PoolA to be
our preferential pool and PoolB to be our normal pool. To achieve this, we will state that PoolA should
have a minimum CPU resource of 30 percent and a maximum of 90 percent. We will state a minimum of
0 percent CPU for PoolB, and a maximum CPU limit of 50 percent. These changes can be made using the
following T-SQL:

ALTER RESOURCE POOL PoolA
WITH (

277

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

 MIN_CPU_PERCENT = 30,
 MAX_CPU_PERCENT = 90
);

ALTER RESOURCE POOL PoolB
WITH (
 MIN_CPU_PERCENT = 0,
 MAX_CPU_PERCENT = 50
);

ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Now, how do these settings affect the way in which resources are allocated between the pools?
Remember that the MAX_CPU_PERCENT limit is only enforced when there is contention for resource. PoolA
specifies a minimum server CPU usage of 30 percent. However, since PoolB only requests a maximum of
50 percent of CPU, both of these requests can be granted without contention. The effective maximum
CPU usage of each pool in this case is therefore the same as the requested max: 90 percent for PoolA and
50 percent for PoolB.

For PoolA, 30 percent of the effective maximum CPU comes from dedicated resource, while the
remaining 60 percent comes from the shared resource pool, and is therefore dependent on other
demands of other requests on the server. PoolB has no stated minimum CPU percent, so all of the
effective maximum CPU usage of 50 percent comes from the shared resource pool.

 Note For more information on effective maximum limits, see the following Books Online page:
http://msdn.microsoft.com/en-us/library/bb934084.aspx.

Let’s now see what would happen if we were to create a third resource pool, as follows:

CREATE RESOURCE POOL PoolC
WITH (
 MIN_CPU_PERCENT = 15,
 MAX_CPU_PERCENT = 100
);

The effect of creating this new resource pool is as follows:

• PoolA now has an effective maximum CPU usage of 85 percent. The previous
effective maximum of 90 percent must be reduced to ensure that PoolC’s
MIN_CPU_PERCENT request of 15 percent can be granted. PoolA now receives 55
percent of its maximum effective CPU resource from the shared resource pool.

• PoolB remains unchanged, with an effective maximum of 50 percent of CPU
resource, all of which is taken from the shared resource pool.

278

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

• PoolC has an effective maximum of 70 percent of CPU resource (since PoolA’s
minimum request of 30 percent must be granted), with 55 percent of this resource
coming from the shared resource pool.

Note that in this section I have only demonstrated the allocation of CPU resource using
MIN_CPU_PERCENT and MAX_CPU_PERCENT, but the same resource-balancing rules can be applied to memory
resource assigned to resource pools using MIN_MEMORY_PERCENT and MAX_MEMORY_PERCENT. By setting
appropriate limits for each resource pool, it is possible to balance the requirements of different
categories of requests when there is competition for limited resources on the server. Always remember
that these are not hard limits, but are used to calculate how resources are allocated when there is
contention. When there is no contention, a resource pool may consume all of the available resources on
the server, even if other resource pools have specified minimum values.

Controlling Concurrent Request Processing
Whereas the previous section discussed changing the amount of resources available to various resource
pools used by the Resource Governor, it is also important to consider the configuration of workload
groups into which query requests are placed. One option of particular interest in a highly concurrent
environment is the GROUP_MAX_REQUESTS setting, which limits the number of concurrent requests that will
be processed in a given workload group. Once the maximum request limit has been reached, any
additional requests for this workload group will be placed into a wait state until capacity becomes
available.

Before going any further, cancel any running ostress windows that you might still have running.
Then reset the query plan cache, the Resource Governor statistics, and wait statistics held in the DMV
tables by issuing the following T-SQL:

ALTER RESOURCE GOVERNOR RESET STATISTICS;
DBCC FREEPROCCACHE;
DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);
GO

Now open a new RML command prompt and use the ostress tool to execute a simple query 100
times each across 500 threads, creating a total of 50,000 requests:

ostress -U"UserA" -P"password" –Slocalhost -Q"DECLARE @table TABLE (x varchar(4000));
 INSERT INTO @table SELECT REPLICATE('a',4000);" -n500 -r100 –q

When ostress is finished, you will see the total elapsed time required to complete all of the queries.
On my laptop, the time reported is 00:03:23.255.

Back in SQL Server Management Studio, we can examine the performance of these queries using the
following T-SQL:

SELECT
 total_request_count AS requests,
 total_queued_request_count AS queued,
 total_lock_wait_count AS locks,
 CAST(total_cpu_usage_ms AS decimal(18,9)) / total_request_count
 AS avg_cpu_time,
 max_request_cpu_time_ms AS max_cpu_time

279

CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

FROM
 sys.dm_resource_governor_workload_groups
WHERE
 name = N'GroupA';

requests queued locks avg cpu_time max_cpu_time
50500 0 627216 3.52998019801980198019801980198 80

Now let’s alter the resource governor settings to limit the maximum allowed number of concurrent
requests for this workload group to three. This will create a queue.

ALTER WORKLOAD GROUP GroupA
WITH (GROUP_MAX_REQUESTS = 3)
USING PoolA;

ALTER RESOURCE GOVERNOR RECONFIGURE
GO

Before running the tests again, reset the tables:

ALTER RESOURCE GOVERNOR RESET STATISTICS;
DBCC FREEPROCCACHE;
DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);
GO

Then rerun the ostress test exactly as before. This time the final execution time for all the queries on
my system is 00:03:03.257. By limiting the maximum number of concurrent requests for the workgroup,
the total time taken to process a queue of 50,000 queries in this example has been reduced by
approximately 10 percent.

Although at first this result may surprise you, it actually makes perfect sense. To understand what’s
occurring, rerun the previous query against the sys.dm_resource_governor_workload_groups DMV. The
results on my system are shown following:

requests queued locks avg cpu_time max_cpu_time
50500 48372 36727 3.46671287128712871287128712871 54

Since we set GROUP_MAX_REQUESTS to 3, requests issued to the GroupA workload group are forced to
wait as expected, while overall average CPU time required to fulfill each request remains largely similar.

However, when there are fewer concurrent requests, each query experiences substantially fewer
waits on resources that are locked by other threads. In this particular example, the benefit of reduced
lock waits outweighs the cost of waiting time enforced by Resource Governor throttling. As a result, not
only was the overall elapsed time to process a queue of requests reduced, but the consistency between
the time taken to fulfill each query was increased (with the maximum CPU time of 54ms when there
were only three concurrent requests, compared to 80ms in the previous example).

280

 CHAPTER 9 DESIGNING SYSTEMS FOR APPLICATION CONCURRENCY

281

 Tip If you are interested in finding further statistics about the waits enforced by Resource Governor, try looking
for rows in the sys.dm_os_wait_stats DMV where wait_type is RESMGR_THROTTLED.

Summary
Concurrency is a complex topic with many possible solutions. In this chapter, I introduced the various
concurrency models that should be considered from a business process and data collision point of view,
and explained how they differ from the similarly named concurrency models supported by the SQL
Server database engine. Pessimistic concurrency is probably the most commonly used form, but it can
be complex to set up and maintain. Optimistic concurrency, while more lightweight, might not be so
applicable to many business scenarios, and multivalue concurrency control, while a novel technique,
might be difficult to implement in such a way that allowing collisions will help deliver value other than a
performance enhancement.

Finally, I covered an overview of how Resource Governor can balance the way in which limited
resources are allocated between different competing requests in a concurrent environment. The
discussion here only scratched the surface of the potential for this technique, and I recommend that
readers interested in the subject dedicate some time to further research this powerful feature.

C H A P T E R 10

Working with Spatial Data

The addition of spatial capabilities was one of the most exciting new features introduced in SQL Server
2008. Although generally a novel concept for many SQL developers, the principles of working with
spatial data have been well established for many years. Dedicated geographic information systems
(GISs), such as ARC/INFO from ESRI, have existed since the 1970s. However, until recently, spatial data
analysis has been regarded as a distinct, niche subject area, and knowledge and usage of spatial data has
remained largely confined within its own realm rather than being integrated with mainstream
development.

The truth is that there is hardly any corporate database that does not store spatial information of
some sort or other. Customers’ addresses, sales regions, the area targeted by a local marketing
campaign, or the routes taken by delivery and logistics vehicles all represent spatial data that can be
found in many common applications.

In this chapter, I’ll first describe some of the fundamental principles involved in working with
spatial data, and then discuss some of the important features of the geometry and geography datatypes,
which are the specific datatypes used to represent and perform operations on spatial data in SQL Server.
After demonstrating how to use these methods to answer some common spatial questions, I’ll then
concentrate on the elements that need to be considered to create high-performance spatial applications.

 Note Working with spatial data presents a unique set of challenges, and in many cases requires the adoption of
specific techniques and understanding compared to other traditional datatypes. If you’re interested in a more
thorough introduction to spatial data in SQL Server, I recommend reading Beginning Spatial with SQL Server 2008,
one of my previous books (Apress, 2008).

Modeling Spatial Data
Spatial data describes the position, shape, and orientation of objects in space. These objects might be
tangible, physical things, like an office building, railroad, or mountain, or they might be abstract features
such as the imaginary line marking the political boundary between countries or the area served by a
particular store.

SQL Server adopts a vector model of spatial data, in which every object is represented using one or
more geometries—primitive shapes that approximate the shape of the real-world object they represent.
There are three basic types of geometry that may be used with the geometry and geography datatypes:
Point, LineString, and Polygon:

283

CHAPTER 10 WORKING WITH SPATIAL DATA

• A Point is the most fundamental type of geometry, representing a singular
location in space. A Point geometry is zero-dimensional, meaning that it has no
associated area or length.

• A LineString is comprised of a series of two or more distinct points, together with
the line segments that connect those points together. LineStrings have a length,
but no associated area. A simple LineString is one in which the path drawn
between the points does not cross itself. A closed LineString is one that starts and
ends at the same point. A LineString that is both simple and closed is known as a
ring.

• A Polygon consists of an exterior ring, which defines the perimeter of the area of
space contained within the polygon. A polygon may also specify one or more
internal rings, which define areas of space contained within the external ring but
excluded from the Polygon. Internal rings can be thought of as “holes” cut out of
the Polygon. Polygons are two-dimensional—they have a length measured as the
total length of all defined rings, and also an area measured as the space contained
within the exterior ring (and not excluded by any interior rings).

 Note The word geometry has two distinct meanings when dealing with spatial data in SQL Server. To make the
distinction clear, I will use the word geometry (regular font) as the generic name to describe Points, LineStrings,
and Polygons, and geometry (code font) to refer to the geometry datatype.

Sometimes, a single feature may be represented by more than one geometry, in which case it is
known as a GeometryCollection. GeometryCollections may be homogenous or heterogeneous. For
example, the Great Wall of China is not a single contiguous wall; rather, it is made up of several distinct
sections of wall. As such, it could be represented as a MultiLineString—a homogenous collection of
LineString geometries. Similarly, many countries, such as Japan, may be represented as a
MultiPolygon—a GeometryCollection consisting of several polygons, each one representing a distinct
island. It is also possible to have a heterogeneous GeometryCollection, such as a collection containing a
Point, three LineStrings, and two Polygons.

Figure 10-1 illustrates the three basic types of geometries used in SQL Server 2008 and some
examples of situations in which they are commonly used.

Having chosen an appropriate type of geometry to represent a given feature, we need some way of
relating each point in the geometry definition to the relevant real-world position it represents. For
example, to use a Polygon geometry to represent the US Department of Defense Pentagon building, we
need to specify that the five points that define the boundary of the Polygon geometry relate to the
location of the five corners of the building. So how do we do this?

You are probably familiar with the terms longitude and latitude, in which case you may be thinking
that it is simply a matter of listing the relevant latitude and longitude coordinates for each point in the
geometry. Unfortunately, it’s not quite that simple.

284

 CHAPTER 10 WORKING WITH SPATIAL DATA

Figure 10-1. Different types of geometries and their common uses

What many people don’t realize is that any particular point on the earth’s surface does not have
only one unique latitude or longitude associated with it. There are, in fact, many different systems of
latitude and longitude, and the coordinates of a given point on the earth will vary depending on which
system is used. Furthermore, latitude and longitude coordinates are not the only way of expressing
positions on the earth—there are other types of coordinates that define the location of an object without
using latitude and longitude at all.

In order to understand how to specify the coordinates of a geometry, we first need to examine how
different spatial reference systems work.

285

CHAPTER 10 WORKING WITH SPATIAL DATA

Spatial Reference Systems
A spatial reference system is a system designed to unambiguously identify and describe the location of
any point in space. This ability is essential to enable spatial data to store the coordinates of geometries
used to represent features on the earth.

To describe the positions of points in space, every spatial reference system is based on an
underlying coordinate system. There are many different types of coordinate systems used in various
fields of mathematics, but when defining geospatial data in SQL Server 2008, you are most likely to use a
spatial reference system based on either a geographic coordinate system or a projected coordinate
system.

Geographic Coordinate Systems
In a geographic coordinate system, any position on the earth’s surface can be defined using two angular
coordinates:

• The latitude coordinate of a point measures the angle between the plane of the
equator and a line drawn perpendicular to the surface of the earth at that point.

• The longitude coordinate measures the angle in the equatorial plane between a
line drawn from the center of the earth to the point and a line drawn from the
center of the earth to the prime meridian.

Typically, geographic coordinates are measured in degrees. As such, latitude can vary between –90°
(at the South Pole) and +90° (at the North Pole). Longitude values extend from –180° to +180°.

Figure 10-2 illustrates how a geographic coordinate system can be used to identify a point on the
earth’s surface.

Projected Coordinate Systems
In contrast to the geographic coordinate system, which defines positions on a three-dimensional, round
model of the earth, a projected coordinate system describes positions on the earth’s surface on a flat,
two-dimensional plane (i.e., a projection of the earth’s surface). In simple terms, a projected coordinate
system describes positions on a map rather than positions on a globe.

If we consider all of the points on the earth’s surface to lie on a flat plane, we can define positions on
that plane using familiar Cartesian coordinates of x and y (sometimes referred to as Easting and
Northing), which represent the distance of a point from an origin along the x axis and y axis, respectively.
Figure 10-3 illustrates how the same point illustrated in Figure 10-2 could be defined using a projected
coordinate system.

286

 CHAPTER 10 WORKING WITH SPATIAL DATA

Figure 10-2. Describing a position on the earth using a geographic coordinate system

Figure 10-3. Describing a position on the earth using a projected coordinate system

287

CHAPTER 10 WORKING WITH SPATIAL DATA

Applying Coordinate Systems to the Earth
A set of coordinates from either a geographic or projected coordinate system does not, on its own,
uniquely identify a position on the earth. We need to know additional information, such as where to
measure those coordinates from and in what units, and what shape to use to model the earth. Therefore,
in addition to specifying the coordinate system used, every spatial reference system must also contain a
datum, a prime meridian, and a unit of measurement.

Datum
A datum contains information about the size and shape of the earth. Specifically, it contains the details
of a reference ellipsoid and a reference frame, which are used to create a geodetic model of the earth
onto which a coordinate system can be applied.

The reference ellipsoid is a three-dimensional shape that is used as an approximation of the shape
of the earth. Although described as a reference ellipsoid, most models of the earth are actually an oblate
spheroid—a squashed sphere that can be exactly mathematically described by two parameters—the
length of the semimajor axis (which represents the radius of the earth at the equator) and the length of
the semiminor axis (the radius of the earth at the poles), as shown in Figure 10-4. The degree by which
the spheroid is squashed may be stated as a ratio of the semimajor axis to the difference between the two
axes, which is known as the inverse-flattening ratio.

Different reference ellipsoids provide different approximations of the shape of the earth, and there
is no single reference ellipsoid that provides a best fit across the whole surface of the globe. For this
reason, spatial applications that operate at a regional level tend to use a spatial reference system based
on whatever reference ellipsoid provides the best approximation of the earth’s surface for the area in
question. In Britain, for example, this is the Airy 1830 ellipsoid, which has a semimajor axis of
6,377,563m and a semiminor axis of 6,356,257m. In North America, the NAD83 ellipsoid is most
commonly used, which has a semimajor axis of 6,378,137m and a semiminor axis of 6,356,752m.

The reference frame defines a set of locations in the real world that are assigned known coordinates
relative to the reference ellipsoid. By establishing a set of points with known coordinates, these points
can then be used to correctly line up the coordinate system with the reference ellipsoid so that the
coordinates of other, unknown points can be determined. Reference points are normally places on the
earth’s surface itself, but they can also be assigned to the positions of satellites in stationary orbit around
the earth, which is how the WGS84 datum used by global positioning system (GPS) units is realized.

Prime Meridian
As defined earlier, the geographic coordinate of longitude is the angle in the equatorial plane between
the line drawn from the center of the earth to a point and the line drawn from the center of the earth to
the prime meridian. Therefore, any spatial reference system must state its prime meridian—the axis
from which the angle of longitude is measured.

It is a common misconception to believe that there is a single prime meridian based on some
inherent fundamental property of the earth. In fact, the prime meridian of any spatial reference system
is arbitrarily chosen simply to provide a line of zero longitude from which all other coordinates of
longitude can be measured. One commonly used prime meridian passes through Greenwich, London,
but there are many others. If you were to choose a different prime meridian, the value of every longitude
coordinate in a given spatial reference system would change.

288

 CHAPTER 10 WORKING WITH SPATIAL DATA

Figure 10-4. Properties of a reference ellipsoid

Projection
A projected coordinate reference system allows you to describe positions on the earth on a flat, two-
dimensional image of the world, created as a result of projection. There are many ways of creating such
map projections, and each one results in a different image of the world. Some common map projections
include Mercator, Bonne, and equirectangular projections, but there are many more.

It is very important to realize that, in order to represent a three-dimensional model of the earth on a
flat plane, every map projection distorts the features of the earth in some way. Some projections attempt
to preserve the relative area of features, but in doing so distort their shape. Other projections preserve
the properties of features that are close to the equator, but grossly distort features toward the poles.
Some compromise projections attempt to balance distortion in order to create a map in which no one

289

CHAPTER 10 WORKING WITH SPATIAL DATA

aspect is distorted too significantly. The magnitude of distortion of features portrayed on the map is
normally related to the extent of the area projected. For this reason, projected spatial reference systems
tend to work best when only applied to a single country or smaller area, rather than a full world view.

Since the method of projection affects the features on the resulting map image, coordinates from a
projected coordinate system are only valid for a given projection.

Spatial Reference Identifiers
The most common spatial reference system in global usage uses a geographic coordinate based on the
WGS84 datum, which has a reference ellipsoid of radius 6,378,137m and an inverse-flattening ratio of
298.257223563. Coordinates are measured in degrees, based on a prime meridian of Greenwich. This
system is used by handheld GPS devices, as well as many consumer mapping products, including Google
Earth and Bing Maps APIs.

Using the Well-Known Text (WKT) format, which is the industry standard for such information (and
the system SQL Server uses in the well_known_text column of the sys.spatial_references table), the
properties of this spatial reference system can be expressed as follows:

GEOGCS[
 "WGS 84",
 DATUM[
 "World Geodetic System 1984",
 ELLIPSOID[
 "WGS 84",
 6378137,
 298.257223563
]
],
 PRIMEM["Greenwich", 0],
 UNIT["Degree", 0.0174532925199433]
]

Returning to the example at the beginning of this chapter, using this spatial reference system, we
can describe the approximate location of each corner of the US Pentagon building as a pair of latitude
and longitude coordinates as follows:

38.870, -77.058
38.869, -77.055
38.871, -77.053
38.873, -77.055
38.872, -77.058

Note that, since we are describing points that lie to the west of the prime meridian, the longitude
coordinate in each case is negative.

Now let’s consider another spatial reference system—the Universal Transverse Mercator (UTM)
Zone 18N system, which is a projected coordinate system used in parts of North America. This spatial
reference system is based on the 1983 North American datum, which has a reference ellipsoid of
6,378,137m and an inverse-flattening ratio of 298.257222101. This geodetic model is projected using a
transverse Mercator projection, centered on the meridian of longitude 75°W, and coordinates based on
the projected image are measured in meters. The full properties of this system are expressed in WKT
format as follows:

290

 CHAPTER 10 WORKING WITH SPATIAL DATA

PROJCS[
 "NAD_1983_UTM_Zone_18N",
 GEOGCS[
 "GCS_North_American_1983",
 DATUM[
 "D_North_American_1983",
 SPHEROID[
 "GRS_1980",
 6378137,
 298.257222101
]
],
 PRIMEM["Greenwich",0],
 UNIT["Degree", 0.0174532925199433]
],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["False_Easting", 500000.0],
 PARAMETER["False_Northing", 0.0],
 PARAMETER["Central_Meridian", -75.0],
 PARAMETER["Scale_Factor", 0.9996],
 PARAMETER["Latitude_of_Origin", 0.0],
 UNIT["Meter", 1.0]
]

Using this spatial reference system, the same five points of the Pentagon building can instead be
described using the following coordinates:

321460, 4304363
321718, 4304246
321896, 4304464
321728, 4304690
321465, 4304585

Comparing these results clearly demonstrates that any coordinate pair only describes a unique
location on the earth when stated with the details of the coordinate system from which they were
obtained. However, it would be quite cumbersome if we had to write out the full details of the datum,
prime meridian, unit of measurement, and projection details every time we wanted to quote a pair of
coordinates. Fortunately, there is an established set of spatial reference identifiers (SRIDs) that provide
a unique integer code associated with each spatial reference system. The two spatial reference systems
used in the preceding examples are represented by SRID 4326 and SRID 26918, respectively.

Every time you state an item of spatial data using the geography or geometry types in SQL Server
2008, you must state the corresponding SRID from which the coordinate values were obtained. What’s
more, since SQL Server does not provide any mechanism for converting between spatial reference
systems, if you want to perform any calculations involving two or more items of spatial data, each one
must be defined using the same SRID.

If you don’t know the SRID associated with a set of coordinates—say, you looked up some latitude
and longitude coordinates from a web site that didn’t state the system used—the chances are more than
likely that they are geographic coordinates based on SRID 4326, the system used by GPSs.

291

CHAPTER 10 WORKING WITH SPATIAL DATA

 Note To find out the SRID associated with any given spatial reference system, you can use the search facility
provided at www.epsg-registry.org.

Geography vs. Geometry
Early Microsoft promotional material for SQL Server 2008 introduced the geography datatype as suitable
for “round-earth” data, whereas the geometry datatype was for “flat-earth” data. These terms have since
been repeated verbatim by a number of commentators, with little regard for explaining the practical
meaning of “flat” or “round.” A simple analogy might be that, in terms of geospatial data, the geometry
datatype operates on a map, whereas the geography datatype operates on a globe.

With that distinction in mind, one obvious difference between the datatypes concerns the types of
coordinates that can be used with each:

• The geography datatype requires data to be expressed using latitude and longitude
coordinates, obtained from a geographic coordinate system. Furthermore, since
SQL Server needs to know the parameters of the ellipsoidal model onto which
those coordinates should be applied, all geography data must be based on one of
the spatial reference systems listed in the sys.spatial_reference_systems system
table.

• The geometry datatype operates on a flat plane, which makes it ideal for dealing
with geospatial data from projected coordinate systems, including Universal
Transverse Mercator (UTM) grid coordinates, national grid coordinates, or state
plane coordinates. However, there are occasions when you may wish to store
latitude and longitude coordinates using the geometry datatype, as I’ll
demonstrate later this chapter. The geometry datatype can also be used to store
any abstract nonspatial data that can be modeled as a pair of floating point x, y
coordinates, such as the nodes of a graph.

This distinction between coordinate types is not the only property that distinguishes the two
datatypes. In the following sections I’ll analyze some of the other differences in more detail.

 Note Both the flat plane used by the geometry datatype and the curved ellipsoidal surface of the geography
datatype are two-dimensional surfaces, and a position on those surfaces can be described using exactly two
coordinates (latitude and longitude for the geography datatype, or x and y for the geometry datatype). SQL Server
2008 also allows you to store Z and M coordinates, which can represent two further dimensions associated with
each point (typically, Z is elevation above the surface, and M is a measure of time). However, while these values
can be stored and retrieved, none of the methods provided by the geography or geometry datatypes account for
the value of Z and M coordinates in their calculations.

292

 CHAPTER 10 WORKING WITH SPATIAL DATA

Standards Compliance
The geometry datatype operates on a flat plane, where the two coordinate values for each point represent
the x and y position from a designated origin on the plane. As a result, many of the standard methods
provided by the geometry datatype can be performed using elementary trigonometry and geometry. For
example, the following code listing demonstrates how to calculate the distance between a Point located
at (50,100) and a Point at (90,130) using the STDistance() method of the geometry datatype:

DECLARE @point1 geometry = geometry::Point(50, 100, 0);
DECLARE @point2 geometry = geometry::Point(90, 130, 0);
SELECT @point1.STDistance(@point2);

The result, 50, could have been obtained without using the geometry datatype, using basic knowledge of
the Pythagorean theorem, as in the following equivalent T-SQL query:

DECLARE
 @x1 int = 50, @y1 int = 100,
 @x2 int = 90, @y2 int = 130;

SELECT
 SQRT(
 POWER(@x2 - @x1, 2) +
 POWER(@y2 - @y1, 2)
);

Of course, other geometry operations, such as finding whether a Point lies within a Polygon, or the
area created by the intersection of two Polygons, become more involved than the simple example given
here, but they are still generally achievable using alternative methods in T-SQL or SQLCLR. So why the
fuss about the geometry datatype?

One key benefit of implementing such functionality using the geometry datatype instead of rolling
your own code is that all the methods implemented by the geometry datatype conform to the Open
Geospatial Consortium (OGC) Simple Features for SQL Specification v1.1.0. This is the industry standard
format for the interchange and implementation of spatial functionality. By using the geometry datatype,
you can be sure that the results of any spatial methods will be the same as those obtained from any other
system based on the same standards.

Note that although OGC compliance ensures consistency of results, the OGC methods do not
necessarily give predictable results, at least not in the sense that you can reasonably guess the behavior
of a method based on its name alone. For example, consider the two LineStrings illustrated in Figure
10-5.

Figure 10-5. Two LineStrings that cross but do not touch

293

CHAPTER 10 WORKING WITH SPATIAL DATA

In normal English language, most people would describe these two LineStrings as touching, but not
crossing. However, according to the OGC definitions, the reverse is true. You can test this for yourself by
examining the results of the STTouches() and STCrosses() methods, as shown in the following code
listing:

DECLARE @x geometry = geometry::STLineFromText('LINESTRING(0 0, 0 10)', 0);
DECLARE @y geometry = geometry::STLineFromText('LINESTRING(10 0, 0 5, 10 10)', 0);
SELECT
 @x.STCrosses(@y),
 @x.STTouches(@y);

The result of the STCrosses() method is 1, indicating that the LineString x crosses over the
LineString y. According to the OGC standards, two LineStrings cross each other if the geometry created
by their intersection is zero-dimensional. In this case, the two LineStrings intersect at a single point (5,5),
so they are deemed to cross. In contrast, two LineStrings only touch each other if the points at which
they intersect lie in the boundary (i.e., the ends) of the LineString. In this case, the point (5,5) lies in the
interior of both LineStrings rather than in their boundary, so the result of STTouches() is 0 (i.e., false). Be
careful to check the documentation of any methods to ensure that the behavior is exactly as you expect!

Accuracy
The world is round. The geometry datatype, however, operates on a flat plane. By definition, therefore,
any geospatial calculations performed using the geometry datatype will involve a degree of error. This is
not a limitation of the geometry datatype in itself, but rather of the inevitable distortions introduced
when using a projected coordinate system to represent a round model of the earth.

Generally speaking, the effects of distortion become greater as the area of projection is increased.
For this reason, results obtained using the geometry datatype will become less accurate than results
obtained using the geography datatype over large distances.

In global spatial applications, the geography datatype is a more suitable choice, as there are few
projected systems that can be used for general global purposes with sufficient accuracy. For storing
spatial data contained within a single country or smaller area, the geometry datatype will generally
provide sufficient accuracy, and comes with the benefits of additional functionality over the geography
type.

Technical Limitations and Performance
The ellipsoidal calculations used by the geography datatype are by their nature more complex than the
planar calculations of the geometry datatype. This means that applications using the geography datatype
may experience slightly slower performance than those based on the geometry datatype, although the
impact is not normally significant. Additionally, the indexes created on columns of geometry data may
specify an explicit bounding box, creating a more granular grid, which leads to more efficient filtering of
results than a geography index, which is assumed to span the entire globe (but more on that later).

However, there are other more important implications arising between the different models on
which the two datatypes are based. The first of these differences is that currently, no geography instance
may exceed a single hemisphere. In this context, the term hemisphere means one-half of the surface of
the earth, centered about any point on the globe. Thus, it is not possible to have a geography MultiPoint
instance containing one Point at the North Pole and one at the South Pole. Nor is it possible to have a
geography LineString that extends from London to Auckland and then on to Los Angeles. In order to
work around this limitation, you must break down large geography objects into several smaller objects

294

 CHAPTER 10 WORKING WITH SPATIAL DATA

that each fit within a hemisphere. In contrast, there is no limit to the size of a geometry instance, which
may extend indefinitely on an infinite plane.

The second technical difference arises from the conceptual differences of working on a curved
surface rather than a flat plane. As defined earlier, the external ring of a Polygon defines an area of space
contained within the Polygon, and may also contain one or more internal rings that define “holes”—
areas of space cut out from the Polygon. This is fairly straightforward to visualize when drawing
Polygons on a flat piece of paper. However, a problem occurs when you try to apply this definition on a
continuous round surface such as used by the geography datatype, because it becomes ambiguous as to
which area of space is contained inside a Polygon ring, and which is outside.

To demonstrate this problem, consider Figure 10-6, which illustrates a Polygon whose exterior ring
is a set of points drawn around the equator. Does the area contained within the Polygon represent the
Northern Hemisphere or the Southern Hemisphere?

Figure 10-6. Polygon ring orientation is significant for the geography datatype

The solution used by SQL Server (and in common with some other spatial systems) is to consider
the ring orientation of the Polygon—i.e., the order in which the points of the ring are specified. When
defining a geography Polygon, SQL Server treats the area on the “left” of the path drawn between the
points as contained within the ring, whereas the points on the “right” side are excluded. Thus, the
Polygon depicted in Figure 10-6 represents the Northern Hemisphere. Whenever you define geography
polygons, you must ensure that you specify the correct ring orientation or else your polygons will be
“inside-out”—excluding the area they were intended to contain, and including everything else. In
geometry, data ring orientation is not significant, as there is no ambiguity as to the area contained within
a Polygon ring on a flat plane.

295

CHAPTER 10 WORKING WITH SPATIAL DATA

A final technical difference concerns invalid geometries. In an ideal world, we would always want
our spatial data to be “valid”—that is, it meeting all the OGC specifications for that type of geometry.
However, as developers we have to reluctantly accept that spatial data, like any other data, is rarely as
perfect as we would like. This means that you will frequently encounter invalid data where, for example,
Polygons do self-intersect.

Rather perversely, perhaps, the geometry datatype, which conforms to OGC standards, is also the
datatype that provides options for dealing with data that fails to meet those standards. For example, not
only can the geometry datatype be used to store invalid geometries, but it also provides the STIsValid()
method to identify whether a geometry is valid or not, and the MakeValid() method to attempt to “fix”
invalid geometries. All geography data, in contrast, is assumed to be valid at all times. Although this
means that once geography data is in SQL Server, you can work with it comfortable in the knowledge
that it is always valid, it can provide an obstacle to importing that data in the first place. Since SQL Server
cannot import invalid geography data, you may have to rely on external tools to validate and fix any
erroneous data prior to importing it.

Creating Spatial Data
The first challenge presented to many users new to the spatial features in SQL Server 2008 is how to get
spatial data into the database. Unfortunately, the most commonly used spatial format, the ESRI
shapefile format (SHP), is not directly supported by any of the geography or geometry methods, nor by
any of the file data sources available in SQL Server Integration Services (SSIS). What’s more, internally,
geography and geometry data is stored using a proprietary binary format, which is quite complex. For
readers who are interested, the structure is documented at http://msdn.microsoft.com/en-
us/library/ee320529.aspx, but in general you do not need to worry about the specifics involved, as SQL
Server instead provides static methods to create spatial data from three different alternative spatial
formats: WKT, Well-Known Binary (WKB), and Geography Markup Language (GML).

Well-Known Text
WKT is a simple, text-based format defined by the OGC for the exchange of spatial information. Owing to
its easy readability and relative conciseness, the WKT format is a popular way of storing and sharing
spatial data, and is the format used in most of the examples in this chapter. It is also the format used in
the spatial documentation in SQL Server 2008 Books Online, at http://msdn.microsoft.com/en-
us/library/ms130214.aspx.

The following code listing demonstrates the WKT string used to represent a Point geometry located
at an x coordinate of 258647 and a y coordinate of 665289:

POINT(258647 665289)

Based on the National Grid of Great Britain, which is a projected coordinate system denoted by the
SRID 27700, these coordinates represent the location of Glasgow, Scotland. Once we know the WKT
string and the relevant SRID, we can create a geometry Point instance representing the city using the
STPointFromText method as follows:

DECLARE @Glasgow geometry;
SET @Glasgow = geometry::STPointFromText('POINT(258647 665289)', 27700);
GO

296

 CHAPTER 10 WORKING WITH SPATIAL DATA

In order to create more complex geometries from WKT, simply specify the individual coordinate
pairs of each point in a comma-delimited list, as shown in the following example, which creates a
LineString between two points representing Sydney Harbor Bridge:

DECLARE @SydneyHarbourBridge geography;
SET @SydneyHarbourBridge = geography::STLineFromText(
 'LINESTRING(151.209 -33.855, 151.212 -33.850)', 4326);
GO

Note that when using WKT to express coordinates for use in the geography datatype, as in the last
example, the longitude coordinate must be listed first in each coordinate pair, followed by the latitude
coordinate. This is in contrast to the expression of a “latitude, longitude” coordinate pair, which most
people are familiar with using in everyday speech.

One disadvantage of the WKT format is that, as with any text-based representation, it is not possible
to precisely state the value of certain floating-point coordinate values obtained from binary methods.
The inevitable rounding errors introduced when attempting to do so will lead to a loss of precision.
Additionally, since SQL Server must parse the text in a WKT representation to create the relevant spatial
object, instantiating objects from WKT can be slower than when using other methods.

Well-Known Binary
The WKB format, like the WKT format, is a standardized way of representing spatial data defined by the
OGC. In contrast to the text-based WKT format, WKB represents a geometry or geography object as a
contiguous stream of bytes in binary format. Every WKB representation begins with a header section
that specifies the order in which the bytes are listed (big-endian or little-endian), a value defining the
type of geometry being represented, and a stream of 8-byte values representing the coordinates of each
point in the geometry.

The following code demonstrates how to construct a Point geometry from WKB representing the
city of Warsaw, Poland, located at latitude 52.23 and longitude 21.02, using the geography
STPointFromWKB() method:

DECLARE @Warsaw geography;
SET @Warsaw = geography::STPointFromWKB(
 0x010100000085EB51B81E0535403D0AD7A3701D4A40,
 4326);

One advantage of using WKB is that it can be more efficiently processed than either of the text-
based (GML or WKT) formats. Additionally, since it is a binary format, WKB maintains the precision of
floating-point coordinate values calculated from binary operations, without the rounding errors
introduced in a text-based format. It is therefore the best choice of format for transmission of spatial
data directly between system interfaces, where the speed and precision of this format are beneficial and
the lack of human readability is not significant.

 Note Although SQL Server stores spatial data in a binary format similar to WKB, it is not the same. In order to
create items of spatial data from WKB, you must supply it to the appropriate STxxxxFromWKB() method.

297

CHAPTER 10 WORKING WITH SPATIAL DATA

Geography Markup Language
GML is an XML-based language for representing spatial information. Like all XML formats, GML is a very
explicit and highly structured hierarchical format. The following code demonstrates an example of the
GML representation of a point located at latitude –33.86 and longitude 151.21:

<Point xmlns="http://www.opengis.net/gml">
 <pos>-33.86 151.21</pos>
</Point>

GML, like WKT, has the advantages of being easy to read and understand. Additionally, the XML
structure makes it is easy to assess and query the structure of complex spatial objects by examining the
structure of the associated GML document. However, it is very verbose—the GML representation of an
object occupies substantially more space than the equivalent WKT representation and, like WKT, it too
suffers from precision issues caused by rounding when expressing binary floating-point coordinate
values. GML is most commonly used for representing spatial information in an XML-based
environment, including the syndication of spatial data over the Internet.

Importing Data
It is very common to want to analyze custom-defined spatial data, such as the locations of your
customers, in the context of commonly known geographical features, such as political boundaries, the
locations of cities, or the paths of roads and railways. There are lots of places to obtain such generic
spatial data, from a variety of commercial and free sources.

SQL Server doesn’t provide any specific tools for importing predefined spatial data, but there are a
number of third-party tools that can be used for this purpose. It is also possible to use programmatic
techniques based on the functionality provided by the SqlServer.Types.dll library, which contains the
methods used by the geography and geometry datatypes themselves. To demonstrate one method of
importing spatial data, and to provide some sample data for use in the remaining examples in this
chapter, we’ll import a dataset from the Geonames web site (www.geonames.org) containing the
geographic coordinates of locations around the world.

To begin, download and unzip the main dataset from the Geonames web site, available from
http://download.geonames.org/export/dump/allCountries.zip. This archive contains a tab-delimited
text file containing nearly 7 million rows, and when unzipped, occupies nearly 800MB. If you would like
to use a smaller dataset, you can alternatively download the
http://download.geonames.org/export/dump/cities1000.zip archive, which uses the same schema but
contains a subset of approximately 80,000 records, representing only those cities with a population
exceeding 1,000 inhabitants.

 Caution The Geonames allCountries.zip export is a large file (approximately 170MB), and may take some
time to download.

To store the Geonames information in SQL Server, first create a new table as follows:

298

 CHAPTER 10 WORKING WITH SPATIAL DATA

CREATE TABLE allCountries(
 [geonameid] int NOT NULL,
 [name] nvarchar(200) NULL,
 [asciiname] nvarchar(200) NULL,
 [alternatenames] nvarchar(4000) NULL,
 [latitude] real NULL,
 [longitude] real NULL,
 [feature class] nvarchar(1) NULL,
 [feature code] nvarchar(10) NULL,
 [country code] nvarchar(2) NULL,
 [cc2] nvarchar(60) NULL,
 [admin1 code] nvarchar(20) NULL,
 [admin2 code] nvarchar(80) NULL,
 [admin3 code] nvarchar(20) NULL,
 [admin4 code] nvarchar(20) NULL,
 [population] int NULL,
 [elevation] smallint NULL,
 [gtopo30] smallint NULL,
 [timezone] nvarchar(80) NULL,
 [modification date] datetime NULL
);
GO

I’ve kept all the column names and datatypes exactly as they are defined in the Geonames schema,
but you may want to adjust them. I personally dislike column names that include spaces, such as
“modification date,” but I also think that when importing data from an external source, it is very
important to clearly reference how the columns are mapped, and the easiest way of doing this is to keep
the column names the same as in the source.

There are a variety of methods of importing the Geonames text file into the allCountries table—for
this example, however, we’ll keep things as simple as possible by using the Import and Export Wizard.
Start the wizard from Management Studio by right-clicking in the Object Explorer pane on the name of
the database in which you created the allCountries table, and select Tasks → Import Data. When
prompted to choose a data source, select the Flat File Source option, click the Browse button, and
navigate to and select the allCountries.txt file that you downloaded earlier. From the ‘Code page’
drop-down, scroll down and highlight 65001 (UTF-8), and then click the Columns tab in the left pane.

On the Columns page, change the Column delimiter to Tab {t}, and then select Refresh to preview
the data in the file, which should appear as shown in Figure 10-7. Then click Advanced from the left
pane.

On the Advanced pane, click each column name in turn, and configure the column properties to
match the values shown in Table 10-1.

299

CHAPTER 10 WORKING WITH SPATIAL DATA

Figure 10-7. Previewing data downloaded from the Geonames web site

300

 CHAPTER 10 WORKING WITH SPATIAL DATA

Table 10-1. Column Properties for Geonames Data

Column Name DataType OutputColumnWidth

0 geonameid Four-byte signed integer
[DT_I4]

1 name Unicode string [DT_WSTR] 200

2 asciiname Unicode string [DT_WSTR] 200

3 alternatenames Unicode string [DT_WSTR] 4000

4 latitude Float [DT_R4]

5 longitude Float [DT_R4]

6 feature class Unicode string [DT_WSTR] 1

7 feature code Unicode string [DT_WSTR] 10

8 country code Unicode string [DT_WSTR] 2

9 cc2 Unicode string [DT_WSTR] 60

10 admin1 code Unicode string [DT_WSTR] 20

11 admin2 code Unicode string [DT_WSTR] 80

12 admin3 code Unicode string [DT_WSTR] 20

13 admin4 code Unicode string [DT_WSTR] 20

14 population Four-byte signed integer
[DT_I4]

15 elevation Two-byte signed integer
[DT_I2]

16 gtopo30 Two-byte signed integer
[DT_I2]

17 timezone Unicode string [DT_WSTR] 80

18 modification date Date [DT_DATE]

301

CHAPTER 10 WORKING WITH SPATIAL DATA

 Note For a full description of the columns available from the Geonames export data listed in Table 10-1, please
consult http://download.geonames.org/export/dump/readme.txt.

Once the columns are set up, click Next to proceed, and check that the destination database is
correctly configured to import the records to the allCountries table. Click Next again to finish the
import wizard.

On my laptop, the import takes about 10 minutes, so take this opportunity to stretch your legs and
get a coffee, if you wish. After the import wizard successfully completes the import operation, every
column from the Geonames dataset will be imported into the allCountries table, but we are not yet
making use of the spatial capabilities of SQL Server 2008. Every record in the table has an associated
latitude and longitude coordinate value, but these are currently held in separate, floating point,
columns. Since the Geonames coordinates are measured using a geographic coordinate system of SRID
4326, the best way of modeling this data is to add a new geography column to the table and populate it
with individual Point instances representing each location. The following code listing illustrates the T-
SQL required to add a geography column called location, and update it using the Point() method based
on the coordinate values held in the latitude and longitude columns for each row:

ALTER TABLE allCountries
ADD location geography;
GO

UPDATE allCountries
SET location = geography::Point(latitude, longitude, 4326);
GO

The approach described here can be used to load spatial data from a variety of tabular formats such
as gazetteers of place names. A similar method could also be adopted in an SSIS package, whereby the
location column could be calculated as a derived column as part of the load, rather than added
afterward as in this case.

 Tip Having populated the location column, the latitude and longitude columns could be dropped from the
allCountries table if so desired—the individual coordinate values associated with each point can be obtained
using the Lat and Long properties of the location column instead.

Querying Spatial Data
Now that we’ve imported a good-sized set of sample data, we can start to write some spatial queries
against it, but there are a few important considerations when writing queries that involve geometry or

302

 CHAPTER 10 WORKING WITH SPATIAL DATA

geography data. Because spatial data types are not comparable, there are certain restrictions placed on
the types of query in which they can be used—for example:

• You can’t ORDER BY a geometry or geography column.

• You can’t SELECT DISTINCT spatial data, nor can you UNION two result sets
containing geography or geometry data. However, you can UNION ALL two datasets.

• You can’t use regular query comparison operators, such as WHERE t1.shape =
t2.shape, but you can test whether two shapes are equal by using a predicate
based on the STEquals() method, such as WHERE t1.shape.STEquals(t2.shape) =
1.

In terms of actually performing operations on spatial data itself, the geography and geometry
datatypes both provide a range of methods for performing common calculations, including
intersections, measuring distances, and addition and subtraction of geometries.

It is important to notice that the methods available in a given situation are dependent on the
datatype being used. Although in most cases there are methods to provide equivalent functionality for
all operations performed on both the geometry and geography datatypes, there are some methods that
can only be applied to one or the other. The most noticeable example is that, although both geometry
and geography support the ability to test whether two geometries intersect (using the STIntersects()
method), only the geometry datatype provides the methods required to test the specific sort of
intersection—whether one geometry crosses, overlaps, touches, or is contained within another. Some
other methods provide equivalent functionality for the two types under a different name: for example,
Lat and Long, which return the coordinate values of a geography instance, provide equivalent
functionality to STY and STX in the geometry datatype.

In general, the methods available using either type can be classified into one of two categories:

Methods that adhere to the OGC specifications are prefixed by the letters ST (an
abbreviation for spatiotemporal). In general, these methods provide basic
functionality for working with spatial instances, such a STIntersects(), used to
determine whether one instance intersects another; STDistance(), used to
calculate the shortest distance between two instances; and STArea(), used to
calculate the area contained within a polygon instance.

SQL Server also provides a number of extended methods, which provide additional
functionality on top of the OGC standard. These include Reduce(), which simplifies
a geometry; BufferWithTolerance(), which applies a buffer within a given tolerance
limit; and Filter(), which performs an approximate test of intersection based on a
spatial index.

In this section, I won’t discuss every available method—you can look these up on SQL Server Books
Online (or in Beginning Spatial with SQL Server 2008). Instead, I’ll examine a couple of common
scenarios and illustrate how you can combine one or more methods to solve them. Before we begin, let’s
create a clustered primary key and a basic spatial index on the allCountries table to support any queries
executed against it:

ALTER TABLE allCountries
 ADD CONSTRAINT PK_geonameid
 PRIMARY KEY (geonameid);
GO
CREATE SPATIAL INDEX idxallCountries
ON allCountries(location) USING GEOGRAPHY_GRID

303

CHAPTER 10 WORKING WITH SPATIAL DATA

WITH (
 GRIDS =(
 LEVEL_1 = MEDIUM,
 LEVEL_2 = MEDIUM,
 LEVEL_3 = MEDIUM,
 LEVEL_4 = MEDIUM),
 CELLS_PER_OBJECT = 16);

I’ll cover spatial indexes later in this chapter, so don’t worry if you’re not familiar with the syntax
used here—it will become clear soon!

Nearest-Neighbor Queries
Perhaps the most commonly asked question regarding spatial data is, “Where is the closest x to a given
location?” or in the more general case, “How do we identify the nearest n features to a location?” This
type of query is generally referred to as a nearest-neighbor query, and there are a number of ways of
performing such a query in SQL Server 2008.

The simplest method that springs to mind is to order a dataset based on the result of the
STDistance() method, sorting all records in ascending order of distance from the given point, so that the
top n records can be easily identified. This approach is demonstrated in the following query:

DECLARE @Point geography;
SET @Point = geography::STPointFromText('POINT(0 52)', 4326);
SELECT TOP 3
 name,
 location.STAsText() AS WKT,
 location.STDistance(@Point) AS Distance
FROM
 allCountries
ORDER BY
 location.STDistance(@Point) ASC;

 Caution This query is perfectly valid and will lead to the correct results being obtained. However, it will take a
very long time to execute, as will be explained in the following section. Rather than wasting time and server
resources, you might want to just take my word for it and try the next example instead!

The preceding query defines a geography Point instance located at latitude 52 degrees and longitude 0
degrees, using the spatial reference system SRID 4326. It then orders the results of the query from the
allCountries table based on their distance from this point, and returns the top three results as follows:

304

 CHAPTER 10 WORKING WITH SPATIAL DATA

Name WKT Distance

Periwinkle Hill POINT (-0.00112 52.0055) 616.78524720001

Barkway POINT (0.0166667 52) 1144.6358911887

Reed POINT (-0.0166667 52) 1144.6358911887

Although this query correctly identifies and returns the nearest n results, there is a fundamental
problem with this approach; STDistance() is a computationally expensive method, and the preceding
query must evaluate the result of this method on every one of the rows in the result set to order them
and select the closest n records. This results in a table scan of 6.9 million rows, and the spatial index
doesn’t provide any help here because every row must be evaluated before the results can ordered.
Performing a nearest-neighbor search like this on a table containing many rows is very slow and costly,
as you will no doubt have discovered if you tried executing the example yourself!

An alternative method for finding nearest neighbors involves a two-stage approach. The first stage is
to use the index to identify a set of likely nearest-neighbor candidates, based on those records that lie
within a predetermined buffer around the feature in question. The size of the buffer is chosen to be large
enough so that it contains the required number of nearest neighbors, but not so large that it includes lots
of additional rows of data that exceed the desired number of results. The second stage of this method
uses the STDistance() method as before, but only to calculate the distance of those candidate records
lying within the buffer area, rather than processing and sorting the whole table. By being selective in
choosing the candidate records to sort, we can take advantage of the spatial index.

The following listing demonstrates this approach, using STBuffer(25000) to identify candidate
records that lie within a 25km search area:

DECLARE @Point geography;
SET @Point = geography::STPointFromText('POINT(0 52)', 4326);

DECLARE @SearchArea geography;
SET @SearchArea = @Point.STBuffer(25000); --25km search radius

DECLARE @Candidates table (
 Name varchar(200),
 Location geography,
 Distance float
);
INSERT INTO @Candidates
SELECT
 name,
 location,
 location.STDistance(@Point) AS Distance
FROM
 allCountries
 WITH(INDEX(idxallCountries))
WHERE
 location.Filter(@SearchArea) = 1;

SELECT TOP 3 * FROM @Candidates ORDER BY Distance;

305

CHAPTER 10 WORKING WITH SPATIAL DATA

Note Notice that in the preceding example query, I explicitly included an index hint,
WITH(INDEX(idxallCountries)), to ensure that the query optimizer chooses a plan using the idxallCountries
spatial index. The cost-based estimates for spatial queries are not always accurate, which means that SQL Server
2008 does not always pick the optimal plan for a query. SQL Server 2008 SP1 improves the situation, but there are
still occasions when an explicit hint is required to ensure that a spatial index is used.

As in the last example, this approach correctly identifies the three closest cities. The advantage of
the buffer approach is that, by first filtering the set of candidate results to only those that lie within the
vicinity of the feature, the number of times that STDistance() needs to be called is reduced, and the
dataset to be sorted becomes much smaller, making the query significantly faster than the basic nearest-
neighbor approach described previously. The locations lying within the buffer zone can be identified
using a spatial index seek, as illustrated in the execution plan shown in Figure 10-8. On my laptop, the
top three nearest neighbors are now obtained in just 33ms, whereas the time taken to execute the first
query was over an hour!

Figure 10-8. A query to identify nearest-neighbor candidates within a buffer zone can utilize a clustered

spatial index seek.

However, the main problem with this approach is that it relies on an appropriate buffer size in
which to search for candidate results. If you set the buffer too large, then there will be too many possible
candidates returned and the filter will not be efficient. If you set the buffer size too small, then there is a
risk that the search area will not contain any candidates, resulting in the query failing to identify any
nearest neighbors at all.

The buffer search zone approach is most useful in situations where you are able to reliably set an
appropriate buffer size in which to select a set of candidate nearest neighbors. This might be based on a
known, uniform distribution of your data—for example, you know that any item in the dataset will never
lie more than 25km from its nearest neighbor. Alternatively, you might want to obtain nearest neighbors
in combination with an additional distance constraint—for example, “Show me the three closest gas
stations to this location, but only if they are within 10 miles.”

Rather than identifying candidates that lie within a fixed search zone (which faces the risk of failing
to find any nearest neighbors at all), a better approach is to create a query that identifies candidates
within an expanding search range. The search for candidate results can be initially limited to a close
vicinity to the chosen location, but gradually increased until at least the required number of nearest

306

 CHAPTER 10 WORKING WITH SPATIAL DATA

neighbors is found. These candidate results can then be sorted in the second stage to find the true n
nearest neighbors.

A query that identifies nearest neighbors based on expanding search ranges requires the use of a
numbers table. If you don’t already have a numbers table, you can create one and populate it with the
integers between 0 and 1,000 using the following code:

CREATE TABLE Numbers (
 Number int PRIMARY KEY CLUSTERED
);

DECLARE @i int = 0;
WHILE @i <= 1000
 BEGIN
 INSERT INTO Numbers VALUES (@i);
 SET @i = @i + 1;
 END;
GO

The Numbers table will be joined to the allCountries table to create a series of expanding search
ranges. The distance to which each successive search extends increases exponentially until a search area
of sufficient size is found that contains the requisite number of nearest neighbors. All of the features in
this search area are returned as candidates, and then the TOP 3 syntax is used to select the three true
nearest neighbors. This approach is demonstrated in the following code listing:

DECLARE @Point geography;
SET @Point = geography::STPointFromText('POINT(0 52)', 4326);

DECLARE @Candidates table (
 Name varchar(200),
 Location geography,
 Distance float,
 Range int
);

INSERT INTO @Candidates
SELECT TOP 3 WITH TIES
 Name,
 Location,
 Location.STDistance(@Point) AS Distance,
 1000*POWER(2, Number) AS Range
FROM
 allCountries
 WITH(INDEX(idxallCountries))
INNER JOIN Numbers
ON allCountries.Location.STDistance(@Point) < 1000*POWER(2,Numbers.Number)
ORDER BY Number;

SELECT TOP 3 * FROM @Candidates ORDER BY Range DESC, Distance ASC;

307

CHAPTER 10 WORKING WITH SPATIAL DATA

This code might not seem that intuitive, so let’s step through it. Remember that the Numbers table
contains consecutive integers, starting at zero. So the condition
allCountries.Location.STDistance(@Point) < 1000*POWER(2,Numbers.Number) specifies that the initial
criterion for a feature to be considered a nearest-neighbor candidate is that the distance between that
feature and @Point is less than 1000 * 2^0. Since the EPSG:4326 spatial reference system defines
distances in meters, this equates to a 1km search area—if you want to specify an alternative starting
search radius, you may do so by changing the value of 1000 to another value (remember to use the unit
of measure appropriate to the datatype and SRID of the data in question).

If the requisite number of neighbors (in this case, we are searching for the top three) is not found
within the specified distance, then the search range is increased in size. Successive search ranges are
obtained by raising 2 to the power of the next number in the Numbers table. Thus, the first range extends
to 1km around the point, the second range extends to 2km—then 4km, 8km, 16km, and so on. By
adopting an exponential growth model, this method is guaranteed to find the nearest neighbor within a
relatively short number of iterations, however dispersed the distribution of the underlying features is.

Once the search range has been sufficiently increased to contain at least the required number of
candidate nearest neighbors, all of the features lying within that range are selected as candidates, by
using a SELECT statement with the WITH TIES argument. Finally, the candidates are sorted by ascending
distance from the point, and the TOP 3 records are selected as the true nearest neighbors. The Range
column returned in the results states the distance to which the search range was extended to find the
nearest neighbor.

On my laptop, this approach identifies the three nearest neighbors in 45ms. While it is slightly more
complex, this last approach provides the most flexible solution for implementing a nearest-neighbor
query. It is significantly faster than the basic approach, and although not quite as fast as the fixed search
area technique, it does not suffer from the limitations associated with having to specify a fixed search
radius. To enhance the performance of this query further, we’ll need to look at the matter of spatial
indexes, which is covered later in this chapter.

Finding Locations Within a Given Bounding Box
Over the past few years, there has been a huge growth in the adoption of web-mapping services,
including Google Maps, Yahoo Maps, and Microsoft Bing Maps. Whereas once considered gimmicks and
eye candy with little real value, these tools are now being used in increasingly important applications,
including for disaster response planning, logistics, epidemiology, and other health-reporting scenarios.

Typically, these web-mapping applications are used as dynamic front-end interfaces to spatial data
held in a database. Users pan and zoom the map to display a particular area of interest, and any data
contained within the visible map view is retrieved from the database to be plotted on the map. In this
section, we’ll look at a scenario that uses Microsoft Bing Maps as an interface to spatial data held in SQL
Server 2008, although the same approach could be applied to most map interfaces.

The first requirement is to identify the area visible within a given map view—in other words, the
bounding box of the map. Typically, the bounding box of a map view can be described using only two
pairs of coordinate values, representing the points at opposite corners of the map. Unfortunately, these
is no standardized view of which two corners to use: the GetMapView() method in Bing Maps returns the
coordinates of the points at the top-left and bottom-right corners of the map, whereas the equivalent
getBounds() method used by Google Maps returns the points at the southwest and northeast corners.
Although these differences are easily handled, it’s something to be aware of as you develop your code.

Having identified the coordinate of two opposing points, we next need to construct a Polygon
representing the bounding box enclosed by those points. To illustrate this, consider the map view shown
in Figure 10-9, which is centered on the state of Colorado. The coordinate values of the top-left and
bottom-right corners of the map are (41,–109) and (37,–102), respectively.

308

 CHAPTER 10 WORKING WITH SPATIAL DATA

Figure 10-9. Typical viewport of a web-mapping application

The coordinates of the bounding box returned from Bing Maps/Google Maps are expressed using
latitude/longitude values measured using the SRID 4326. Therefore, it seems to makes sense to use the
geography datatype to represent the bounding box. A first shot at doing so might look something like
this:

DECLARE @TopLeft geography = geography::Point(41, -109, 4326);
DECLARE @BotRight geography = geography::Point(37, -102, 4326);

DECLARE @BoundingBox geography;
SET @BoundingBox = geography::STPolyFromText('POLYGON(('
+ CAST(@TopLeft.Long AS varchar(32)) + ' '+ CAST(@TopLeft.Lat AS varchar(32)) + ','
+ CAST(@TopLeft.Long AS varchar(32)) + ' '+ CAST(@BotRight.Lat AS varchar(32)) + ','
+ CAST(@BotRight.Long AS varchar(32)) + ' '+ CAST(@BotRight.Lat AS varchar(32)) +','

309

CHAPTER 10 WORKING WITH SPATIAL DATA

+ CAST(@BotRight.Long AS varchar(32)) +' ' + CAST(@TopLeft.Lat AS varchar(32)) + ','
+ CAST(@TopLeft.Long AS varchar(32)) + ' ' + CAST(@TopLeft.Lat AS varchar(32))
+ '))',
4326);

SELECT @BoundingBox.STAsText();

The result looks good:

POLYGON ((-109 41, -109 37, -102 37, -102 41, -109 41))

So now, to identify all those points from the database that should be shown on the current map
view, we can go ahead and use the STIntersects() method to select all those points from the
allCountries table that intersect this geography Polygon, right? Unfortunately, there is a subtle problem
here that needs to be resolved.

Although the coordinate values of the corner points of the map bounding box are expressed in
geographic coordinates of latitude and longitude, the default two-dimensional map view presented in
the browser is flat. This means, by implication, that the data displayed on the screen has been projected.
Given a little thought, this fact should be obvious—unless you have a very clever monitor capable of
displaying images in three-dimensional space, all geospatial data on a computer display must have been
projected. In which case, how come the coordinates of the corners of the bounding box were stated
using geographic coordinates of latitude and longitude? Here’s the twist: Google Maps and Microsoft
Bing Maps actually use two coordinate systems—when supplying or retrieving data through the API,
they use geographic coordinates of latitude and longitude based on WGS84, but when displaying data,
they use a projected system referenced as SRID 3785.

Unlike most projected reference systems, SRID 3785 uses a Mercator projection based on a perfectly
spherical model of the earth. This system has many beneficial properties that enable efficient tile
referencing algorithms that I won’t cover here, but the important thing to note is that it means that maps
displayed using this projection portray lines of constant latitude (parallels) as parallel horizontal lines,
and lines of constant longitude (meridians) as parallel vertical lines. In this example, this means that
every point lying along the bottom edge of the map, which connects the points at (37,–109) and (37,–
102), all have a latitude of 37. However, this is not true of the points lying on the bottom edge of the
geography Polygon @BoundingBox created earlier. Remember that the geography datatype operates on an
ellipsoidal model, so the edge between the points (37,–109) and (37,–102) represents the shortest
distance between those two points on the surface of the reference ellipsoid in question (SRID 4326, in
this case). The line connecting any two points in the geography datatype therefore represents the great
elliptic arc between those two points, and does not follow the straight line portrayed on a projection.

What does this all mean for the application in this example? Consider a point located at latitude
37.0281 and longitude –107.419. These are the coordinates stored in the allCountries tables for the
community of Arboles (geonameid 5412070), located at the northwest edge of Navajo Lake. Since the
latitude of 37.0281 lies between 37 and 41, and the longitude value of –107.419 lies between –102 and –
109, this point is contained in the map view used in this example, and we would expect it to be included
in the result set retrieved from the database. However, this is not the result implied by the
STIntersects() method of the geography datatype:

DECLARE @BoundingBox geography;
SET @BoundingBox = geography::STPolyFromText(
 'POLYGON ((-109 41, -109 37, -102 37, -102 41, -109 41))',
 4326);

310

 CHAPTER 10 WORKING WITH SPATIAL DATA

SELECT
 name,
 location.STAsText(),
 location.STIntersects(@BoundingBox)
FROM
 allCountries
WHERE
 geonameid = 5412070;

The result 0 indicates that, despite being contained within the map window, the location of Arboles
is not contained within the geography Polygon defined by the coordinates at the corners of the map. The
reason might become more obvious if we take a visual look at what’s happening here. Execute the
following code listing and then switch to the Spatial Results tab in Management Studio:

DECLARE @BoundingBox geography;
SET @BoundingBox = geography::STPolyFromText(
 'POLYGON ((-109 41, -109 37, -102 37, -102 41, -109 41))',
 4326);

SELECT location
FROM allCountries
WHERE geonameid = 5412070
UNION ALL SELECT @BoundingBox;

The result is illustrated in Figure 10-10.

Figure 10-10. The Spatial Results tab displaying the bounding box of Colorado and the location of Arboles

311

CHAPTER 10 WORKING WITH SPATIAL DATA

Notice how the top and bottom edges of the geography Polygon follow the great elliptic arc that
bends north away from the line of constant latitude between the two points. The result is that the point
representing Arboles falls outside the Polygon, and is not included in the results of the geography
STIntersects() method.

While the geography datatype gives the correct behavior in terms of the area drawn on an ellipsoidal
surface, it does not give us the result we want in this case, which was to define a rectangle with “straight”
lines representing the bounding box of the map. One solution to this problem is to create additional
anchor points along the bottom and top edges of the Polygon, which will lead to a closer approximation
of the projected map view, but will make our Polygon more complex and potentially slower to use in
spatial queries.

An alternative solution could be to not use the spatial datatypes at all, but rather to create a simple
numerical bounded query based on the limits defined by the map window. In other words, execute a
query directly on the latitude and longitude columns as follows:

SELECT *
FROM allCountries
WHERE
 latitude > 37 AND latitude < 41
 AND
 longitude > -109 AND longitude < -102;

Not only will this avoid the problem of mixing flat/round data, but it will also perform significantly
faster than the previous solution using the geography datatype if we were to add an index to the
longitude and latitude columns. Of course, the problem with this solution is that it is only going to be of
use in the very specific scenario used in this case—namely, when searching for points that lie within a
rectangular search area. If we wanted to extend the application so that users could draw an irregular
search area on the map, or if we wanted to search for LineStrings or Polygons that intersected the area,
this approach would not work since we could no longer perform a query based on simple search criteria.

A better solution in this case is to store geometries using geographic coordinates of latitude and
longitude, as before, but using the geometry datatype rather than the geography datatype. The latitude
coordinate is mapped directly to the y coordinate, and the longitude coordinate is mapped to the x
coordinate. Using this approach, the “straight” line between two points at equal latitude will follow the
constant line of latitude between them, rather than the great elliptic arc as defined by the geography
datatype. To implement this approach, execute the following code listing:

ALTER TABLE allCountries
ADD locationgeom geometry;
GO

UPDATE allCountries
SET locationgeom = geometry::STGeomFromWKB(location.STAsBinary(), location.STSrid);
GO

Selecting those geometry records that intersect the Polygon POLYGON ((-109 41, -109 37, -102 37,
-102 41, -109 41)) now gives the results expected. This is one example of a situation in which it is
sometimes beneficial to break the general rule of always only using the geography datatype for
geographic coordinates and the geometry datatype for projected coordinates. Other situations in which
this can occur are when you need to rely on a function that is only available within the geometry
datatype, such as STConvexHull() or STRelate(). If the distances involved are not great, the effect of
distortion caused by the curvature of the earth can be ignored, and the greater functionality afforded by
the geometry datatype offsets its associated loss of accuracy.

312

 CHAPTER 10 WORKING WITH SPATIAL DATA

However, you should exercise great caution when using the geometry datatype to store geographic
data in this way, because you may receive surprising results from certain operations. Consider the fact
that the STArea() and STLength() methods of the geometry datatype return results in the unit of
measurement in which coordinate values were defined. If using the geometry datatype to store
coordinate values expressed in geographic coordinates of latitude and longitude, this means that lengths
will be measured in degrees, and areas in degrees squared, which is almost certainly not what you want.

Spatial Indexing
Developers and DBAs alike know that a good index can make a significant amount of difference to the
performance of a database application. Nowhere is this truer than in the realm of spatial indexes, where
it is not uncommon to witness performance improvements exceeding 1,000 percent by creating a spatial
index on even a small table of data. Of course, you can also get performance deterioration at the same
rate by using a poorly chosen or nonexistent index, so it pays well to have an understanding of how
spatial indexes work.

Spatial indexes operate very differently compared to the clustered and nonclustered indexes used
for more conventional datatypes. In fact, columns of geometry and geography data can only be added to a
spatial index, and spatial indexes can only be used for those two types of data. To understand why, in
this section I’ll first provide an overview of spatial indexing, and then look at some of the ways of
optimizing a spatial index to provide optimal performance for your spatial applications.

How Does a Spatial Index Work?
When you execute a query involving a spatial predicate, such as STIntersects(), the SQL Server
database engine applies that predicate in two stages:

• The primary filter identifies a set of candidate results that may fulfill the required
criteria. The result set obtained from the primary filter is a superset—while it is
guaranteed to contain all of the true results, it may also contain false positives.

• The secondary filter analyzes each of the records selected by the primary filter to
determine whether they truly meet the criteria of the query. The secondary filter is
more accurate, but slower than the primary filter.

The role of a spatial index is to provide an approximation of the location and shape of geometries so that
they can be identified quickly in a primary filter. To do this, spatial indexes in SQL Server utilize a
multilevel grid model, with four levels of grid nested inside each other, as illustrated in Figure 10-11.

The grid is overlaid on the area of space covered by the index, and every geometry lying in that area
is then tessellated according to the grid. Rather than describing the detailed shape of the associated
geometry, each entry in a spatial index comprises a reference to a grid cell, together with the primary key
of the geometry that intersects that cell. Note that not every cell intersected by the geometry is included
in the index—optimizations such as the deepest-cell rule and the covering rule are applied to ensure
every entry in the spatial index describes the associated geometry in the greatest amount of detail while
requiring the least amount of grid cells. For more information on these topics, please refer to a book
dedicated to the subject, or refer to Books Online.

To see how the database engine uses the grid to satisfy a spatial query, consider the example from
the previous section to retrieve all those points contained within the bounding box of a map:

313

CHAPTER 10 WORKING WITH SPATIAL DATA

Figure 10-11. The multilevel grid used by spatial indexes

314

 CHAPTER 10 WORKING WITH SPATIAL DATA

DECLARE @BoundingBox geography;
SET @BoundingBox = geography::STPolyFromText(
 'POLYGON ((-109 41, -109 37, -102 37, -102 41, -109 41))',
 4326);

SELECT
 name,
 location.STAsText()
FROM
 allCountries
WHERE
 location.STIntersects(@BoundingBox) = 1;

The location column is included in the idxallCountries geography index, and the predicate
location.STIntersects(@BoundingBox) = 1 supports the use of a spatial index, so the execution plan for
this query can take advantage of a primary filter based on the index. To do so, the @BoundingBox
parameter is first tessellated according to the same grid as the idxallCountries index on the location
column. The grid cells occupied by each cell in the index can then be compared to the grid cells
occupied by the @BoundingBox. The outcome of the primary filter can lead to one of three results:

• If a geometry in the location column has no index cells in common with the cells
occupied by @BoundingBox, it can be discarded by the primary filter, since the
geometries themselves cannot intersect.

• If the geometry occupies the whole of a grid cell in the index occupied by
@BoundingBox, it is certain to intersect the @BoundingBox geometry itself. This row
can therefore definitely be included in the result set without need to call the
secondary filter. This is known as internal filtering.

• If the geometry only partially occupies a grid cell occupied by @BoundingBox, it
cannot be determined for certain whether that cell intersects the @BoundingBox. In
these cases, the geometries must be passed to the secondary filter, which involves
calling the STIntersects() method itself.

To get the best performance from a spatial query, the ideal goal is to get as much of the processing
done by the primary filter, and reduce the number of times that the secondary filter needs to be called.
This means ensuring that as many rows as possible are either discarded completely by the primary filter
or definitely included based on the primary filter alone. Achieving this goal requires tuning the grid
properties to best match the data in the underlying dataset and the type of queries run against that data.

Optimizing the Grid
If a spatial index is to be effective in acting as a primary filter for the results of a spatial query, not only
must it be fast, but it must also minimize the number of false positive results returned. How well an
index succeeds in meeting these two aims is largely determined by the values chosen for the grid
resolution, the bounding box, and the cells per object parameters of the index.

The optimum value for each of these parameters depends very much on the exact distribution of the
underlying dataset in question. However, in the following section I’ll give you some general ideas to bear
in mind when determining the settings for a spatial index.

315

CHAPTER 10 WORKING WITH SPATIAL DATA

 Tip You can have up to 249 spatial indexes on the same table, and you may create multiple spatial indexes on
the same column, using different settings for each index. You may find this useful in order to index unevenly
distributed data.

Grid resolution: Choosing the correct grid resolution—the number of cells
contained at each level of the grid—is a matter of balancing the degree of precision
offered by the index (the “tightness of fit” around features) with the number of grid
cells required to obtain that precision. The resolution at each level of the grid may
be set independently to one of three resolutions: LOW corresponds to a 4×4 grid,
MEDIUM corresponds to an 8×8 grid, and HIGH corresponds to a 16×16 grid. If you set
a low grid resolution (i.e., the index contains a small number of relatively large grid
cells), then the primary filter may return more false positives—features that
intersect the grid cell that don’t actually intersect the geometry in question. These
false positives will lead to more work having to be done by the secondary filter,
leading to query degradation. However, if you set a high grid resolution (i.e., the
index contains a large number of grid cells, but each one is individually small), then
the resulting index will contain more grid cell entries for each geometry, which may
mean that it will take longer to query the index, also degrading query performance.
Another effect of a high resolution may be that the number of cells required to fully
tessellate the geometry exceeds the CELLS_PER_OBJECT limit, in which case
tessellation will not be fully complete.

Bounding box: The bounding box of a spatial index specifies the area of space that
will be tessellated by the grid. Specifying a smaller bounding box but maintaining
the same number of grid cells will lead to each individual grid cell being smaller,
creating a more precise fit around any features and making the primary filter more
accurate. However, if you restrict the extent of the bounding box too much, you
may find that you exclude some outlying features from the index altogether. For
the geography datatype, there is no explicit bounding box, as every geography index
is assumed to cover the whole globe.

Cells per object: The CELLS_PER_OBJECT parameter allows you to explicitly state the
maximum number of grid cells that will be stored to describe each feature in the
spatial index. The optimum number of cells per object is intricately linked to the
resolution of the cells used at each level; a higher-resolution grid will contain
smaller cells, which may mean that more cells are required to fully cover the object
at a given level of the grid. If the CELLS_PER_OBJECT limit is set too low, then each
index entry might not be allowed to contain the total number of cells required to
describe a geometry, based on the deepest-cell rule and the covering rule. In such
cases, the grid cells will not be fully subdivided and the index entry will not be as
accurate as it can be. If the CELLS_PER_OBJECT limit is set too high, then each index
entry will be allowed to grow to contain a large number of cells. This may lead to a
more accurate index, but a slower query, thereby negating the purpose of using a
spatial index in the first place.

To understand the interaction between these different parameters, let’s consider the
idxallCountries index created earlier this chapter. This index used the default parameters of MEDIUM grid

316

 CHAPTER 10 WORKING WITH SPATIAL DATA

resolution at all four levels, and 16 cells per object. Indexes that are tessellated using the geography grid
do not have an explicit bounding box, as they implicitly cover the whole globe.

To assess the effectiveness of the idxallCountries index, we could simply obtain some performance
timings using queries with different index settings. However, rather than rely on this trial-and-error
approach, SQL Server 2008 comes with two very helpful stored procedures—
sp_help_spatial_geometry_index and sp_help_spatial_geography_index—which provide a variety of
useful information to help diagnose how a spatial index is working.

To use either of these procedures, you supply parameters for the table and index name to be tested,
together with a query sample—a geography or geometry instance that will be tessellated according to the
settings used by the index. Since the idxallCountries index uses the location column of the geography
datatype, we will use the corresponding sp_help_geography_index procedure, supplying the geography
bounding box created earlier as a query sample, as shown in the following code listing:

 EXEC sp_help_spatial_geography_index
 @tabname = allCountries,
 @indexname = idxallCountries,
 @verboseoutput = 1,
 @query_sample = 'POLYGON ((-109 41, -109 37, -102 37, -102 41, -109 41))';

There are lots of rows of detail in the output, but let’s just focus on some of the important ones from
a performance point of view:

Base_Table_Rows 6906119

This value very simply tells us the total number of rows in the base table, just as would be reported
by SELECT COUNT(*) FROM allCountries. The important thing to bear in mind is that, without a spatial
index on this table, a query to find out which rows lie within the chosen query sample would have to call
the STIntersects() method on every one of these 6.9 million rows. Fortunately, this is not the case,
because the spatial index can provide a primary filter of these records, as shown in the following rows
returned by the procedure:

Number_Of_Rows_Selected_By_Primary_Filter 49018

Number_Of_Rows_Selected_By_Internal_Filter 38913

Number_Of_Times_Secondary_Filter_Is_Called 10105

Based on the primary filter of the table, 49,018 records were selected as candidates for this query
sample. This is less than 0.71 percent of the total number of rows in the table. Of these candidate rows,
38,913 rows could be selected as certain results straight away without need to call the secondary filter.
For example, in the case of an intersection predicate, if a point lies in a grid cell that is completely
covered by the query sample, the point is certain to be intersected by that geometry, and so the
STIntersects() method need never be used. The inclusion of output rows that can be selected based on
the primary filter alone is known as an internal filter. In this case, 79.385 percent of the primary filter
rows could be selected by the internal filter.

317

CHAPTER 10 WORKING WITH SPATIAL DATA

The remaining 10,105 records selected by the primary filter lay in index cells that were only partially
intersected by the geometry specified in the query sample, and so had to rely on the secondary filter to
confirm whether they should be selected or not.

After applying both the primary and secondary filters, the confirmed Number_Of_Rows_Output was
44,840. Note that the final number-of-rows output is less than the number of rows initially selected by
the primary filter, as some of those rows would have been false positives that were then eliminated by
the secondary filter.

Number_Of_Rows_Output 44840

Internal_Filter_Efficiency 86.7818911685995

Primary_Filter_Efficiency 91.4766004324942

The important thing to bear in mind is that, whatever index settings you have (including none), you
will always get the same final results from a given spatial query. The only difference is in how those rows
are identified. In this case, the Primary_Filter_Efficiency measure indicates that 91.476 percent of rows
selected by the primary filter were included in the final results. The Internal_Filter_Efficiency was
86.78 percent, indicating the percentage of output rows selected just from the internal filter. The
objective when tuning a spatial index is to maximize both of these measures.

Now let’s consider what happens when we create a new index, using HIGH resolution at all four grid
levels:

CREATE SPATIAL INDEX idxallCountriesHigh
ON allCountries(location) USING GEOGRAPHY_GRID
WITH (
 GRIDS =(
 LEVEL_1 = HIGH,
 LEVEL_2 = HIGH,
 LEVEL_3 = HIGH,
 LEVEL_4 = HIGH),
 CELLS_PER_OBJECT = 16);

Once again, we’ll examine the properties of this index using the sp_help_spatial_geography_index
procedure:

 EXEC sp_help_spatial_geography_index
 @tabname = allCountries,
 @indexname = idxallCountriesHigh,
 @verboseoutput = 1,
 @query_sample = 'POLYGON ((-109 41, -109 37, -102 37, -102 41, -109 41))';

Unsurprisingly, the Base_Table_Rows value remains unchanged at 6,906,119, as does the total
number-of-rows output from the query, 44,840. The number of rows selected by the primary filter
remains very similar at 49,157, and the primary filter efficiency barely changes—from 91.4766 to
91.21793. However, there is a very important distinction between the indexes, as shown in the following
rows:

318

 CHAPTER 10 WORKING WITH SPATIAL DATA

319

Number_Of_Rows_Selected_By_Internal_Filter 25333

Number_Of_Times_Secondary_Filter_Is_Called 23824

Percentage_Of_Primary_Filter_Rows_Selected_By_Internal_Filter 51.5348780438188

Internal_Filter_Efficiency 56.4964317573595

When using a MEDIUM grid resolution, 79.385 percent of the candidate rows selected by the primary
filter could be automatically included in the result set. The secondary filter therefore only needed to be
called on the remaining 10,105 rows. However, when set to HIGH resolution, only 51.53 percent of the
primary filter could be preselected by the internal filter. Thus, the expensive secondary filter had to be
called twice as many times.

At first consideration, this may seem illogical. One would assume that when indexing a table of
Points, in which each geometry can only intersect a single cell (or at most four cells, if the Point were
placed on a corner where cells meet), the HIGH grid resolution must provide the best fit. Each Point
geometry would only require a single cell in the index, and by using the HIGH resolution, that cell would
be as granular as possible.

However, the important thing to realize is that, in order to satisfy a spatial query, the spatial
predicate against which the geometries are being compared (the query sample, as defined by the stored
procedure) must also be tessellated using the same index settings as the base table itself. In this case,
@BoundingBox is quite a large Polygon representing the state of Colorado, which requires a great number
of cells to fully cover. Since this exceeds the CELLS_PER_OBJECT limit, tessellation is stopped and the fit is
not as good as it could have been. In this example, the MEDIUM resolution grid provides a more accurate
index, and hence better performance, than the HIGH resolution grid.

Unfortunately, there are very few general rules to follow with regard to determining optimum
spatial index settings, since they are very much dependent on the exact distribution of the data in
question, together with the nature of the queries run against that data. Tuning spatial indexes requires a
large degree of trial and error, but the stored procedures introduced here can provide valuable statistics
to assess the performance of an index to help the process.

Summary
Spatial data is an exciting and growing area of database development. As more applications and services
become location-aware, there is a requirement for all types of data to be stored with associated spatial
information in a structured, searchable manner.

The geography and geometry datatypes in SQL Server 2008 provide a powerful, standards-compliant
way of storing, retrieving, and performing calculations against spatial data using either a flat or
ellipsoidal model. However, the complexity and uniqueness of spatial data means that specific
approaches must be taken to ensure that spatial queries remain performant. Spatial indexes can be used
to provide a primary filter of data to satisfy a spatial query, reducing the amount of processing required
to perform expensive accurate spatial operations such as STIntersects().

C H A P T E R 11

Working with Temporal Data

It’s probably fair to say that time is a critical piece of information in almost every useful database.
Imagining a database that lacks a time component is tantamount to imagining life without time passing;
it simply doesn’t make sense. Without a time axis, it is impossible to describe the number of purchases
made last month, the average overnight temperature of the warehouse, or the maximum duration that
callers were required to hold the line when calling in for technical support.

Although utterly important to our data, few developers commit to really thinking in depth about the
intricacies required to process temporal data successfully, which in many cases require more thought
than at first you might imagine.

In this chapter, I will delve into the ins and outs of dealing with time in SQL Server. I will explain
some of the different types of temporal requirements you might encounter and describe how best to
tackle some common—and surprisingly complex—temporal queries.

Modeling Time-Based Information
When thinking of “temporal” data in SQL Server, the scenario that normally springs to mind is a
datetime column representing the time that some action took place, or is due to take place in the future.
However, a datetime column is only one of several possible ways that temporal data can be
implemented. Some of the categories of time-based information that may be modeled in SQL Server are
as follows:

• Instance-based data is concerned with recording the instant in time at which an
event occurs. As in the example described previously, instance-based data is
typically recorded using a single column of datetime values, although alternative
datatypes, including the datetime2 and datetimeoffset types introduced in SQL
Server 2008, may also be used to record instance data at different levels of
granularity. Scenarios in which you might model an instance include the moment
a user logs into a system, the moment a customer makes a purchase, and the exact
time any other kind of event takes place that you might need to record in the
database. The key factor to recognize is that you’re describing a specific instant in
time, based on the precision of the data type you use.

• Interval-based data extends on the idea of an instance by describing the period of
time between a specified start point and an endpoint. Depending on your
requirements, intervals may be modeled using two temporal columns (for
example, using the datetime type), or a single temporal column together with
another column (usually numeric) that represents the amount of time that passed
since that time. A subset of interval-based data is the idea of duration, which

321

CHAPTER 11 WORKING WITH TEMPORAL DATA

records only the length of time for which an event lasts, irrespective of when it
occurred. Durations may be modeled using a single numeric column.

• Period-based data is similar to interval-based data, but it is generally used to
answer slightly different sorts of questions. When working with an interval or
duration, the question is “How long?” whereas for a period, the question is
“When?” Examples of periods include “next month,” “yesterday,” “New Year’s
Eve,” and “the holiday season.” Although these are similar to—and can be
represented by—intervals, the mindset of working with periods is slightly
different, and it is therefore important to realize that other options exist for
modeling them. For more information on periods, see the section “Defining
Periods Using Calendar Tables” later in this chapter.

• Bitemporal data is temporal data that falls into any of the preceding categories,
but also includes an additional time component (known as a valid time, or more
loosely, an as-of date) indicating when the data was considered to be valid. This
data pattern is commonly used in data warehouses, both for slowly changing
dimensions and for updating semiadditive fact data. When querying the database
bitemporally, the question transforms from “On a certain day, what happened?”
to “As of a certain day, what did we think happened on a certain (other) day?” The
question might also be phrased as “What is the most recent idea we have of what
happened on a certain day?” This mindset can take a bit of thought to really get;
see the section “Managing Bitemporal Data” later in this chapter for more
information.

SQL Server’s Date/Time Data Types
The first requirement for successfully dealing with temporal data in SQL Server is an understanding of
what the DBMS offers in terms of native date/time data types. Prior to SQL Server 2008, there wasn’t
really a whole lot of choice when it came to storing temporal data in SQL Server—the only temporal
datatypes available were datetime and smalldatetime and, in practice, even though it required less
storage, few developers used smalldatetime owing to its reduced granularity and range of values.

SQL Server 2008 still supports both datetime and smalldatetime, but also offers a range of new
temporal data types. The full list of supported temporal datatypes is listed in Table 11-1.

Table 11-1. Date/Time Datatypes Supported by SQL Server 2008

Datatype Range Resolution Storage

datetime January 1, 1753, 00:00:00.000–
December 31, 9999, 23:59:59.997

3.33ms 8 bytes

datetime2 January 1, 0001,
00:00:00.0000000–December 31,
9999, 23:59:59.9999999

100 nanoseconds (ns) 6–8 bytes

smalldatetime January 1, 1900, 00:00–June 6,
2079, 23:59

1 minute 4 bytes

322

 CHAPTER 11 WORKING WITH TEMPORAL DATA

datetimeoffset January 1, 0001,
00:00:00.0000000–December 31,
9999, 23:59:59.9999999

100ns 8–10 bytes

date January 1, 0001–December 31,
9999

1 day 3 bytes

time 00:00:00.0000000–
23:59:59.9999999

100ns 3–5 bytes

Knowing the date ranges and storage requirements of each datatype is great; however, working with

temporal data involves quite a bit more than that. What developers actually need to understand when
working with SQL Server’s date/time types is what input and output formats should be used, and how to
manipulate the types in order to create various commonly needed queries. This section covers both of
these issues.

Input Date Formats
There is really only one rule to remember when working with SQL Server’s date/time types: when
accepting data from a client, always avoid ambiguous date formats! The unfortunate fact is that,
depending on how it is written, a given date can be interpreted differently by different people.

As an example, by a remarkable stroke of luck, I happen to be writing this chapter on August 7, 2009.
It’s nearly 12:35 p.m. Why is this of particular interest? Because if I write the current time and date, it
forms an ascending numerical sequence as follows:

12:34:56 07/08/09

I live in England, so I tend to write and think of dates using the dd/mm/yy format, as in the preceding
example. However, people in the United States would have already enjoyed this rather neat time pattern
last month, on July 8. And if you’re from one of various Asian countries (Japan, for instance), you might
have seen this sequence occur nearly two years ago, on August 9, 2007. Much like the inhabitants of
these locales, SQL Server tries to follow local format specifications when handling input date strings,
meaning that on occasion users do not get the date they expect from a given input.

Luckily, there is a solution to this problem. Just as with many other classes of problems in which
lack of standardization is an issue, the International Standards Organization (ISO) has chosen to step in.
ISO 8601 is an international standard date/time format, which SQL Server (and other software) will
automatically detect and use, independent of the local server settings. The full ISO format is specified as
follows:

yyyy-mm-ddThh:mi:ss.mmm

yyyy is the four-digit year, which is key to the format; any time SQL Server sees a four-digit year first,
it assumes that the ISO format is being used. mm and dd are month and day, respectively, and hh, mi, ss,
and mmm are hours, minutes, seconds, and milliseconds. According to the standard, the hyphens and the T
are both optional, but if you include the hyphens, you must also include the T.

The datetime, datetime2, smalldatetime, and datetimeoffset datatypes store both a date and time
component, whereas the date and time datatypes store only a date or a time, respectively. However, one
important point to note is that whatever datatype is being used, both the time and date elements of any

323

CHAPTER 11 WORKING WITH TEMPORAL DATA

input are optional. If no time portion is provided to a datatype that records a time component, SQL
Server will use midnight as the default; if the date portion is not specified in the input to one of the
datatypes that records a date, SQL Server will use January 1, 1900. In a similar vein, if a time component
is provided as an input to the date datatype, or a date is supplied to the time datatype, that value will
simply be ignored.

Each of the following are valid, unambiguous date/time formats that can be used when supplying
inputs for any of the temporal datatypes:

--Unseparated date and time
20090501 13:45:03

--Date with dashes, and time specified with T (ISO 8601)
2009-05-01T13:45:03

--Date only
20090501

--Time only
13:45:03

 Caution If you choose to use a dash separator between the year, month, and day values in the ISO 8601
format, you must include the T character before the time component. To demonstrate the importance of this
character, compare the results of the following: SET LANGUAGE British; SELECT CAST('2003-12-09
00:00:00' AS datetime), CAST('2003-12-09T00:00:00' AS datetime).

By always using one of the preceding formats—and always making sure that clients send dates
according to that format—you can ensure that the correct dates will always be used by SQL Server.
Remember that SQL Server does not store the original input date string; the date is converted and stored
internally in a binary format. So if invalid dates do end up in the database, there will be no way of
reconstituting them from just the data.

Unfortunately, it’s not always possible to get data in exactly the right format before it hits the
database. SQL Server provides two primary mechanisms that can help when dealing with nonstandard
date/time formats: an extension to the CONVERT function that allows specification of a date “style,” and a
runtime setting called DATEFORMAT.

To use CONVERT to create an instance of date/time data from a nonstandard date, use the third
parameter of the function to specify the date’s format. The following code block shows how to create a
date for the British/French and US styles:

--British/French style
SELECT CONVERT(date, '01/02/2003', 103);

--US style
SELECT CONVERT(date, '01/02/2003', 101);

Style 103 produces the date “February 1, 2003,” whereas style 101 produces the date, “January 2,
2003.” By using these styles, you can more easily control how date/time input is processed, and explicitly

324

 CHAPTER 11 WORKING WITH TEMPORAL DATA

tell SQL Server how to handle input strings. There are over 20 different styles documented; see the topic
“CAST and CONVERT (Transact-SQL)” in SQL Server 2008 Books Online for a complete list.

The other commonly used option for controlling the format of input date strings is the DATEFORMAT
setting. DATEFORMAT allows you to specify the order in which day, month, and year appear in the input
date format, using the specifiers D, M, and Y. The following T-SQL is equivalent to the previous example
that used CONVERT:

--British/French style
SET DATEFORMAT DMY;
SELECT CONVERT(date, '01/02/2003');

--US style
SET DATEFORMAT MDY;
SELECT CONVERT(date, '01/02/2003');

There is really not much of a difference between using DATEFORMAT and CONVERT to correct
nonstandard inputs. DATEFORMAT may be cleaner in some cases as it only needs to be specified once per
connection, but CONVERT offers slightly more control due to the number of styles that are available. In the
end, you should choose whichever option makes the particular code you’re working on more easily
readable, testable, and maintainable.

 Note Using SET DATEFORMAT within a stored procedure will cause a recompile to occur whenever the
procedure is executed. This may cause a performance problem in some cases, so make sure to test carefully
before deploying solutions to production environments.

Output Date Formatting
The CONVERT function is not only useful for specification of input date/time string formats. It is also
commonly used to format dates for output.

Before continuing, I feel that a quick disclaimer is in order: it’s generally not a good idea to do
formatting work in the database. By formatting dates into strings in the data layer, you may reduce the
ease with which stored procedures can be reused. This is because it may force applications that require
differing date/time formats to convert the strings back into native date/time objects, and then reformat
them as strings again. Such additional work on the part of the application is probably unnecessary, and
there are very few occasions in which it really makes sense to send dates back to an application
formatted as strings. One example that springs to mind is when doing data binding to a grid or other
object that doesn’t support the date format you need—but that is a rare situation.

Just like when working with input formatting, the main T-SQL function used for date/time output
formatting is CONVERT. The same set of styles that can be used for input can also be used for output
formats; the only difference is that the function is converting from an instance of a date/time type into a
string, rather than the other way around. The following T-SQL shows how to format the current date as a
string in both US and British/French styles:

325

CHAPTER 11 WORKING WITH TEMPORAL DATA

--British/French style
SELECT CONVERT(varchar(50), GETDATE(), 103);

--US style
SELECT CONVERT(varchar(50), GETDATE(), 101);

The set of styles available for the CONVERT function is somewhat limited, and may not be enough for
all situations. Fortunately, SQL Server’s CLR integration provides a solution to this problem. The .NET
System.DateTime class includes extremely flexible string-formatting capabilities that can be harnessed
using a CLR scalar user-defined function (UDF). The following method exposes the necessary
functionality:

public static SqlString FormatDate(
 SqlDateTime Date,
 SqlString FormatString)
{
 DateTime theDate = Date.Value;
 return new SqlString(theDate.ToString(FormatString.ToString()));
}

This UDF converts the SqlDateTime instance into an instance of System.DateTime, and then uses the
overloaded ToString method to format the date/time as a string. The method accepts a wide array of
formatting directives, all of which are fully documented in the Microsoft MSDN Library. As a quick
example, the following invocation of the method formats the current date/time with the month part
first, followed by a four-digit year, and finally the day:

SELECT dbo.FormatDate(GETDATE(), 'MM yyyy dd');

Keep in mind that the ToString method’s formatting overload is case sensitive. MM, for instance, is
not the same as mm, and you may get unexpected results if you are not careful.

Efficiently Querying Date/Time Columns
Knowing how to format dates for input and output is a good first step, but the real goal of any database
system is to allow the user to query the data to answer business questions. Querying date/time data in
SQL Server has some interesting pitfalls, but for the most part they’re easily avoidable if you understand
how the DBMS treats temporal data.

To start things off, create the following table:

CREATE TABLE VariousDates
(
 ADate datetime NOT NULL,
 PRIMARY KEY (ADate) WITH (IGNORE_DUP_KEY = ON)
);
GO

Now we’ll insert some data into the table. The following T-SQL will insert 85,499 rows into the table,
with dates spanning from February through November of 2010:

326

 CHAPTER 11 WORKING WITH TEMPORAL DATA

WITH Numbers
AS
(
 SELECT DISTINCT number
 FROM master..spt_values
 WHERE number BETWEEN 1001 AND 1256
)
INSERT INTO VariousDates (ADate)
SELECT
 CASE x.n
 WHEN 1 THEN
 DATEADD(millisecond,
 POWER(a.number, 2) * b.number,
 DATEADD(day, a.number-1000, '20100201'))
 WHEN 2 THEN
 DATEADD(millisecond,
 b.number-1001,
 DATEADD(day, a.number-1000, '20100213'))
 END
FROM Numbers a, Numbers b
CROSS JOIN
(
 SELECT 1
 UNION ALL
 SELECT 2
) x (n);
GO

Once the data has been inserted, the next logical step is of course to query it. You might first want to
ask the question “What is the minimum date value in the table?” The following query uses the MIN
aggregate to answer that question:

SELECT MIN(ADate)
FROM VariousDates;
GO

This query returns one row, with the value 2010-02-13 14:36:43.000. But perhaps you’d like to
know what other times from February 13, 2010 are in the table. A first shot at that query might be
something like the following:

SELECT *
FROM VariousDates
WHERE ADate = '20100213';
GO

If you run this query, you might be surprised to find out that instead of seeing all rows for February
13, 2010, zero rows are returned. The reason for this is that the ADate column uses the datetime type,
which, as stated earlier, includes both a date and a time component. When this query is evaluated and
the search argument ADate = '20100213' is processed, SQL Server sees that the datetime ADate column
is being compared to the varchar string '20100213'. Based on SQL Server’s rules for data type
precedence, the string is converted to datetime before being compared; and because the string includes

327

CHAPTER 11 WORKING WITH TEMPORAL DATA

no time portion, the default time of 00:00:00.000 is used. To see this conversion in action, try the
following T-SQL:

SELECT CONVERT(datetime, '20100213');
GO

When this code is run, the default time portion is automatically added, and the output of this SELECT
is the value 2010-02-13 00:00:00.000. Clearly, querying based on the implicit conversion between this
string and the datetime type is ineffective—unless you only want values for midnight.

There are many potential solutions to this problem. We could of course alter the table schema to use
the date datatype for the ADate column rather than datetime. Doing so would facilitate easy queries on a
particular date, but would lose the time element associated with each record. This solution is therefore
only really suitable in situations where you never need to know the time associated with a record, but
just the date on which it occurred.

A better solution is to try to control the conversion from datetime to date in a slightly different way.
Many developers’ first reaction is to try to avoid the conversion of the string to an instance of datetime
altogether, by converting the ADate column itself and using a conversion style that eliminates the time
portion. The following query is an example of one such way of doing this:

SELECT *
FROM VariousDates
WHERE CONVERT(varchar(20), ADate, 112) = '20100213';

Running this query, you will find that the correct data is returned; you’ll see all rows from February
13, 2010. While getting back correct results is a wonderful thing, there is unfortunately a major problem
that might not be too obvious with the small sample data used in this example. The table’s index on the
ADate column is based on ADate as it is natively typed—in other words, as datetime. The table does not
have an index for ADate converted to varchar(20) using style 112 (or any other style, for that matter). As a
result, this query is unable to seek an index, and SQL Server is forced to scan every row of the table,
convert each ADate value to a string, and then compare it to the date string. This produces the execution
plan shown in Figure 11-1, which has an estimated cost of 0.229923.

Figure 11-1. Converting the date/time column to a string does not result in a good execution plan.

Similar problems arise with any method that attempts to use string manipulation functions to
truncate the time portion from the end of the datetime string.

Generally speaking, performing a calculation or conversion of a column in a query precludes any
index on that column from being used. However, there is an exception to this rule: in the special case of
a query predicate of datetime, datetime2, or datetimeoffset type that is converted (or CAST) to a date, the
query optimizer can still rely on index ordering to satisfy the query.

To demonstrate this unusual but surprisingly useful behavior, we can rewrite the previous query as
follows:

SELECT *

328

 CHAPTER 11 WORKING WITH TEMPORAL DATA

FROM VariousDates
WHERE CAST(ADate AS date) = '20100213';

This query performs much better, producing the execution plan shown in Figure 11-2, which has a

clustered index seek with an estimated cost of 0.0032831 (1/68 the estimated cost of the previous
version!)

Figure 11-2. Querying date/time columns CAST to date type allows the query engine to take advantage of

an index seek.

CASTing a datetime to date is all very well for querying distinct dates within a datetime range, but
what if we wanted to query a range of time that did not represent a whole number of days? Suppose, for
instance, that we were to divide each day into two 12-hour shifts: one from midnight to midday, and the
other from midday to midnight. A query based on this data might look like this:

SELECT *
FROM VariousDates
WHERE ADate BETWEEN '20100213 12:00:00' AND '20100214 00:00:00';

This query, like the last, is able to use an efficient clustered index seek, but it has a problem. The
BETWEEN operator is inclusive on either end, meaning that X BETWEEN Y AND Z expands to X >= Y AND X
<= Z. If there happens to be a row for February 14, 2010 at midnight (and the data in the sample table
does indeed include such a row), that row will be included in the results of both this query and the query
to return data for the following shift. Luckily, solving this problem is easy; when performing range
queries of time data, don’t use BETWEEN. Instead, always use the fully expanded version, inclusive of the
start of the interval, and exclusive of the end value:

SELECT *
FROM VariousDates
WHERE
 ADate >= '20100213 12:00:00'
 AND ADate < '20100214 00:00:00';

This pattern can be used to query any kind of date and time range and is actually quite flexible. In
the next section, you will learn how to extend this pattern to find all of “today’s” rows, “this month’s”
rows, and other similar requirements.

Date/Time Calculations
The query pattern presented in the previous section to return all rows for a given date works and returns
the correct results, but is rather overly static as-is. Expecting all date range queries to have hard-coded
values for the input dates is neither a realistic expectation nor a very maintainable solution. By using

329

CHAPTER 11 WORKING WITH TEMPORAL DATA

SQL Server’s date calculation functions, input dates can be manipulated in order to dynamically come
up with whatever ranges are necessary for a given query.

The two primary functions that are commonly used to perform date/time calculations are DATEDIFF
and DATEADD. The first returns the difference between two dates; the second adds (or subtracts) time from
an existing date. Each of these functions takes granularity as a parameter and can operate at any level
between milliseconds and years.

DATEDIFF takes three parameters: the time granularity that should be used to compare the two input
dates, the start date, and the end date. For example, to find out how many hours elapsed between
midnight on February 13, 2010, and midnight on February 14, 2010, the following query could be used:

SELECT DATEDIFF(hour, '20100113', '20100114');

The result, as you might expect, is 24. Note that I mentioned that this query compares the two dates,
both at midnight, even though neither of the input strings contains a time. Again, I want to stress that
any time you use a string as an input where a date/time type is expected, it will be implicitly converted
by SQL Server.

It’s also important to note that DATEDIFF maintains the idea of “start” and “end” times, and the result
will change if you reverse the two. Changing the previous query so that February 14 is passed before
February 13 results in the output of -24.

The DATEADD function takes three parameters: the time granularity, the amount of time to add, and
the input date. For example, the following query adds 24 hours to midnight on February 13, 2010,
resulting in an output of 2010-01-14 00:00:00.000:

SELECT DATEADD(hour, 24, '20100113');

DATEADD will also accept negative amounts, which will lead to the relevant amount of time being
subtracted rather than added, as in this case.

Truncating the Time Portion of a datetime Value
In versions of SQL Server prior to SQL Server 2008, the limited choice of only datetime and
smalldatetime temporal datatypes meant that it was not possible to store a date value without an
associated time component. As a result, developers came up with a number of methods to “truncate”
datetime values so that, without changing the underlying datatype, they could be interrogated as dates
without consideration of the time component. These methods generally involve rounding the time
portion of a datetime value down to 00:00:00 (midnight), so that the only remaining significant figures of
the result represent the day, month, and year of the associated value.

Although, with the introduction of the date datatype, it is no longer necessary to perform such
truncation, the “rounding” approach taken is still very useful as a basis for other temporal queries. To
demonstrate, let me first break down the truncation process into its component parts:

1. First, you must decide on the level of granularity to which you’d like to round
the result. For instance, if you want to remove the seconds and milliseconds of
a time value, you’d round down using minutes. Likewise, to remove the entire
time portion, you’d round down using days.

2. Once you’ve decided on a level of granularity, pick a reference date/time. I
generally use midnight on 1900-01-01, but you can use any date/time within
the range of the data type you’re working with.

330

 CHAPTER 11 WORKING WITH TEMPORAL DATA

3. Using the DATEDIFF function, find the difference between the reference
date/time and the date/time you want to truncate, at the level of granularity
you’ve chosen.

4. Finally, use DATEADD to add the output from the DATEDIFF function to the same
reference date/time that you used to find the difference. The result will be the
truncated value of the original date/time.

Walking through an example should make this a bit clearer. Assume that you want to start with
2010-04-23 13:45:43.233 and truncate the time portion (in other words, come out with 2010-04-23 at
midnight). The granularity used will be days, since that is the lowest level of granularity above the units
of time (milliseconds, seconds, minutes, and hours). The following T-SQL can be used to determine the
number of days between the reference date of 1900-01-01 and the input date:

DECLARE @InputDate datetime = '20100423 13:45:43.233';
SELECT DATEDIFF(day, '19000101', @InputDate);

Running this T-SQL, we discover that 40289 days passed between the reference date and the input
date. Using DATEADD, that number can be added to the reference date:

SELECT DATEADD(day, 40289, '19000101');

The result of this operation is the desired truncation: 2010-04-23 00:00:00.000. Because only the
number of days was added back to the reference date—with no time portion—the date was rounded
down and the time portion eliminated. Of course, you don’t have to run this T-SQL step by step; in a real
application, you’d probably combine everything into one inline statement:

SELECT DATEADD(day, DATEDIFF(day, '19000101', @InputDate), '19000101');

Because it is a very common requirement to round down date/time values to different levels of
granularity—to find the first day of the week, the first day of the month, and so on—you might find it
helpful to encapsulate this logic in a reusable function with common named units of time, as follows:

CREATE FUNCTION DateRound (
 @Unit varchar(32),
 @InputDate datetime
) RETURNS datetime
AS
BEGIN
 DECLARE @RefDate datetime = '19000101';
 SET @Unit = UPPER(@Unit);
RETURN
 CASE(@Unit)
 WHEN 'DAY' THEN
 DATEADD(day, DATEDIFF(day, @RefDate, @InputDate), @RefDate)
 WHEN 'MONTH' THEN
 DATEADD(month, DATEDIFF(month, @RefDate, @InputDate), @RefDate)
 WHEN 'YEAR' THEN
 DATEADD(year, DATEDIFF(year, @RefDate, @InputDate), @RefDate)
 WHEN 'WEEK' THEN
 DATEADD(week, DATEDIFF(week, @RefDate, @InputDate), @RefDate)
 WHEN 'QUARTER' THEN
 DATEADD(quarter, DATEDIFF(quarter, @RefDate, @InputDate), @RefDate)

331

CHAPTER 11 WORKING WITH TEMPORAL DATA

 END
END;
GO

The following code illustrates how the DateRound() function can be used with a date/time value
representing 08:48 a.m. on August 20, 2009:

SELECT
dbo.DateRound('Day', '20090820 08:48'),
dbo.DateRound('Month', '20090820 08:48'),
dbo.DateRound('Year', '20090820 08:48'),
dbo.DateRound('Week', '20090820 08:48'),
dbo.DateRound('Quarter', '20090820 08:48');

This code returns the following results:

2009-08-20 00:00:00.000

2009-08-01 00:00:00.000

2009-01-01 00:00:00.000

2009-08-17 00:00:00.000

2009-07-01 00:00:00.000

 Note Developers who have experience with Oracle databases may be familiar with the Oracle PL/SQL TRUNC()
method, which provides similar functionality to the DateRound function described here.

Finding Relative Dates
Once you understand the basic pattern for truncation described in the previous section, you can modify
it to come up with any combination of dates. Suppose, for example, that you want to find the last day of
the month. One method is to find the first day of the month, add an additional month, and then subtract
one day:

SELECT DATEADD(day, -1, DATEADD(month, DATEDIFF(month, '19000101',
@InputDate) + 1, '19000101'));

An alternative method to find the last day of the month is to add a whole number of months to a
reference date that is in itself the last day of a month. For instance, you can use a reference date of 1900-
12-31:

SELECT DATEADD(month, DATEDIFF(month, '19001231', @InputDate), '19001231');

332

 CHAPTER 11 WORKING WITH TEMPORAL DATA

Note that when using this approach, it is important to choose a month that has 31 days; what this T-
SQL does is to find the same day of the month as the reference date, on the month in which the input
date lies. But, if the month has less than 31 days, SQL Server will automatically round down to the closest
date, which will represent the actual last date of the month in question. Had I used February 28 instead
of December 31 for the reference date, the output any time this query was run would be the 28th of the
month.

Other more interesting combinations are also possible. For example, a common requirement in
many applications is to perform calculations based on time periods such as “every day between last
Friday and today.” By modifying the truncation pattern a bit, finding “last Friday” is fairly simple—the
main trick is to choose an appropriate reference date. In this case, to find the nearest Friday to a
supplied input date, the reference date should be any Friday. We know that the number of days between
any Friday and any other Friday is divisible by 7, and we can use that knowledge to truncate the current
date to the nearest Friday.

The following T-SQL finds the number of days between the reference Friday, January 7, 2000, and
the input date, February 9, 2009:

DECLARE @Friday date = '20000107';
SELECT DATEDIFF(day, @Friday, '20090209');

The result is 3321, which of course is an integer. Taking advantage of SQL Server’s integer math
properties, dividing the result by 7, and then multiplying it by 7 again will round it down to the nearest
number divisible by seven, 3318:

SELECT (3321 / 7) * 7;

Adding 3318 days to the original reference date of January 7, 2000 results in the desired output, the
“last Friday” before February 9, 2009, which was on February 6, 2009:

SELECT DATEADD(day, 3318, '20000107')

As with the previous example, this can be simplified (and clarified) by combining everything inline:

DECLARE @InputDate date = '20090209';
DECLARE @Friday date = '20000107';
SELECT DATEADD(day, ((DATEDIFF(day, @Friday, @InputDate) / 7) * 7), @Friday);

A further simplification to the last statement is also possible. Currently, the result of the inner
DATEDIFF is divided by 7 to calculate a round number of weeks, and then multiplied by 7 again to
produce the equivalent number of days to add using the DATEADD method. However, it is unnecessary to
perform the multiplication to days when you can specify the amount of time to add in weeks, as follows:

SELECT DATEADD(week, (DATEDIFF(day, @Friday, @InputDate) / 7), @Friday);

Note that, in situations where the input date is a Friday, these examples will return the input date
itself. If you really want to return the “last” Friday every time, and never the input date itself—even if it is
a Friday—a small modification is required. To accomplish this, you must use two reference dates: one
representing any known Friday, and one that is any other day that lies within one week following that
reference Friday (I recommend the next day, for simplicity). By calculating the number of days elapsed
between this second reference date and the input date, the rounded number of weeks will be one week
lower if the input date is a Friday, meaning that the result will always be the previous Friday. The
following T-SQL does this for a given input date:

333

CHAPTER 11 WORKING WITH TEMPORAL DATA

DECLARE @InputDate date = '20100423';
DECLARE @Friday date = '20000107';
DECLARE @Saturday date = DATEADD(day, 1, @Friday);
SELECT DATEADD(week, (DATEDIFF(day, @Saturday, @InputDate) / 7), @Friday);

By using this pattern and switching the reference date, you can easily find the last of any day of the
week given an input date. To find the “next” one of a given day (e.g., “next Friday”), simply add one week
to the result of the inner calculation before adding it to the reference date:

DECLARE @InputDate datetime = GETDATE();
DECLARE @Friday datetime = '2000-01-07';
SELECT DATEADD(week, (DATEDIFF(day, @Friday, @InputDate) / 7) +1, @Friday);

As a final example of what you can do with date/time calculations, a slightly more complex
requirement is necessary. Say that you’re visiting the Boston area and want to attend a meeting of the
New England SQL Server Users Group. The group meets on the second Thursday of each month. Given
an input date, how do you find the date of the next meeting?

To answer this question requires a little bit of thinking about the problem. The earliest date on
which the second Thursday can fall occurs when the first day of the month is a Thursday. In such cases,
the second Thursday occurs on the eighth day of the month. The latest date on which the second
Thursday can fall occurs when the first of the month is a Friday, in which case the second Thursday will
be the 14th. So, for any given month, the “last Thursday” (in other words, the most recent Thursday) as
of and including the 14th will be the second Thursday of the month. The following T-SQL uses this
approach:

DECLARE @InputDate date = '20100101';
DECLARE @Thursday date = '20000914';
DECLARE @FourteenthOfMonth date =
 DATEADD(month, DATEDIFF(month, @Thursday, @InputDate), @Thursday);

SELECT DATEADD(week, (DATEDIFF(day, @Thursday, @FourteenthOfMonth) / 7),
@Thursday);

Of course, this doesn’t find the next meeting; it finds the meeting for the month of the input date. To
find the next meeting, a CASE expression will be necessary, in addition to an observation about second
Thursdays: if the second Thursday of a month falls on the eighth, ninth, or tenth, the next month’s
second Thursday is five weeks away. Otherwise, the next month’s second Thursday is four weeks away.
To find the day of the month represented by a given date/time instance, use T-SQL’s DATEPART function,
which takes the same date granularity inputs as DATEADD and DATEDIFF. The following T-SQL combines all
of these techniques to find the next date for a New England SQL Server Users Group meeting, given an
input date:

DECLARE @InputDate date = GETDATE();

DECLARE @Thursday date = '20000914';

DECLARE @FourteenthOfMonth date =
 DATEADD(month, DATEDIFF(month, @Thursday, @InputDate), @Thursday);

DECLARE @SecondThursday date =
 DATEADD(week, (DATEDIFF(day, @Thursday, @FourteenthOfMonth) / 7), @Thursday);

334

 CHAPTER 11 WORKING WITH TEMPORAL DATA

SELECT
 CASE
 WHEN @InputDate <= @SecondThursday
 THEN @SecondThursday
 ELSE
 DATEADD(
 week,
 CASE
 WHEN DATEPART(day, @SecondThursday) <= 10 THEN 5
 ELSE 4
 END,
 @SecondThursday)
 END;

Finding complex dates like the second Thursday of a month is not a very common requirement
unless you’re writing a scheduling application. More common are requirements along the lines of “find
all of today’s rows.” Combining the range techniques discussed in the previous section with the
date/time calculations shown here, it becomes easy to design stored procedures that both efficiently and
dynamically query for required time periods.

How Many Candles on the Birthday Cake?
As a final example of date/time calculations in T-SQL, consider a seemingly simple task: finding out how
many years old you are as of today. The obvious answer is of course the following:

SELECT DATEDIFF(year, @YourBirthday, GETDATE());

Unfortunately, this answer—depending on the current day—is wrong. Consider someone born on
March 25, 1965. On March 25, 2010, that person’s 45th birthday should be celebrated. Yet according to
SQL Server, that person was already 45 on March 24, 2010:

SELECT DATEDIFF(year, '19650325', '20100324');

In fact, according to SQL Server, this person was 45 throughout the whole of 2010, starting on
January 1. Happy New Year and happy birthday combined, thanks to the magic of SQL Server? Probably
not; the discrepancy is due to the way SQL Server calculates date differences. Only the date/time
component being differenced is considered, and any components below are truncated. This feature
makes the previous date/time truncation examples work, but makes age calculations fail because when
differencing years, days and months are not taken into account.

To get around this problem, a CASE expression must be added that subtracts one year if the day and
month of the current date is less than the day and month of the input date—in other words, if the person
has yet to celebrate their birthday in the current year. The following T-SQL both accomplishes the
primary goal, and as an added bonus, also takes leap years into consideration:

SELECT
 DATEDIFF (
 YEAR,
 @YourBirthday,
 GETDATE()) -
 CASE
 WHEN 100 * MONTH(GETDATE()) + DAY(GETDATE())

335

CHAPTER 11 WORKING WITH TEMPORAL DATA

 < 100 * MONTH(@YourBirthday) + DAY(@YourBirthday) THEN 1
 ELSE 0
 END;

Note that this T-SQL uses the MONTH and DAY functions, which are shorthand for DATEPART(month,
<date>) and DATEPART(day, <date>), respectively.

Defining Periods Using Calendar Tables
Given the complexity of doing date/time calculations in order to query data efficiently, it makes sense to
seek alternative techniques in some cases. For the most part, using the date/time calculation and range-
matching techniques discussed in the previous section will yield the best possible performance.
However, in some cases ease of user interaction may be more important than performance. It is quite
likely that more technical business users will request direct access to query key business databases, but
very unlikely that they will be savvy enough with T-SQL to be able to do complex date/time calculations.

In these cases, as well as a few others that will be discussed in this section, it makes sense to
predefine the time periods that will get queried. A lookup table can be created that allows users to derive
any number of named periods from the current date with ease. These tables, not surprisingly, are
referred to as calendar tables, and they can be extremely useful.

The basic calendar table has a date column that acts as the primary key and several columns that
describe time periods. Each date in the range of dates covered by the calendar will have one row inserted
into the table, which can be used to reference all of the associated time periods. A standard example can
be created using the following code listing:

CREATE TABLE Calendar
(
 DateKey date PRIMARY KEY,
 DayOfWeek tinyint,
 DayName nvarchar(10),
 DayOfMonth tinyint,
 DayOfYear smallint,
 WeekOfYear tinyint,
 MonthNumber tinyint,
 MonthName nvarchar(10),
 Quarter tinyint,
 Year smallint
);
 GO

SET NOCOUNT ON;

DECLARE @Date date = '19900101';
WHILE @Date < '20250101'
BEGIN
 INSERT INTO Calendar
 SELECT
 @Date AS DateKey,
 DATEPART(dw, @Date) AS DayOfWeek,
 DATENAME(dw, @Date) AS DayName,
 DATEPART(dd, @Date) AS DayOfMonth,

336

 CHAPTER 11 WORKING WITH TEMPORAL DATA

 DATEPART(dy, @Date) AS DayOfYear,
 DATEPART(ww, @Date) as WeekOfYear,
 DATEPART(mm, @Date) AS MonthNumber,
 DATENAME(mm, @Date) AS MonthName,
 DATEPART(qq, @Date) AS Quarter,
 YEAR(@Date) AS Year;

 SET @Date = DATEADD(d, 1, @Date);
END
GO

This table creates one row for every date between January 1, 1990 and January 1, 2025. I recommend
going as far back as the data you’ll be working with goes, and at least ten years into the future. Although
this sounds like it will potentially produce a lot of rows, keep in mind that every ten years worth of data
will only require around 3,652 rows. Considering that it’s quite common to see database tables
containing hundreds of millions of rows, such a small number should be easily manageable.

The columns defined in the Calendar table represent the periods of time that users will want to find
and work with. Since creating additional columns will not add too much space to the table, it’s probably
not a bad idea to err on the side of too many rather than too few. You might, for example, want to add
columns to record fiscal years, week start and end dates, or holidays. However, keep in mind that
additional columns may make the table more confusing for less-technical users.

Once the calendar table has been created, it can be used for many of the same calculations covered
in the last section, as well as for many other uses. To start off simply, let’s try finding information about
“today’s row”:

SELECT *
FROM Calendar AS Today
WHERE Today.DateKey = CAST(GETDATE() AS date);

Once you’ve identified “today,” it’s simple to find other days. For example, “Last Friday” is the most
recent Friday with a DateKey value less than today:

SELECT TOP(1) *
FROM Calendar LastFriday
WHERE
 LastFriday.DateKey < GETDATE()
 AND LastFriday.DayOfWeek = 6
ORDER BY DateKey DESC;

Note that I selected the default setting of Sunday as first day of the week when I created my calendar
table, so DayOfWeek will be 6 for any Friday. If you select a different first day of the week, you’ll have to
change the DayOfWeek value specified. You could of course filter using the DayName column instead so that
users will not have to know which number to use; they can query based on the name. The DayName
column was populated using the DATENAME function, which returns a localized character string
representing the day name (i.e., “Friday,” in English). Keep in mind that running this code on servers
with different locale settings may produce different results.

Since the calendar table contains columns that define various periods, such as the current year and
the week of the year, it becomes easy to answer questions such as “What happened this week?” To find
the first and last days of “this week,” the following query can be used:

SELECT
 MIN(ThisWeek.DateKey) AS FirstDayOfWeek,

337

CHAPTER 11 WORKING WITH TEMPORAL DATA

 MAX(ThisWeek.DateKey) AS LastDayOfWeek
FROM Calendar AS Today
JOIN Calendar AS ThisWeek ON
 ThisWeek.Year = Today.Year
 AND ThisWeek.WeekOfYear = Today.WeekOfYear
WHERE
 Today.DateKey = CAST(GETDATE() AS date);

A similar question might deal with adjacent weeks. For instance, you may wish to identify “Friday of
last week.” The following query is a first attempt at doing so:

SELECT FridayLastWeek.*
FROM Calendar AS Today
JOIN Calendar AS FridayLastWeek ON
 Today.Year = FridayLastWeek.Year
 AND Today.WeekOfYear - 1 = FridayLastWeek.WeekOfYear
WHERE
 Today.DateKey = CAST(GETDATE() AS date)
 AND FridayLastWeek.DayName = 'Friday';

Unfortunately, this code has an edge problem that will cause it to be somewhat nonfunctional
around the first of the year in certain cases. The issue is that the WeekOfYear value resets to 1 on the first
day of a new year, regardless of what day it falls on. The query also joins on the Year column, making the
situation doubly complex.

Working around the issue using a CASE expression may be possible, but it will be difficult, and the
goal of the calendar table is to simplify things. A good alternative solution is to add a WeekNumber column
that numbers every week consecutively for the entire duration represented by the calendar. The first
step in doing this is to alter the table and add the column, as shown by the following T-SQL:

ALTER TABLE Calendar
ADD WeekNumber int NULL;

Next, a temporary table of all of the week numbers can be created, using the following T-SQL:

WITH StartOfWeek (DateKey) AS
(
 SELECT MIN(DateKey)
 FROM Calendar
 UNION
 SELECT DateKey
 FROM Calendar
 WHERE DayOfWeek = 1
),
EndOfWeek (DateKey) AS
(
 SELECT DateKey
 FROM Calendar
 WHERE DayOfWeek = 7
 UNION
 SELECT MAX(DateKey)
 FROM Calendar
)

338

 CHAPTER 11 WORKING WITH TEMPORAL DATA

SELECT
 StartOfWeek.DateKey AS StartDate,
 (
 SELECT TOP(1)
 EndOfWeek.DateKey
 FROM EndOfWeek
 WHERE EndOfWeek.DateKey >= StartOfWeek.DateKey
 ORDER BY EndOfWeek.DateKey
) AS EndDate,
 ROW_NUMBER() OVER (ORDER BY StartOfWeek.DateKey) AS WeekNumber
INTO #WeekNumbers
FROM StartOfWeek;

The logic of this T-SQL should be explained a bit. The StartOfWeek CTE selects each day from the
calendar table where the day of the week is 1, in addition to the earliest date in the table, in case that day
is not the first day of a week. The EndOfWeek CTE uses similar logic to find the last day of every week, in
addition to the last day represented in the table. The SELECT list includes the DateKey represented for
each row of the StartOfWeek CTE, the lowest DateKey value from the EndOfWeek CTE that’s greater than
the StartOfWeek value (which is the end of the week), and a week number generated using the
ROW_NUMBER function. The results of the query are inserted into a temporary table called #WeekNumbers.
Once this T-SQL has been run, the calendar table’s new column can be populated (and set to be
nonnullable), using the following code:

UPDATE Calendar
SET WeekNumber =
 (
 SELECT WN.WeekNumber
 FROM #WeekNumbers AS WN
 WHERE
 Calendar.DateKey BETWEEN WN.StartDate AND WN.EndDate
);

ALTER TABLE Calendar
ALTER COLUMN WeekNumber int NOT NULL;

Now, using the new WeekNumber column, finding “Friday of last week” becomes almost trivially
simple:

SELECT FridayLastWeek.*
FROM Calendar AS Today
JOIN Calendar AS FridayLastWeek ON
 Today.WeekNumber = FridayLastWeek.WeekNumber + 1
WHERE
 Today.DateKey = CAST(GETDATE() AS date)
 AND FridayLastWeek.DayName = 'Friday';

Of course, one key problem still remains: finding the date of the next New England SQL Server Users
Group meeting, which takes place on the second Thursday of each month. There are a couple of ways
that a calendar table can be used to address this dilemma. The first method, of course, is to query the
calendar table directly. The following T-SQL is one way of doing so:

WITH NextTwoMonths AS

339

CHAPTER 11 WORKING WITH TEMPORAL DATA

(
 SELECT
 Year,
 MonthNumber
 FROM Calendar
 WHERE
 DateKey IN (
 CAST(GETDATE() AS date),
 DATEADD(month, 1, CAST(GETDATE() AS date)))
),
NumberedThursdays AS
(
 SELECT
 Thursdays.*,
 ROW_NUMBER() OVER (PARTITION BY Thursdays.MonthNumber ORDER BY DateKey)
 AS ThursdayNumber
 FROM Calendar Thursdays
 JOIN NextTwoMonths ON
 NextTwoMonths.Year = Thursdays.Year
 AND NextTwoMonths.MonthNumber = Thursdays.MonthNumber
 WHERE
 Thursdays.DayName = 'Thursday'
)
SELECT TOP(1)
 NumberedThursdays.*
FROM NumberedThursdays
WHERE
 NumberedThursdays.DateKey >= CAST(GETDATE() AS date)
 AND NumberedThursdays.ThursdayNumber = 2
ORDER BY NumberedThursdays.DateKey;

If you find this T-SQL to be just a bit on the confusing side, don’t be concerned! Here’s how it works:
first, the code finds the month and year for the current month and the next month, using the
NextTwoMonths CTE. Then, in the NumberedThursdays CTE, every Thursday for those two months is
identified and numbered sequentially. Finally, the lowest Thursday with a number of 2 (meaning that it’s
a second Thursday) that falls on a day on or after “today” is returned.

Luckily, such complex T-SQL can often be made obsolete using calendar tables. The calendar table
demonstrated here already represents a variety of generic named days and time periods. There is, of
course, no reason that you can’t add your own columns to create named periods specific to your
business requirements. Asking for the next second Thursday would have been much easier had there
simply been a prepopulated column representing user group meeting days.

A much more common requirement is figuring out which days are business days. This information
is essential for determining work schedules, metrics relating to service-level agreements, and other
common business needs. Although you could simply count out the weekend days, this would fail to take
into account national holidays, state and local holidays that your business might observe, and company
retreat days or other days off that might be specific to your firm.

To address all of these issues in one shot, simply add a column to the table called
HolidayDescription:

ALTER TABLE Calendar
ADD HolidayDescription varchar(50) NULL;

340

 CHAPTER 11 WORKING WITH TEMPORAL DATA

This column can be populated for any holiday, be it national, local, firm-specific, or a weekend day.
If you do not need to record a full description associated with each holiday, then you could instead
populate the column with a set of simple flag values representing different types of holidays. This makes
it easy to answer questions such as “How many business days do we have this month?” The following T-
SQL answers that one:

SELECT COUNT(*)
FROM Calendar AS ThisMonth
WHERE
 HolidayDescription IS NULL
 AND EXISTS
 (
 SELECT *
 FROM Calendar AS Today
 WHERE
 Today.DateKey = CAST(GETDATE() as date)
 AND Today.Year = ThisMonth.Year
 AND Today.MonthNumber = ThisMonth.MonthNumber
);

This query counts the number of days in the current month that are not flagged as holidays. If you
only want to count the working weekdays, you can add an additional condition to the WHERE clause to
exclude rows where the DayName is Saturday or Sunday.

If your business is seasonally affected, try adding a column that helps you identify various seasonal
time periods, such as “early spring,” “midsummer,” or “the holiday season” to help with analytical
queries based on these time periods. Or you might find that several additional columns are necessary to
reflect all of the time periods that are important to your queries.

Using calendar tables can make time period–oriented queries easier to perform, but remember that
they require ongoing maintenance. Make sure to document processes for keeping defined time periods
up to date, as well as for adding additional days to the calendar to make sure that your data doesn’t
overrun the scope of the available days. You may want to add an additional year of days on the first of
each year in order to maintain a constant ten-year buffer.

Dealing with Time Zones
One of the consequences of moving into a global economy is the complexity that doing business with
people in different areas brings to the table. Language barriers aside, one of the most important issues
arises from the problems of time variance. Essentially, any system that needs to work with people
simultaneously residing in different areas must be able to properly handle the idea that those people do
not all have their watches set the same way.

In 1884, 24 standard time zones were defined at a meeting of delegates in Washington, DC, for the
International Meridian Conference. Each of these time zones represents a 1-hour offset, which is
determined in relation to the Prime Meridian, the time zone of Greenwich, England. This central time
zone is referred to either as GMT (Greenwich Mean Time) or UTC (Universel Temps Coordonné, French
for “Coordinated Universal Time”). The standard time zones are illustrated in Figure 11-3.

341

CHAPTER 11 WORKING WITH TEMPORAL DATA

Figure 11-3. Standard time zones of the world

The key benefit of defining these standard zones is that, if two people know the offset of the zone in
which the other is located, and they are synchronized to the same UTC-specific clock, it is possible to
determine each other’s time wherever they are on earth.

As I write these words, it’s just after 8:15 a.m. in England, but since we’re currently observing British
Summer Time (BST), this time represents UTC + 1 hour. Many other countries in the Northern
hemisphere that observe daylight savings time are also currently 1 hour ahead of their normal time zone.
The Eastern United States, for example, is normally UTC – 5, but right now is actually UTC – 4, making it
3:15 a.m.

 Note Different countries switch into and back from daylight savings time at different times: for example, the
time difference between the United Kingdom and mainland Chile can be three, four, or five hours, depending on
the time of year.

Elsewhere around the world, I can instantly deduce that it is 2:15 p.m. local time in Bangkok,
Thailand, which uses an offset of UTC + 7. Unfortunately, not all of the countries in the world use the
standard zones. For instance, it is 12:45 p.m. in Mumbai, India right now; India uses a nonstandard
offset of UTC + 5.5. Time zones, as it turns out, are really just as much about political boundaries as they
are about keeping the right time globally.

There are three central issues to worry about when writing time zone–specific software:

When a user sees data presented by the application, any dates should be rendered
in the user’s local time zone (if known), unless otherwise noted, in which case data
should generally be rendered in UTC to avoid confusion.

342

 CHAPTER 11 WORKING WITH TEMPORAL DATA

When a user submits new data or updates existing data, thereby altering date/time
data in the database, the database should convert the data from the user’s time
zone to a standard time zone (again, this will generally be UTC). All date/time data
in the database should be standardized to a specific zone so that, based on known
offsets, it can be easily converted to users’ local times. It can also be important to
store both the original zone and the local time in the zone in which a given event
occurred, for greater control and auditability. There are various ways of modeling
such data, as I’ll discuss shortly. Given that start and end dates for daylight savings
times occasionally change, it can be difficult to derive the original local times from
a time stored only in UTC or only with an offset. If you will need to report or query
based on local times in which events occurred, consider persisting them as-is in
addition to storing the times standardized to UTC.

When a user asks a temporally based question, it’s important to decide whether the
dates used to ask the question will be used as-is (possibly in the user’s local time
zone) or converted to the standard time zone first. Consider a user in New York
asking the question, “What happened between 2:00 p.m. and 5:00 p.m. today?” If
date/time data in the database is all based in the UTC zone, it’s unclear whether
the user is referring to 2:00 p.m. to 5:00 p.m. EST or UTC—very different questions!
The actual requirements here will vary based on business requirements, but it is a
good idea to put a note on any screen in which this may be an issue to remind the
user of what’s going on.

Dealing with these issues is not actually too difficult, but it does require a good amount of discipline
and attention to detail, not to mention some data about time zone offsets and daylight savings changes
in various zones. It’s a good idea to handle as much of the work as possible in the application layer, but
some (or sometimes all) of the responsibility will naturally spill into the data layer. So how should we
deal with handling multiple time zones within the database? In the following sections I’ll discuss two
possible models for dealing with this problem.

Storing UTC Time
The basic technique for storing temporal data for global applications is to maintain time zone settings
for each user of the system so that when they log in, you can find out what zone you should treat their
data as native to. Any time you need to show the user dates and times, convert them to the user’s local
zone; and any time the user enters dates or times into the application for either searching or as data
points, convert them into UTC before they hit the database.

This approach requires some changes to the database code. For example, whenever the GETDATE
function is used to insert data, you should instead use the GETUTCDATE function, which returns the
current date/time in Greenwich. However, this rule only applies unconditionally for inserts; if you’re
converting a database from local time to UTC, a blind find/replace-style conversion from GETDATE to
GETUTCDATE may not yield the expected results. For instance, consider the following stored procedure,
which selects “today’s” orders from the AdventureWorks Sales.SalesOrderHeader table:

CREATE PROCEDURE GetTodaysOrders
AS
BEGIN
 SET NOCOUNT ON

 SELECT
 OrderDate,

343

CHAPTER 11 WORKING WITH TEMPORAL DATA

 SalesOrderNumber,
 AccountNumber,
 TotalDue
 FROM Sales.SalesOrderHeader
 WHERE
 CAST(OrderDate as date) = CAST(GETDATE() AS date)
END;

Assuming that the Sales.SalesOrderHeader table contains date/time values defined in UTC, it might
seem like changing the GETDATE calls in this code to GETUTCDATE is a natural follow-up move. However,
what if your application is hosted in New York, in which case the majority of your users are used to
seeing and dealing with times synchronized to Eastern Standard Time (EST)? In such cases, the
definition of “today’s orders” becomes ambiguous, depending on whether “today” is measured
according to EST or UTC. Although for the most part CAST(GETDATE() AS date) will return the same as
CAST (GETUTCDATE() AS date), there are 4 hours of each day (or sometimes 5, depending on daylight
savings settings) in which the date as measured using UTC will be one day ahead of the date measured
according to EST. If this query were to be called after 7:00 or 8:00 p.m. EST (again, depending on the time
of year), GETUTCDATE will return a date/time that for people in the eastern United States is “tomorrow.”
The time portion will be truncated, and the query won’t return any of “today’s” data at all—at least not if
you’re expecting things to work using EST rules.

To correct these issues, use GETUTCDATE to find the current date/time in Greenwich, and convert it to
the user’s local time. After it is converted to local time, then truncate the time portion. Finally, convert
the date back to UTC, and use the resultant date/time to search the table of UTC values. Depending on
whether or not you’ve handled it in your application code, a further modification might be required to
convert the OrderDate column in the SELECT list, in order to return the data in the user’s local time zone.
Whenever your application needs to handle relative dates, such as “today,” “tomorrow,” or “last week,”
you should always define these sensitive to the time zone of the user submitting the query, handling
conversion into UTC and back again within the query.

Using the datetimeoffset Type
The new datetimeoffset datatype is the most fully featured temporal datatype in SQL Server 2008. Not
only does it match the resolution and range of the datetime2 datatype, but it also allows you to specify an
offset, representing the difference between the stated time value and UTC. Thus, a single value can
contain all the information required to express both a local time and the corresponding UTC time.

At first, this seems like an ideal solution to the problems of working with data across different time
zones. Calculations on datetimeoffset values take account of both the time component and the offset.
Consider the following example:

DECLARE @LondonMidday datetimeoffset = '2009-07-15 12:00 +0:00';
DECLARE @MoscowMidday datetimeoffset = '2009-07-15 12:00 +3:00';
SELECT DATEDIFF(hour, @LondonMidday, @MoscowMidday);

The time zone for Moscow is 3 hours ahead of London, so the result of this code is -3. In other
words, midday in Moscow occurred 3 hours before midday in London.

Using datetimeoffset makes it easy to compare values held centrally representing times stored in
different locales. Consider the following:

CREATE TABLE TimeAndPlace (
 Place varchar(32),

344

 CHAPTER 11 WORKING WITH TEMPORAL DATA

 Time datetimeoffset
);
GO

INSERT INTO TimeAndPlace (Place, Time) VALUES
 ('London', '2009-07-15 08:15:00 +0:00'),
 ('Paris', '2009-07-15 08:30:00 +1:00'),
 ('Zurich', '2009-07-15 09:05:00 +2:00'),
 ('Dubai', '2009-07-15 10:30:00 +3:00');
GO

To find out which event took place first, we can use a simple ORDER BY statement in a SELECT query—
the output will order the results taking account of their offset:

SELECT
 Place,
 Time
FROM TimeAndPlace
WHERE Time BETWEEN '20090715 07:30' AND '20090715 08:30'
ORDER BY Time ASC;

The results are as follows:

Place Time

Paris 2009-07-15 08:30:00.0000000 +01:00

Dubai 2009-07-15 10:30:00.0000000 +03:00

London 2009-07-15 08:15:00.0000000 +00:00

Note that the rows are filtered and ordered according to the UTC time at which they occurred, not
the local time. In UTC terms, the Zurich time corresponds to 7:05 a.m. which lies outside of the range of
the query condition and so is not included in the results. Dubai and Paris both correspond to 7:30 a.m.,
and London to 8:15 a.m.

The datetimeoffset type has a number of benefits, as demonstrated here, but it is important to note
that it is not “time zone aware”—it simply provides calculations based on an offset from a consistently
(UTC) defined time. The application still needs to tell the database the correct offset for the time zone in
which the time is defined. Many operating systems allow users to choose the time zone in which to
operate from a list of places. For example, my operating system reports my current time zone as “(GMT)
Greenwich Mean Time : Dublin, Edinburgh, Lisbon, London.” It is not difficult to present the user with
such a choice of locations, and to persist the corresponding time zone within the database so that
datetimeoffset values may be created with the correct offset. Such information can be extracted from a
lookup table based on the system registry, and newer operating systems recognize and correctly allow
for daylight savings time, adjusting the system clock automatically when required.

For example, in a front-end .NET application, you can use TimeZoneInfo.Local.Id to retrieve the ID
of the user’s local time zone, and then translate this to a TimeZoneInfo object using the
TimeZoneInfo.FindSystemTimeZoneById method. Each TimeZoneInfo has an associated offset from UTC
that can be accessed via the BaseUtcOffset property to get the correct offset for the corresponding
datetimeoffset instance in the database.

345

CHAPTER 11 WORKING WITH TEMPORAL DATA

However, even though this might solve the problem of creating temporal data in different time
zones, problems still occur when performing calculations on that data. For example, suppose that you
wanted to know the time in London, 24 hours after a given time, at 1:30 a.m. on the March 27, 2010:

DECLARE @LondonTime datetimeoffset = '20100327 01:30:00 +0:00';
SELECT DATEADD(hour, 24, @LondonTime);

This code will give the result 2010-03-28 01:30:00.0000000 +00:00, which is technically correct—it
is the time 24 hours later, based on the same offset as the supplied datetimeoffset value. However, at
1:00 a.m. on Sunday, March 28, clocks in Britain are put forward 1 hour to 2:00 a.m. to account for the
change from GMT to BST. The time in London 24 hours after the supplied input will actually be 2010-03-
28 02:30:00.0000000 +01:00. Although this corresponds to the same UTC time as the result obtained,
any application that displayed only the local time to the user would appear incorrect.

What’s more, the offset corresponding to a given time zone does not remain static. For example, in
December 2007, President Hugo Chavez created a new time zone for Venezuela, putting the whole
country back half an hour to make it 4.5 hours behind UTC. Whatever solution you implement to
translate from a time zone to an offset needs to account for such changes.

Time zone issues can become quite complex, but they can be solved by carefully evaluating the
necessary changes to the code and even more carefully testing once changes have been implemented.
The most important thing to remember is that consistency is key when working with time-standardized
data; any hole in the data modification routines that inserts nonstandardized data can cause ambiguity
that may be impossible to fix. Once inserted, there is no way to ask the database whether a time was
supposed to be in UTC or a local time zone.

Working with Intervals
Very few real-world events happen in a single moment. Time is continuous, and any given state change
normally has both a clearly defined start time and end time. For example, you might say, “I drove from
Stockbridge to Boston at 10:00.” But you really didn’t drive only at 10:00, unless you happen to be in
possession of some futuristic time/space-folding technology (and that’s clearly beyond the scope of this
chapter).

When working with databases, we often consider only the start or end time of an event, rather than
the full interval. A column called OrderDate is an almost ubiquitous feature in databases that handle
orders; but this column only stores the date/time that the order ended—when the user submitted the
final request. It does not reflect how long the user spent browsing the site, filling the shopping cart, and
entering credit card information. Likewise, every time we check our e-mail, we see a Sent Date field,
which captures the moment that the sender hit the send button, but does not help identify how long that
person spent thinking about or typing the e-mail, activities that constitute part of the “sending” process.

The reason we don’t often see this extended data is because it’s generally unnecessary. For most
sites, it really doesn’t matter for the purpose of order fulfillment how long the user spent browsing
(although that information may be useful to interface designers, or when considering the overall
customer experience). And it doesn’t really matter, once an e-mail is sent, how much effort went into
sending it. The important thing is, it was sent (and later received, another data point that many e-mail
clients don’t expose).

Despite these examples to the contrary, for many applications, both start and end times are
necessary for a complete analysis. Take for instance your employment history. As you move from job to
job, you carry intervals during which you had a certain title, were paid a certain amount, or had certain
job responsibilities. Failing to include both the start and end dates with this data can create some
interesting challenges.

346

 CHAPTER 11 WORKING WITH TEMPORAL DATA

Modeling and Querying Continuous Intervals
If a table uses only a starting time or an ending time (but not both) to represent intervals, all of the rows
in that table can be considered to belong to one continuous interval that spans the entire time period
represented. Each row in this case would represent a subinterval during which some status change
occurred. Let’s take a look at some simple examples to clarify this. Start with the following table and
rows:

CREATE TABLE JobHistory
(
 Company varchar(100),
 Title varchar(100),
 Pay decimal(9, 2),
 StartDate date
);
GO

INSERT INTO JobHistory
(
 Company,
 Title,
 Pay,
 StartDate
) VALUES
('Acme Corp', 'Programmer', 50000.00, '19970626'),
('Software Shop', 'Programmer/Analyst', 62000.00, '20001005'),
('Better Place', 'Junior DBA', 82000.00, '20030108'),
('Enterprise', 'Database Developer', 95000.00, '20071114');
GO

Notice that each of the dates uses the date type. No one—except the worst micromanager—cares,
looking at a job history record, if someone got in to work at 8:00 a.m. or 8:30 a.m. on the first day. What
matters is that the date in the table is the start date.

The data in the JobHistory table is easy enough to transform into a more logical format; to get the
full subintervals we can assume that the end date of each job is the start date of the next. The end date of
the final job, it can be assumed, is the present date (or, if you prefer, NULL). Converting this into a
start/end report based on these rules requires T-SQL along the following lines:

SELECT
 J1.*,
 COALESCE((
 SELECT MIN(J2.StartDate)
 FROM JobHistory AS J2
 WHERE J2.StartDate > J1.StartDate),
 CAST(GETDATE() AS date)
) AS EndDate
FROM JobHistory AS J1;

which gives the following results (the final date will vary to show the date on which you run the query):

347

CHAPTER 11 WORKING WITH TEMPORAL DATA

Company Title Pay StartDate EndDate

Acme Corp Programmer 50000.00 1997-06-26 2000-10-05

Software Shop Programmer/Analyst 62000.00 2000-10-05 2003-01-08

Better Place Junior DBA 82000.00 2003-01-08 2007-11-14

Enterprise Database Developer 95000.00 2007-11-14 2009-07-12

The outer query gets the job data and the start times, and the subquery finds the first start date after
the current row’s start date. If no such start date exists, the current date is used. Of course, an obvious
major problem here is lack of support for gaps in the job history. This table may, for instance, hide the
fact that the subject was laid off from Software Shop in July 2002. This is why I stressed the continuous
nature of data modeled in this way.

Despite the lack of support for gaps, let’s try a bit more data and see what happens. As the subject’s
career progressed, he received various title and pay changes during the periods of employment with
these different companies, which are represented in the following additional rows:

INSERT INTO JobHistory
(
 Company,
 Title,
 Pay,
 StartDate
) VALUES
('Acme Corp', 'Programmer', 55000.00, '19980901'),
('Acme Corp', 'Programmer 2', 58000.00, '19990901'),
('Acme Corp', 'Programmer 3', 58000.00, '20000901'),
('Software Shop', 'Programmer/Analyst', 62000.00, '20001005'),
('Software Shop', 'Programmer/Analyst', 67000.00, '20020101'),
('Software Shop', 'Programmer', 40000.00, '20020301'),
('Better Place', 'Junior DBA', 84000.00, '20040601'),
('Better Place', 'DBA', 87000.00, '20060601');

The data in the JobHistory table, shown in full in Table 11-1, follows the subject along a path of
relative job growth. A few raises and title adjustments—including one title adjustment with no
associated pay raise—and an unfortunate demotion along with a downsized salary, just before getting
laid off in 2002 (the gap which, as mentioned, is not able to be represented here). Luckily, after studying
hard while laid off, the subject bounced back with a much better salary, and of course a more satisfying
career track!

348

 CHAPTER 11 WORKING WITH TEMPORAL DATA

Table 11-1. The Subject’s Full Job History, with Salary and Title Adjustments

Company Title Pay StartDate

Acme Corp Programmer 50000.00 1997-06-26

Acme Corp Programmer 55000.00 1998-09-01

Acme Corp Programmer 2 58000.00 1999-09-01

Acme Corp Programmer 3 58000.00 2000-09-01

Software Shop Programmer/Analyst 62000.00 2000-10-05

Software Shop Programmer/Analyst 62000.00 2000-10-05

Software Shop Programmer/Analyst 67000.00 2002-01-01

Software Shop Programmer 40000.00 2002-03-01

Better Place Junior DBA 82000.00 2003-01-08

Better Place Junior DBA 84000.00 2004-06-01

Better Place DBA 87000.00 2006-06-01

Enterprise Database Developer 95000.00 2007-11-14

Ignoring the gap, let’s see how one might answer a resume-style question using this data. As a

modification to the previous query, suppose that we wanted to show the start and end date of tenure
with each company, along with the maximum salary earned at the company, and what title was held
when the highest salary was being earned.

The first step commonly taken in tackling this kind of challenge is to use a correlated subquery to
find the rows that have the maximum value per group. In this case, that means the maximum pay per
company:

SELECT
 Pay,
 Title
FROM JobHistory AS J2
WHERE
 J2.Pay =
 (
 SELECT MAX(Pay)
 FROM JobHistory AS J3
 WHERE J3.Company = J2.Company
);

349

CHAPTER 11 WORKING WITH TEMPORAL DATA

One key modification that must be made is to the basic query that finds start and end dates. Due to
the fact that there are now multiple rows per job, the MIN aggregate will have to be employed to find the
real start date, and the end date subquery will have to be modified to look not only at date changes, but
also company changes. The following T-SQL finds the correct start and end dates for each company:

SELECT
 J1.Company,
 MIN(J1.StartDate) AS StartDate,
 COALESCE((
 SELECT MIN(J2.StartDate)
 FROM JobHistory AS J2
 WHERE
 J2.Company <> J1.Company
 AND J2.StartDate > MIN(J1.StartDate)),
 CAST(GETDATE() AS date)
) AS EndDate
FROM JobHistory AS J1
GROUP BY J1.Company
ORDER BY StartDate;

A quick note: This query would not work properly if the person had been hired back by the same
company after a period of absence during which he was working for another firm. To solve that problem,
you might use a query similar to the following, in which a check is done to ensure that the “previous” row
(based on StartDate) does not have the same company name (meaning that the subject switched firms):

SELECT
 J1.Company,
 J1.StartDate AS StartDate,
 COALESCE((
 SELECT MIN(J2.StartDate)
 FROM JobHistory AS J2
 WHERE
 J2.Company <> J1.Company
 AND J2.StartDate > J1.StartDate),
 CAST(GETDATE() AS date)
) AS EndDate
FROM JobHistory AS J1
WHERE
 J1.Company <>
 COALESCE((
 SELECT TOP(1)
 J3.Company
 FROM JobHistory J3
 WHERE J3.StartDate < J1.StartDate
 ORDER BY J3.StartDate DESC),
 '')
GROUP BY
 J1.Company,
 J1.StartDate
ORDER BY
 J1.StartDate;

350

 CHAPTER 11 WORKING WITH TEMPORAL DATA

This example complicates things a bit too much for the sake of this chapter, but I feel that it is
important to point this technique out in case you find it necessary to write these kinds of queries in
production applications. This pattern is useful in many scenarios, especially when logging the status of
an automated system and trying to determine downtime statistics or other metrics.

Getting back to the primary task at hand, showing the employment history along with peak salaries
and job titles, the next step is to merge the query that finds the correct start and end dates with the query
that finds the maximum salary and associated title. The simplest way of accomplishing this is with the
CROSS APPLY operator, which behaves similarly to a correlated subquery but returns a table rather than a
scalar value. The following T-SQL shows how to accomplish this:

SELECT
 x.Company,
 x.StartDate,
 x.EndDate,
 p.Pay,
 p.Title
FROM
(
 SELECT
 J1.Company,
 MIN(J1.StartDate) AS StartDate,
 COALESCE((
 SELECT MIN(J2.StartDate)
 FROM JobHistory AS J2
 WHERE
 J2.Company <> J1.Company
 AND J2.StartDate > MIN(J1.StartDate)),
 CAST(GETDATE() AS date)
) AS EndDate
 FROM JobHistory AS J1
 GROUP BY J1.Company
) x
CROSS APPLY
(
 SELECT
 Pay,
 Title
 FROM JobHistory AS J2
 WHERE
 J2.StartDate >= x.StartDate
 AND J2.StartDate < x.EndDate
 AND J2.Pay =
 (
 SELECT MAX(Pay)
 FROM JobHistory AS J3
 WHERE J3.Company = J2.Company
)
) p
ORDER BY x.StartDate;

This T-SQL correlates the CROSS APPLY subquery using the StartDate and EndDate columns from the
outer query in order to find the correct employment intervals that go along with each position. The

351

CHAPTER 11 WORKING WITH TEMPORAL DATA

StartDate/EndDate pair for each period of employment is a half-open interval (or semiopen, depending
on which mathematics textbook you’re referring to); the StartDate end of the interval is closed (inclusive
of the endpoint), and the EndDate is open (exclusive). This is because the EndDate for one interval is
actually the StartDate for the next interval, and these intervals do not overlap. The results of this query
are as follows:

Company StartDate EndDate Pay Title

Acme Corp 1997-06-26 2000-10-05 58000.00 Programmer 2

Acme Corp 1997-06-26 2000-10-05 58000.00 Programmer 3

Software Shop 2000-10-05 2003-01-08 67000.00 Programmer/Analyst

Better Place 2003-01-08 2007-11-14 87000.00 DBA

Enterprise 2007-11-14 2009-07-12 95000.00 Database Developer

Although the query does work, it has an issue; the CROSS APPLY subquery will return more than one
row if a title change was made at the maximum pay level, without an associated pay increase (as
happens in this data set), thereby producing duplicate rows in the result. The solution is to select the
appropriate row by sorting the result by the Pay column, in descending order. The modified subquery,
which will return only one row per position, is as follows:

SELECT TOP(1)
 Pay,
 Title
FROM JobHistory AS J2
WHERE
 J2.StartDate >= x.StartDate
 AND J2.StartDate < x.EndDate
ORDER BY Pay DESC

The important things that I hope you can take away from these examples are the patterns used for
manipulating the intervals, as well as the fact that modeling intervals in this way may not be sufficient
for many cases.

In terms of query style, the main thing to notice is that in order to logically manipulate this data,
some form of an “end” for the interval must be synthesized within the query. Any time you’re faced with
a table that maps changes to an entity over time but uses only a single date/time column to record the
temporal component, try to think of how to transform the data so that you can work with the start and
end of the interval. This will make querying much more straightforward.

From a modeling perspective, this setup is clearly deficient. I’ve already mentioned the issue with
gaps in the sequence, which are impossible to represent in this single-column table. Another problem is
overlapping intervals. What if the subject took on some after-hours contract work during the same time
period as one of the jobs? Trying to insert that data into the table would make it look as though the
subject had switched companies.

This is not to say that no intervals should be modeled this way. There are many situations in which
gaps and overlaps may not make sense, and the extra bytes needed for a second column would be a

352

 CHAPTER 11 WORKING WITH TEMPORAL DATA

waste. A prime example is a server uptime monitor. Systems are often used by IT departments that ping
each monitored server on a regular basis and record changes to their status. Following is a simplified
example table and a few rows of data representing the status of two monitored servers:

CREATE TABLE ServerStatus
(
 ServerName varchar(50),
 Status varchar(15),
 StatusTime datetime
);
GO

INSERT INTO ServerStatus
(
 ServerName,
 Status,
 StatusTime
) VALUES
('WebServer', 'Available', '2009-04-20T03:00:00.000'),
('DBServer', 'Available', '2009-04-20T03:00:00.000'),
('DBServer', 'Unavailable', '2009-06-12T14:35:23.100'),
('DBServer', 'Available', '2009-06-12T14:38:52.343'),
('WebServer', 'Unavailable', '2009-06-15T09:16:03.593'),
('WebServer', 'Available', '2009-06-15T09:28:17.006');
GO

Applying almost the exact same query as was used for start and end of employment periods, we can
find out the intervals during which each server was unavailable:

SELECT
 S1.ServerName,
 S1.StatusTime,
 COALESCE((
 SELECT MIN(S2.StatusTime)
 FROM ServerStatus AS S2
 WHERE
 S2.StatusTime > S1.StatusTime),
 GETDATE()
) AS EndTime
FROM ServerStatus AS S1
WHERE S1.Status = 'Unavailable';

The results of this query are as follows:

ServerName StatusTime EndTime

DBServer 2009-06-12 14:35:23.100 2009-06-12 14:38:52.343

WebServer 2009-06-15 09:16:03.593 2009-06-15 09:28:17.007

Some systems will send periodic status updates if the system status does not change. The
monitoring system might insert additional “unavailable” rows every 30 seconds or minute until the

353

CHAPTER 11 WORKING WITH TEMPORAL DATA

target system starts responding again. As-is, this query reports each interim status update as a separate
interval starting point. To get around this problem, the query could be modified as follows:

SELECT
 S1.ServerName,
 MIN(S1.StatusTime) AS StartTime,
 p.EndTime
FROM ServerStatus AS S1
CROSS APPLY
(
 SELECT
 COALESCE((
 SELECT MIN(S2.StatusTime)
 FROM ServerStatus AS S2
 WHERE
 S2.StatusTime > S1.StatusTime
 AND S2.Status = 'Available'
),
 GETDATE()
) AS EndTime
) p
WHERE S1.Status = 'Unavailable'
GROUP BY
 S1.ServerName,
 p.EndTime;

This new version finds the first “available” row that occurs after the current “unavailable” row; that
row represents the actual end time for the full interval during which the server was down. The outer
query uses the MIN aggregate to find the first reported “unavailable” time for each ServerName/EndTime
combination.

Modeling and Querying Independent Intervals
In many cases, it is more appropriate to model intervals as a start time/end time combination rather than
using a single column as used in the previous section. With both a start and end time, no subinterval has
any direct dependence on any other interval or subinterval. Therefore, both gaps and overlaps can be
represented. The remainder of this section details how to work with intervals modeled in that way.

Going back to the employment example, assume that a system is required for a company to track
internal employment histories. Following is a sample table, simplified for this example:

CREATE TABLE EmploymentHistory
(
 Employee varchar(50) NOT NULL,
 Title varchar(50) NOT NULL,
 StartDate date NOT NULL,
 EndDate date NULL,
 CONSTRAINT CK_Start_End CHECK (StartDate < EndDate)
);
GO

354

 CHAPTER 11 WORKING WITH TEMPORAL DATA

The main thing I’ve left out of this example is proper data integrity. Ignore the obvious need for a
table of names and titles to avoid duplication of that data—that would overcomplicate the example. The
holes I’m referring to deal with the employment history–specific data that the table is intended for. The
primary issue is that although I did include one CHECK constraint to make sure that the EndDate is after
the StartDate (we hope that the office isn’t so bad that people are quitting on their first day), I failed to
include a primary key.

Deciding what constitutes the primary key in this case requires a bit of thought. Employee alone is
not sufficient, as employees would not be able to get new titles during the course of their employment
(or at least it would no longer be a “history” of those changes). The next candidate might be Employee
and Title, but this also has a problem. What if an employee leaves the company for a while, and later
comes to his senses and begs to be rehired with the same title? The good thing about the table structure
is that such a gap can be represented; but constraining on both the Employee and Title columns would
prevent that situation from being allowed.

Adding StartDate into the mix seems like it would fix the problem, but in actuality it creates a whole
new issue. An employee cannot be in two places (or offices) at the same time, and the combination of
the three columns would allow the same employee to start on the same day with two different titles. And
although it’s common in our industry to wear many different hats, that fact is generally not reflected in
our job title.

As it turns out, what we really need to constrain in the primary key is an employee starting on a
certain day; uniqueness of the employee’s particular title is not important in that regard. The following
key can be added:

ALTER TABLE EmploymentHistory
ADD PRIMARY KEY (Employee, StartDate);

This primary key takes care of an employee being in two places at once on the same day, but how
about different days? Even with this constraint in place, the following two rows would be valid:

INSERT INTO EmploymentHistory
(
 Employee,
 Title,
 StartDate,
 EndDate
) VALUES
('Jones', 'Developer', '20090101', NULL),
('Jones', 'Senior Developer', '20090601', NULL);

According to this data, Jones is both Developer and Senior Developer, as of June 1, 2009—quite a bit
of stress for one person! The first idea for a solution might be to add a unique constraint on the Employee
and EndDate columns. In SQL Server, unique constraints allow for one NULL-valued row—so only one
NULL EndDate would be allowed per employee. That would fix the problem with these rows, but it would
still allow the following rows:

INSERT INTO EmploymentHistory
(
 Employee,
 Title,
 StartDate,
 EndDate
) VALUES

355

CHAPTER 11 WORKING WITH TEMPORAL DATA

('Jones', 'Developer', '20090201', '20090801'),
('Jones', 'Senior Developer', '20090701', NULL);

Now, Jones was both Developer and Senior Developer for a month. Again, this is probably not what
was intended.

Fixing this problem will require more than just a combination of primary and unique key
constraints, and a bit of background is necessary before I present the solution. Therefore, I will return to
this topic in the next section, which covers overlapping intervals.

Before we resolve the problem of overlapping intervals, let’s consider the other main benefit of this
type of model over the single-date model, which is the support for gaps. Ignore for a moment the lack of
proper constraints, and consider the following rows (which would be valid even with the constraints):

INSERT INTO EmploymentHistory
(
 Employee,
 Title,
 StartDate,
 EndDate
) VALUES
('Jones', 'Developer', '20070105', '20070901'),
('Jones', 'Senior Developer', '20070901', '20080901'),
('Jones', 'Principal Developer', '20080901', '20081007'),
('Jones', 'Principal Developer', '20090206', NULL);

The scenario shown here is an employee named Jones, who started as a developer in January 2007
and was promoted to Senior Developer later in the year. Jones was promoted again to Principal
Developer in 2008, but quit a month later. However, a few months after that he decided to rejoin the
company and has not yet left or been promoted again.

The two main questions that can be asked when dealing with intervals that represent gaps are
“What intervals are covered by the data?” and “What holes are present?” These types of questions are
ubiquitous when working with any kind of interval data. Real-world scenarios include such
requirements as tracking of service-level agreements for server uptime and managing worker shift
schedules—and of course, employment history.

In this case, the questions can be phrased as “During what periods did Jones work for the firm?” and
the opposite, “During which periods was Jones not working for the firm?” To answer the first question,
the first requirement is to find all subinterval start dates—dates that are not connected to a previous end
date. The following T-SQL accomplishes that goal:

SELECT
 theStart.StartDate
FROM EmploymentHistory theStart
WHERE
 theStart.Employee = 'Jones'
 AND NOT EXISTS
 (
 SELECT *
 FROM EmploymentHistory Previous
 WHERE
 Previous.EndDate = theStart.StartDate
 AND theStart.Employee = Previous.Employee
);

356

 CHAPTER 11 WORKING WITH TEMPORAL DATA

This query finds all rows for Jones (remember, there could be rows for other employees in the table),
and then filters them down to rows where there is no end date for a Jones subinterval that matches the
start date of the row. The start dates for these rows are the start dates for the continuous intervals
covered by Jones’s employment.

The next step is to find the ends of the covering intervals. The end rows can be identified similarly to
the starting rows; they are rows where the end date has no corresponding start date in any other rows.
To match the end rows to the start rows, find the first end row that occurs after a given start row. The
following T-SQL finds start dates using the preceding query and end dates using a subquery that
employs the algorithm just described:

SELECT
 theStart.StartDate,
 (
 SELECT
 MIN(EndDate)
 FROM EmploymentHistory theEnd
 WHERE
 theEnd.EndDate > theStart.StartDate
 AND theEnd.Employee = theStart.Employee
 AND NOT EXISTS
 (
 SELECT *
 FROM EmploymentHistory After
 WHERE
 After.StartDate = theEnd.EndDate
 AND After.Employee = theEnd.Employee
)
) AS EndDate
FROM EmploymentHistory theStart
WHERE
 theStart.Employee = 'Jones'
 AND NOT EXISTS
 (
 SELECT *
 FROM EmploymentHistory Previous
 WHERE
 Previous.EndDate = theStart.StartDate
 AND theStart.Employee = Previous.Employee
);

Finding noncovered intervals (i.e., gaps in the employment history) is a bit simpler. First, find the
end date of every subinterval using the same syntax used to find end dates in the covered intervals
query. Each of these dates marks the start of a noncovered interval. Make sure to filter out rows where
the EndDate is NULL—these subintervals have not yet ended, so it does not make sense to include them as
holes. In the subquery to find the end of each hole, find the first start date (if one exists) after the
beginning of the hole. The following T-SQL demonstrates this approach to find noncovered intervals:

SELECT
 theStart.EndDate AS StartDate,
 (
 SELECT MIN(theEnd.StartDate)
 FROM EmploymentHistory theEnd

357

CHAPTER 11 WORKING WITH TEMPORAL DATA

 WHERE
 theEnd.StartDate > theStart.EndDate
 AND theEnd.Employee = theStart.Employee
) AS EndDate
FROM EmploymentHistory theStart
WHERE
 theStart.Employee = 'Jones'
 AND theStart.EndDate IS NOT NULL
 AND NOT EXISTS
 (
 SELECT *
 FROM EmploymentHistory After
 WHERE After.StartDate = theStart.EndDate
);

Overlapping Intervals
The final benefit (or drawback, depending on what’s being modeled) of using both a start and end date
for intervals that I’d like to discuss is the ability to work with overlapping intervals. Understanding how
to work with overlaps is necessary either for performing overlap-related queries (“How many employees
worked for the firm between August 2007 and September 2008?”) or for constraining in order to avoid
overlaps, as is necessary in the single-employee example started in the previous section.

To begin with, a bit of background on overlaps is necessary. Figure 11-4 shows the types of interval
overlaps that are possible. Interval A is overlapped by each of the other intervals B through E, as follows:

• Interval B starts within interval A and ends after interval A.

• Interval C is the opposite, starting before interval A and ending within.

• Interval D both starts and ends within interval A.

• Finally, interval E both starts before and ends after interval A.

Figure 11-4. The types of overlapping intervals

358

 CHAPTER 11 WORKING WITH TEMPORAL DATA

Assuming that each interval has a StartTime property and an EndTime property, the relationships
between each of the intervals B through E and interval A can be formalized in SQL-like syntax as follows:

B.StartDate >= A.StartDate AND B.StartDate < A.EndDate AND B.EndDate > A.EndDate
C.StartDate < A.StartDate AND C.EndDate > A.StartDate AND C.EndDate <= A.EndDate
D.StartDate >= A.StartDate AND D.EndDate <= A.EndDate
E.StartDate < A.StartDate AND E.EndDate > A.EndDate

Substituting the name X for all intervals B through E, we can begin to create a generalized algorithm
for detecting overlaps. Let us first consider the situations in which an interval X does not overlap interval
A. This can happen in two cases: either X occurs entirely after interval A, or it is entirely before interval A—
for example:

X.StartDate > A.EndDate OR X.EndDate < A.StartDate

If the preceding condition is true for cases where X does not overlap A, then the condition for an
overlap must therefore be the complement of this—in other words:

X.StartDate < A.EndDate AND X.EndDate > A.StartDate

To rephrase this condition in English, we get “If X starts before A ends, and X ends after A starts, then
X overlaps A.” This is illustrated in Figure 11-5.

Figure 11-5. If X starts before A ends and X ends after A starts, the two intervals overlap.

Getting back to the EmploymentHistory table and its lack of proper constraints, it’s clear that the real
issue at hand is that it is not constrained to avoid overlap. A single employee cannot have two titles
simultaneously, and the only way to ensure that does not happen is to make sure each employee’s
subintervals are unique.

Unfortunately, this logic cannot be embedded in a constraint, since in order to determine whether a
row overlaps another, all of the other rows in the set must be evaluated. The following query finds all
overlapping rows for Jones in the EmploymentHistory table, using the final overlap expression:

SELECT *
FROM EmploymentHistory E1
JOIN EmploymentHistory E2 ON
 E1.Employee = E2.Employee
 AND (
 E1.StartDate < COALESCE(E2.EndDate, '99991231')
 AND COALESCE(E1.EndDate, '99991231') > E2.StartDate)
 AND E1.StartDate <> E2.StartDate
WHERE
 E1.Employee = 'Jones';

359

CHAPTER 11 WORKING WITH TEMPORAL DATA

Note that in order to avoid showing rows overlapping with themselves, the E1.StartDate <>
E2.StartDate expression was added. Thanks to the primary key on the Employee and StartDate columns,
we know that no two rows can share the same StartDate, so this does not affect the overlap logic. In
addition, in the case of open-ended (NULL) EndDate values, the COALESCE statement is used to substitute
the maximum possible date value. This avoids the possibility of inserting an interval starting in the
future, while a current interval is still active.

This logic must be evaluated every time an insert or update is done on the table, making sure that
none of the rows resulting from the insert or update operation creates any overlaps. Since this logic can’t
go into a constraint, there is only one possibility—a trigger. The trigger logic is fairly straightforward;
instead of joining EmployeeHistory to itself, the base table will be joined to the inserted virtual table. The
following T-SQL shows the trigger:

CREATE TRIGGER No_Overlaps
ON EmploymentHistory
FOR UPDATE, INSERT
AS
BEGIN
 IF EXISTS
 (
 SELECT *
 FROM inserted i
 JOIN EmploymentHistory E2 ON
 i.Employee = E2.Employee
 AND (
 i.StartDate < COALESCE(E2.EndDate, '99991231')
 AND COALESCE(i.EndDate, '99991231') > E2.StartDate)
 AND i.StartDate <> E2.StartDate
)
 BEGIN
 RAISERROR('Overlapping interval inserted!', 16, 1);
 ROLLBACK;
 END
END;
GO

The final examples for this section deal with a common scenario in which you might want to
investigate overlapping intervals: when monitoring performance of concurrent processes in a database
scenario.

To start setting up this example, load SQL Server Profiler, start a new trace, and connect to a test
server. Uncheck all of the events except for SQL:BatchCompleted and leave the default columns selected.

Begin the trace and then load the RML command prompt. Enter the following query:

ostress -Q"SELECT * FROM sys.databases;" -q –n100 –r100

The preceding code will perform 100 iterations of a query on 100 threads. The run should take
approximately 1 minute and will produce 10,000 Profiler events—one per invocation of the query. When
the ostress run has finished, return to Profiler and click File ~TRA Save As Trace Table, and save the data
to the database in a new table called Overlap_Trace.

Profiler trace tables include two StartTime and EndTime columns, both of which are populated for
many of the events—including SQL:BatchCompleted and RPC:Completed. By treating these columns as an
interval and working with some of the following query patterns, you can manipulate the data to do

360

 CHAPTER 11 WORKING WITH TEMPORAL DATA

things such as correlate the number of concurrent queries with performance degradation of the
database server.

The first and most basic query is to find out which time intervals represented in the table had the
most overlaps. In other words, during the runtime of a certain query, how many other queries were run?
To answer this question, the intervals of every query in the table must be compared against the intervals
of every other query in the table. The following T-SQL does this using the previously discussed overlap
algorithm:

SELECT
 O1.StartTime,
 O1.EndTime,
 COUNT(*)
FROM Overlap_Trace O1
JOIN Overlap_Trace O2 ON
 (O1.StartTime < O2.EndTime AND O1.EndTime > O2.StartTime)
 AND O1.SPID <> O2.SPID
GROUP BY
 O1.StartTime,
 O1.EndTime
ORDER BY COUNT(*) DESC;

Much like the EmploymentTable example, we need to make sure that no false positives are generated
by rows overlapping with themselves. Since a server process can’t run two queries simultaneously, the
server process identifier (SPID) column works for the purpose in this case.

Running this query on an unindexed table is a painful experience. It is agonizingly slow, and in the
sample table on my machine, it required 288,304 logical reads. Creating the following index on the table
helped a small amount:

CREATE NONCLUSTERED INDEX IX_StartEnd
ON Overlap_Trace (StartTime, EndTime, SPID)

However, I noticed that the index was still not being effectively used; examining the query plan
revealed an outer table scan with a nested loop for an inner table scan—one table scan for every row of
the table. Going back and looking at the original two algorithms before merging them, I noticed that they
return exclusive sets of data. The first algorithm returns overlaps of intervals B and D, whereas the second
algorithm returns overlaps of intervals C and E. I also noticed that each algorithm on its own is more
index friendly than the combined version. The solution to the performance issue is to merge the two
algorithms, not into a single expression, but rather using UNION ALL, as follows:

SELECT
 x.StartTime,
 x.EndTime,
 SUM(x.theCount)
FROM
(
SELECT
 O1.StartTime,
 O1.EndTime,
 COUNT(*) AS theCount
FROM Overlap_Trace O1
JOIN Overlap_Trace O2 ON
 (O1.StartTime >= O2.StartTime AND O1.StartTime < O2.EndTime)

361

CHAPTER 11 WORKING WITH TEMPORAL DATA

 AND O1.SPID <> O2.SPID
GROUP BY
 O1.StartTime,
 O1.EndTime

UNION ALL

SELECT
 O1.StartTime,
 O1.EndTime,
 COUNT(*) AS theCount
FROM Overlap_Trace O1
JOIN Overlap_Trace O2 ON
 (O1.StartTime < O2.StartTime AND O1.EndTime > O2.StartTime)
 AND O1.SPID <> O2.SPID
GROUP BY
 O1.StartTime,
 O1.EndTime
) x
GROUP BY
 x.StartTime,
 x.EndTime
ORDER BY SUM(x.theCount) DESC
OPTION(HASH GROUP);

This query is logically identical to the previous one. It merges the two exclusive sets based on the
same intervals and sums their counts, which is the same as taking the full count of the interval in one
shot. Note that I was forced to add the HASH GROUP option to the end of the query to make the query
optimizer make better use of the index. Once that hint was in place, the total number of reads done by
the query dropped to 66,780—a significant improvement.

Time Slicing
Another way to slice and dice overlapping intervals is by splitting the data into separate periods and
looking at the activity that occurred during each. For instance, to find out how many employees worked
for a firm in each month of the year, you could find out which employees’ work date intervals
overlapped January 1 through January 31, again for February 1 through February 28, and so on.

Although it’s easy to answer those kinds of questions for dates by using a calendar table, it’s a bit
trickier when you need to do it with times. Prepopulating a calendar table with every time, in addition to
every date, for the next ten or more years would cause a massive increase in the I/O required to read the
dates, and would therefore seriously cut down on the table’s usefulness. Instead, I recommend
dynamically generating time tables as you need them. The following UDF takes an input start and end
date and outputs periods for each associated subinterval:

CREATE FUNCTION TimeSlice
(
 @StartDate datetime,
 @EndDate datetime
)
RETURNS @t TABLE

362

 CHAPTER 11 WORKING WITH TEMPORAL DATA

(
 StartDate datetime NOT NULL,
 EndDate datetime NOT NULL,
 PRIMARY KEY (StartDate, EndDate) WITH (IGNORE_DUP_KEY=ON)
)
WITH SCHEMABINDING
AS
BEGIN
 IF (@StartDate > @EndDate)
 RETURN;

 -- Round down start date to the nearest second
 DECLARE @TruncatedStart datetime;
 SET @TruncatedStart =
 DATEADD(second, DATEDIFF(second, '20000101', @StartDate), '20000101');

 -- Round down end date to the nearest second
 DECLARE @TruncatedEnd datetime;
 SET @TruncatedEnd =
 DATEADD(second, DATEDIFF(second, '20000101', @EndDate), '20000101');
 --Insert start and end date/times first
 --Make sure to match the same start/end interval passed in
 INSERT INTO @t (
 StartDate,
 EndDate
)
 -- Insert the first interval
 SELECT
 @StartDate,
 CASE
 WHEN DATEADD(second, 1, @TruncatedStart) > @EndDate THEN @EndDate
 ELSE DATEADD(second, 1, @TruncatedStart)
 END
 UNION ALL
 -- Insert the last interval
 SELECT
 CASE
 WHEN @TruncatedEnd < @StartDate THEN @StartDate
 ELSE @TruncatedEnd
 END,
 @EndDate;

 SET @TruncatedStart = DATEADD(second, 1, @TruncatedStart);

 --Insert one row for each whole second in the interval
 WHILE (@TruncatedStart < @TruncatedEnd)
 BEGIN
 INSERT INTO @t (
 StartDate,
 EndDate
)
 VALUES (

363

CHAPTER 11 WORKING WITH TEMPORAL DATA

 @TruncatedStart,
 DATEADD(second, 1, @TruncatedStart)
);

 SET @TruncatedStart = DATEADD(second, 1, @TruncatedStart);
 END;

 RETURN;
END;

This function is currently hard-coded to use seconds as the subinterval length, but it can easily be
changed to any other time period by modifying the parameters to DATEDIFF and DATEADD.

As an example of using the function, consider the following call:

SELECT *
FROM dbo.TimeSlice('2010-01-02T12:34:45.003', '2010-01-02T12:34:48.100');

The output, shown following, contains one row per whole second range in the interval, with the
start and endpoints constrained by the interval boundaries.

StartDate EndDate

2010-01-02 12:34:45.003 2010-01-02 12:34:46.000

2010-01-02 12:34:46.000 2010-01-02 12:34:47.000

2010-01-02 12:34:47.000 2010-01-02 12:34:48.000

2010-01-02 12:34:48.000 2010-01-02 12:34:48.100

To use the TimeSlice function to look at the number of overlapping queries over the course of the
sample trace, first find the start and endpoints of the trace using the MIN and MAX aggregates. Then slice
the interval into 1-second periods using the function. The following T-SQL shows how to do that:

SELECT
 Slices.DisplayDate
FROM
(
 SELECT MIN(StartTime), MAX(EndTime)
 FROM Overlap_Trace
) StartEnd (StartTime, EndTime)
CROSS APPLY
(
 SELECT *
 FROM dbo.TimeSlice(StartEnd.StartTime, StartEnd.EndTime)
) Slices;

364

 CHAPTER 11 WORKING WITH TEMPORAL DATA

The output of the TimeSlice function can then be used to find the number of overlapping queries
that were running during each period, by using the CROSS APPLY operator again in conjunction with the
interval overlap expression:

SELECT
 Slices.DisplayDate,
 OverLaps.thecount
FROM
(
 SELECT MIN(StartTime), MAX(EndTime)
 FROM Overlap_Trace
) StartEnd (StartTime, EndTime)
CROSS APPLY
(
 SELECT *
 FROM dbo.TimeSlice(StartEnd.StartTime, StartEnd.EndTime)
) Slices
CROSS APPLY
(
 SELECT COUNT(*) AS theCount
 FROM Overlap_Trace OT
 WHERE
 Slices.StartDate < OT.EndTime
 AND Slices.EndDate > OT.StartTime
) Overlaps;

This data, in conjunction with a performance monitor trace, can be used to correlate spikes in
counters at certain times to what was actually happening in the database. This can be especially useful
for tracking sudden increases in blocking, which often will not correspond to increased utilization of any
system resources, which can make them difficult to identify. By adding additional filters to the preceding
query, you can look at concurrent runs of specific queries that are prone to blocking one another in
order to find out whether they might be causing performance issues.

Modeling Durations
Durations are very similar to intervals, in that they represent a start time and an end time. In many
cases, therefore, it makes sense to model durations as intervals and determine the actual duration for
reporting or aggregation purposes by using DATEDIFF. However, in some cases, you may wish to store
durations using a greater precision than the 100ns resolution offered by SQL Server’s datetime2 type. In
addition, it can be difficult to format the duration calculated between two date/time columns for output,
sometimes requiring intricate string manipulation.

There are several examples of cases when you might want to model durations rather than intervals.
Databases that store information about timed scientific trials, for example, often require microsecond or
even nanosecond precision. Another example is data that may not require a date/time component at all.
For instance, a table containing times for runners competing in the 300-yard dash may not need a start
time. The moment at which the run took place does not matter; the only important fact is how long the
runner took to travel the 300 yards.

The most straightforward solution to the issue of inadequate resolution is to store a start date, along
with an integer column to represent the actual duration using whatever unit of measurement is required
for the accuracy of the application in hand:

365

CHAPTER 11 WORKING WITH TEMPORAL DATA

CREATE TABLE Events
(
 EventId int,
 StartTime datetime2,
 DurationInNanoseconds int
);

Using the Events table, it is possible to find the approximate end time of an event by using DATEADD
to add the duration to the start time. SQL Server will round the duration down to the nearest 100ns—the
lowest time resolution supported by the datetime2 type. For the 300-yard dash or other scenarios where
starting time does not matter, the StartTime column can simply be dropped, and only the duration itself
maintained (of course, the results in such cases may not require nanosecond precision as used here).

What this table does not address is the issue of formatting, should you need to output precise data
rendered as a human-readable string. Since the lowest granularity supported by the SQL Server types is
100ns, none of the time-formatting methods will help to output a time string representing nanosecond
precision. As such, you will have to roll your own code to do so. Once again I should stress that
formatting is best done in a client tier. However, if you do need to format data in the database tier (and
you have a very good reason to do so), the best approach to handle this scenario would be to create a
SQLCLR UDF that uses the properties of .NET’s TimeSpan type to build a string up to and including
second precision, and then append the remaining nanosecond portion to the end.

The following UDF can be used to return a duration measured in nanoseconds in the string format
HH:MM:SS.NNNNNN (where N represents nanoseconds):

 [Microsoft.SqlServer.Server.SqlFunction]
 public static SqlString FormatDuration(SqlInt64 TimeInNanoseconds)
 {
 // Ticks = Nanoseconds / 10
 long ticks = TimeInNanoseconds.Value / 100;
 // Create the TimeSpan based on the number of ticks
 TimeSpan ts = new TimeSpan(ticks);
 // Format the output to HH:MM:SS:NNNNNN
 return new SqlString(
 ts.Hours.ToString() + ":"
 + ts.Minutes.ToString() + ":"
 + ts.Seconds.ToString() + "."
 + (TimeInNanoseconds % 1000000000)
);
 }

This function could easily be amended to return whatever time format is required for your
particular application.

Managing Bitemporal Data
A central truth that all database developers must come to realize is that the quality of data is frequently
not as great as it could be (or as we might wish it to be). Sometimes we’re forced to work with incomplete
or incorrect data, and correct things later as a more complete picture of reality becomes available.

Modifying data in the database is simple enough—a call to a DML statement and the work is done.
But in systems that require advanced logging and reproducibility of reports between runs for auditing
purposes, a straightforward UPDATE, INSERT, or DELETE may be counterproductive. Performing such data

366

 CHAPTER 11 WORKING WITH TEMPORAL DATA

modification can destroy the possibility of re-creating the same output on consecutive runs of the same
query.

As an alternative to performing a simple alteration of invalid data, some systems use the idea of
offset transactions. An offset transaction uses the additive nature of summarization logic to fix the data
in place. For example, assume that part of a financial reporting system has a table that describes
customer transactions. The following table is a highly simplified representation of what such a table
might look like:

CREATE TABLE Transactions
(
 TransactionId int,
 Customer varchar(50),
 TransactionDate datetime,
 TransactionType varchar(50),
 TransactionAmount decimal(9,2)
);
GO

Let’s suppose that on June 12, 2009, customer Smith deposited $500. However, due to a teller’s key
error that was not caught in time, by the time the reporting data was loaded, the amount that made it
into the system was $5,000:

INSERT INTO Transactions VALUES
(1001, 'Smith', '2009-06-12', 'DEPOSIT', 5000.00);

The next morning, the erroneous data was detected. Updating the transaction row itself would
destroy the audit trail, so an offset transaction must be issued. There are a few ways of handling this
scenario. The first method is to issue an offset transaction dated the same as the incorrect transaction:

INSERT INTO Transactions VALUES
(1001, 'Smith', '2009-06-12', 'OFFSET', -4500.00);

Backdating the offset fixes the problem in summary reports that group any dimension (transaction
number, customer, date, or transaction type), but fails to keep track of the fact that the error was actually
caught on June 13. Properly dating the offset record is imperative for data auditing purposes:

INSERT INTO Transactions VALUES
(1001, 'Smith', '2009-06-13', 'OFFSET', -4500.00);

Unfortunately, proper dating does not fix all of the issues—and introduces new ones. After properly
dating the offset, a query of the data for customer Smith for all business done through June 12 does not
include the correction. Only by including data from June 13 would the query return the correct data. And
although a correlated query could be written to return the correct summary report for June 12, the data
is in a somewhat strange state when querying for ranges after June 12 (e.g., June 13 through 15.) The
offset record is orphaned if June 12 is not considered in a given query along with June 13.

To get around these and similar issues, a bitemporal model is necessary. In a bitemporal table, each
transaction has two dates: the actual date that the transaction took place and a “valid” date, which
represents the date that we know the updated data to be correct. The following modified version of the
Transactions table shows the new column:

CREATE TABLE Transactions
(

367

CHAPTER 11 WORKING WITH TEMPORAL DATA

 TransactionId int,
 Customer varchar(50),
 TransactionDate datetime,
 TransactionType varchar(50),
 TransactionAmount decimal(9,2),
 ValidDate datetime
);

When inserting the data for Smith on June 12, a valid date of June 12 is also applied:

INSERT INTO Transactions VALUES
(1001, 'Smith', '2009-06-12', 'DEPOSIT', 5000.00, '2009-06-12');

Effectively, this row can be read as “As of June 12, we believe that transaction 1001, dated June 12,
was a deposit for $5,000.00.” On June 13, when the error is caught, no offset record is inserted. Instead, a
corrected deposit record is inserted, with a new valid date:

INSERT INTO Transactions VALUES
(1001, 'Smith', '2009-06-12', 'DEPOSIT', 500.00, '2009-06-13');

This row indicates that as of June 13, transaction 1001 has been modified. But the important
difference is that the transaction still maintains its correct date—so running a report for transactions
that occurred on June 13 would not return any rows, since the only rows we are looking at occurred on
June 12 (even though one of them was entered on June 13). In addition, this model eliminates the need
for offset transactions. Rather than use an offset, queries should always find the last update for any given
transaction within the valid range.

To understand this a bit more, consider a report run on August 5 that looks at all transactions that
occurred on June 12. The person running the report wants the most “correct” version of the data—that
is, all available corrections should be applied. This is done by taking the transaction data for each
transaction from the row with the maximum valid date:

SELECT
 T1.TransactionId,
 T1.Customer,
 T1.TransactionType,
 T1.TransactionAmount
FROM Transactions AS T1
WHERE
 T1.TransactionDate = '2009-06-12'
 AND T1.ValidDate =
 (
 SELECT MAX(ValidDate)
 FROM Transactions AS T2
 WHERE T2.TransactionId = T1.TransactionId
);

By modifying the subquery, it is possible to get “snapshot” reports based on data before updates
were applied. For instance, assume that this same report was run on the evening of June 12. The output
for Smith would show a deposit of $5,000.00 for transaction 1001. To reproduce that report on August 5
(or any day after June 12), change the ValidDate subquery:

SELECT

368

 CHAPTER 11 WORKING WITH TEMPORAL DATA

 T1.TransactionId,
 T1.Customer,
 T1.TransactionType,
 T1.TransactionAmount
FROM Transactions AS T1
WHERE
 T1.TransactionDate = '2009-06-12'
 AND T1.ValidDate =
 (
 SELECT MAX(ValidDate)
 FROM Transactions AS T2
 WHERE
 T2.TransactionId = T1.TransactionId
 AND ValidDate <= '2009-06-12'
);

Note that in this case, the subquery could have been eliminated altogether, and the search argument
could have become AND T1.ValidDate = '2009-06-12'. However, the subquery is needed any time you’re
querying a range of dates, so it’s a good idea to leave it in place for ease of maintenance of the query.

Using this same pattern, data can also be booked in the future, before it is actually valid. It’s
common when doing wire transfers, credit card payments, and other kinds of electronic funds
transactions to be able to set the posting date on which the business will actually be executed. By
working with the valid date, Smith can make a request for an outgoing transfer on June 14, but ask that
the transfer actually take place on June 16:

INSERT INTO Transactions VALUES
(1002, 'Smith', '2009-06-16', 'TRANSFER', -1000.00, '2009-06-14');

Since the transaction date is June 16, a report dealing with transactions that occurred between June
1 and June 15 will not show the transfer. But a business manager can query on June 15 to find out which
transactions will hit in the coming days or weeks, and audit when the data entered the system.

Modeling data bitemporally allows for an auditable, accurate representation of historical or future
knowledge as data is updated. This can be tremendously useful in many scenarios—especially in the
realm of financial reconciliation when you can be forced to deal with backdated contracts that change
the terms of previous transactions and business booked in the future to avoid certain types of auditing
issues.

 Note When modeling bitemporal data, you may want to investigate the possibility of implementing cutoff date
rules, after which changes to transactions cannot be made. For example, the system may have a policy whereby
transactions are said to be closed after 90 days. In this case, a simple CHECK constraint would do the trick, to
ensure that the ValidDate is within 90 days of the TransactionDate. Another example would be data that has
been used to generate an official report, such as for a government agency. In that case, you’d want a rule so that
no transaction can be backdated to before the report was run (lest it change the data in the report). In that case, a
trigger would be needed in order to verify the date against a table containing the report run history.

369

CHAPTER 11 WORKING WITH TEMPORAL DATA

370

Summary
Virtually all data has some form of a temporal component, and every database developer will have to
deal with times and dates again and again. Managing temporal data successfully begins with an
understanding of the different types of temporal data: instance-based, interval-based, period-based, and
bitemporal. By applying knowledge of how SQL Server’s native date/time types work, you can
intelligently and efficiently do calculations and queries based on temporal data models.

C H A P T E R 12

Trees, Hierarchies, and Graphs

Although at times it may seem chaotic, the world around us is filled with structure and order. The
universe itself is hierarchical in nature, made up of galaxies, stars, and planets. One of the natural
hierarchies here on earth is the food chain that exists in the wild; a lion can certainly eat a zebra, but
alas, a zebra will probably never dine on lion flesh. And of course, we’re all familiar with corporate
management hierarchies—which some companies try to kill off in favor of matrixes, which are not
hierarchical at all . . . but more on that later!

We strive to describe our existence based on connections between entities—or lack thereof—and
that’s what trees, hierarchies, and graphs help us do at the mathematical and data levels. The majority of
databases are at least mostly hierarchical, with a central table or set of tables at the root, and all other
tables branching from there via foreign key references. However, sometimes the database hierarchy
needs to be designed at a more granular level, representing the hierarchical relationship between
records contained within a single table. For example, you wouldn’t design a management database that
required one table per employee in order to support the hierarchy. Rather, you’d put all of the
employees into a single table and create references between the rows.

This chapter discusses three different approaches for working with these intra-table hierarchies and
graphs in SQL Server 2008, as follows:

• Adjacency lists

• Materialized paths

• The hierarchyid datatype

Each of these techniques has its own virtues depending on the situation. I will describe each
technique individually and compare how it can be used to query and manage your hierarchical data.

Terminology: Everything Is a Graph
Mathematically speaking, trees and hierarchies are both different types of graphs. A graph is defined as a
set of nodes (or vertices) connected by edges. The edges in a graph can be further classified as directed
or undirected, meaning that they can be traversed in one direction only (directed) or in both directions
(undirected). If all of the edges in a graph are directed, the graph itself is said to be directed (sometimes
referred to as a digraph). Graphs can also have cycles, sets of nodes/edges that when traversed in order
bring you back to the same initial node. A graph without cycles is called an acyclic graph. Figure 12-1
shows some simple examples of the basic types of graphs.

371

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Figure 12-1. Undirected, directed, undirected cyclic, and directed acyclic graphs

The most immediately recognizable example of a graph is a street map. Each intersection can be
thought of as a node, and each street an edge. One-way streets are directed edges, and if you drive
around the block, you’ve illustrated a cycle. Therefore, a street system can be said to be a cyclic, directed
graph. In the manufacturing world, a common graph structure is a bill of materials, or parts explosion,
which describes all of the necessary component parts of a given product. And in software development,
we typically work with class and object graphs, which form the relationships between the component
parts of an object-oriented system.

A tree is defined as an undirected, acyclic graph in which exactly one path exists between any two
nodes. Figure 12-2 shows a simple tree.

Figure 12-2. Exactly one path exists between any two nodes in a tree.

 Note Borrowing from the same agrarian terminology from which the term tree is derived, we can refer to
multiple trees as a forest.

A hierarchy is a special subset of a tree, and it is probably the most common graph structure that
developers need to work with. It has all of the qualities of a tree but is also directed and rooted. This
means that a certain node is designated as the root, and all other nodes are said to be subordinates (or
descendants) of that node. In addition, each nonroot node must have exactly one parent node—a node
that directs into it. Multiple parents are not allowed, nor are multiple root nodes. Hierarchies are
extremely common when it comes to describing most business relationships; manager/employee,
contractor/subcontractor, and firm/division associations all come to mind. Figure 12-3 shows a
hierarchy containing a root node and several levels of subordinates.

372

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Figure 12-3. A hierarchy must have exactly one root node, and each nonroot node must have exactly one

parent.

The parent/child relationships found in hierarchies are often classified more formally using the
terms ancestor and descendant, although this terminology can get a bit awkward in software
development settings. Another important term is siblings, which describes nodes that share the same
parent. Other terms used to describe familial relationships are also routinely applied to trees and
hierarchies, but I’ve personally found that it can get confusing trying to figure out which node is the
cousin of another, and so have abandoned most of this extended terminology.

The Basics: Adjacency Lists and Graphs
The most common graph data model is called an adjacency list. In an adjacency list, the graph is
modeled as pairs of nodes, each representing an edge. This is an extremely flexible way of modeling a
graph; any kind of graph, hierarchy, or tree can fit into this model. However, it can be problematic from
the perspectives of query complexity, performance, and data integrity. In this section, I will show you
how to work with adjacency lists and point out some of the issues that you should be wary of when
designing solutions around them.

The simplest of graph tables contains only two columns, X and Y:

CREATE TABLE Edges
(
 X int NOT NULL,
 Y int NOT NULL,
 PRIMARY KEY (X, Y)
);
GO

The combination of columns X and Y constitutes the primary key, and each row in the table
represents one edge in the graph. Note that X and Y are assumed to be references to some valid table of
nodes. This table only represents the edges that connect the nodes. It can also be used to reference
unconnected nodes; a node with a path back to itself but no other paths can be inserted into the table for
that purpose.

373

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 Note When modeling unconnected nodes, some data architects prefer to use a nullable Y column rather than
having both columns point to the same node. The net effect is the same, but in my opinion the nullable Y column
makes some queries a bit messier, as you’ll be forced to deal with the possibility of a NULL. The examples in this
chapter, therefore, do not follow that convention—but you can use either approach in your production
applications.

Constraining the Edges
As-is, the Edges table can be used to represent any graph, but semantics are important, and none are
implied by the current structure. It’s difficult to know whether each edge is directed or undirected.
Traversing the graph, one could conceivably go either way, so the following two rows may or may not be
logically identical:

INSERT INTO Edges VALUES (1, 2);
INSERT INTO Edges VALUES (2, 1);

If the edges in this graph are supposed to be directed, there is no problem. If you need both
directions for a certain edge, simply insert them both, and don’t insert both for directed edges. If, on the
other hand, all edges are supposed to be undirected, a constraint is necessary in order to ensure that two
logically identical paths cannot be inserted.

The primary key is clearly not sufficient to enforce this constraint, since it treats every combination
as unique. The most obvious solution to this problem is to create a trigger that checks the rows when
inserts or updates take place. Since the primary key already enforces that duplicate directional paths
cannot be inserted, the trigger must only check for the opposite path.

Before creating the trigger, empty the Edges table so that it no longer contains the duplicate
undirected edges just inserted:

TRUNCATE TABLE Edges;
GO

Then create the trigger that will check as rows are inserted or updated as follows:

CREATE TRIGGER CheckForDuplicates
ON Edges
FOR INSERT, UPDATE
AS
BEGIN
 IF EXISTS
 (
 SELECT *
 FROM Edges e
 WHERE
 EXISTS
 (

374

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 SELECT *
 FROM inserted i
 WHERE
 i.X = e.Y
 AND i.Y = e.X
)
)
 BEGIN
 ROLLBACK;
 END
END;
GO

Attempting to reinsert the two rows listed previously will now cause the trigger to end the
transaction and issue a rollback of the second row, preventing the duplicate edge from being created.

A slightly cleverer way of constraining the uniqueness of the paths is to make use of an indexed
view. You can take advantage of the fact that an indexed view has a unique index, using it as a constraint
in cases like this where a trigger seems awkward. In order to create the indexed view, you will need a
numbers table (also called a tally table) with a single column, Number, which is the primary key. The
following code listing creates such a table, populated with every number between 1 and 8000:

SELECT TOP (8000)
 IDENTITY(int, 1, 1) AS Number
INTO Numbers
FROM master..spt_values a
CROSS JOIN master..spt_values b;

ALTER TABLE Numbers
ADD PRIMARY KEY (Number);
GO

 Note We won’t actually need all 8,000 rows in the Numbers table (in fact, the solution described here requires
only two distinct rows), but there are lots of other scenarios where you might need a larger table of numbers, so it
doesn’t do any harm to prime the table with additional rows now.

The master..spt_values table is an arbitrary system table chosen simply because it has enough rows
that, when cross-joined with itself, the output will be more than 8,000 rows.

A table of numbers is incredibly useful in many cases in which you might need to do interrow
manipulation and look-ahead logic, especially when dealing with strings. However, in this case, its utility
is fairly simple: a CROSS JOIN to the Numbers table, combined with a WHERE condition, will result in an
output containing two rows for each row in the Edges table. A CASE expression will then be used to swap
the X and Y column values—reversing the path direction—for one of the rows in each duplicate pair. The
following view encapsulates this logic:

CREATE VIEW DuplicateEdges
WITH SCHEMABINDING

375

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

AS
 SELECT
 CASE n.Number
 WHEN 1 THEN e.X
 ELSE e.Y
 END X,
 CASE n.Number
 WHEN 1 THEN e.Y
 ELSE e.X
 END Y
 FROM Edges e
 CROSS JOIN Numbers n
 WHERE
 n.Number BETWEEN 1 AND 2;
GO

Once the view has been created, it can be indexed in order to constrain against duplicate paths:

CREATE UNIQUE CLUSTERED INDEX IX_NoDuplicates
ON DuplicateEdges (X,Y);
GO

Since the view logically contains both paths as they were inserted into the table, as well as the
reverse paths, the unique index serves to constrain against duplication. Both techniques have similar
performance characteristics, but there is admittedly a certain cool factor with the indexed view. It can
also double as a quick lookup for finding all paths in a directed notation.

 Note Once you have chosen either the trigger or the indexed view approach to prevent duplicate edges, be sure
to delete all rows from the Edges table again before executing any of the remaining code listings in this chapter.

Basic Graph Queries: Who Am I Connected To?
Before traversing the graph to answer questions, it’s again important to discuss the differences between
directed and undirected edges and the way in which they are modeled. Figure 12-4 shows two graphs: I
is undirected and J is directed.

Figure 12-4. Directed and undirected graphs have different connection qualities.

376

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

The following node pairs can be used to represent the edges whether or not the Edges table is
considered to be directed or undirected:

INSERT INTO Edges VALUES (2, 1), (1, 3);
GO

Now we can answer a simple question: starting at a specific node, what nodes can we traverse to?
In the case of a directed graph, any node Y is accessible from another node X if an edge exists that

starts at X and ends at Y. This is easy enough to represent as a query (in this case, starting at node 1):

SELECT Y
FROM Edges e
WHERE X = 1;

For an undirected graph, things get a bit more complex because any given edge between two nodes
can be traversed in either direction. In that case, any node Y is accessible from another node X if an edge
is represented as either starting at X and ending at Y, or the other way around. We need to consider all
edges for which node Y is either the start or endpoint, or else the graph has effectively become directed.
To find all nodes accessible from node 1 now requires a bit more code:

SELECT
 CASE
 WHEN X = 1 THEN Y
 ELSE X
 END
FROM Edges e
WHERE
 X = 1 OR Y = 1;

Aside from the increased complexity of this code, there’s another much more important issue:
performance on larger sets will start to suffer due to the fact that the search argument cannot be satisfied
based on an index seek because it relies on two columns with an OR condition. The problem can be fixed
to some degree by creating multiple indexes (one in which each column is the first key) and using a
UNION ALL query, as follows:

SELECT Y
FROM Edges e
WHERE X = 1

UNION ALL

SELECT X
FROM Edges e
WHERE Y = 1;

This code is somewhat unintuitive, and because both indexes must be maintained and the query
must do two index operations to be satisfied, performance will still suffer compared with querying the
directed graph. For that reason, I recommend generally modeling graphs as directed and dealing with
inserting both pairs of edges unless there is a compelling reason not to, such as an extremely large
undirected graph where the extra edge combinations would challenge the server’s available disk space.
The remainder of the examples in this chapter will assume that the graph is directed.

377

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Traversing the Graph
Finding out which nodes a given node is directly connected to is a good start, but in order to answer
questions about the structure of the underlying data, the graph must be traversed. For this section, a
more rigorous example data set is necessary. Figure 12-5 shows an initial sample graph representing an
abbreviated portion of a street map for an unnamed city.

Figure 12-5. An abbreviated street map

A few tables are required to represent this map—to begin with, a table of streets:

CREATE TABLE Streets
(
 StreetId int NOT NULL PRIMARY KEY,
 StreetName varchar(75)
);
GO

INSERT INTO Streets VALUES
 (1, '1st Ave'), (2, '2nd Ave'),
 (3, '3rd Ave'), (4, '4th Ave'), (5, 'Madison');
GO

Each street is assigned a surrogate key so that it can be referenced easily in other tables.
The next requirement is a table of intersections—the nodes in the graph. This table creates a key for

each intersection, which is defined in this set of data as a collection of one or more streets:

CREATE TABLE Intersections
(
 IntersectionId int NOT NULL PRIMARY KEY,
 IntersectionName varchar(10)
);
GO

INSERT INTO Intersections VALUES
 (1, 'A'), (2, 'B'), (3, 'C'), (4, 'D');
GO

Next is a table called IntersectionStreets, which maps streets to their respective intersections.
Note that I haven’t included any constraints on this table, as they can get quite complex. One constraint
that might be ideal would specify that any given combination of streets should not intersect more than
once. However, it’s difficult to say whether this would apply to all cities, given that many older cities

378

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

have twisting roads that may intersect with each other at numerous points. Dealing with this issue is left
as an exercise for you to try on your own.

CREATE TABLE IntersectionStreets
(
 IntersectionId int NOT NULL
 REFERENCES Intersections (IntersectionId),
 StreetId int NOT NULL
 REFERENCES Streets (StreetId),
 PRIMARY KEY (IntersectionId, StreetId)
);
GO

INSERT INTO IntersectionStreets VALUES
 (1, 1), (1, 5), (2, 2), (2, 5), (3, 3), (3, 5), (4, 4), (4, 5);
GO

The final table describes the edges of the graph, which in this case are segments of street between
each intersection. I’ve added a couple of constraints that might not be so obvious at first glance:

Rather than using foreign keys to the Intersections table, the StreetSegments table
references the IntersectionStreets table for both the starting point and ending
point. In both cases, the street is also included in the key. The purpose of this is so
that you can’t start on one street and magically end up on another street or at an
intersection that’s not even on the street you started on.

The CK_Intersections constraint ensures that the two intersections are actually
different—so you can’t start at one intersection and end up at the same place after
only one move. It’s theoretically possible that a circular street could intersect
another street at only one point, in which case traveling the entire length of the
street could get you back to where you started. However, doing so would clearly not
help you traverse through the graph to a destination, which is the situation
currently being considered.

Here’s the T-SQL to create the street segments that constitute the edges of the graph:

CREATE TABLE StreetSegments
(
 IntersectionId_Start int NOT NULL,
 IntersectionId_End int NOT NULL,
 StreetId int NOT NULL,
 CONSTRAINT FK_Start
 FOREIGN KEY (IntersectionId_Start, StreetId)
 REFERENCES IntersectionStreets (IntersectionId, StreetId),
 CONSTRAINT FK_End
 FOREIGN KEY (IntersectionId_End, StreetId)
 REFERENCES IntersectionStreets (IntersectionId, StreetId),
 CONSTRAINT CK_Intersections
 CHECK (IntersectionId_Start <> IntersectionId_End),
 CONSTRAINT PK_StreetSegments
 PRIMARY KEY (IntersectionId_Start, IntersectionId_End)
);

379

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

GO

INSERT INTO StreetSegments VALUES (1, 2, 5), (2, 3, 5), (3, 4, 5);
GO

In addition to these tables, a helper function is useful in order to make navigation easier. The
GetIntersectionId function returns the intersection at which the two input streets intersect. As
mentioned before, the schema used in this example assumes that each street intersects only once with
any other street, and the GetIntersectionId function makes the same assumption. It works by searching
for all intersections that the input streets participate in, and then finding the one that had exactly two
matches, meaning that both input streets intersect. Following is the T-SQL for the function:

CREATE FUNCTION GetIntersectionId
(
 @Street1 varchar(75),
 @Street2 varchar(75)
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
 RETURN
 (
 SELECT
 i.IntersectionId
 FROM dbo.IntersectionStreets i
 WHERE
 StreetId IN
 (
 SELECT StreetId
 FROM dbo.Streets
 WHERE StreetName IN (@Street1, @Street2)
)
 GROUP BY i.IntersectionId
 HAVING COUNT(*) = 2
)
END;
GO

Using the schema and the function, we can start traversing the nodes. The basic technique of
traversing the graph is quite simple: find the starting intersection and all nodes that it connects to, and
iteratively or recursively move outward, using the previous node’s ending point as the starting point for
the next. This is easily accomplished using a recursive common table expression (CTE). The following is
a simple initial example of a CTE that can be used to traverse the nodes from Madison and 1st Avenue to
Madison and 4th Avenue:

DECLARE
 @Start int = dbo.GetIntersectionId('Madison', '1st Ave'),
 @End int = dbo.GetIntersectionId('Madison', '4th Ave');

WITH Paths

380

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

AS
(
 SELECT
 @Start AS theStart,
 IntersectionId_End AS theEnd
 FROM dbo.StreetSegments
 WHERE
 IntersectionId_Start = @Start

 UNION ALL

 SELECT
 p.theEnd,
 ss.IntersectionId_End
 FROM Paths p
 JOIN dbo.StreetSegments ss ON ss.IntersectionId_Start = p.theEnd
 WHERE p.theEnd <> @End
)
SELECT *
FROM Paths;
GO

The anchor part of the CTE finds all nodes to which the starting intersection is connected—in this
case, given the data we’ve already input, there is only one. The recursive part uses the anchor’s output as
its input, finding all connected nodes from there, and continuing only if the endpoint of the next
intersection is not equal to the end intersection. The output for this query is as follows:

theStart theEnd

1 2

2 3

3 4

While this output is correct and perfectly descriptive with only one path between the two points, it
has some problems. First of all, the ordering of the output of a CTE—just like any other query—is not
guaranteed without an ORDER BY clause. In this case, the order happens to coincide with the order of the
path, but this is a very small data set, and the server on which I ran the query has only one processor. On
a bigger set of data and/or with multiple processors, SQL Server could choose to process the data in a
different order, thereby destroying the implicit output order.

The second issue is that in this case there is exactly one path between the start and endpoints. What
if there were more than one path? Figure 12-6 shows the street map with a new street, a few new
intersections, and more street segments added. The following T-SQL can be used to add the new data to
the appropriate tables:

381

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

--New street
INSERT INTO Streets VALUES (6, 'Lexington');
GO
--New intersections
INSERT INTO Intersections VALUES
 (5, 'E'), (6, 'F'), (7, 'G'), (8, 'H');
GO
--New intersection/street mappings
INSERT INTO IntersectionStreets VALUES
 (5, 1), (5, 6), (6, 2), (6, 6), (7, 3), (7, 6), (8, 4), (8, 6);
GO
--North/South segments
INSERT INTO StreetSegments VALUES (2, 6, 2), (4, 8, 4);
GO
--East/West segments
INSERT INTO StreetSegments VALUES (8, 7, 6), (7, 6, 6), (6, 5, 6);
GO

Note that although intersections E and G have been created, their corresponding north/south
segments have not yet been inserted. This is on purpose, as I’m going to use those segments to illustrate
yet another complication.

Figure 12-6. A slightly more complete version of the street map

Once the new data is inserted, we can try the same CTE as before, this time traveling from Madison
and 1st Avenue to Lexington and 1st Avenue. To change the destination, modify the DECLARE statement
that assigns the @Start and @End variables to be as follows:

DECLARE
 @Start int = dbo.GetIntersectionId('Madison', '1st Ave'),
 @End int = dbo.GetIntersectionId('Lexington', '1st Ave');

Having made these changes, the output of the CTE query is now as follows:

382

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

theStart theEnd

1 2

2 3

2 6

6 5

3 4

4 8

8 7

7 6

6 5

There are now two paths from the starting point to the ending point, but it’s impossible to tell what
they are; the intersections involved in each path are mixed up in the output.

To solve this problem, the CTE will have to “remember” on each iteration where it’s been on
previous iterations. Since each iteration of a CTE can only access the data from the previous iteration—
and not all data from all previous iterations—each row will have to keep its own records inline. This can
be done using a materialized path notation, where each previously visited node will be appended to a
running list. This will require adding a new column to the CTE as highlighted in bold in the following
code listing:

DECLARE
 @Start int = dbo.GetIntersectionId('Madison', '1st Ave'),
 @End int = dbo.GetIntersectionId('Lexington', '1st Ave');

WITH Paths
AS
(
 SELECT
 @Start AS theStart,
 IntersectionId_End AS theEnd,
 CAST('/' +
 CAST(@Start AS varchar(255)) + '/' +
 CAST(IntersectionId_End AS varchar(255)) + '/'
 AS varchar(255)) AS thePath
 FROM dbo.StreetSegments
 WHERE
 IntersectionId_Start = @Start
 UNION ALL
 SELECT

383

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 p.theEnd,
 ss.IntersectionId_End,
 CAST(p.ThePath +
 CAST(IntersectionId_End AS varchar(255)) + '/'
 AS varchar(255)
)
 FROM Paths p
 JOIN dbo.StreetSegments ss ON ss.IntersectionId_Start = p.theEnd
 WHERE p.theEnd <> @End
)
SELECT *
FROM Paths;
GO

This code will start to form a list of visited nodes. If node A (IntersectionId 1) is specified as the
start point, the output for this column for the anchor member will be /1/2/, since node B
(IntersectionId 2) is the only node that participates in a street segment starting at node A.

As new nodes are visited, their IDs will be appended to the list, producing a “breadcrumb” trail of all
visited nodes. Note that the columns in both the anchor and recursive members are CAST to make sure
their data types are identical. This is required because the varchar size changes due to concatenation,
and all columns exposed by the anchor and recursive members must have identical types. The output of
the CTE after making these modifications is as follows:

theStart theEnd thePath

1 2 /1/2/

2 3 /1/2/3/

2 6 /1/2/6/

6 5 /1/2/6/5/

3 4 /1/2/3/4/

4 8 /1/2/3/4/8/

8 7 /1/2/3/4/8/7/

7 6 /1/2/3/4/8/7/6/

6 5 /1/2/3/4/8/7/6/5/

The output now includes the complete paths to the endpoints, but it still includes all subpaths
visited along the way. To finish, add the following to the outermost query:

WHERE theEnd = @End

384

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

This will limit the results to only paths that actually end at the specified endpoint—in this case,
node E (IntersectionId 5). After making that addition, only the two paths that actually visit both the
start and end nodes are shown.

The CTE still has one major problem as-is. Figure 12-7 shows a completed version of the map, with
the final two street segments filled in. The following T-SQL can be used to populate the StreetSegments
table with the new data:

INSERT INTO StreetSegments VALUES (5, 1, 1), (7, 3, 3);
GO

Figure 12-7. A version of the map with all segments filled in

Rerunning the CTE after introducing the new segments results in the following partial output
(abbreviated for brevity):

theStart theEnd thePath

6 5 /1/2/6/5/

6 5 /1/2/3/4/8/7/6/5/

6 5 /1/2/3/4/8/7/3/4/8/7/6/5/

6 5 /1/2/3/4/8/7/3/4/8/7/3/4/8/7/6/5/

6 5 /1/2/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/6/5/

6 5 /1/2/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/6/5/

6 5 /1/2/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/6/5/

6 5 /1/2/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/3/4/8/7/6/5/

...

along with the following error:

385

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Msg 530, Level 16, State 1, Line 9

The statement terminated.

The maximum recursion 100 has been exhausted before statement completion.

The issue is that these new intersections create cycles in the graph. The problem can be seen to start
at the fourth line of the output, when the recursion first visits node G (IntersectionId 7). From there,
one can go one of two ways: west to node F (IntersectionId 6) or north to node C (IntersectionId 3).
Following the first route, the recursion eventually completes. But following the second route, the
recursion will keep coming back to node G again and again, following the same two branches.
Eventually, the default recursive limit of 100 is reached and execution ends with an error. Note that this
default limit can be overridden using the OPTION (MAXRECURSION N) query hint, where N is the maximum
recursive depth you’d like to use. In this case, 100 is a good limit because it quickly tells us that there is a
major problem!

Fixing this issue, luckily, is quite simple: check the path to find out whether the next node has
already been visited, and if so, do not visit it again. Since the path is a string, this can be accomplished
using a LIKE predicate by adding the following argument to the recursive member’s WHERE clause:

AND p.thePath NOT LIKE '%/' + CONVERT(varchar, ss.IntersectionId_End) + '/%'

This predicate checks to make sure that the ending IntersectionId, delimited by / on both sides, does
not yet appear in the path—in other words, has not yet been visited. This will make it impossible for the
recursion to fall into a cycle.

Running the CTE after adding this fix eliminates the cycle issue. The full code for the fixed CTE
follows:

DECLARE
 @Start int = dbo.GetIntersectionId('Madison', '1st Ave'),
 @End int = dbo.GetIntersectionId('Lexington', '1st Ave');

WITH Paths
AS
(
 SELECT
 @Start AS theStart,
 IntersectionId_End AS theEnd,
 CAST('/' +
 CAST(@Start AS varchar(255)) + '/' +
 CAST(IntersectionId_End AS varchar(255)) + '/'
 AS varchar(255)) AS thePath
 FROM dbo.StreetSegments
 WHERE
 IntersectionId_Start = @Start
 UNION ALL
 SELECT
 p.theEnd,
 ss.IntersectionId_End,
 CAST(p.ThePath +
 CAST(IntersectionId_End AS varchar(255)) + '/'

386

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 AS varchar(255)
)
 FROM Paths p
 JOIN dbo.StreetSegments ss ON ss.IntersectionId_Start = p.theEnd
 WHERE p.theEnd <> @End
 AND p.thePath NOT LIKE '%/' + CONVERT(varchar, ss.IntersectionId_End) + '/%'
)
SELECT *
FROM Paths;
GO

This concludes this chapter’s coverage on general graphs. The remainder of the chapter deals with
modeling and querying of hierarchies. Although hierarchies are much more specialized than graphs,
they tend to be more typically seen in software projects than general graphs, and developers must
consider slightly different issues when modeling them.

Advanced routing

The example shown in this section is highly simplified, and it is designed to teach the basics of querying
graphs rather than serve as a complete routing solution. I have had the pleasure of working fairly
extensively with a production system designed to traverse actual street routes and will briefly share some
of the insights I have gained in case you are interested in these kinds of problems.

The first issue with the solution shown here is that of scalability. A big city has tens of thousands of street
segments, and determining a route from one end of the city to another using this method will create a
combinatorial explosion of possibilities. In order to reduce the number of combinations, a few things can
be done.

First of all, each segment can be weighted, and a score tallied along the way as you recurse over the
possible paths. If the score gets too high, you can terminate the recursion. For example, in the system I
worked on, weighting was done based on distance traveled. The algorithm used was fairly complex, but
essentially, if a destination was 2 miles away and the route went over 3 miles, recursion would be
terminated for that branch. This scoring also lets the system determine the shortest possible routes.

Another method used to greatly decrease the number of combinations was an analysis of the input set of
streets, and a determination made of major routes between certain locations. For instance, traveling from
one end of the city to another is usually most direct on a freeway. If the system determines that a freeway
route is appropriate, it breaks the routing problem down into two sections: first, find the shortest route
from the starting point to a freeway on-ramp, and then find the shortest route from the endpoint to a
freeway exit. Put these routes together, including the freeway travel, and you have an optimized path from
the starting point to the ending point. Major routes—like freeways—can be underweighted in order to
make them appear higher in the scoring rank.

If you’d like to try working with real street data, you can download US geographical shape files (including
streets as well as various natural formations) for free from the US Census Bureau. The data, called
TIGER/Line, is available from www.census.gov/geo/www/tiger/index.html. Be warned: this data is not
easy to work with and requires a lot of cleanup to get it to the point where it can be easily queried.

387

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Adjacency List Hierarchies
As mentioned previously, any kind of graph can be modeled using an adjacency list. This of course
includes hierarchies, which are nothing more than rooted, directed, acyclic graphs with exactly one path
between any two nodes (irrespective of direction). Adjacency list hierarchies are very easy to model,
visualize, and understand, but can be tricky or inefficient to query in some cases since they require
iteration or recursion, as I’ll discuss shortly.

Traversing an adjacency list hierarchy is virtually identical to traversing an adjacency list graph, but
since hierarchies don’t have cycles, you don’t need to worry about them in your code. This is a nice
feature, since it makes your code shorter, easier to understand, and more efficient. However, being able
to make the assumption that your data really does follow a hierarchical structure—and not a general
graph—takes a bit of work up front. See “Constraining the Hierarchy” later in this section for
information on how to make sure that your hierarchies don’t end up with cycles, multiple roots, or
disconnected subtrees.

The most commonly recognizable example of an adjacency list hierarchy is a self-referential
personnel table that models employees and their managers. Since it’s such a common and easily
understood example, this is the scenario that will be used for this section and the rest of this chapter.

To start, we’ll create an simple adjacency list based on three columns of data from the
HumanResources.Employee table of the AdventureWorks database. The columns used will be as follows:

• EmployeeID is the primary key for each row of the table. Most of the time,
adjacency list hierarchies are modeled in a node-centric rather than edge-centric
way; that is, the primary key of the hierarchy is the key for a given node, rather
than a key representing an edge. This makes sense because each node in a
hierarchy can only have one direct ancestor.

• ManagerID is the key for the employee that each row reports to in the same table. If
ManagerID is NULL, that employee is the root node in the tree (i.e., the head of the
company). It’s common when modeling adjacency list hierarchies to use either
NULL or an identical key to the row’s primary key to represent root nodes.

• Finally, the Title column, representing employees’ job titles, will be used to make
the output easier to read.

You can use the following T-SQL to create a table based on these columns:

USE AdventureWorks;
GO

CREATE TABLE Employee_Temp
(
 EmployeeID int NOT NULL
 CONSTRAINT PK_Employee PRIMARY KEY,
 ManagerID int NULL
 CONSTRAINT FK_Manager REFERENCES Employee_Temp (EmployeeID),
 Title nvarchar(100)
);
GO

INSERT INTO Employee_Temp
(
 EmployeeID,

388

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 ManagerID,
 Title
)
SELECT
 EmployeeID,
 ManagerID,
 Title
FROM HumanResources.Employee;
GO

The types of questions generally posed against a hierarchy are somewhat different from the example
graph traversal questions examined in the previous section. For adjacency lists as well as the other
hierarchical models discussed in this chapter, we’ll consider how to answer the following common
questions:

• What are the direct descendants of a given node? In other words, who are the
people who directly report to a given manager?

• What are all of the descendants of a given node? Which is to say, how many people
all the way down the organizational hierarchy ultimately report up to a given
manager? The challenge here is how to sort the output so that it makes sense with
regard to the hierarchy.

• What is the path from a given child node back to the root node? In other words,
following the management path up instead of down, who reports to whom?

I will also discuss the following data modification challenges:

• Inserting a new node into the hierarchy, as when a new employee is hired

• Relocating a subtree, such as might be necessary if a division gets moved under a
new manager

• Deleting a node from the hierarchy, which might, for example, need to happen in
an organizational hierarchy due to attrition

Each of the techniques discussed in this chapter have slightly different levels of difficulty with regard
to the complexity of solving these problems, and I will make general suggestions on when to use each
model.

Finding Direct Descendants
Finding the direct descendants of a given node is quite straightforward in an adjacency list hierarchy; it’s
the same as finding the available nodes to which you can traverse in a graph. Start by choosing the
parent node for your query, and select all nodes for which that node is the parent. To find all employees
that report directly to the CEO (EmployeeID 109), use the following T-SQL:

SELECT *
FROM Employee_Temp
WHERE ManagerID = 109;

This query returns the results shown following, showing the six branches of AdventureWorks,
represented by its upper management team—exactly the results that we expected.

389

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

EmployeeID ManagerID Title

6 109 Marketing Manager

12 109 Vice President of Engineering

42 109 Information Services Manager

140 109 Chief Financial Officer

148 109 Vice President of Production

273 109 Vice President of Sales

However, this query has a hidden problem: traversing from node to node in the Employee_Temp table
means searching based on the ManagerID column. Considering that this column is not indexed, it should
come as no surprise that the query plan for the preceding query involves a scan, as shown in Figure 12-8.

Figure 12-8. Querying on the ManagerID causes a table scan.

To eliminate this issue, an index on the ManagerID column must be created. However, choosing
exactly how best to index a table such as this one can be difficult. In the case of this small example, a
clustered index on ManagerID would yield the best overall mix of performance for both querying and data
updates, by covering all queries that involve traversing the table. However, in an actual production
system, there might be a much higher percentage of queries based on the EmployeeID—for instance,
queries to get a single employee’s data—and there would probably be a lot more columns in the table
than the three used here for example purposes, meaning that clustered key lookups could be expensive.
In such a case, it is important to test carefully which combination of indexes delivers the best balance of
query and data modification performance for your particular workload.

In order to show the best possible performance in this case, change the primary key to use a
nonclustered index and create a clustered index on ManagerID, as shown in the following T-SQL:

ALTER TABLE Employee_Temp
DROP CONSTRAINT FK_Manager, PK_Employee;

CREATE CLUSTERED INDEX IX_Manager
ON Employee_Temp (ManagerID);

ALTER TABLE Employee_Temp
ADD CONSTRAINT PK_Employee
PRIMARY KEY NONCLUSTERED (EmployeeID);

GO

390

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 Caution Adding a clustered index to the nonkey ManagerId column might result in the best performance for
queries designed solely to determine those employees that report to a given manager, but it is not necessarily the
best design for a general purpose employees table.

Once this change has been made, rerunning the T-SQL to find the CEO’s direct reports produces a
clustered index seek instead of a scan—a small improvement that will be magnified when performing
queries against a table with a greater number of rows.

Traversing down the Hierarchy
Shifting from finding direct descendants of one node to traversing down the entire hierarchy all the way
to the leaf nodes is extremely simple, just as in the case of general graphs. A recursive CTE is one tool
that can be used for this purpose. The following CTE, modified from the section on graphs, traverses the
Employee_Temp hierarchy starting from the CEO, returning all employees in the company:

WITH n AS
(
 SELECT
 EmployeeID,
 ManagerID,
 Title
 FROM Employee_Temp
 WHERE ManagerID IS NULL

 UNION ALL

 SELECT
 e.EmployeeID,
 e.ManagerID,
 e.Title
 FROM Employee_Temp e
 JOIN n ON n.EmployeeID = e.ManagerID
)
SELECT
 n.EmployeeID,
 n.ManagerID,
 n.Title
FROM n;
GO

Note that this CTE returns all columns to be used by the outer query—but this is not the only way to
write this query. The query could also be written such that the CTE uses and returns only the EmployeeID
column, necessitating an additional JOIN in the outer query to get the other columns:

WITH n AS
(

391

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 SELECT
 EmployeeID
 FROM Employee_Temp
 WHERE ManagerID IS NULL

 UNION ALL

 SELECT
 e.EmployeeID
 FROM Employee_Temp e
 JOIN n ON n.EmployeeID = e.ManagerID
)
SELECT
 e.EmployeeID,
 e.ManagerID,
 e.Title
FROM n
JOIN Employee_Temp e ON e.EmployeeID = n.EmployeeID;
GO

I thought that this latter form might result in less I/O activity, but after testing several combinations
of indexes against both query forms, using this table as well as tables with many more columns, I
decided that there is no straightforward answer. The latter query tends to perform better as the output
row size increases, but in the case of the small test table, the former query is much more efficient. Again,
this is something you should test against your actual workload before deploying a solution.

Ordering the Output
Regardless of the performance of the two queries listed in the previous section, the fact is that we haven’t
really done much yet. The output of either of these queries as they currently stand is logically equivalent
to the output of SELECT * FROM Employee_Temp. In order to add value, the output should be sorted such
that it conforms to the hierarchy represented in the table. To do this, we can use the same path
technique described in the section “Traversing the Graph,” but without the need to be concerned with
cycles. By ordering by the path, the output will follow the same nested order as the hierarchy itself. The
following T-SQL shows how to accomplish this:

WITH n AS
(
 SELECT
 EmployeeID,
 ManagerID,
 Title,
 CONVERT(varchar(900),
 RIGHT(REPLICATE('0', 10) + CONVERT(varchar, EmployeeID), 10) + '/'
) AS thePath
 FROM Employee_Temp
 WHERE ManagerID IS NULL

 UNION ALL

392

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 SELECT
 e.EmployeeID,
 e.ManagerID,
 e.Title,
 CONVERT(varchar(900),
 n.thePath +
 RIGHT(REPLICATE('0', 10) + CONVERT(varchar, e.EmployeeID), 10) + '/'
) AS thePath
 FROM Employee_Temp e
 JOIN n ON n.EmployeeID = e.ManagerID
)
SELECT
 n.EmployeeID,
 n.ManagerID,
 n.Title,
 n.thePath
FROM n
ORDER BY n.thePath;
GO

Running this query produces the output shown following (truncated for brevity):

EmployeeID ManagerID Title thePath

109 NULL Chief Executive Officer 0000000109/

6 109 Marketing Manager 0000000109/0000000006/

2 6 Marketing Assistant 0000000109/0000000006/0000000002/

46 6 Marketing Specialist 0000000109/0000000006/0000000046/

106 6 Marketing Specialist 0000000109/0000000006/0000000106/

119 6 Marketing Specialist 0000000109/0000000006/0000000119/

203 6 Marketing Specialist 0000000109/0000000006/0000000203/

269 6 Marketing Assistant 0000000109/0000000006/0000000269/

271 6 Marketing Specialist 0000000109/0000000006/0000000271/

272 6 Marketing Assistant 0000000109/0000000006/0000000272/

12 109 V President Engineering 0000000109/0000000012/

3 12 Engineering Manager 0000000109/0000000012/0000000003/

In order to support proper numerical ordering on the nodes, I’ve left-padded them with zeros. This
ensures that, for instance, the path 1/2/ does not sort higher than the path 1/10/. The numbers are
padded to ten digits to support the full range of positive integer values supported by SQL Server’s int
data type. Note that siblings in this case are ordered based on their EmployeeID. Changing the ordering of
siblings—for instance, to alphabetical order based on Title—requires a bit of manipulation to the path.
Instead of materializing the EmployeeID, materialize a row number that represents the current ordered

393

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

sibling. This can be done using SQL Server’s ROW_NUMBER function, and is sometimes referred to as
enumerating the path. The following modified version of the CTE enumerates the path:

WITH n AS
(
 SELECT
 EmployeeID,
 ManagerID,
 Title,
 CONVERT(varchar(900),
 '0000000001/'
) AS thePath
 FROM Employee_Temp
 WHERE ManagerID IS NULL

 UNION ALL

 SELECT
 e.EmployeeID,
 e.ManagerID,
 e.Title,
 CONVERT(varchar(900),
 n.thePath +
 RIGHT(
 REPLICATE('0', 10) +
 CONVERT(varchar, ROW_NUMBER() OVER (ORDER BY e.Title)),
 10
) + '/'
) AS thePath
 FROM Employee_Temp e
 JOIN n ON n.EmployeeID = e.ManagerID
)
SELECT
 n.EmployeeID,
 n.ManagerID,
 n.Title,
 n.thePath
FROM n
ORDER BY n.thePath;
GO

The enumerated path representing each node is illustrated in the results of the query as follows:

394

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

EmployeeID ManagerID Title thePath

109 NULL Chief Executive Officer 00000001/

140 109 Chief Financial Officer 00000001/00000001/

139 140 Accounts Manager 00000001/00000001/00000001/

216 139 Accountant 00000001/00000001/00000001/00000001/

178 139 Accountant 00000001/00000001/00000001/00000002/

166 139 Accs Payable Specialist 00000001/00000001/00000001/00000003/

201 139 Accs Payable Specialist 00000001/00000001/00000001/00000004/

130 139 Accs Recvble Specialist 00000001/00000001/00000001/00000005/

94 139 Accs Recvble Specialist 00000001/00000001/00000001/00000006/

59 139 Accs Recvble Specialist 00000001/00000001/00000001/00000007/

103 140 Assistant to the CFO 00000001/00000001/00000002/

71 140 Finance Manager 00000001/00000001/00000003/

274 71 Purchasing Manager 00000001/00000001/00000003/00000001/

 Tip Instead of left-padding the node IDs with zeros, you could expose the thePath column typed as varbinary
and convert the IDs to binary(4). This would have the same net effect for the purpose of sorting and at the same
time take up less space—so you will see an efficiency benefit, and in addition you’ll be able to hold more node IDs
in each row’s path. The downside is that this makes the IDs more difficult to visualize, so for the purposes of this
chapter—where visual cues are important—I use the left-padding method instead.

The downside of including an enumerated path instead of a materialized path is that the
enumerated version cannot be easily deconstructed to determine the keys that were followed. For
instance, simply looking at the thePath column in the results of the first query in this section, we can see
that the path to the Engineering Manager (EmployeeID 3) starts with EmployeeID 109 and continues to
EmployeeID 12 before getting to the Engineering Manager. Looking at the same column using the
enumerated path, it is not possible to discover the actual IDs that make up a given path without
following it back up the hierarchy in the output.

395

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Are CTEs the Best Choice?
While CTEs are possibly the most convenient way to traverse adjacency list hierarchies in SQL Server
2008, they do not necessarily deliver the best possible performance. Iterative methods involving
temporary tables or table variables may well outperform recursive CTEs, especially as the hierarchy
grows in size.

To highlight the performance difference between CTEs and iterative methods, a larger sample
hierarchy is necessary. To begin with, we can add width to the Employee_Temp hierarchy. This means that
the hierarchy will maintain the same depth, but each level will have more siblings. To accomplish this,
for each row below a given subtree, both the employee IDs and manager IDs can be incremented by the
same known amount, thereby producing a duplicate subtree in place. The following T-SQL
accomplishes this, running in a loop five times and doubling the width of the hierarchy on each
iteration:

DECLARE @CEO int;
SELECT
 @CEO = EmployeeID
FROM Employee_Temp
WHERE ManagerID IS NULL;

DECLARE @width int = 1;

WHILE @width <= 16
BEGIN
 INSERT INTO Employee_Temp
 (
 EmployeeID,
 ManagerID,
 Title
)
 SELECT
 e.EmployeeID + (1000 * @width),
 CASE e.ManagerID
 WHEN @CEO THEN e.ManagerID
 ELSE e.ManagerID + (1000 * @width)
 END,
 e.Title
 FROM Employee_Temp e
 WHERE
 e.ManagerID IS NOT NULL;

 SET @width = @width * 2;
END;
GO

There are two key factors you should pay attention to in this example. First is the @width variable,
which is doubled on each iteration in order to avoid key collisions as the keys are incremented. Second,
look at the CASE expression in the SELECT list, which increments all IDs except that of the CEO. This
ensures that the duplicate subtrees will be appended to the tree as a whole, by virtue of the roots of those
subtrees being subordinates of the CEO’s node, rather than the node at the top of each subtree
becoming an additional root node.

396

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Once this code has been run, the Employee_Temp hierarchy will have 9,249 nodes, instead of the 290
that we started with. However, the hierarchy still has only five levels. To increase the depth, a slightly
different algorithm is required. To add levels, find all managers except the CEO, and insert new duplicate
nodes, incrementing their employee IDs similar to before. Next, update the preexisting managers in the
table to report to the new managers. The following T-SQL does this in a loop four times, producing a
hierarchy with a depth of 50 levels and 31,329 nodes:

DECLARE @CEO int;
SELECT
 @CEO = EmployeeID
FROM Employee_Temp
WHERE ManagerID IS NULL;

DECLARE @depth int = 32;

WHILE @depth <= 256
BEGIN
 DECLARE @OldManagers table
 (
 EmployeeID int
);

 --Insert intermediate managers
 --Find all managers except the CEO, and increment their EmployeeID by 1000
 INSERT INTO Employee_Temp
 (
 EmployeeID,
 ManagerID,
 Title
)
 OUTPUT inserted.EmployeeID - (1000 * @depth) INTO @OldManagers
 SELECT
 e.EmployeeID + (1000 * @depth) as newemp,
 e.ManagerID,
 'Intermediate Manager'
 FROM Employee_Temp e
 WHERE
 e.EmployeeID <> @CEO
 AND EXISTS
 (
 SELECT *
 FROM Employee_Temp e1
 WHERE e1.ManagerID = e.EmployeeID
);

 --Update existing managers to report to intermediates
 UPDATE Employee_Temp
 SET ManagerID = EmployeeID + (1000 * @depth)
 WHERE
 EmployeeID IN
 (

397

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 SELECT EmployeeID
 FROM @OldManagers
);

 SET @depth = @depth * 2;
END;
GO

Be careful when adding additional depth to an experimental hierarchy. I’ve found that depth has a
much greater performance impact than width, and extremely deep hierarchies are not especially
common—for instance, even the largest companies do not normally have more than 20 or 30 levels of
management.

To iteratively traverse the hierarchy using a table variable, think about what recursion does: at each
level, the employees for the previous level’s managers are found, and then that level becomes the
current level. Applying this logic iteratively requires the following table variable:

DECLARE @n table
(
 EmployeeID int,
 ManagerID int,
 Title nvarchar(100),
 Depth int,
 thePath varchar(900),
 PRIMARY KEY (Depth, EmployeeID)
);

The Depth column maintains the level for nodes as they are inserted. The table is clustered on the
combination of Depth and EmployeeID; at each level, the depth will be queried first, and we know that
EmployeeID will be unique so we can exploit it as a method of ensuring that the key itself is unique.

To start things off, prime the table variable with the node you wish to use as the root for traversal. In
this case, the CEO’s node will be used, and the path is started with 1/, as I’ll be implementing the
enumerated path output shown in the previous example:

DECLARE @depth int = 1;

INSERT INTO @n
SELECT
 EmployeeID,
 ManagerID,
 Title,
 @depth,
 '0000000001/'
FROM Employee_Temp
WHERE ManagerID IS NULL;

After the first row is in place, the logic is identical to the recursive logic used in the CTE. For each
level of depth, find the subordinates. The only difference is that this is done using a WHILE loop instead of
a recursive CTE:

WHILE 1=1
BEGIN

398

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 INSERT INTO @n
 SELECT
 e.EmployeeID,
 e.ManagerID,
 e.Title,
 @depth + 1,
 n.thePath +
 RIGHT(
 REPLICATE('0', 10) +
 CONVERT(varchar, ROW_NUMBER() OVER
 (PARTITION BY e.ManagerID ORDER BY e.Title)),
 10
) + '/'
 FROM Employee_Temp e
 JOIN @n n on n.EmployeeID = e.ManagerID
 WHERE n.Depth = @depth;

 IF @@ROWCOUNT = 0
 BREAK;

 SET @depth = @depth + 1;
END

Finally, the output can be queried from the table variable. Like before, an ORDER BY clause is
necessary:

SELECT
 EmployeeID,
 ManagerID,
 Title,
 thePath
FROM @n
ORDER BY
 thePath;

This method uses over 50 percent more code than the CTE, is quite a bit less intuitive, and has many
more potential areas in which you might introduce logic bugs. However, its performance is quite a bit
better than the CTE. The enumerated path CTE performs 347,282 reads and runs in 27.6 seconds on my
laptop against the enhanced Employee_Temp table. The iterative method, on the other hand, requires only
173,536 reads and runs in 13.2 seconds.

Despite the clear performance improvement in this case, I do not recommend this method for the
majority of situations. I feel that the maintainability issues overshadow the performance benefits in all
but the most extreme cases (such as that demonstrated here). For that reason, the remaining examples
in this chapter will use CTEs. However, you should be able to convert any of the examples so that they
use iterative logic. Should you decide to use this technique on a project, you might find it beneficial to
encapsulate the code in a multistatement table-valued UDF to allow greater potential for reuse.

399

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 Note If you’re following along with the examples in this chapter and you increased the number of rows in the
Employee_Temp table, you should drop and re-create it before continuing with the rest of the chapter.

Traversing up the Hierarchy
For an adjacency list, traversing “up” the hierarchy—in other words, finding any given node’s ancestry
path back to the root node—is essentially the same as traversing down the hierarchy in reverse. Instead
of using ManagerID as a key at each level of recursion, use EmployeeID. The following CTE shows how to
get the path from the Research and Development Manager, EmployeeID 217, to the CEO:

WITH n AS
(
 SELECT
 ManagerID,
 CONVERT(varchar(900),
 RIGHT(
 REPLICATE('0', 10) +
 CONVERT(varchar, EmployeeID) + '/', 10)
) AS thePath
 FROM Employee_Temp
 WHERE EmployeeID = 217

 UNION ALL

 SELECT
 e.ManagerID,
 CONVERT(varchar(900),
 n.thePath +
 RIGHT(
 REPLICATE('0', 10) +
 CONVERT(varchar, e.EmployeeID),
 10) + '/'
) AS thePath
 FROM Employee_Temp e
 JOIN n ON n.ManagerID = e.EmployeeID
)
SELECT *
FROM n
WHERE ManagerID IS NULL;

This query returns the path from the selected node to the CEO as a materialized path of employee
IDs. However, you might instead want to get the results back as a table of employee IDs. In order to do
that, change the outer query to the following:

SELECT
 COALESCE(ManagerID, 217) AS EmployeeID
FROM n
ORDER BY

400

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 CASE
 WHEN ManagerID IS NULL THEN 0
 ELSE 1
 END,
 thePath;

In this case, the COALESCE function used in the SELECT list replaces the CEO’s ManagerID—which is
NULL—with the target EmployeeID. The CASE expression in the ORDER BY clause forces the NULL row to sort
at the top so that the target EmployeeID is returned first. All other sorting is based on the materialized
path, which naturally returns the CEO’s row last.

Inserting New Nodes and Relocating Subtrees
In an adjacency list hierarchy, inserting new nodes is generally quite straightforward. Inserting a leaf
node (i.e., a node with no subordinates) requires simply inserting a new node into the table. To insert a
nonleaf node, you must also update any direct subordinates of the node you’re inserting under, so that
they point to their new manager. This is effectively the same as inserting a new node and then relocating
the old node’s subtree under the new node, which is why I’ve merged these two topics into one section.

As an example, suppose that AdventureWorks has decided to hire a new CTO, to whom the current
Vice President of Engineering (EmployeeID 12) will be reporting. To reflect these changes in the
Employee_Temp table, first insert the new CTO node, and then update the VP’s node to report to the new
CTO:

INSERT INTO Employee_Temp
(
 EmployeeID,
 ManagerID,
 Title
)
VALUES
(
 999,
 109,
 'CTO'
);
GO

UPDATE Employee_Temp
SET ManagerID = 999
WHERE EmployeeID = 12;
GO

That’s it! This same logic can be applied for any subtree relocation—one of the advantages of
adjacency lists over the other hierarchical techniques discussed in this chapter is the ease with which
data modifications like this can be handled.

401

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Deleting Existing Nodes
Removing nodes in an adjacency list is only slightly trickier than inserting a new nonleaf node. This time,
the first step is to relocate any subordinates that report to the node to be deleted—the key is that
subordinates is plural this time, as there may be more than one. Once those subtrees are relocated to
their new manager, the leaf node can simply be removed.

Suppose that on her first day at the office, the new CTO won the lottery and decided that she would
rather race her yacht than continue to work at AdventureWorks. Removing her from the organizational
hierarchy requires relocating her reports back to the CEO, and then deleting her node, which will then
be a leaf. Due to the self-referencing foreign key on the table, nonleaf nodes cannot be deleted—this is
another nice fringe benefit of adjacency lists.

The following T-SQL can be used to relocate subordinates of the CTO to her immediate manager,
and then remove the CTO’s node:

UPDATE Employee_Temp
SET ManagerID =
 (
 SELECT ManagerID
 FROM Employee_Temp
 WHERE EmployeeID = 999
)
WHERE ManagerID = 999;

DELETE FROM Employee_Temp
WHERE EmployeeID = 999;

This code works by finding the manager for the node to be removed, and updating all of the node’s
direct subordinates to point to that manager (in other words, the “grandfather” node for each of the
subordinates becomes their “father” node). Once the update is complete, the node is a leaf, and so can
be removed.

Constraining the Hierarchy
Each of the hierarchical traversal examples shown in this chapter makes a very important assumption
about the data: it is taken for granted that there are no cycles or other data issues that would breach the
rules of a valid hierarchy. The main benefit of this assumption is that the resultant code can be made a
lot simpler; the problem is that the simpler code is prone to various problems should bad data creep in—
and as most readers are no doubt aware, bad data can and will creep in if given the opportunity.

Simple code is a good thing, so instead of making the code more complex, we have a choice: either
cross our fingers for luck and hope that the system never has occasion to melt down at runtime, or
better, actually constrain the data to ensure that it remains valid. From a defensive point of view, I highly
recommend the second approach.

There are two possible issues that can make life difficult for hierarchical queries: forests and cycles.
Forests occur when there are multiple root nodes in the hierarchy. And although they may make sense
for some types of data, for organizational charts they do not. Cycles occur when, somewhere
downstream from a given node, that node is suddenly referenced again. For example, if George manages
Ed, Ed manages Steve, and Steve manages George, a cycle has been formed—this is not only unrealistic,
but also cause for a runtime exception due to an endless loop!

The Employee_Temp table we’ve been working with already has a couple of constraints that help
guard against certain issues: a primary key and a self-referencing foreign key. The primary key, which is

402

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

on the EmployeeID column, guards against most cycles by making it impossible for a given employee to
have more than one manager. And the self-referencing foreign key guards against most forest issues
because every node must be connected to another node that already exists—unless it’s a root node.

The first thing that must be constrained against is multiple root nodes. One method that might
come to mind to handle this is using a trigger, but I find it slightly more interesting to employ an indexed
view:

CREATE VIEW OnlyOneRoot
WITH SCHEMABINDING
AS
 SELECT
 ManagerID
 FROM dbo.Employee_Temp
 WHERE
 ManagerID IS NULL;
GO

CREATE UNIQUE CLUSTERED INDEX IX_OnlyOneRoot
ON OnlyOneRoot (ManagerID);
GO

The view returns all rows in the table with a NULL manager ID, and the index, because it is UNIQUE,
only allows one such row to be inserted.

While this approach works well to prevent multiple root nodes from being created, it does not
enforce the hierarchical condition that there should always be exactly one root node. For example, it
doesn’t stop someone from assigning a manager to the root node (the unique constraint can only
enforce rows that exist, and by updating the table, the NULL manager ID would no longer exist at all). To
solve this problem, a trigger can be used to make sure that there is always at least one NULL manager ID
in the table:

CREATE TRIGGER tg_AtLeastOneRoot
ON Employee_Temp
FOR UPDATE
AS
BEGIN
 SET NOCOUNT ON;

 IF NOT EXISTS
 (
 SELECT *
 FROM Employee_Temp
 WHERE ManagerID IS NULL
)
 BEGIN
 RAISERROR('A root node is required', 16, 1);
 ROLLBACK;
 END
END;
GO

403

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

To eliminate the possibility of cycles, we need to think about what kinds of cycles can exist in the
table. To begin with, the simplest cycle—and one that’s not constrained against by either the primary
key or the foreign key—is an employee managing herself. This is easily solved with a check constraint:

ALTER TABLE Employee_Temp
ADD CONSTRAINT ck_ManagerIsNotEmployee
 CHECK (EmployeeID <> ManagerID);
GO

This constraint does nothing for deeper cycles, where an employee manages himself one or more
levels below. For instance, if George manages Ed and Ed manages Steve, someone could issue an update
to the table so that Ed manages George. This would create a deeper cycle that the constraint would not
be able to catch. In order to solve this problem, a trigger can be employed. The trigger should start with
the updated row, traversing up the tree toward the root node. Should it encounter the same employee a
second time before hitting the root, it is apparent that there is a cycle. Following is the code for such a
trigger:

CREATE TRIGGER tg_NoCycles
ON Employee_Temp
FOR UPDATE
AS
BEGIN
 SET NOCOUNT ON;

 --Only check if the ManagerID column was updated
 IF NOT UPDATE(ManagerID)
 RETURN;

 --Avoid cycles
 DECLARE @CycleExists bit = 0;

 --Traverse up the hierarchy toward the leaf node
 WITH e AS
 (
 SELECT EmployeeID, ManagerID
 FROM inserted

 UNION ALL

 SELECT e.EmployeeID, et.ManagerID
 FROM Employee_Temp et
 JOIN e ON e.ManagerID = et.EmployeeID
 WHERE
 et.ManagerID IS NOT NULL
 AND e.ManagerID <> e.EmployeeID
)
 SELECT @CycleExists = 1
 FROM e
 WHERE e.ManagerID = e.EmployeeID;

 IF @CycleExists = 1

404

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 BEGIN
 RAISERROR('The update introduced a cycle', 16, 1);
 ROLLBACK;
 END
END
GO

This type of cycle can only be caused by either updates or multirow inserts, and in virtually all of the
hierarchies I’ve seen in production environments, there were no multirow inserts. Therefore, this trigger
is set to only fire on updates. Remember to change the trigger definition if you need to work with
multirow inserts in your environment.

 Caution Excessive or inappropriate use of triggers can degrade query performance. While the solution
proposed in this section solves the problem of cycles using triggers in the database, you might want to consider
enforcing this kind of business logic in an application layer instead, if it makes more sense to do so.

Persisted Materialized Paths
The adjacency list model, while both a de facto standard for modeling hierarchies and extremely easy to
work with from a data manipulation point of view, suffers from inefficiencies due to the fact that the
hierarchy must be traversed using either recursion or iteration. In this section we’ll look at an alternative
technique that avoids this problem: persisted materialized paths. While this technique can act as a
stand-alone replacement for adjacency lists, I recommend using it in conjunction with existing
adjacency list hierarchies. In the following sections, I will show you how to maintain both hierarchy
types alongside each other in the Employee_Temp table, using a series of triggers.

In the previous section’s examples, a materialized path was used to provide an ordered
representation of the hierarchy for output purposes. This same path can be persisted in the table to
allow you to answer all of the same hierarchical questions as with an adjacency list, but without the
necessity for recursion or iteration.

To add and populate a materialized path column to the Employee_Temp table, first add a new column
of type varchar(900) and then update the table using a recursive CTE used to get the path for each node:

ALTER TABLE Employee_Temp
ADD thePath varchar(900);
GO

WITH n AS
(
 SELECT
 EmployeeID,
 CONVERT(varchar(900),
 '/' + CONVERT(varchar, EmployeeID) + '/'
) AS thePath
 FROM Employee_Temp
 WHERE ManagerID IS NULL

405

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 UNION ALL

 SELECT
 e.EmployeeID,
 CONVERT(varchar(900),
 n.thePath +
 CONVERT(varchar, e.EmployeeID) + '/'
) AS thePath
 FROM Employee_Temp e
 JOIN n ON n.EmployeeID = e.ManagerID
)
UPDATE Employee_Temp
 SET Employee_Temp.thePath = n.thePath
 FROM Employee_Temp
 JOIN n ON n.EmployeeID = Employee_Temp.EmployeeID;
GO

varchar(900) is important in this case because the materialized path will be used as an index key in
order to allow it to be efficiently used to traverse the hierarchy. Index keys in SQL Server are limited to
900 bytes. This is also a bit of a limitation for persisted materialized paths; a path to navigate an
especially deep hierarchy will not be indexable and therefore will not be usable for this technique.

As with a pure adjacency list hierarchy, the best indexing scheme for a persisted materialized path
should be determined through careful testing of your particular workload. That said, I can all but
guarantee that a clustered index will never be the right choice. Since the paths can grow quite large, and
every nonclustered index inherits the clustered index’s keys, clustering on the path will grow the page
sizes of every index created on the table. The path doesn’t bring any value in its nonindexed form, so I
don’t recommend trying that technique. Instead, create a nonclustered covering index, and use the
INCLUDE clause to bring along any columns that are commonly used in conjunction with hierarchical
searches of the data. In the case of the Employee_Temp table, the index will include the Title and
EmployeeID columns so that the same output shown before can be most efficiently produced via the
materialized path (the table is clustered on ManagerID, so that does not have to be explicitly included):

CREATE NONCLUSTERED INDEX IX_Employee_Temp_Path
ON Employee_Temp (thePath)
INCLUDE (EmployeeID, Title);

Finding Subordinates
Since the materialized path is a string, we can take advantage of SQL Server’s LIKE predicate to traverse
down the hierarchy. The path for every given node N that is a subordinate of some node M starts with
node M’s path. Looking back at the results of the enumerated path contained in the last section, notice
that since all nodes are descendants of EmployeeID 109 (the CEO), every path starts with the string 109/.
Likewise, moving down the hierarchy, every subordinate node inherits its parent’s path and adds its own
ID to the end.

Therefore, searching for all subordinates of a given employee is as simple as using the LIKE
predicate and adding the wildcard character, %. The following query finds all subordinates of the Vice
President of Engineering (EmployeeID 12), using the materialized path:

DECLARE @Path varchar(900);
SELECT @Path = thePath

406

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

FROM Employee_Temp
WHERE EmployeeID = 12;

SELECT *
FROM Employee_Temp
WHERE
 thePath LIKE @Path + '%'
ORDER BY thePath;

Performance of this query compared to the CTE solution, even against the small table, is fairly
impressive. To find all subordinates of the Vice President using the CTE, the query engine must perform
187 logical reads. To do the same thing using the materialized path requires only 6.

Finding only the direct reports for a given node is just a bit trickier. This time, a naked wildcard does
not do the trick, as it will return the input node, its children, and children of its children. To eliminate
the input node, we can change the predicate to thePath LIKE @Path + '%/'. This will return false for the
input node, since the additional oblique stroke is not present in its path. However, this still includes all
children nodes, as each has a path suffixed by a stroke. To eliminate children of children, the following
NOT LIKE predicate must be added: AND thePath NOT LIKE @Path + '%/%/'. Essentially, this predicate
says that the target path can only have one more stroke than the input path—and therefore, that path is
one level of depth below. The following T-SQL finds the direct reports for the Vice President of
Engineering:

DECLARE @Path varchar(900);
SELECT @Path = thePath
FROM Employee_Temp
WHERE EmployeeID = 12;

SELECT *
FROM Employee_Temp
WHERE
 thePath LIKE @Path + '%/'
 AND thePath NOT LIKE @Path + '%/%/';

Navigating up the Hierarchy
One of the limitations of persisted materialized paths is that there is no especially efficient way to use
them to navigate up the hierarchy in order to produce the “how do we get to the CEO from the current
node” report. However, the materialized path itself already contains all of the information necessary—
it’s just that the data needs to be manipulated a bit to get it into a usable format.

The path for each employee is a stroke-delimited ordered list of the nodes that lead from the root
node to the given employee. In order to generate a table from the list, it must be split up based on its
delimiters. This can be done by recursively using the SUBSTRING function. By putting this logic in a
recursive CTE, we can take the substring of each node in the path on each iteration. Simultaneously, we
can remember the order of the nodes in the list so that the output can be ordered properly. The
following CTE finds the path to the CEO starting at the Research and Development Manager:

WITH n AS
(
 SELECT
 CONVERT(int,

407

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 SUBSTRING(thePath, 2, CHARINDEX('/', thePath, 2) -2)) AS EmployeeID,
 SUBSTRING(thePath, CHARINDEX('/', thePath, 2), LEN(thePath)) AS thePath,
 1 AS theLevel
 FROM Employee_Temp
 WHERE EmployeeID = 217

 UNION ALL

 SELECT
 CONVERT(int,
 SUBSTRING(thePath, 2, CHARINDEX('/', thePath, 2) -2)),
 SUBSTRING(thePath, CHARINDEX('/', thePath, 2), LEN(thePath)),
 theLevel + 1
 FROM n
 WHERE thePath LIKE '/%/'
)
SELECT *
FROM n
ORDER BY theLevel;

The output of this query is as follows:

EmployeeID thePath theLevel

109 /12/3/158/217/ 1

12 /3/158/217/ 2

3 /158/217/ 3

158 /217/ 4

217 5

Aside from the expression used to pull out the current first node, another expression I used in both
the anchor and recursive members cuts the first node out of the path, so that the path progressively
shrinks as the CTE recurses at each level. This time, the cut starts just after the first delimiter—and takes
the entire remainder of the path.

Although the EmployeeID column is probably the only one necessary in the output, I’ve left the other
columns in so that you can see how the path is affected by the CTE’s logic at each level.

Inserting Nodes
Whenever a new leaf node is added to the hierarchy, its parent’s path must be determined, and the new
node appended to the path. This logic can be encapsulated in a trigger such that whenever new nodes
are inserted into the adjacency list, their paths will automatically be updated. The following trigger
handles this logic:

408

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

CREATE TRIGGER tg_Insert
ON Employee_Temp
FOR INSERT
AS
BEGIN
 SET NOCOUNT ON;

 IF @@ROWCOUNT > 1
 BEGIN
 RAISERROR('Only one node can be inserted at a time', 16, 1);
 ROLLBACK;
 END

 UPDATE e
 SET e.thePath =
 Managers.thePath +
 RIGHT(
 REPLICATE('0', 10) + CONVERT(varchar, i.EmployeeID),
 10) + '/'
 FROM Employee_Temp e
 JOIN inserted i ON i.EmployeeID = e.EmployeeID
 JOIN Employee_Temp Managers ON Managers.EmployeeID = e.ManagerID;
END;
GO

The logic of this trigger is relatively simple: find the updated row in the Employee_Temp table by
joining on the EmployeeID columns of both it and the inserted virtual table, and then join back to
Employee_Temp to get the manager’s path. Finally, concatenate the employee’s ID onto the end of the
path.

The most important thing to mention about this trigger is its limitation when it comes to multirow
inserts. Due to the fact that SQL Server does not have any guarantees when it comes to update order, it is
possible to create invalid paths by inserting two nodes at the same time. For instance, try disabling the
row count check and inserting a subordinate first, followed by a manager, in the same statement:

INSERT INTO Employee_Temp
(
 EmployeeID,
 ManagerID,
 Title
)
VALUES
(1000, 999, 'Subordinate'),
(999, 109, 'Manager');

Since the order in which the UPDATE processes rows is not guaranteed, the result of this operation is
nondeterministic. The subordinate may therefore end up with a NULL path, since at the moment its row
is updated the manager’s path has not yet have been processed. It may be possible to solve this problem
by traversing any hierarchy present in the inserted table using a cursor, but I decided not to attempt this
as I have never seen a situation in a real-world project in which this limitation would be a barrier.

409

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Relocating Subtrees
Data modification is the real downside of the persisted materialized paths technique. Any time you
affect a node’s path, you must cascade the new path to all of its subordinates. This can mean that some
updates are extremely expensive—should one of the vice presidents replace the CEO, every node in the
hierarchy must be updated! Luckily, the average cost is not huge; the following T-SQL finds the span of
control or average number of subordinates—four, as it turns out—for all nodes in the Employee_Temp
hierarchy:

SELECT AVG(NumberOfSubordinates)
FROM
(
 SELECT COUNT(*) AS NumberOfSubordinates
 FROM Employee_Temp e
 JOIN Employee_Temp e2 ON e2.thePath LIKE e.thePath + '%'
 GROUP BY e.EmployeeID
) x;

Relocating a materialized path’s subtree involves finding the new manager’s path and replacing it in
the updated node as well as all of its child nodes. This becomes clearer through example, so consider
what would happen if the Engineering Manager (EmployeeID 3) gets a promotion and now reports
directly to the CEO. Her path will change to the CEO’s path with her employee ID concatenated to the
end: 0000000109/0000000003/. This operation will also invalidate the paths of the Design Engineer and
the Senior Tool Designer, both of whose paths depend on that of the Engineering Manager. So the same
operation—replacement of the beginning of the path—has to happen for all three nodes. It also has to
happen for any of their subordinates, all the way down the tree, since every subordinate inherits its
manager’s path.

Once again, a trigger can be employed to automatically perform this update when a subtree is
located based on the adjacency list. The following trigger handles the logic:

CREATE TRIGGER tg_Update
ON Employee_Temp
FOR UPDATE
AS
BEGIN
 DECLARE @n int = @@ROWCOUNT;

 IF UPDATE(thePath)
 BEGIN
 RAISERROR('Direct updates to the path are not allowed', 16, 1);
 ROLLBACK;
 END

 IF UPDATE(ManagerID)
 BEGIN
 IF @n > 1
 BEGIN
 RAISERROR('Only update one node''s manager at a time', 16, 1);
 ROLLBACK;
 END

410

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

 --Update all nodes using the new manager's path
 UPDATE e
 SET e.thePath =
 REPLACE(e.thePath, i.thePath,
 Managers.thePath +
 RIGHT(
 REPLICATE('0', 10) + CONVERT(varchar, i.EmployeeID),
 10
) + '/'
)
 FROM Employee_Temp e
 JOIN inserted i ON e.thePath LIKE i.thePath + '%'
 JOIN Employee_Temp Managers ON Managers.EmployeeID = i.ManagerID
 END
END
GO

There are a few things to discuss in this trigger. Starting at the top, the trigger first obtains the
number of rows affected by the update operation. Just like when dealing with inserting new nodes,
relocation of subtrees must be serialized to one node at a time in order to avoid logical ambiguities.
However, an error is not thrown right away in this case; it is possible that someone might be updating a
different column in the table, such as changing all of the “Production Technicians” to “Production
Specialists.” As long as the update is not to the hierarchy, multirow updates are certainly allowed.

The first error check done is for direct updates to the path—this is not allowed, since it’s the job of
the trigger. Next, the trigger checks to see whether the ManagerID column is being updated. If not, it has
nothing to do. If so, it then throws an error if multiple rows have been affected. Finally, if there are no
issues, the paths of the affected node and all subordinates are updated based on the new manager’s
path. The logic used is to find the previous path of the updated node—using the inserted virtual table,
which will still have that original path because direct updates to the path are not allowed—and replace it
in all nodes with the new path.

As before, this trigger could probably be made to handle multirow updates by using a cursor, but I
do not feel that the effort required to implement such a solution would be worthwhile.

 Note If you’re using the tg_AtLeastOneRoot trigger in conjunction with the tg_Update trigger, you’ll have a
problem if you need to swap the root node, because to satisfy the tg_AtLeastOneRoot trigger’s logic, the update
must end with a root note in place, and this will require a multirow update. Luckily, that’s not generally something
that has to happen very often, but if you do need to do it, remember to disable one of the triggers before making
the change, and reenable it immediately afterward to make sure that other callers don’t introduce data
inconsistencies in the interim.

Deleting Nodes
Thanks to the fact that the adjacency list is being used in conjunction with the materialized path,
deleting nodes requires no additional logic. Due to the self-referential constraint on the adjacency list,
only leaf nodes can be deleted. Leaf nodes have no subordinates and therefore there is nothing to

411

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

cascade—the row will be deleted, and no further logic is necessary. This is one of the main benefits of
keeping both hierarchical models in the same table—each inherits the other’s constraints, helping to
ensure greater data integrity.

Constraining the Hierarchy
All of the logic mentioned in the previous “Constraining the Hierarchy” section (which dealt with
adjacency lists) still applies to materialized paths. However, with a materialized path, it’s much easier to
detect cycles, so there is no need to use the tg_NoCycles trigger. Instead, a simple check constraint
should be used that makes sure the given employee only appears once, at the end of the path:

ALTER TABLE Employee_Temp
ADD CONSTRAINT ck_NoCycles
 CHECK
 (
 thePath NOT LIKE
 '%' +
 RIGHT(REPLICATE('0', 10) + CONVERT(varchar, EmployeeID), 10) +
 '/%' +
 RIGHT(REPLICATE('0', 10) + CONVERT(varchar, EmployeeID), 10) +
 '/'
);
GO

 Note There is a subtle difference between the logic expressed here and the logic used to prevent endless loops
in the section “Traversing the Graph.” In that section, the nodes in the path were not left-padded with zeros, so
the first node had to be delimited in order to make sure to detect a cycle involving it. This was done to prevent a
false alarm in case of a path like 123/456/3. In this case, the left-padding means that there is no way to
misinterpret a section of one ID as another, so we do not have to modify the basic path logic already established.

The hierarchyid Datatype
In the preceding section, I discussed one of the limitations of the materialized path approach—namely,
that the string encoding makes it difficult to work with deep hierarchies. Fortunately, in SQL Server 2008,
the hierarchyid datatype was introduced, which essentially stores hierarchical data using materialized
paths that are serialized into a CLR datatype. While this doesn’t provide much additional functionality
on top of what was possible using the materialized path approach described previously, it does make
querying hierarchical data much easier, as I will demonstrate in this section.

The hierarchyid datatype comes with a set of defined methods for working with hierarchical data,
and the first method of interest to us is the Parse() method, which instantiates a new item of
hierarchyid data based on a supplied string representation of a materialized path. Fortunately for us,
the string format expected by the Parse() method is exactly the same as we used in the thePath column
created in the previous section—using an oblique stroke between each node in the path.

412

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

The following code listing creates and populates a column of hierarchyid values representing rows
in the Employee_Temp table based on the existing materialized path.

ALTER TABLE Employee_Temp
ADD hierarchy hierarchyid;

UPDATE Employee_Temp
 SET hierarchy = hierarchyid::Parse (thePath);

Finding Subordinates
Having populated the hierarchyid column, let’s put it to the test by performing the same set of common
queries as we did for the other methods. The first requirement is to identify all those rows that are
subordinates of a particular manager. To do this, we can use the IsDescendantOf() method, as shown in
the following query:

SELECT * FROM Employee_Temp
WHERE hierarchy.IsDescendantOf('/109/6/') = 1;

The preceding query returns all those rows that are subordinates of the Marketing Manager (whose
hierarchy path is /109/6/), as follows:

2 6 Marketing Assistant /109/6/2/ 0xE02EE568

6 109 Marketing Manager /109/6/ 0xE02EE5

46 6 Marketing Specialist /109/6/46/ 0xE02EE5CBD0

106 6 Marketing Specialist /109/6/106/ 0xE02EE5E02D40

119 6 Marketing Specialist /109/6/119/ 0xE02EE5E047C0

203 6 Marketing Specialist /109/6/203/ 0xE02EE5E0EDC0

269 6 Marketing Assistant /109/6/269/ 0xE02EE5E26EC0

271 6 Marketing Specialist /109/6/271/ 0xE02EE5E26FC0

272 6 Marketing Assistant /109/6/272/ 0xE02EE5E28440

There are a couple of important points to note about the result obtained from the preceding query:

• Notice that the value supplied to the IsDescendantOf() method, like all string
representations of hierarchyid data, both begins and ends with an oblique stroke.
This style of syntax is probably familiar to all developers who have previously used
XQuery functionality in SQL Server or elsewhere.

413

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

• The hierarchyid values are returned in the result set in their native binary format.
To get the string representation of a hierarchyid value, you must call the
ToString() method.

• Note that even though we were attempting to identify subordinates of the
Marketing Manager, the Marketing Manager himself is returned in the results.
This is an interesting quirk of the hierarchyid type in that, for any given node x,
x.IsDescendantOf(x) = 1. This is by design, and is useful in some circumstances,
but may not seem that intuitive.

• The IsDescendantOf() method returns true for all descendants of the given node,
not just direct children, but grandchildren, great-grandchildren, and so on.

To restrict the results to only return direct descendants of a node (and also to exclude the node itself
from the results), we can take advantage of the GetLevel() method, which returns an integer
representing the “level” of a node in the hierarchy. The root node is level 0, and at each level of the
hierarchy underneath the root node this value increases by one. Therefore, the direct subordinates of a
given node will always be one level greater than their parent. The following code listing demonstrates
how to constrain the results to only include direct subordinates of the Marketing Manager:

DECLARE @Parent hierarchyid = hierarchyid::Parse('/109/6/');
SELECT * FROM Employee_Temp
WHERE hierarchy.IsDescendantOf(@Parent) = 1
AND hierarchy.GetLevel() = @Parent.GetLevel() + 1;

This is a very flexible structure that can be used to specify exactly how many levels of descendants to
traverse under a given node—for example, to return children and grandchildren, you can include all
those nodes where the difference between the two levels is less than or equal to 2.

Navigating up the Hierarchy
Since the hierarchyid datatype is essentially just a materialized path serialized as a CLR datatype, each
individual hierarchyid value already contains the full path back to the root node. In order to display this
path in a readable format, we simply need to call the ToString() method. For example, consider the path
from the CEO to the Production Technician, EmployeeID 100:

SELECT
 EmployeeID,
 ManagerID,
 Title,
 hierarchy.ToString() AS hierarchyPath
FROM Employee_Temp
WHERE EmployeeID = 100;

The results of this query are as follows:

EmployeeID ManagerID Title hierarchyPath
100 143 Production Technician - WC20 /109/148/21/143/100/

414

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

Notice how the path obtained from the hierarchyid ToString() method is exactly the same as the
path we created in the thePath column earlier. Fortunately though, navigating up through this hierarchy
doesn’t involve any of the string manipulation we had to perform previously—instead we can use the
GetAncestor() method, which provides similar functionality to IsDescendant() but from the opposite
point of view. Rather than returning a Boolean response indicating whether a given node is descended
from another node, the GetAncestor() method is invoked on a child element and used to return a
hierarchyid node representing an ancestor of that child. The GetAncestor() method can not only return
the direct parent of a node—it accepts an argument to determine how many levels of hierarchy should
lie between the given node and the ancestor.

To demonstrate, the following code listing uses that GetAncestor() method with the argument 1 to
determine the immediate parent of each node in the hierarchy column. This value is then used to return
only those nodes that report directly to the Marketing Manager, EmployeeID 6:

DECLARE @Parent hierarchyid;
SELECT @Parent = hierarchy
FROM Employee_Temp
WHERE EmployeeID = 6;

SELECT * FROM Employee_Temp
WHERE hierarchy.GetAncestor(1) = @Parent;

Inserting Nodes
In order to insert a new node, we need to calculate the appropriate hierarchyid value representing the
path to that node. This can be done using the GetDescendant() method on the node that is to become
the parent of the newly inserted node. GetDescendant() accepts two arguments that determine the lower
and upper values of the range in which the allocated hierarchyid node will lie. To demonstrate this
method, suppose that the Shipping and Receiving Supervisor, EmployeeID 85, needs to hire an office
administrator. By providing null values for both arguments, the following code uses the
GetDescendant() method to allocate an arbitrary hierarchyid value for the new employee:

DECLARE @Parent hierarchyid;
SELECT @Parent = hierarchy
FROM Employee_Temp
WHERE EmployeeID = 85;

SELECT @Parent.GetDescendant(null, null).ToString();

The result, /109/148/21/85/1/, is guaranteed to be a new node that is a direct descendant of the
supplied parent node, but the actual identity of the new node may vary. In some situations, this may
cause problems. For example, consider instead what would happen if the Production Supervisor,
EmployeeID 16, were to hire a new member of staff. To assign a hierarchy node for the new employee
using the preceding pattern, we might initially try something like this:

DECLARE @Parent hierarchyid;
SELECT @Parent = hierarchy
FROM Employee_Temp
WHERE EmployeeID = 16;

SELECT @Parent.GetDescendant(null, null).ToString();

415

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

The result returned, /109/148/21/16/1/, is a valid node that reports to the Production Supervisor,
but the problem is that this node already exists in the hierarchy. It is assigned to EmployeeID 1, who is a
technician reporting to this production supervisor. In order to avoid such cases, we can supply a
parameter value to the GetDescendant() method representing the minimum value that the newly created
child node must be greater than. To do this, we will find out the maximum currently assigned child node
for the chosen parent, as follows:

DECLARE @Parent hierarchyid;
SELECT @Parent = hierarchy
FROM Employee_Temp
WHERE EmployeeID = 16;

DECLARE @MaxChild hierarchyid;
SELECT @MaxChild = MAX(hierarchy)
FROM Employee_Temp
WHERE hierarchy.IsDescendantOf(@Parent) = 1;

SELECT @Parent.GetDescendant(@MaxChild, null).ToString();

The result, /109/148/21/16/248/, is now guaranteed to be a unique node in the hierarchy. The
second parameter that can be supplied to GetDescendant() represents the maximum node value that the
newly created node must lie before. In this case, I’ve left it null as I don’t want to enforce a maximum.

Of course, in the current model, the value of each node in the materialized path is based on the
EmployeeID of the associated employee. So long as the EmployeeID field remains unique, you could
continue to model all individual node values based on that and not have to worry about the possibility of
creating duplicate hierarchyid values. However, there are many other scenarios in which such an
identity value is not available, in which case, the GetDescendantOf() method becomes a very useful way
to allocate values for new child nodes. If you wanted to retain both the adjacency list modeled on
EmployeeID and the hierarchyid model within the Employee_Temp table, you would of course need to
modify the tg_Insert trigger created previously to automatically update the hierarchy column based on
the EmployeeID of the inserted row.

Relocating Subtrees
To relocate a hierarchyid node, we use the GetReparentedValue() method. Note that this method
doesn’t actually alter a hierachyid value—rather, it returns a node representing the new path to a node if
it were to be reparented to the supplied new parent node. To move the node, you must then update the
hierarchyid value to be equal to this result.

To demonstrate this in action, consider what would happen if we were to remove one of the
production supervisors, EmployeeID 64, from the hierarchy, and relocate all of their direct employees to
report to one of the alternative supervisors, EmployeeID 74.

To start with, we need to identify the nodes that represent both the old parent that nodes are
moving from, and the new parent to which they will be reporting, as follows:

DECLARE @FromParent hierarchyid;
SELECT @FromParent = hierarchy
FROM Employee_Temp
WHERE EmployeeID = 64;

416

 CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

DECLARE @ToParent hierarchyid;
SELECT @ToParent = hierarchy
FROM Employee_Temp
WHERE EmployeeID = 74;

Having identified the two parents between which nodes are to be moved, we can then update all
those descendants of the old parent using the GetReparentedValue() method as follows:

UPDATE Employee_Temp
SET hierarchy = hierarchy.GetReparentedValue(@FromParent, @ToParent)
WHERE
hierarchy.IsDescendantOf(@FromParent) = 1
AND EmployeeID <> 64;

This query uses the IsDescendantOf() method to identify all those rows that report to the old parent,
EmployeeID 64, and updates them to report to the new parent. The final condition is required to prevent
the original parent node being moved (remember that, based on the IsDescendantOf() method, a node
is a descendant of itself).

As with row inserts, if you wanted to maintain this solution in a production environment alongside
the adjacency list, you would need to modify the tg_Update procedure to update the hierarchy column
when nodes were moved.

Deleting Nodes
Hierarchies modeled using the hierarchyid datatype do not enforce any kind of inherent referential
integrity. As such, any node may be removed from the hierarchy, potentially leading to orphan nodes if
the node removed is a nonleaf node. Fortunately, as with the string materialized path described
previously, in this example we are using the hierarchyid datatype in conjunction with the constraints
provided by the existing adjacency list on the Employee_Temp table. These constraints mean that only leaf
nodes can be deleted, which reduces the chances of orphans or multiple root nodes being introduced
into the structure of the hierarchy.

Constraining the Hierarchy
Since the hierarchyid datatype is essentially just a wrapper around a materialized path construct, the
same rules apply for how to constrain the hierarchy in order to prevent cycles or forests. A further
consideration is how best to index columns of hierarchyid data. Placing a unique index on the
hierarchy column can prevent duplicate entries, as well as improve query performance against the
hierarchy, but you should devote a little time to consider how hierarchies are ordered in a single index.

By default, SQL Server 2008 indexes hierarchyid values in a depth-first order. That is, the nodes that
are listed down a particular path through the tree are listed next to each other. This sort of indexing is
efficient for fulfilling queries that involve traversing up (or down) several levels of subtrees, such as “Find
the managers two levels immediately above this employee.” The following code listing creates a depth-
first index on the hierarchy column:

CREATE UNIQUE INDEX idxHierarchyDepth
ON Employee_Temp(hierarchy) ;
GO

417

CHAPTER 12 TREES, HIERARCHIES, AND GRAPHS

418

It is also possible to index hierarchyid data in breadth-first order, in which case all the siblings who
are immediate children of a particular parent node are listed next to each other in the index. This kind of
index is best suited for queries such as “Find all the employees who report directly to this manager.” Of
course, you don’t need to choose exclusively between these two types of index—you can create both. To
create a breadth-first index, we will make use of the GetLevel() method once more to populate a
persisted column representing the level of each node. By including this column in the index, we will
ensure that nodes at the same level of the hierarchy are indexed next to each other, as expected in the
breadth-first index:

ALTER TABLE Employee_Temp
ADD hierarchyLevel AS hierarchy.GetLevel();
GO

CREATE UNIQUE INDEX idxHierarchyBreadth
ON Employee_Temp(hierarchyLevel, hierarchy);
GO

Summary
Graphs and hierarchies are extremely common throughout our world, and it is often necessary to
represent them in databases. By utilizing adjacency lists, you can describe virtually any graph’s form,
and recursive CTEs allow you to navigate graphs with relative ease. Hierarchies—special types of
graphs—can also be modeled using adjacency lists, but other techniques can be employed to make
querying them much more efficient, without the need for recursion or iteration.

There are a lot of ways to solve hierarchical problems, but in the end it comes down to the best
choice for the given scenario you’re faced with. As always, the most important thing you can do as a
developer is to carefully consider your options, and test whenever possible to find the optimal solution.

Index

APIs (application programming interfaces), 18
 A application lifespan, 27

application locks
access control acquiring, 250

via ACLs, 102 described, 250
via impersonation, 102–104, 107–110 drawbacks of, 251

Access Control Lists (ACLs), 102 nontransactional, 251–259
accuracy, 294 releasing, 250
acyclic graphs, 371–372 application logic, 12
ad hoc SQL, 196 application logins, 102
Adabas database management system, 9 application programming interfaces (APIs), 18
ADD SIGNATURE command, 116 application-level parameterization, 202–203
Address column, 30 APTCA (AllowPartiallyTrustedCallersAttribute),

178 adjacency list model (hierarchies). See also
persistent materialized paths architecture, software
constraining, 374–376, 388, 402–405, 412 cohesion, 2, 4–5
finding ancestors, 407–408 coupling, 2–3, 5
finding descendants, 389–391, 400–401,

406–407
encapsulation, 2, 5, 9
evolution, 8–9

graph queries, 376–377 flaws, 12
nodes AS keyword, 7

deleting, 402, 411 Aschenbrenner, Klaus, 252
inserting new, 401, 408–409 as-of data component, 322

overview, 373, 388–389 assemblies
relocating subtrees, 401, 410–411 cataloging, 163
traversing, 388, 391–393, 396–399, 412 granting privileges between, 175–178

Advanced Encryption Standard (AES), 130, 140 privileges, raising selectively, 168–
175 affinity mask, 276

age, calculating, 335–336 strong naming, 177
agile development, 25, 55 Assert method (IStackWalk interface), 174
allCountries table, 299, 302–303 assertions, debug, 52
allCountries.txt file, 299 assets, need for encryption, 121–122
allCountries.zip file, 298 assumptions, identifying in code, 29–33
AllowPartiallyTrustedCallersAttribute (APTCA),

178
asymmetric keys, 124, 127, 134–136
attitudes to defensive programming, 24–

27 ALTER AUTHORIZATION command, 106
ALTER DATABASE command, 111, 175 authentication
ALTER SCHEMA command, 107 defined, 101
anarchic concurrency control, 236–237, 243 overview, 101, 104
ancestor relationships, 373 software release issues, 101
anti-patterns, 20 authentication tests, 56

419

 INDEX

bitemporal data. See also temporal data authorization. See also access control;
certificates described, 322, 367

managing, 367–369 defined, 101
black box testing, 49–50 developer's concerns, 101
BLOB data, 139 in dynamic SQL, 230
blocking, 236. See also concurrent use; isolation

levels
ownership chaining, 106, 110–114
user privileges, 102

bounding boxes, 308–313, 316 automatic encryption hierarchy, removing keys
from, 126–127 buffer search zone, 306

BufferWithTolerance() method, 303 automatic key management hierarchy
business logic asymmetric keys, 124

described, 11 certificates, 124
location, 8, 11 database master key, 125

overview, 123–125
service master key, 125 C symmetric keys, 124

auto-parameterization, query, 200–202 CA (certification authority), 134
avoiding shortcuts, 33–36 cache

monitoring use, 62

 B testing, 69
calendar tables

advantages of, 336 BACKUP CERTIFICATE command, 135
described, 336 Base_Table_Rows value, 318
using, 337–341 baseline performance tests, 59, 68

Cartesian coordinates, 286 best practices
CAS. See Code Access Security defensive programming
CAST operation, 34, 133 attitudes toward, 24–27
catch block, defined, 87 overview, 23–28
cell-level encryption, 122, 138–139,

147
reasons for, 27–28

development environment, 47
CELLS_PER_OBJECT limit, 316, 319 overview, 23, 48
certificates SQL

backing up, 117–118 avoiding shortcuts, 33–36
creating, 103, 117 code review, 39–40
cryptographic hash, 116 comments, 44–45
identifying modules signed, 116 future-proofing code, 42–43
identifying users, 116 identifying hidden assumptions in code,

29–33 module signing, 112, 114–116
overview, 124 indentations, 45–46
restoring, 117–118 limiting exposure, 43

certification authority (CA), 134 overview, 28, 46
ChangeLog table, 31–32 statement blocks, 45–46
CHARINDEX, 183–184 testing, 36–39
classes, compared to tables, 13–14 validating input, 40–42
client/server-based architecture, 9 binary encoding, 395
CLOSE SYMMETRIC KEY method, 131 binary floating-point coordinate values,

298 closed LineString object, 284
CLR (common language runtime). See

SQLCLR
Binary hash values, 148
Bing Maps, 308

420

 INDEX

CREATE DATABASE ENCRYPTION KEY
statement, 137

COALESCE function, 210, 212
code

CREATE LOGIN FROM CERTIFICATE
command, 103

defensive techniques, 92
future-proofing, 42–43

CREATE MASTER KEY statement, 125 identifying hidden assumptions in, 29–33
CREATE SCHEMA command, 105 reviewing, 39–40
CREATE SYMMETRIC KEY statement, 131 Code Access Security (CAS)
CREATE USER FOR CERTIFICATE command,

104
example of, 173–175
permission sets enforcement, 163–165, 167

CREATE USER WITHOUT LOGIN command,
104, 110

resources on, 167
code bloat, 25

CreditCard_HMAC column, 157 cohesion, 2, 4–5, 20
CreditCard_Sym column, 147 comments, 44–45
CreditCard_SymKey symmetric key, 146 commodity servers, 9
CreditCardNumber_HMAC column, 152–154 common language runtime (CLR). See SQLCLR
CreditCardNumber_Last4HMAC column, 154–

155, 157
Common Table Expressions (CTEs)

compared to persistent materialized paths,
407 CreditCardNumber_Sym column, 146–147,

152–153 limitations, 383
CreditCards table, 146, 151, 154 ordering output, 381
CriuseControl.NET, 56 traversing graphs, 380–381, 386
CROSS APPLY operator, 351–352, 365 traversing hierarchies, 396, 399
CROSS JOINs, 37 compilation, query, 75, 198–200
cross-database ownership chaining, 111–112 compression algorithms, 139
crossing, 294 computers, evolution of, 8–9
CTEs. See Common Table Expressions concurrent processes, monitoring

performance, 360 cursors, 182
Customers table, 29–30 concurrent use. See also isolation levels
cycles, graph, 371–372, 402, 404–405 development factors, 235

errors triggered by, 235
implementation methods, 236 D models used, 281
sharing resources, 269–280 DAC (dedicated administrator connection), 271
SQL Server goals, 242–243 Dam, Sajal, 68

Confidential table, 143 data
continuous integration, 55 importing, 298–302
contracts, interface, 6 role in software development, 1
CONTROL permission, 126 working with flawed, 366–367
CONVERT function, 324–325 data at rest, 122
coordinate systems data authorization testing, 56

datum, 288 data availability testing, 56
overview, 288–290 Data Collector, 65, 67
prime meridian, 288 data encryption. See encryption
projection, 289–290 Data Encryption Standard (DES), 125

coupling, 2–3, 5 data logic
covering index, 152 business modeling, 10
covering rule, 313 described, 10
CPU Usage % measure, 272, 276 location, 10–11
CREATE ASSEMBLY statement, 163 data massage, 41
CREATE CERTIFICATE command, 103, 118 Data Protection API (DPAPI), 125

421

 INDEX

DECRYPTBYPASSPHRASE function, 132 data types, 160–161
decryption, 157 database applications, 9–10
_decryption method, 147 database bugs, 27–28
dedicated administrator connection (DAC), 271 database development. See testing, software
deepest-cell rule, 313 database encryption. See encryption
default automatic key management hierarchy,

126
database encryption key (DEK), 136
database integrity, risks to, 28

defensive programming database interfaces, 18
attitudes to, 24–27 database mail feature, 43
identifying errors with, 25 database master key (DMK), 124–125
overview, 23–28 database queries. See queries
reasons for, 27–28 database systems, evolution of, 9

DEK (database encryption key), 136 database-as-API mindset, 18
DELETE keyword, 41 databases. See also dynamic SQL
DES (Data Encryption Standard), 125 accessing information, 13–14
descendant relationships, 372–373 design goals, 8
development, software flexibility, 195

best practices for, 47 inheritance represented in, 14–16
signs of good, 49 integrating with object-oriented systems, 8,

12–13, 16–18 DiffGram, 263
digraphs (directed graphs), 371–372 purpose, 197
directed edges, 371 role in applications, 19
dirty read technique, 62 security responsibilities, 21
disk contention data-dependent applications, 1

identifying, 62, 69 data-driven applications, 1
signs of, 62 DataTable class, 187, 189

Disk Write Bytes/sec counter, 62 date datatype, 35, 323
DMK (database master key), 124–125 date format function, 45
DML queries, 62 DATEADD function, 36, 330–336, 366
DMVs (dynamic management views), 43, 62–63 DATEDIFF function, 330–336, 365
documentation of exceptions, 8 DATEFORMAT settings, 324–325
DPAPI (Data Protection API), 125 dates. See also calendar tables
DROP statement, 41, 134 calculations on, 329, 331–336
Duration column, 59 converting from nonstandard, 324
durations, 365–366 default, 324
dynamic management views (DMVs), 43, 62–63 formatting in database, 325
dynamic SQL. See also optional parameters input formats, 323–325

advantages of, 197, 213 output formats, 325–326
defined, 196 querying, 326–329, 337–341
formatting, 215–216 datetime data type, 35–36, 160, 321–322, 330–

332 injection attacks, 218–219
justification for, 197–198 datetime2 datatype, 322
ownership chaining with, 111 datetimeoffset datatype, 323, 344–346
security, 230–232 DAY function, 336
uses for, 205 db_owner role, 134

deadlocks, managing, 91–92
debug assertions, 52 E decimal type, 35
DECRYPTBYASYMKEY function, 136 edges, graph, 371
DECRYPTBYKEY method, 131 effective maximum CPU usage, 278
DECRYPTBYKEYAUTOCERT function, 142–143

422

 INDEX

error message templates, 78 EFS (encrypting file system), 139
error messages, 78, 82–84 EKM (extensible key management), 127
error numbers, 78 ellipsoidal calculations, 294
error state, 79 ELSE clause, 46
ERROR_LINE function, 89–90 encapsulation
ERROR_MESSAGE function, 89–90 challenges to determining, 2
ERROR_NUMBER function, 89–90 database interface, 18
ERROR_PROCEDURE function, 89–90 defined, 2
ERROR_SEVERITY function, 89–90 example of, 5
ERROR_STATE function, 89–90 importance, 5, 9
errors, defined, 71 ENCRYPTBYASYMKEY method, 135, 139
ESRI shapefile format (SHP), 296 ENCRYPTBYKEY method, 131, 139, 142–143
events. See names of specific events ENCRYPTBYPASSPHRASE function, 132–134
Exception events, 85 encrypting file system (EFS), 139
exception hiding, 26 encryption
exceptions, SQL Server balancing performance and security, 139–

144 advantages of, 72
avoiding, 92 implications for query design
batch-level, 73–74 equality matching with hashed message

authentication codes, 148–153 behavior, 71
compilation, 89 overview, 145, 158
component information, 78–81 range searches, 157
connection, 74, 76–77 wildcard searches with HMAC

substrings, 153–157 customizing settings, 77
data transactions, effects on, 96–99 methods of
defined, 71 asymmetric key encryption, 134–136
error messages, 78–81 hashing, 129–130
handling overview, 128, 139

overview, 8 symmetric key encryption, 130–133
reasons for, 86 transparent data encryption, 136–139
SQLCLR process, 93–96 need for
using @@ERROR function, 86–87 assets, 121–122
using try/catch, 87–92 overview, 121–123

logging, 91 threats, 122–123
monitoring, 85 overview, 121, 158
overview, 72–73 encryption key hierarchy
parsing, 75, 89 asymmetric keys, 124
philosophical approaches, 72 certificates, 124
rethrowing, 90–91 database master key, 125
scope-resolution, 75–76 extensible key management, 127
server-level, 76–77 overview, 123–127
statement-level, 73 removing keys from automatic encryption

hierarchy, 126–127 unlikely, 71
user service master key, 125

logging, 85 symmetric key layering, 126
messages, 82–84 symmetric key rotation, 126
raising, 81 symmetric keys, 124
severity, 84 enumerating the path, 393–395

EXEC command, 213. See also EXECUTE
command

equality matching, 148–153
error 208 exceptions, 85

EXECUTE AS command, 107–109, 112–114 error level, 79, 81

423

 INDEX

geographic information systems (GISs), 283 EXECUTE command
geography drawbacks of, 218–220

accuracy, 294 process, 221
overview, 292–296 uses for, 196, 213
performance, 294–296 expanding search range, 306
standards compliance, 293–294 expected behavior, 45
technical limitations, 294–296 ExpertSqlEncryption user database, 137

geography datatype, 292, 294 explicit bounding box, 294
Geography Markup Language (GML), 296, 298 explicit contracts, 6
geometry exposure limiting, 43

accuracy, 294 extended events, 64–65
overview, 292–296 extended methods, 303
performance, 294–296 extensible key management (EKM), 127
standards compliance, 293–294 exterior ring, 284
technical limitations, 294–296 EXTERNAL_ACCESS permission set, 43, 163

geometry datatype, 292 extreme programming (XP), 23, 55
GeometryCollection geometry, 284
GetAggregateTransactionHistory stored

procedure, 51 F
getBounds() method, 308 fail fast methodology, 27
GetMapView() method, 308 farms, server, 9
GETUTCDATE command, 344 feature creep, 22
GISs (geographic information systems), 283 Federal Information Processing Standard

(FIPS), 149 global positioning system (GPS), 288
GML (Geography Markup Language), 296, 298 file I/O, 165
GMT (Greenwich Mean Time), 341 FileIOPermission class, 175
GO identifier, 80 FileIOPermissionAccess enumeration, 175
GPS (global positioning system), 288 filestream datatype, 139
GRANT IMPERSONATE command, 109 Filter() method, 303
granular analysis, 69, 71 filtering, 294
graphs. See also adjacency list model FinanceSymKey property, 143

defined, 371 FinanceUser class, 142
directed, 377 finding locations in bounding boxes, 308–313
directed graphs, 376 FIPS (Federal Information Processing

Standard), 149 example of, 372
traversing, 378–384, 386–387 fixed search zone, 306
types, 372 flat plane, 292
undirected, 377 flexible modules/interfaces, 20
undirected graphs, 376 fn_trace_gettable function, 61

great elliptic arc, 310 forced parameterization, 202
Greenwich Mean Time (GMT), 341 forests, 372, 402
Grid resolution, 316 format designators, error message, 82–83
GROUP_MAX_REQUESTS setting, 279–280 formatting in the database, 366

functional tests, 50–52

 H future-proofing code, 42–43

half-open intervals, 352 G hamming distance, 150
hardware security module (HSM), 127 GenerateHMAC function, 151, 154
hash collisions, 129 geographic coordinate systems, 286, 310

424

 INDEX

instance-based data, 321 HASHBYTES function, 129, 148–150
INSTEAD OF triggers, 16 hashed message authentication codes

(HMACs), 148–157 interface bus, 11
interface consistency, testing, 56 hashing, 129–130, 139
interfaces hemisphere, 294

described, 5 hierarchies
designing, 6–8 characteristics of, 372–373
exception handling, 8 defined, 372
implementation hiding, 6–7 overview, 371
indicators of poor, 6 hierarchyid datatype
inputs, 6–7 constraining hierarchy, 417–418
outputs, 6–7 deleting nodes, 417

internal filter, 317 finding ancestors, 414–415
internal rings, 284 finding subordinates, 413–414
interval-based data, 321 inserting nodes, 415–416
intervals overview, 412–413

constraining, 359–360 relocating subtrees, 416–417
described, 346 HIGH grid resolution, 319
half-open, 352 HMACKeys table, 154
overlapping, 358–362, 364–365 HMACs (hashed message authentication

codes), 148–157 querying, 349–354, 356–358
representing, 347–348, 352–356 HOLDLOCK table hint, 241
triggers, 360 HostProtectionAttribute (HPA)

invalid geometries, 296 example of, 169–173
inverse-flattening ratio, 288 permission sets enforcement, 163, 165–167
I/O (input/output), 59 resources on, 167
ISNUMERIC() function, 41 HSM (hardware security module), 127
ISO 8601 standard date/time format, 323–

324
hybrid encryption model, 140

isolation levels I default, 239
described, 237–241 identifying errors, 25
transactional nature, 243 identifying hidden assumptions in code, 29–33

IStackWalk interface (Assert method), 174 IDENTITY_VALUE option, 131
idxallCountries index, 317

K idxCreditCardNumberHMAC index, 153
impersonation, 102–104, 107–110
implied contracts, 6 keep it simple, stupid (KISS) principle, 22,

24 Import and Export Wizard, 299
importing data, 298–302 key rotation, 126
indentations, 45–46 KEY_GUID method, 143
indexes, 294 KEY_SOURCE option, 131
inheritance keys

in databases, 13–16 asymmetric
in object-oriented systems, 14–15 encryption, 134–136

injection attacks, 41 overview, 124
input, validating, 40–42 management extensible, 127
input/output (I/O), 59 removing from automatic encryption

hierarchy, 126–127 INSERT statement, 152

425

 INDEX

 M keys (cont.)
symmetric

encryption, 130–133 MainData table, 30–33
layering, 126 maintainability, software, 20–21
overview, 124 MakeValid() method, 296
rotating, 126 Management Studio, 311

KISS (keep it simple, stupid) principle, 22, 24 MarketingCertificate class, 142
MarketingUser class, 142

 L Match method, 40
materialized path notation, 383–384
materialized paths. See persistent materialized

paths
Lat property, 302
late binding, 75

MAX_CPU_PERCENT value, 274–276, 278 latitude, 284, 286
MD (Message Digest) algorithms, 129 latitude column, 302
MEDIUM grid resolution, 317, 319 layering symmetric keys, 126
meridians, 310 least privilege, principle of, 102–103
Message Digest (MD) algorithms, 129 lifespan of applications, 27
Microsoft Bing Maps, 308 limiting exposure, 43
mock objects, 196 LineString objects, 284, 294, 312
modeling spatial data, 283–291 load testing, 69
modules, code localization error messages, 85

defined, 110 location column, 302
privilege escalation and, 110 locations, finding in bounding boxes, 308–

313 purpose, 5
MONTH function, 336 lock tokens, 246–247, 249–250
MultiLineString geometry, 284 locking data. See also concurrent use; isolation

levels multiple databases
consolidating, 107 example of, 240
need for, 112 isolation level differences, 241

MultiPoint instance, 294 releasing expired locks, 248
MultiPolygon geometry, 284 time tracking, 247–249
multirow inserts logging exceptions, 85, 91

causing cycles, 405 logic
in hierarchies, 409 application, 12

multivalue concurrency control (MVCC) business, 8, 11
advantages of, 266–268 data, 10–11
data retention, 243 types of, 9
drawbacks of, 281 logic trigger, 32
example uses for, 237 logins (server-level principals)
overview, 237, 266 creating, 103
querying, 269 creating proxy, 117
uses for, 269 defined, 103

granting permissions, 117

 N proxy, 114
use of, 103–104

Long property, 302 national grid coordinates, 292
longitude, 284, 286 nearest-neighbor queries, 304–308
longitude column, 302 .NET Base Class Library, 40

.NET interoperability, 160–161

.NET System.Security namespace, 150

426

 INDEX

output parameters, 229 .NET System.Text.RegularExpressions.Regex
class, 40 overwriting data, 236

ownership chaining, 106, 110–114 nodes, 373–374
nonrepeatable reading, 236
normalization, 12–13 P NULL values, 37, 160
Number_Of_Rows_Output stored procedure,

318
parallels, 310
parameterization, query. See also sp_executesql

system stored procedure numbers table, 307
NUnit unit testing framework, 53–54 advantages of, 221

application-level, 202

 O automatic, 200–202
steps, 221

parent nodes, 372–373 Object Explorer pane, 299
parentheses, correct usage of, 46 object-oriented systems
parse trees, 198 accessing information, 13–14
parsing queries, 75, SQL Server design goals, 8
performance. See also optional parameters integrating with databases, 8, 12–13, 17–

18 ad hoc SQL, 197
balancing with security, 139–144 Object-Relational Mappers (ORM), 17
dynamic SQL objects

overview, 217 creating, 105
versus static SQL, 198 owners, 105–106
using EXECUTE, 226–229 referencing, 105
using sp_executesql, 227–229 offset transactions, 367

geography versus geometry, 294–296 OGC (Open Geospatial Consortium), 293
parameterization/caching benefits, 203–

205
one-way encryption, 129
onion model of security, 104–105

software, 19–20 Open Geospatial Consortium (OGC), 293
SQL Server service, effect of restarting,

229
OPEN SYMMETRIC KEY DECRYPTION BY

PASSWORD syntax, 131
static SQL stored procedure, 225, 228–229 optimistic concurrency control

performance testing drawbacks of, 281
additional information, 68 example environment, 260
counters, 61–62 implementation, 260–263
Data Collector, 65, 67 overview, 237, 242, 260
DMVs, 62–63 SNAPSHOP isolation level support, 242
extended events, 64–65 updateable cursors, 243
granular analysis, 69, 71 OPTIMISTIC isolation options, 243
identifying problems, 71 optimizing grid, 315
importance, 57–58 optional parameters
process, 68 dynamic SQL, 212–218, 220
profiling server activity, 59–61 static in stored procedures, 208–213
running, 69–71 static T-SQL, 206–208, 213

period-based data, 322 ORDER BY query, 303, 381
permission sets, assembly code Orders table, 29–30

enforcement, 163 ORIGINAL_LOGIN function, 110
raising, effects of, 168 ORM (Object-Relational Mappers), 17
setting, 163 ostress tool, 272, 280
types, 163 OUTPUT keyword, 229

427

 INDEX

described, 103 permissions system
login, 103, 117 database-level, 114–116

public key, 134 order of use, 104
server-level, 103
system-level, 117–119 Q persistent materialized paths
compared to CTE method, 407 queries
deleting nodes, 411 database, 17
drawbacks of, 410 implications of encryption on design
indexing, 406 equality matching with hashed message

authentication codes, 148–153 moving subtrees, 410–411
navigating up hierarchy, 407–408 overview, 145, 158
overview, 405 range searches, 157
uses for, 405–407 wildcard searches with HMAC

substrings, 153–157 pessimistic concurrency control. See also
application locks nearest-neighbor, 304–308
drawbacks of, 247, 281 optimization example, 361–362
enforcing locks at write time, 249–250 spatial data
example environment, 243–244 finding locations in bounding boxes,

308–313 example implementation, 244–248, 250
isolation level support for, 242 nearest-neighbor queries, 304–308
overview, 237, 242 overview, 302, 313

phantom rows, 240 query plan cache, 198, 203. See also
performance PhysicalDisk:Avg. Disk Queue Length counter,

61 QUOTENAME function, 232
PhysicalDisk:Disk Read Bytes/sec counter,

62
 R planar calculations, 294

Point() method, 302
RAISERROR function, 81, 83–85, 90 points, 284, 312
Range column, 308 polygons, 284, 295, 312
range searches, 157 polymorphism, 13
READ COMMITTED isolation level, 238–239,

241–242
primary filter, 313, 315
Primary_Filter_Efficiency stored procedure,

318 READ COMMITTED SNAPSHOT isolation level,
238 prime meridian, 286, 341

READ UNCOMMITTED isolation level, 238,
241, 243

principle of least privilege, 102–103
PRINT statement, 27

Reads column, 59 private key, 134
rectangular search area, 312 privilege, resource
Reduce() method, 303 escalation, 102
refactoring, 2 goals, 102–103
reference ellipsoid, 288 in non-Windows systems, 102
reference frame, 288 in Windows-based systems, 102
reference identifiers, 290–291 privilege escalation. See certificates; ownership

chaining; stored procedures RegExMatch function, 40
regression bugs, 55 Processor:% Processor Time counter, 61
regression suite, 55 projected coordinate systems, 286
regression testing, 55, 57 proxies
Remote Procedure Calls (RPCs), 202 certificate-based, 114

creating, 103

428

 INDEX

software for, 21 removing keys from automatic encryption
hierarchy, 126–127 SQL injection attacks, 218–219

SELECT * method, 36 REPEATABLE READ isolation level, 238–242
SELECT DISTINCT spatial data, 303 Resource Governor, 269, 271–272, 274–277,

279–281 SELECT queries, 30, 35, 62, 148, 308
self-documenting code, 45 rethrowing SQL Server exceptions, 90–91
semiopen intervals. See intervals, half-open retry loops, 91–92
sensitive data, 122 reuse, code, 161
SERIALIZABLE isolation level, 238–242 REVERT command, 109
server activity collection set, 65, 67 ring orientation, 295
server farms, 9 Rivest, Shamir, and Adleman (RSA) algorithm,

124 server-level principals. See logins
server-side traces, 60–61 root nodes, 372–373
Service Broker, 185, 252, 254 rotating symmetric keys, 126
service master key (SMK), 125 routing systems, 387
SET DATEFORMAT command, 325 row versioning technique, 62
SET STATISTICS TIME option, 198 row-level security, 104
SETUSER command, 107 rowversion column, 37
severity, user exception, 84 ROWVERSION type, 260–262
SHA (Secure Hash Algorithm) algorithms, 129 RPC:Completed events, 59
shared symmetric key, 141 RPCs (Remote Procedure Calls), 202
SharedSymKey property, 143 RSA (Rivest, Shamir, and Adleman) algorithm,

124 Short Term Management Information
database, 28

shortcuts, avoiding, 33–36 S SHP (ESRI shapefile format), 296
sibling relationships, 373 SAFE permission set, 43, 163
simple LineString object, 284 salt value, 130
"simple sieve" algorithm, 179–181 Scan:Started events, 60
smalldatetime datatype, 322, 330 schemas
SMK (service master key), 125 advantages of, 107
SNAPSHOT isolation level, 238, 242–243 applying permissions to objects within,

106 software development, 19–21
sorting creating, 105

load, 197–198 creating objects within, 105
numerical values, zero-padding for, 393,

395, 412
described, 105
security features, 105

sp_addmessage stored procedure, 83–85 specifying owner, 105–106
sp_executesql system stored procedure scope resolution, 75

examples of, 221–222 secondary filter, 313
output parameters, 229 Secure Hash Algorithm (SHA) algorithms, 129
parameters, 221–223 security. See also authentication; authorization;

encryption; stored procedures performance, 223
uses for, 196, 221 ad hoc SQL versus dynamic SQL, 197

sp_getapplock stored procedure, 250–251 attacks on, 102–104, 118
sp_help_geography_index procedure, 317 balancing with performance, 139–144
sp_help_spatial_geography_index procedure,

318
layering, 104–105
minimizing, 119

sp_help_spatial_geography_index stored
procedure, 317

overview, 101
row-level, 104

429

 INDEX

identifying hidden assumptions in code,
29–33

sp_help_spatial_geometry_index stored
procedure, 317

indentations, 45–46 sp_MSForEachTable procedure, 43
limiting exposure, 43 sp_releaseapplock stored procedure, 251
overview, 28, 46 spatial data
statement blocks, 45–46 coordinate systems
testing, 36–39 datum, 288
validating input, 40–42 overview, 288–290

injection attacks, 41, 218–219 prime meridian, 288
SQL common language runtime. See SQLCLR projection, 289–290
SQL Server Books Online, 303 creating
SQL Server Integration Services (SSIS), 296, 302 Geography Markup Language, 298
SQL Server Profiler, 60, 62, 360 importing data, 298–302
SQL Server:Workload Group Stats heading, 272 overview, 296, 313
SQL:BatchCompleted events, 59 Well-Known Binary, 297
SQLCLR (SQL common language runtime). See

also assemblies
Well-Known Text, 296–297

geography versus geometry
address format validation example, 162–163 accuracy, 294
advantages of, 161, 163 overview, 292–296
.NET interoperability, 160–161 performance, 294–296
performance of, versus T-SQL, 170, 178–184 standards compliance, 293–294
process, 93–96 technical limitations, 294–296
resources on, 159 modeling, 283–291
security/reliability features, 163–170, 172–

175
overview, 283, 319
querying

serialization example, 186, 188–193 finding locations in bounding boxes,
308–313 string-formatting capabilities, 326

as T-SQL replacement, 159 nearest-neighbor queries, 304–308
uses for, 159 overview, 302, 313

SqlDataReader class, 189 reference identifiers, 290–291
SQLQueryStress performance testing tool, 228 reference systems
SQLServer:Buffer Manager:Page life expectancy

counter, 62
geographic coordinate systems, 286
overview, 286

SQLServer:Cache Hit Ratio counter, 62 projected coordinate systems, 286
SQLServer:Cached Pages counter, 62 spatial indexing
SQLServer:Locks:Average Wait Time (ms)

counter, 62
optimizing grid, 315
overview, 313–319

SqlServer.Types.dll library, 298 spatial indexing
SqlTypes .NET namespace, 160–161 optimizing grid, 315
SRIDs (spatial reference identifiers), 291 overview, 313–319
SSIS (SQL Server Integration Services), 296, 302 spatial query, 315
standards compliance, 293–294 spatial reference identifiers (SRIDs), 291
STArea() method, 303, 313 Spatial Results tab, 311
state plane coordinates, 292 spatiotemporal, 303
statement blocks, 45–46 SP:Recompile events, 60
STConvexHull() function, 312 SQL
STCrosses() method, 294 best practices for
STDistance() method, 293, 303–305 avoiding shortcuts, 33–36
STEquals() method, 303 code review, 39–40
STIntersects() method, 303, 310, 312, 317 comments, 44–45
STIsValid() method, 296 future-proofing code, 42–43

430

 INDEX

 T STLength() method, 313
stored procedures

advantages of, 196–197 table hints, 241
controversy over, 196 tables, classes compared to, 13–14
for data API, 18 TDD (Test-Driven Development) methodology,

23, 196 data transactions, effects on, 97–98
described, 196 technical limitations, 294–296
identifying, 116 tempdb database, 137–138
optional query parameters, handling, 205 temporal data. See also dates; intervals; times
output characteristics, 191 categories of, 322
parameter passing, 230–232 data types, 322
performance testing, effect on, 70–71 durations, 365–366
security, 104, 112–114, 230–232 importance, 321
signing using certificates, 114–116 querying, 269
static, 197 time zone issues, 341–344, 346

STPointFromWKB() method, 297 tessellated, 313
street data, accessing, 387 Test-Driven Development (TDD) methodology,

23, 196 STRelate() function, 312
stress testing, 36 testing
string encoding, 395 performance
string-handling functions, 183–185 additional information, 68
String.IndexOf() method, 183–184 counters, 61–62
strong naming, 177 Data Collector, 65, 67
STTouches() method, 294 DMVs, 62–63
STxxxxFromWKB() method, 297 extended events, 64–65
su command, UNIX, 102 granular analysis, 69, 71
subordinate nodes, 372 identifying problems, 71
Subversion, 237 importance, 57–58
SUSER_NAME function, 109 process, 68
SymKey1 key, 130 profiling server activity, 59–61
symmetric keys, 124, 126–127, 130–133, 140 running, 69–71
sysadmin role, 134 software
sys.certificates view, 116 benefits, 58
sys.crypt_properties view, 116 best practices, 36–39
sys.dm_database_encryption_keys view, 137 databases, shortage of, 49
sys.dm_db_index_operational_stats DMV, 63 reasons for, 56
sys.dm_db_index_physical_stats DMV, 63 stored procedures and, 196
sys.dm_db_index_usage_stats DMV, 63 techniques for, 55–56
sys.dm_exec_cached_plans DMV, 200 testability, 20–21
sys.dm_exec_query_stats DMV, 63 timing, 55
sys.dm_exec_sql_text function, 148, 200 types of, 49–52, 55–58
sys.dm_os_performance_counters DMV, 43, 63 volume of tests needed, 57–58
sys.dm_os_wait_stats DMV, 63 thumbprint, certificate. See certificates
sys.dm_os_waiting_tasks DMV, 63 TIGER/Line data, 387
sys.dm_tran_locks DMV, 63 time datatype, 323
sys.spatial_reference_systems system table, 292 time zones, effects on data, 341–344, 346
sys.sysusers table, 42 time-based data. See temporal data
System.Data.SqlTypes .NET namespace, 160–

161
times. See also calendar tables

calculations on, 329, 331–336
System.DateTime string formatting, 326 constraining, 347

431

 INDEX

Universel Temps Coordonné (UTC), 341–344 times (cont.)
UNSAFE permission set, 163 default, 324
UPDATE statement, 152 input formats, 323–324
UPDATE trigger, 31 querying, 326–329, 337–341, 362, 364–365
updateable cursors, 243 ToString method, 326
updates, causing cycles, 405 touching, 294
US geographical data, accessing, 387 tracing SQL Server exceptions, 85
User Error Message events, 85 transactional locks, 250
user interface data, 12 transactions
USER_NAME function, 109 doomed, 100
user-defined functions (UDFs), 191 exceptions and, 96–99
users rolling back, 96–100

creating, 103–104 stored procedures and, 97–98
defined, 103 transparent data encryption, 136–139
impersonating, 102–104, 107–110 trees
proxy, 114 defined, 372
use of, 103–104 overview, 371

UTC (Universel Temps Coordonné), 341–344 triggers, 266
UTM (Universal Transverse Mercator) grid

coordinates, 290, 292
Triple DES, 130
trustworthy databases

marking, 175
security ramifications, 175 V turning off, 175

try block, defined, 87 valid time component, 322
try/catch exception handling, 87–92, 100 validating input, 40–42
T-SQL, versus SQLCLR, 178–184 varchar datatype, 34
T-SQL function, 40, 137 varchar type, 34
T-SQL stored procedures, 6 Visual SourceSafe, 237
TSQLUnit unit testing framework, 52 Visual Studio Team System 2008, 69
two-part naming, 105

 W U
WAITFOR command, 252

UDFs (user-defined functions), 191 warnings, 79, 85
undirected edges, 371 web services, 18
undirected graphs, 372 Well-Known Binary (WKB) format, 296–297
unexpected behavior, 45 Well-Known Text (WKT) format, 290, 296–297
UNION ALL query, 303 white box testing, 49–50, 52
UNION query, 36, 303 wildcard searches with HMAC substrings, 153–

157 unit testing
advantages of, 54 WindowsIdentity class, 102
limits of, 51 WITH TIES argument, 308
uses of, 50, 55 WKB (Well-Known Binary) format, 296–297

unit testing frameworks WKT (Well-Known Text) format, 290, 296–297
advantages of, 52 wrapper methods/classes
debug assertions, 52 advantages of, 161, 163
tips for using, 52–54 example of, 162–163
variety, 52 uses for, 161, 163

Universal Transverse Mercator (UTM) grid
coordinates, 290, 292

Writes column, 59

432

 INDEX

433

 X
x coordinate, 312
XACT_ABORT setting, 77–78, 98–99
XACT_STATE function, 100
XandY table, 37, 39
XML format documents, 185, 263

XML serialization, 185–186
XP (extreme programming), 23, 55

 Y
y coordinate, 312

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Software Development Methodologies for the Database World
	Architecture Revisited
	Coupling
	Cohesion
	Encapsulation
	Interfaces
	Interfaces As Contracts
	Interface Design

	Integrating Databases and Object-Oriented Systems
	Data Logic
	Business Logic
	Application Logic
	The “Object-Relational Impedance Mismatch”
	Are Tables Really Classes in Disguise?
	Modeling Inheritance

	ORM: A Solution That Creates Many Problems
	Introducing the Database-As-API Mindset
	The Great Balancing Act
	Performance
	Testability
	Maintainability
	Security
	Allowing for Future Requirements

	Summary

	Best Practices for Database Programming
	Defensive Programming
	Attitudes to Defensive Programming
	Why Use a Defensive Approach to Database Development?

	Best Practice SQL Programming Techniques
	Identify Hidden Assumptions in Your Code
	Don’t Take Shortcuts
	Testing
	Code Review
	Validate All Input
	Future-proof Your Code
	Limit Your Exposure
	Exercise Good Coding Etiquette
	Comments
	Indentations and Statement Blocks
	If All Else Fails. . .

	Creating a Healthy Development Environment
	Summary

	Testing Database Routines
	Approaches to Testing
	Unit and Functional Testing
	Unit Testing Frameworks
	Regression Testing

	Guidelines for Implementing Database Testing Processes and Procedures
	Why Is Testing Important?
	What Kind of Testing Is Important?
	How Many Tests Are Needed?
	Will Management Buy In?

	Performance Monitoring Tools
	Real-Time Client-Side Monitoring
	Server-Side Traces
	System Monitoring
	Dynamic Management Views (DMVs)
	Extended Events
	Data Collector

	Analyzing Performance Data
	Capturing Baseline Metrics
	Big-Picture Analysis
	Granular Analysis
	Fixing Problems: Is It Sufficient to Focus on the Obvious?

	Summary

	Errors and Exceptions
	Exceptions vs. Errors
	How Exceptions Work in SQL Server
	Statement-Level Exceptions
	Batch-Level Exceptions
	Parsing and Scope-Resolution Exceptions
	Connection and Server-Level Exceptions
	The XACT_ABORT Setting
	Dissecting an Error Message
	Error Number
	Error Level
	Error State
	Additional Information
	SQL Server’s RAISERROR Function
	Formatting Error Messages
	Creating Persistent Custom Error Messages
	Logging User-Thrown Exceptions
	Monitoring Exception Events with Traces

	Exception Handling
	Why Handle Exceptions in T-SQL?
	Exception “Handling” Using @@ERROR
	SQL Server’s TRY/CATCH Syntax
	Getting Extended Error Information in the Catch Block
	Rethrowing Exceptions
	When Should TRY/CATCH Be Used?
	Using TRY/CATCH to Build Retry Logic
	Exception Handling and SQLCLR

	Transactions and Exceptions
	The Myths of Transaction Abortion
	XACT_ABORT: Turning Myth into (Semi-)Reality
	TRY/CATCH and Doomed Transactions

	Summary

	Privilege and Authorization
	The Principle of Least Privilege
	Creating Proxies in SQL Server
	Server-Level Proxies
	Database-Level Proxies
	Data Security in Layers: The Onion Model

	Data Organization Using Schemas
	Basic Impersonation Using EXECUTE AS
	Ownership Chaining
	Privilege Escalation Without Ownership Chains
	Stored Procedures and EXECUTE AS
	Stored Procedure Signing Using Certificates
	Assigning Server-Level Permissions

	Summary

	Encryption
	Do You Really Need Encryption?
	What Should Be Protected?
	What Are You Protecting Against?

	SQL Server 2008 Encryption Key Hierarchy
	The Automatic Key Management Hierarchy
	Symmetric Keys, Asymmetric Keys, and Certificates
	Database Master Key
	Service Master Key
	Alternative Encryption Management Structures
	Symmetric Key Layering and Rotation
	Removing Keys from the Automatic Encryption Hierarchy
	Extensible Key Management

	Data Protection and Encryption Methods
	Hashing
	Symmetric Key Encryption
	Asymmetric Key Encryption
	Transparent Data Encryption

	Balancing Performance and Security
	Implications of Encryption on Query Design
	Equality Matching Using Hashed Message Authentication Codes
	Wildcard Searches Using HMAC Substrings
	Range Searches

	Summary

	SQLCLR: Architecture and Design Considerations
	Bridging the SQL/CLR Gap: The SqlTypes Library
	Wrapping Code to Promote Cross-Tier Reuse
	The Problem
	One Reasonable Solution
	A Simple Example: E-Mail Address Format Validation

	SQLCLR Security and Reliability Features
	Security Exceptions
	Host Protection Exceptions
	The Quest for Code Safety
	Selective Privilege Escalation via Assembly References
	Working with Host Protection Privileges
	Working with Code Access Security Privileges
	Granting Cross-Assembly Privileges
	Database Trustworthiness
	Strong Naming

	Performance Comparison: SQLCLR vs. TSQL
	Creating a “Simple Sieve” for Prime Numbers
	Calculating Running Aggregates
	String Manipulation

	Enhancing Service Broker Scale-Out with SQLCLR
	XML Serialization
	XML Deserialization
	Binary Serialization with SQLCLR
	Binary Deserialization

	Summary

	Dynamic T-SQL
	Dynamic T-SQL vs. Ad Hoc T-SQL
	The Stored Procedure vs. Ad Hoc SQL Debate
	Why Go Dynamic?
	Compilation and Parameterization
	Auto-Parameterization
	Application-Level Parameterization
	Performance Implications of Parameterization and Caching

	Supporting Optional Parameters
	Optional Parameters via Static T-SQL
	Going Dynamic: Using EXECUTE
	SQL Injection
	sp_executesql: A Better EXECUTE
	Performance Comparison

	Dynamic SQL Security Considerations
	Permissions to Referenced Objects
	Interface Rules

	Summary

	Designing Systems for Application Concurrency
	The Business Side: What Should Happen When Processes Collide?
	Isolation Levels and Transactional Behavior
	Blocking Isolation Levels
	READ COMMITTED Isolation
	REPEATABLE READ Isolation
	SERIALIZABLE Isolation
	Nonblocking Isolation Levels
	READ UNCOMMITTED Isolation
	SNAPSHOT Isolation
	From Isolation to Concurrency Control

	Preparing for the Worst: Pessimistic Concurrency
	Progressing to a Solution
	Enforcing Pessimistic Locks at Write Time
	Application Locks: Generalizing Pessimistic Concurrency

	Hoping for the Best: Optimistic Concurrency
	Embracing Conflict: Multivalue Concurrency Control
	Sharing Resources Between Concurrent Users
	Controlling Resource Allocation
	Calculating Effective and Shared Maximum Resource Allocation
	Controlling Concurrent Request Processing

	Summary

	Working with Spatial Data
	Modeling Spatial Data
	Spatial Reference Systems
	Geographic Coordinate Systems
	Projected Coordinate Systems
	Applying Coordinate Systems to the Earth
	Datum
	Prime Meridian
	Projection
	Spatial Reference Identifiers

	Geography vs. Geometry
	Standards Compliance
	Accuracy
	Technical Limitations and Performance

	Creating Spatial Data
	Well-Known Text
	Well-Known Binary
	Geography Markup Language
	Importing Data

	Querying Spatial Data
	Nearest-Neighbor Queries
	Finding Locations Within a Given Bounding Box

	Spatial Indexing
	How Does a Spatial Index Work?
	Optimizing the Grid

	Summary

	Working with Temporal Data
	Modeling Time-Based Information
	SQL Server’s Date/Time Data Types
	Input Date Formats
	Output Date Formatting
	Efficiently Querying Date/Time Columns
	Date/Time Calculations
	Truncating the Time Portion of a datetime Value
	Finding Relative Dates
	How Many Candles on the Birthday Cake?

	Defining Periods Using Calendar Tables
	Dealing with Time Zones
	Storing UTC Time
	Using the datetimeoffset Type

	Working with Intervals
	Modeling and Querying Continuous Intervals
	Modeling and Querying Independent Intervals
	Overlapping Intervals
	Time Slicing

	Modeling Durations
	Managing Bitemporal Data
	Summary

	Trees, Hierarchies, and Graphs
	Terminology: Everything Is a Graph
	The Basics: Adjacency Lists and Graphs
	Constraining the Edges
	Basic Graph Queries: Who Am I Connected To?
	Traversing the Graph

	Adjacency List Hierarchies
	Finding Direct Descendants
	Traversing down the Hierarchy
	Ordering the Output
	Are CTEs the Best Choice?
	Traversing up the Hierarchy
	Inserting New Nodes and Relocating Subtrees
	Deleting Existing Nodes
	Constraining the Hierarchy

	Persisted Materialized Paths
	Finding Subordinates
	Navigating up the Hierarchy
	Inserting Nodes
	Relocating Subtrees
	Deleting Nodes
	Constraining the Hierarchy

	The hierarchyid Datatype
	Finding Subordinates
	Navigating up the Hierarchy
	Inserting Nodes
	Relocating Subtrees
	Deleting Nodes
	Constraining the Hierarchy

	Summary

	Index
	A
	C
	B
	D
	E
	F
	H G
	I
	K
	M
	L
	N
	P
	O
	Q
	R
	S
	T
	V
	U W
	X
	Y

