
Wiley Publishing, Inc.

Professional
SQL Server® 2008

Integration Services

Brian Knight
Erik Veerman

Grant Dickinson
Douglas Hinson
Darren Herbold

ffirs.indd vffirs.indd v 8/28/08 7:49:19 PM8/28/08 7:49:19 PM

Professional SQL Server® 2008 Integration Services
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-24795-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

 Professional Microsoft SQL server 2008 integration services / Brian Knight . . . [et al.].
 p. cm.
 Includes index.
 ISBN 978-0-470-24795-2 (paper/website)
 1. SQL server. 2. Database management. I. Knight, Brian.
 QA76.9.D3P7662 2008
 005.75'85—dc22

2008025018

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Microsoft and SQL
Server are registered trademarks of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 8/28/08 7:49:20 PM8/28/08 7:49:20 PM

 About the Authors
 Brian Knight , SQL Server MVP, MCSE, MCDBA, is the co - founder of SQLServerCentral.com and
JumpstartTV.com. Brian is a Principal Consultant and owner of Pragmatic Works. He runs the local SQL
Server users’ group in Jacksonville (JSSUG) and was on the Board of Directors of the Professional
Association for SQL Server (PASS). Brian is a contributing columnist for SQL Server Standard and also
maintains a regular column for the database website SQLServerCentral.com and does regular webcasts
at Jumpstart TV. He has authored nine SQL Server books during the past 10 years. Brian has spoken at
conferences like PASS, SQL Connections, and TechEd, and many Code Camps. You can find his blog at
 http://www.pragmaticworks.com . Brian spends weekends practicing to be a professional cage fighter
and practicing for next season ’ s American Idol .

 Erik Veerman is a Mentor for Solid Quality Mentors focusing on training, mentoring, and architecting
solutions on the SQL Server BI platform. His industry recognition includes Microsoft ’ s Worldwide
BI Solution of the Year and SQL Server Magazine ’ s Innovator Cup winner. Erik has designed dozens of BI
solutions across a broad business spectrum — telecommunications, marketing, retail, commercial real
estate, finance, supply chain, and information technology. His experience with high - volume multi - terabyte
environments and SQL Server 64 - bit has enabled clients to scale their Microsoft - based BI solutions for
optimal potential. As an expert in OLAP design, ETL processing, and dimensional modeling, Erik is a
presenter, author, and instructor. He led the ETL architecture and design for the first production
implementation of Integration Services (SSIS) and helped drive the ETL standards and best practices for
SSIS on Microsoft ’ s SQL Server 2005 reference initiative, Project REAL. Erik is also co - author of Professional
SQL Server 2005 Integration Services and Expert SQL Server 2005 Integration Services , and lead author for the
MS Press Training Kit SQL Server 2005 Business Intelligence Implementation and Maintenance . As a resident of
Atlanta, GA, Erik participates in the local Atlanta SQL Server User ’ s Group, a PASS chapter.

 Grant Dickinson is a Program Manager at Microsoft, focusing on designing technologies that enable
customers and partners to create innovative and scalable Business Intelligence solutions. Grant has
helped qualify, architect, and implement BI solutions across a broad range of industries, including a
solution that was once one of the largest Microsoft - based data warehouses in the world. He has designed
and provided expertise into product features across the Microsoft BI stack, including technologies in
SSIS, SQL Server, and Office. Grant helped develop the Microsoft best - practices ETL reference
implementation, Project REAL, and has spoken at conferences around the world. Grant is currently
focused on data quality and stewardship in the Master Data Management space. Grant was born in
Zimbabwe and spent much of his youth in Southern Africa. He gained a BSc Computer Science at the
University of the Witwatersrand in Johannesburg, and today he lives in Seattle with his wife and family.

 Douglas Hinson splits his time between database and software development for financial applications
in the logistics and insurance industries. Douglas specializes in conceptualizing, reengineering, and
developing back - end solutions that connect business operational and financial functions. As a result, he
has an extensive background in SQL Server and financial applications, and fits in some technical writing
on the side. He has coauthored several Wrox books, including SQL Server 2005 Performance Tuning , SQL
Server 2005 CLR Programming , and the previous edition of this book, SQL Server 2005 Integration Services .

ffirs.indd viiffirs.indd vii 8/28/08 7:49:20 PM8/28/08 7:49:20 PM

viii

 Darren Herbold , MCDBA, MCSE is a dedicated consultant who is passionate about delivering business
value to his clients. A principal consultant at Pragmatic Works Consulting (www.PragmaticWorks.com)
and a graduate from Florida State University, he has expertise in Business Intelligence, Database
Administration, and .NET Software Development. His main focus is on the SQL Server stack, where he
delivers training, mentoring, and develops Data Warehouse, ETL, and Reporting solutions for his clients.
He has developed a robust .NET application development framework and a code - generation tool that
saves clients an average of 30 to 40 percent off of development time. Darren has also created BI and
software solutions for clients such as Microsoft, Post Properties, and the University of South Florida.
Visit his blog at: http://pragmaticworks.com/community/blogs/ .

About the Authors

ffirs.indd viiiffirs.indd viii 8/28/08 7:49:20 PM8/28/08 7:49:20 PM

Credits
Executive Editor
Bob Elliott

Development Editor
Brian MacDonald

Technical Editors
Douglas Laudenschlager
Carla Sabotta
Michael A. Entin
Ranjeeta Nanda
Ritu Kothari
Feng Guo
Neal Graves
Devin Knight

Production Editor
Kathleen Wisor

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nancy Carrasco

Indexer
Melanie Belkin

ffirs.indd ixffirs.indd ix 8/28/08 7:49:20 PM8/28/08 7:49:20 PM

 Acknowledgments

 As always, I must thank my wife and best friend for supporting me for the past 10 years of marriage.
I ’ ve been fortunate to have found a woman who doesn ’ t fall asleep immediately when copyediting my
technical writing. Thanks to my three children: Colton, Liam, and Camille for allowing their daddy to be
distracted sometimes with this book when they wanted to play. Thanks also to all the wonderful
co - authors, who truly made this book possible. Once again, I must thank the Pepsi Cola Company for
inventing Mountain Dew, which drove the late night writing. Lastly, thanks to my sensei and song writer
Sensei Yoshi, who has helped me win my first cage fighting match and is preparing me for next year ’ s
 American Idol .

— Brian Knight

 First of all, I ’ d like to thank my kids, Meg, Nate, Kate, and Caleb, for being patient with me through the
sometimes tiresome process of writing. And of course, my wife, Amy, is amazing! Also thanks to Brian
Knight and the other authors who helped make this book so valuable. And thanks to Andy Leonard for
his help. There ’ s no one better at knowing how SSIS integrates with Visual Studio Team System. Thanks
go to the producers of coffee beans, because without caffeine, I honestly don ’ t know if my contribution
to this book would have been worth anything!

— Erik Veerman

 To my beautiful Heidi, thank you for your support, encouragement, and understanding, and for being
the best wife and friend I could ask for. Jessica and Anna, my two wonderful little girls, I thank God
every day that we have the gift of you in our lives. I cherish the times when you two sat on my lap while
I (ungainly) authored this book, waiting for me to finish so we could go and play outside. You are so
little but you give so much. Bruce, you are a brother and uncle - extraordinaire. Dad, Mom, Mae, Pai (and
the whole fandamily); though we are spread around the world, your legacy keeps our faith, values, and
family strong. Hatch, Dives, Cyril, Neil, Len, Dave, Donald, Erik, and Henk, thanks for your friendship,
mentorship, and passion during these years in Microsoft. Finally, my gratitude to Brian; it ’ s been fun
presenting and writing with you — good job on another great book!

— Grant Dickinson

 Thanks to God for the blessing of being able to do what I love for a living. To my beautiful wife,
Misty, thank you for being so supportive and understanding during this project, as always. Kyle and
Mariah, thanks for being so patient with your Dad while he was putting this project together. A big
thanks to the Wrox and Microsoft Tech editors and our Jacksonville area SQL Server guru, Brian Knight,
who has come through again with a great cast of authors and a reworked, well - crafted guide to SQL
Server Integrated Services 2008.

— Douglas Hinson

ffirs.indd xiffirs.indd xi 8/28/08 7:49:21 PM8/28/08 7:49:21 PM

xii

 I ’ d first like to thank my beautiful wife, Ashley, and my wonderful children, Sydney and Kiley, for all
their patience and support during this process. I want to also thank Brian Knight for giving me the
awesome opportunity to be involved in this project. He ’ s been a fantastic mentor, friend, and overall
great guy. Mt. Dew played a pivotal role in this too, for obvious reasons. I also would like to thank all the
great folks at KBX Boxing Gym in Alpharetta for teaching me to dig deep when I would much rather
vomit and pass out. Go Krav Maga! Lastly, I want to thank the fine staff at Wiley Publishing for their
support and guidance in this endeavor.

 — Darren Herbold

Acknowledgments

ffirs.indd xiiffirs.indd xii 8/28/08 7:49:21 PM8/28/08 7:49:21 PM

Professional
SQL Server® 2008

Integration Services

ffirs.indd xiiiffirs.indd xiii 8/28/08 7:49:21 PM8/28/08 7:49:21 PM

Contents

Introduction xxix

Chapter 1: Welcome to SQL Server Integration Services 1

SQL Server SSIS Historical Overview 2
What’s New in SSIS 2
Getting Started 3

Import and Export Wizard 3
The Business Intelligence Development Studio 4

Architecture 5
Packages 7
Tasks 8
Data Source Elements 9
Data Source Views 10

Precedence Constraints 11
Constraint Value 11
Conditional Expressions 11

Containers 12
Variables 13
Data Flow Elements 13

Sources 14
Destinations 15
Transformations 15

Error Handling and Logging 17
Editions of SQL Server 19
Summary 20

Chapter 2: The SSIS Tools 21

Import and Export Wizard 21
Business Intelligence Development Studio 28
Creating Your First Package 30
The Solution Explorer Window 32

The Toolbox 33
The Properties Windows 34
Navigation Pane 35
Other Windows 36

ftoc.indd xvftoc.indd xv 8/28/08 7:51:37 PM8/28/08 7:51:37 PM

Contents

xvi

The SSIS Package Designer 36
Control Flow 37
Connection Managers 40
Variables 41
Data Flow 42
Event Handlers 43
Package Explorer 44
Executing a Package 44

Package Installation Wizard 45
Management Studio 45
Summary 46

Chapter 3: SSIS Tasks 47

SSIS Task Objects 47
Using the Task Editor 48
The Task Editor Expressions Tab 49
Execution Results 50
Common Properties 51

Looping and Sequence Tasks 53
Scripting Tasks 53

ActiveX Script Task 53
Script Task (.NET) 55

Analysis Services Tasks 57
Analysis Services Execute DDL Task 57
Analysis Services Processing Task 58
Data Mining Query Task 59

Data Flow Task 61
Data Preparation Tasks 61

Data Profiler 62
File System Task 64
FTP Task 67
Web Service Task 69
XML Task 75

RDBMS Server Tasks 79
Bulk Insert Task 79
Execute SQL Task 85

Workflow Tasks 98
Execute Package Task 98
Execute Process Task 102
Message Queue Task 104
Send Mail Task 105

ftoc.indd xviftoc.indd xvi 8/28/08 7:51:38 PM8/28/08 7:51:38 PM

Contents

xvii

WMI Data Reader Task 106
WMI Event Watcher Task 108

SMO Administration Tasks 110
Transfer Database Task 110
Transfer Error Messages 112
Transfer Logins Task 112
Transfer Master Stored Procedures Task 113
Transfer Jobs Task 114
Transfer SQL Server Objects Task 115

Summary 116

Chapter 4: Containers 117

Task Host Containers 117
Sequence Containers 117
Groups 118
For Loop Container 119
Foreach Loop Container 122

Foreach File Enumerator Example 123
Foreach ADO Enumerator Example 125

Summary 129

Chapter 5: The Data Flow 131

The Data Flow 131
Data Viewers 132
Sources 132

OLE DB Source 132
Excel Source 135
Flat File Source 136
Raw File Source 142
XML Source 142
ADO.NET Source 142

Destinations 142
Data Mining Model Training 143
DataReader Destination 144
Dimension and Partition Processing 144
Excel Destination 144
Flat File Destination 145
OLE DB Destination 145
Raw File Destination 146
Recordset Destination 146
SQL Server and Mobile Destinations 146

ftoc.indd xviiftoc.indd xvii 8/28/08 7:51:38 PM8/28/08 7:51:38 PM

Contents

xviii

Transformations 146
Synchronous versus Asynchronous Transformations 147
Aggregate 147
Audit 149
Cache Transform 150
Character Map 150
Conditional Split 151
Copy Column 153
Data Conversion 153
Data Mining Query 154
Derived Column 154
Export Column 155
Fuzzy Lookup 157
Fuzzy Grouping 163
Import Column 167
Lookup Transform 170
Merge Transform 170
Merge Join 170
Multicast 171
OLE DB Command 172
Percentage and Row Sampling 175
Pivot Transform 175
Unpivot 179
Row Count 182
Script Component 184
Slowly Changing Dimension 184
Sort 185
Term Extraction 186
Term Lookup 190
Union All 192

Data Flow Example 193
Summary 197

Chapter 6: Using Expressions and Variables 199

The Paradigm 199
Expression Overview 200
Variable Overview 201

Understanding Data Types 202
SSIS Data Types 202
Additional Date and Time Type Support 204
Wrong Data Types and Sizes Can Affect Performance 204

ftoc.indd xviiiftoc.indd xviii 8/28/08 7:51:38 PM8/28/08 7:51:38 PM

Contents

xix

Unicode and Non-Unicode Conversion Issues 205
Casting in SSIS Expressions 206

Using Variables 208
Defining Variables 208
Variable Data Types 209

Working with Expressions 211
C#-Like? Close, but Not Completely 211
The Expression Builder 213
Syntax Basics 214
Using Expressions in SSIS Packages 227

Summary 236

Chapter 7: Joining Data 237

The Lookup Component 238
The Merge Join Component 239
Contrasting to the Relational Join 239
New Lookup Features 242
Building the Basic Package 242

Creating the Basic Package 244
Using a Relational Join in the Source 245
Using the Merge Join Component 247

Using the Lookup Component 252
Full-Cache Mode 252
No-Cache Mode 255
Partial-Cache Mode 257
Multiple Outputs 259
Expressionable Properties 264
Cascaded Lookup Operations 264

Cache Connection Manager and Transform 266
Summary 268

Chapter 8: Creating an End-to-End Package 271

Basic Transformation Tutorial 271
Creating Connections 272
Creating the Tasks 274
Creating the Data Flow 275
Completing the Package 276
Saving the Package 277
Executing the Package 277

ftoc.indd xixftoc.indd xix 8/28/08 7:51:39 PM8/28/08 7:51:39 PM

Contents

xx

Typical Mainframe ETL with Data Scrubbing 278
Creating the Data Flow 280
Handling Dirty Data 280
Finalizing 284
Handling More Bad Data 285

Looping and the Dynamic Task 288
Looping 288
Making the Package Dynamic 289

Summary 291

Chapter 9: Scripting in SSIS 293

Scripting? 293
Getting Started in SSIS Scripting 295

Selecting the Scripting Language 296
Using the VSTA Scripting IDE 297
Example: Hello World 298
Adding Code and Classes 300
Using Managed Assemblies 302

Using the Script Task 306
Configuring the Script Task Editor 306
The Script Task Dts Object 307
Accessing Variables in the Script Task 308
Connecting to Data Sources in a Script Task 315
Raising an Event in a Script Task 322
Writing a Log Entry in a Script Task 329

Using the Script Component 330
Differences from a Script Task 330
Configuring the Script Component Editor 331
Accessing Variables in a Script Component 334
Connecting to Data Sources in a Script Component 335
Raising Events 335
Logging 336
Example: Data Validation 337

Essential Coding, Debugging, and Troubleshooting Techniques 347
Structured Exception Handling 347
Script Debugging and Troubleshooting 350

Summary 353

ftoc.indd xxftoc.indd xx 8/28/08 7:51:39 PM8/28/08 7:51:39 PM

Contents

xxi

Chapter 10: Loading a Data Warehouse 355

Data Profiling 356
Initial Execution of the Data Profiling Task 356
Reviewing the Results of the Data Profiling Task 359
Turning Data Profile Results into Actionable ETL Steps 365

Data Extraction 366
Dimension Table Loading 366

Loading a Simple Dimension Table 367
Loading a Complex Dimension Table 375
Considerations and Alternates to the SCD Transformation 387

Fact Table Loading 388
SSAS Processing 400
Master ETL Package 408
Summary 411

Chapter 11: Using the Relational Engine 413

Data Extraction 414
SELECT * Is Bad 414
WHERE Is your Friend 416
Transform during Extract 417
Many ANDs Make Light Work 420
SORT in the Database 421
Modularize 423
SQL Server Does Text Files Too 425
Use Set-Based Logic 428

SQL Server 2008 Change Data Capture 430
Benefits of SQL Server 2008 CDC 431
Preparation 432
Capture Instance Tables 434
The CDC API 436
Using CDC from within SSIS 438

Data Loading 442
Database Snapshots 442
The MERGE Operator 444

Summary 448

ftoc.indd xxiftoc.indd xxi 8/28/08 7:51:39 PM8/28/08 7:51:39 PM

Contents

xxii

Chapter 12: Accessing Heterogeneous Data 449

Excel and Access 450
Limited 64-Bit Support 450
Working with Excel Files 452
Access 452

Oracle 460
Oracle Client Setup 460
Importing Oracle Data 460

XML and Web Services 463
Configuring the Web Service Task 463
Working with XML Data as a Source 476

Flat Files 481
Loading Flat Files 481
Extracting Data from Flat Files 483

ODBC 486
Other Heterogeneous Sources 489
Summary 490

Chapter 13: Reliability and Scalability 491

Restarting Packages 491
Simple Control Flow 492
Containers within Containers and Checkpoints 496
Variations on a Theme 499
Inside the Checkpoint File 501

Package Transactions 502
Single Package, Single Transaction 503
Single Package, Multiple Transactions 506
Two Packages, One Transaction 508
Single Package Using a Native Transaction in SQL Server 509

Error Outputs 511
Scaling Out 514

Architectural Improvements 514
Scale Out Memory Pressures 515
Scale Out by Staging Data 515

Summary 520

Chapter 14: Understanding and Tuning the Data Flow Engine 521

The SSIS Engine 521
Understanding the SSIS Data Flow and Control Flow 522
Handling Workflows with the Control Flow 525

ftoc.indd xxiiftoc.indd xxii 8/28/08 7:51:40 PM8/28/08 7:51:40 PM

Contents

xxiii

Data Processing in the Data Flow 526
Memory Buffer Architecture 527
Types of Transformations 529
Advanced Data Flow Execution Concepts 538

SSIS Data Flow Design and Tuning 548
Data Flow Design Practices 548
Optimizing Package Processing 555
Troubleshooting Data Flow Performance Bottlenecks 560

Pipeline Performance Monitoring 562
Summary 565

Chapter 15: Source Control and Software Development Life Cycle 567

Introduction to Software Development Life Cycles 568
Software Development Life Cycles: A Brief History 568
Types of Software Development Life Cycles 569

Versioning and Source Code Control 570
Microsoft Visual SourceSafe 570
Team Foundation Server, Team System, and SSIS 585
MSF Agile and SSIS 590
The Project Portal 594
Putting It to Work 594

Code Deployment and Promotion from Development to Test to Production 605
The Deployment Wizard 605
Import a Package 606

Summary 608

Chapter 16: DTS 2000 Migration 609

Managing DTS 2000 Packages within SQL Server Management Studio 609
Running DTS 2000 Packages under SSIS 610
Migrating DTS 2000 Packages to SSIS 611
Using the Package Migration Wizard 614
Third-Party Migration Solution 620
Summary 621

Chapter 17: Error and Event Handling 623

Precedence Constraint 623
Precedence Constraint Basics 624
Advanced Precedence Constraints and Expressions 625

ftoc.indd xxiiiftoc.indd xxiii 8/28/08 7:51:40 PM8/28/08 7:51:40 PM

Contents

xxiv

Event Handling 633
Events 634
Inventory Example 635
Event Handler Inheritance 643

Breakpoints 645
Error Rows 648
Logging 653

Logging Providers 654
Log Events 654

Summary 659

Chapter 18: Programming and Extending SSIS 661

The Sample Components 662
Component 1: Source Adapter 662
Component 2: Transformation 663
Component 3: Destination Adapter 663

The Pipeline Component Methods 664
Design-Time Functionality 664
Runtime 668
Connection Time 670

Building the Components 670
Preparation 671
Building the Source Component 678
Building the Transform Component 690
Building the Destination Adapter 702

Using the Components 709
Installing the Components 710
Debugging Components 710
Design-Time 710
Building the Complete Package 712
Runtime Debugging 713

Upgrading to SQL 2008 716
Summary 716

Chapter 19: Adding a User Interface to Your Component 717

Three Key Steps 717
Building the User Interface 718

Adding the Project 719
Implementing IDtsComponentUI 722
Setting the UITypeName 725
Building the Form 727

ftoc.indd xxivftoc.indd xxiv 8/28/08 7:51:40 PM8/28/08 7:51:40 PM

Contents

xxv

Further Development 732
Runtime Connections 732
Component Properties 735
Handling Errors and Warnings 737
Column Properties 739

Other Considerations 740
Summary 740

Chapter 20: External Management and WMI Task Implementation 741

External Management of SSIS with Managed Code 741
Setting up a Test SSIS Package for Demonstration Purposes 742
The DTS Runtime Managed Code Library 743

Application Object Maintenance Operations 744
Package Maintenance Operations 745
Package Folder Maintenance 750
Package Role Maintenance 752
Package Monitoring 753
Package Listing 755
A Package Management Example 756

Package Log Providers 765
Specifying Events to Log 767
Programming to Log Providers 768

Package Configurations 771
Creating a Configuration 772
Programming the Configuration Object 773
Configuration Object 774

Windows Management Instrumentation Tasks 775
WMI Reader Task Explained 776
WMI Data Reader Example 777
WMI Event Watcher Task 782
WMI Event Watcher Task Example 783

Summary 786

Chapter 21: Using SSIS with External Applications 787

InfoPath Documents 788
ASP.NET Applications 797
Winform .NET Applications 802
Summary 808

ftoc.indd xxvftoc.indd xxv 8/28/08 7:51:41 PM8/28/08 7:51:41 PM

Contents

xxvi

Chapter 22: Administering SSIS 809

Package Configuration 809
Deployment Utility 814

Creating the Deployment Manifest 814
The Package Deployment Wizard 815

The Package Store 818
Creating a Central SSIS Server 820
Clustering SSIS 822
File System or the MSDB Deployment 824

Management Studio 825
Running Packages with DTExecUI 826
Security 832
Command-Line Utilities 834

DTExec 834
DTUtil 835

Scheduling a Package 836
Proxy Accounts 838
64-Bit Issues 839
Performance Counters 840
Summary 841

Chapter 23: Case Study: A Programmatic Example 843

What You Will Take Away 843
Background 844
Business Problem 845
Solution Summary 845
Solution Architecture 846

Naming Conventions and Tips 849
Additional SSIS Tips Before You Start a Large Project 850

Data Architecture 850
File Storage Location Setup 851
Bank ACH Payments 851
Lockbox Files 852
PayPal or Direct Credits to Corporate Account 853
Case Study Database Model 853
Database Setup 854

Case Study Load Packages 863
Bank File Load Package 864
ACH Load Package 894
Email Load Package 913
Testing 919

ftoc.indd xxviftoc.indd xxvi 8/28/08 7:51:41 PM8/28/08 7:51:41 PM

Contents

xxvii

Case Study Invoice Matching Process 919
Matching Process Control Flow 920
Matching Process High-Confidence Data Flow 923
Matching Process Medium-Confidence Data Flow 928
Interpreting the Results 932

Creating a Parent Driver Package 934
Driver Package Setup 934
Driver Package Deployment 935

Summary 935

Index 937

ftoc.indd xxviiftoc.indd xxvii 8/28/08 7:51:41 PM8/28/08 7:51:41 PM

 Introduction

 SQL Server Integration Services (SSIS) was released to the market in SQL Server 2005 and took the
Extract Transform Load (ETL) market by surprise. In SQL Server 2008, SSIS has focused on maturing the
product and improving the product ’ s scalability and performance by an astonishing 70% in some cases.
If you ’ re new to SSIS, you ’ ve picked a fantastic field to become involved in! The one consistent skill
needed in today ’ s technical job market is ETL. If a company wants to establish a partnership with
another company, they ’ ll need to communicate data back and forth between the two companies. If your
company wants to launch new products, they ’ ll need a way to integrate those products into their website
and catalog. All of these types of tasks are going to require the skillset you are developing and will learn
in this book.

 Companies that had never used SQL Server before are now allowing it in their environment because SSIS
is such an easy - to - use and cost - effective way to move data. SSIS competes with the largest ETL tools on
the market, like Data Stage and Ab Initio, at a tiny fraction of the price. SQL Server 2008 now offers more
components that you use to make your life even easier and the performance scales to a level never seen
on the SQL Server platform.

 The best thing about SSIS is its price tag: free with your SQL Server purchase. Many ETL vendors charge
hundreds of thousands of dollars for what you will see in this book. SSIS is also a great platform for you
to expand and integrate into, which many ETL vendors do not offer. Once you get past the initial
learning curve, you ’ ll be amazed with the power of the tool, and it can take weeks off your time to
market.

 Who This Book Is For
 Having used SSIS since the beta stages of SQL Server 2005 and through its evolution into its current
form, the idea of writing this book was quite compelling. If you ’ ve never used SSIS before, we spend the
first chapters focusing on lowering your learning curve on this product. If you ’ ve used SSIS in the past,
we ’ ve added quite a bit of new content that is specific to SQL Server 2008 and to take your skills to the
next level. If you ’ re an SSIS 2005 user, luckily, this is an incremental release, and you won ’ t have to
completely relearn your skills.

 This book is intended for developers, DBAs, and casual users who hope to use SSIS for transforming
data, creating a workflow, or maintaining their SQL Server. This book is a professional book, meaning that
the authors assume that you know the basics of how to query a SQL Server and have some rudimentary
programming skills. Not much programming skill will be needed or assumed, but it will help with your
advancement. No skills in the prior release of SSIS (called DTS then) are required, but we do reference it
throughout the book when we call attention to feature enhancements.

flast.indd xxixflast.indd xxix 8/28/08 12:52:53 PM8/28/08 12:52:53 PM

xxx

 What This Book Covers
 Whether you ’ re new to SSIS or an experienced SSIS developer, there ’ s something for you in this book.
This book takes you from the architecture and basics of SSIS all the way through to developing hard - core
SSIS solutions to solve many of the industry ’ s common business scenarios. The book is tutorial based,
meaning that it teaches you through simple examples.

 By the time you ’ ve completed this book, you ’ ll know how to load and synchronize database systems
using SSIS by using some of the new SQL Server 2008 features. You ’ ll also know how to load data
warehouses, which is a very hot and specialized skill. Even in warehousing, you ’ ll find features in the
new 2008 release that you ’ ll wonder how you lived without!

 How This Book Is Structured
 After discussing the architecture of SSIS, we ’ ll start with the basics by introducing the fundamental
concepts of SSIS: The Data Flow and Control Flow. We ’ ll then build through the various other features,
including the warehousing and scripting, and proceed to advanced topics like programming and
extending the engine. We ’ ll conclude with a case study that helps to tie everything together. SSIS is a
very feature - rich product, and it took a lot to cover the product.

 Chapter 1, “ Welcome to SQL Server Integration Services, ” introduces the concepts that we ’ re going to
discuss throughout the remainder of this book. We talk about the SSIS architecture and give a brief
overview of what you can do with SSIS.

 Chapter 2, “ The SSIS Tools, ” shows you how to quickly learn how to import and export data by using
the Import and Export Wizard and then takes you on a tour of the Business Intelligence Development
Studio (BIDS).

 Chapter 3, “ SSIS Tasks, ” goes into each of the tasks that are available to you in SSIS. These tasks are the
building blocks for your SSIS workflow and are much like Lego block programming.

 Chapter 4, “ Containers, ” covers how to use containers to do looping in SSIS and describes how to
configure each of the basic transforms.

 Chapter 5, “ The Data Flow, ” dives into the data flow components in SSIS. These components are where
typical ETL developers will spend 75% of their time when loading a database.

 Chapter 6, “ Using Expressions and Variables, ” instructs you how to use the obscure expression language
in SSIS by showing you many example use cases and how to solve them through the language.

 Chapter 7, “ Joining Data, ” focuses on how to join systems together, whether those systems are two flat
files or database platforms. Much of the chapter is spent showing the Lookup Component, which is
where much of the work into SSIS 2008 went.

 Now that you know how to configure most of the tasks and transforms, Chapter 8, “ Creating an
End - to - End Package, ” puts it all together with a large example that lets you try out your SSIS experience.

 Chapter 9, “ Scripting in SSIS, ” shows you some of the ways you can use the Script Task in SSIS.

Introduction

flast.indd xxxflast.indd xxx 8/28/08 12:52:54 PM8/28/08 12:52:54 PM

xxxi

 Chapter 10, “ Loading a Data Warehouse, ” covers how to load a data warehouse from the ground up
through example. Even smaller companies now are finding that to compete they need to make their data
work for them by employing a data warehouse. We show how to load dimension and fact tables in this
chapter and some of the common issues.

 Chapter 11, “ Using the Relational Engine ” focuses on how to synchronize systems incrementally.
Generally, it ’ s too inefficient to completely purge and load a system daily or monthly. This chapter shows
you some of the new SQL Server 2008 features like Change Data Capture that help you make this
synchronization a smooth process.

 Sometimes you connect to systems other than SQL Server. Chapter 12, “ Accessing Heterogeneous Data, ”
shows you how to connect to systems other than SQL Server like Excel, XML, and Web services.

 Chapter 13, “ Reliability and Scalability ” demonstrates how to scale SSIS and make it more reliable. You
can use the features in this chapter to show you how to make the package restartable if a problem occurs.

 Chapter 14, “ Understanding and Tuning the Data Flow Engine, ” explains the architecture of the SSIS
Data Flow engine in detail and how to tune your SSIS packages for maximum efficiency.

 Chapter 15, “ Source Control and Software Development Life Cycle, ” introduces a software development
life cycle methodology to you. It speaks to how SSIS can integrate with Visual Studio Team System.

 Chapter 16, “ DTS 2000 Migration ” shows how to migrate DTS 2000 packages to SSIS and if necessary,
how to run DTS 2000 packages under SSIS. It also discusses third - party management to convert
packages.

 Chapter 17, “ Error and Event Handling, ” discusses how to handle problems with SSIS with error and
event handling.

 Chapter 18, “ Programming and Extending SSIS, ” shows the SSIS object model and how to use it to
extend SSIS. The chapter goes through creating your own task, and then Chapter 19, “ Adding a User
Interface to Your Component, ” adds a user interface to the discussion.

 Chapter 20, “ External Management and WMI Task Implementation, ” walks through creating an
application that interfaces with the SSIS to manage the environment. It also discusses the WMI set of
tasks.

 Chapter 21, “ Using SSIS with External Applications, ” teaches you how to expose the SSIS Data Flow to
other programs like InfoPath and your own .NET applications.

 Chapter 22, “ Administering SSIS, ” shows you how to deploy and administer the packages that you ’ ve
worked so hard to develop. We cover the SSIS service, how to run packages and schedule packages and
some of the challenges you ’ ll see with 64 - bit systems.

 Chapter 23 is a programmatic case study that creates three SSIS packages for a banking application.

Introduction

flast.indd xxxiflast.indd xxxi 8/28/08 12:52:54 PM8/28/08 12:52:54 PM

xxxii

 What You Need to Use This Book
 To follow this book, you will only need to have SQL Server 2008 and the Integration Services
component installed. You ’ ll need a machine that can support the minimum hardware requirements to
run SQL Server 2008. You ’ ll also want to have the AdventureWorks2008 and AdventureWorksDW2008
databases installed. Instructions for accessing these databases can be found in the ReadMe file on this
book’s Web site.

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of
conventions throughout the book:

 We highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show filenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context or that has been shown before.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com . Once at the site, simply locate the book ’ s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 24795 - 2.

 Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher - quality
information.

❑

❑

❑

❑

Introduction

flast.indd xxxiiflast.indd xxxii 8/28/08 12:52:54 PM8/28/08 12:52:54 PM

xxxiii

 To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book ’ s errata is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and to interact with
other readers and technology users. The forums offer a subscription feature to e - mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

flast.indd xxxiiiflast.indd xxxiii 8/28/08 12:52:54 PM8/28/08 12:52:54 PM

 Welcome to SQL Server
Integration Services

 SQL Server Integration Services (SSIS) is the anchor in a trilogy of products that make up the
Microsoft SQL Server Business Intelligence (BI) platform. SSIS along with Analysis Services and
Reporting Services round out a platform that clearly puts Microsoft on the map in the enterprise
Business Intelligence arena. In its simplest form, SSIS is an enterprise - level extract, transform, and
load (ETL) development tool. However, SSIS is not just a fancy wrapper around an import wizard.
In a drag - and - drop development environment, ETL developers can snap together intricate
workflows and out - of - the - box data - cleansing flows that rival custom coding and expensive third -
 party tools. For your edge cases, the model is easily extensible and custom components can be
developed in .NET languages to simply snap into the framework. However, custom coding most
likely will not even be necessary. With the latest version of SSIS, novice developers can use the
embedded Visual Studio Tools for Applications (VSTA) development environment to custom code
workflow tasks and data pipeline transformations in VB or C# .NET languages.

 When we put together the first edition of this book, we were blown away by the new architecture
and capabilities of SSIS. SSIS was a big change from the Data Transformation Services (DTS)
product that it replaced and there has been much to learn. Since the first edition of SSIS, we have
collectively racked up many years of experience converting older DTS packages and mindsets over
to using SSIS, and trust us when we say that no one who ’ s made the change is asking to go back.
We ’ ve learned some things, too. If you run into an issue getting up and running, converting older
packages, or creating new ones, we ’ ve probably run into that issue too and have a solution for you
here in this book. This book is a new edition and a whole new book. Nothing was sacred in this
rewrite because we really dug in to put the last few years of experience working with this product
back into these pages. We think the result is worth it and this edition will make your experience
with SSIS a more productive one. This chapter starts from the beginning and provides an overview
of SSIS, describes where it fits within the BI product platform, and ETL development in general.

c01.indd 1c01.indd 1 8/28/08 12:01:13 PM8/28/08 12:01:13 PM

Chapter 1: Welcome to SQL Server Integration Services

2

 SQL Server SSIS Historical Overview
 In SQL Server 7.0, Microsoft had a small team of developers work on a much understated feature of SQL
Server called Data Transformation Services (DTS). DTS was the backbone of the Import/Export Wizard,
and the DTS ’ s primary purpose was to transform data from almost any OLE DB – compliant Data Source
to another destination. It also had the ability to execute programs and run scripts, making workflow a
minor feature.

 By the time that SQL Server 2000 was released, DTS had a strong following of DBAs and maybe a few
developers. Microsoft included in the release new features like the Dynamic Properties Task that enabled
you to alter the package dynamically at runtime. Even though DTS utilized extensive logging along with
simple and complex multiphase data pumps, usability studies still showed that developers had to create
elaborate scripts to extend DTS to get what they wanted done. A typical use case was enabling DTS to
load data conditionally based on the existence of a file. To accomplish this in DTS, you would have had
to use the ActiveX Script Task to code a solution using the file system object in VBScript. The problem
here was that DTS simply lacked some of the common components to support typical ETL processes.
Although it was powerful if you knew how to write scripting code, most DBAs just didn ’ t have this type
of scripting experience (or time).

 After five years, Microsoft released the much touted SQL Server 2005, and SSIS, which is no longer an
understated feature like DTS. With the 2008 release, SSIS is now one of the main business intelligence
(BI) platform foundations. SSIS has moved so far up in importance that it now has its own service along
with the new name. This is entirely appropriate because so much has been added to SSIS. Microsoft
made a huge investment in usability, adding the first set of ETL tool - based components and upping the
ante again with this latest version. If what you need to do isn ’ t readily available, you now have the full
.NET library with VB and C# programming languages to add your own custom coding to message data
or manage the ETL process. However, you ’ ll be surprised how rarely you ’ ll need to drop into a coding
environment. In fact, as you dig into the toolset, you ’ ll find that things you may have needed to hand -
 code in a Script Task are simply part of the out - of - the - box components.

 What ’ s New in SSIS
 SSIS is now in its second edition. If you are brand new to SSIS, everything will be new, but even if you
are already using SSIS each version just keeps getting better. This latest version of SSIS includes
enhancements for performance and scalability, upgrades to handle new TSQL capabilities, and the
addition of new components, including the long - awaited ability to use C# in the scripting tasks. We ’ ll hit
the highlights here.

c01.indd 2c01.indd 2 8/28/08 12:01:14 PM8/28/08 12:01:14 PM

Chapter 1: Welcome to SQL Server Integration Services

3

 The data pipeline has been overhauled so that it scales to better use the multiple, dual, and quad - core
processor improvements. The Lookup Component that performs foreign key resolutions has also been
redesigned to allow for persistence of lookup cache that screams when you tune them for dimension
tables. Underneath SSIS now allows new TSQL extensions for multiple data manipulation language
(DML) operations like the MERGE statement.

 If you are looking for the latest toys, this version of SSIS has added new workflow components to control
the cache window maintenance, to generate TSQL traces, or reset row count variables. In the Data Flows,
there are new ADO Sources and Destinations to add to the OLE Sources and Destinations that were part
of the first version.

 Lastly, there has been a major improvement to the development environment from the previous versions
with the removal of the cobbled - together Visual Basic for Applications (VBA) implementation. The VBA
environment was only intended as a temporary implementation to allow custom scripting within your
ETL processes, evidenced by the clunky integration and that you were limited to VB.NET only. Now the
Script Tasks and Components use an embedded version of the Microsoft Visual Studio 2008 Tools for
Applications (VSTA) environment that supports both VB and C# .NET programming languages. In
addition, you can now add web references to your ETL processes without having to code your own
wrappers to web services to make use of existing business logic or data sources. We ’ ll touch on all of
these improvements as you read through this book and explore the examples, but first let ’ s get started.

 Getting Star ted
 Most of this book will assume that you know nothing about the past releases of SQL Server DTS and
will start with a fresh look at SQL Server SSIS. After all, when you dive into the new features, you ’ ll
realize how little knowing anything about the old release actually helps you when learning this one.
However, if you don ’ t come from the world of DTS, it ’ s hard for us not to throw in a few analogies here
and there to get these folks also up to speed on SSIS. The learning curve can be considered steep at first,
but once you figure out the basics, you ’ ll be creating what would have been complex packages in DTS in
no time. To get an idea of how easy SSIS is to use, look at a tool that is a staple in the ETL world, the
Import and Export Wizard.

 Import and Export Wizard
 If you need to move data quickly from almost any OLE DB – compliant Data Source to a destination, you
can use the SSIS Import and Export Wizard (shown in Figure 1 - 1). In fact, many SSIS packages are born
this way. The wizard is a quick way to move the data, perform very light transformations of data, and all
versions except Express allow you to persist the logic of the data movement into a package. The basic
concept of an import/export wizard has not changed substantially from the days of DTS. You still have
the option of checking all the tables you ’ d like to transfer. However, you also get the option now of
encapsulating the entire transfer of data into a single transaction.

c01.indd 3c01.indd 3 8/28/08 12:01:14 PM8/28/08 12:01:14 PM

Chapter 1: Welcome to SQL Server Integration Services

4

 Where do you find the wizard? It depends. If you just need to perform a quick import or export, access
the wizard directly from the Start menu by navigating to Start Microsoft SQL Server 2008 Import
and Export Data. The other option is to open up a project in the SSIS development environment and
select the menu option Project SSIS Import and Export Wizard. We cover this in detail in Chapter 2.
Before we get into all the mechanics for that, Figure 1 - 1 shows an example of the wizard fully loaded and
ready to move some data.

 Figure 1 - 1

 The Business Intelligence Development Studio
 The Business Intelligence Development Studio (BIDS) is the central environment that you ’ ll spend most
of your time in as an SSIS developer. BIDS is just a specialized use of the familiar Visual Studio
development environment that can host many different project types from Console applications to Class
Libraries and Windows applications. Although you may see many project types, BIDS actually only
contains project templates for Analysis Services, Integration Services, Report Server, and Report Model
Projects. SSIS in particular uses a business - intelligence project type called an Integration Services project
that provides development design surfaces with a completely ETL - based set of tools in the Toolbox
window. Get your first look at the development environment in Figure 1 - 2.

c01.indd 4c01.indd 4 8/28/08 12:01:15 PM8/28/08 12:01:15 PM

Chapter 1: Welcome to SQL Server Integration Services

5

 Though this development environment is similar to the legacy DTS Designer, the approach is completely
different. Most importantly, this is a collaborative development environment just like any Visual Studio
development effort with full source code management, version control, and multi - user project
management. In fact, SSIS was not developed in the context of a SQL Server instance like the DTS
Designer, and you don ’ t get to the SSIS IDE from within a particular SQL Server instance. SSIS solutions
are developed just like all other .NET development solutions, including being persisted to files — in this
case, XML file - based structures. You can even develop within the BIDS environment without a
connection to a SQL Server instance using the off - line mode. Once your solution is complete, it can be
built and deployed to one or multiple target SQL servers. These changes are crucial to establishing the
discipline and best practices of existing .NET development methodologies as you develop business
intelligence solutions. We ’ ll discuss this BIDS development interface in more detail later.

 Architecture
 Microsoft has truly established SSIS in SQL Server as a major player in the extraction, transformation,
and loading (ETL) market. Not only is SSIS technology a complete code rewrite from SQL Server 2000
DTS, but now it rivals other third - party ETL tools costing hundreds or thousands of dollars based on
how you scale the software — and it comes free with the purchase of SQL Server 2005 and later versions.
Free is great, but it can take you only so far if the feature set is minimal, or if the toolset has limited
usability, scalability, or enterprise performance limitations. But SSIS is for real, satisfying these typical

 Figure 1 - 2

c01.indd 5c01.indd 5 8/28/08 12:01:15 PM8/28/08 12:01:15 PM

Chapter 1: Welcome to SQL Server Integration Services

6

ETL requirements with a new architecture that has expanded dramatically, as you can see in Figure 1 - 3.
The SSIS architecture consists of four main components:

 The SSIS Service

 The SSIS runtime engine and the runtime executables

 The SSIS Data Flow engine and the Data Flow Components

 The SSIS clients

❑

❑

❑

❑

Figure 1-3

 The SSIS Service handles the operational aspects of SSIS. It is a Windows service installed when you
install the SSIS Component of SQL Server. It tracks the execution of packages (a collection of work items)
and helps with the storage of the packages. Don ’ t worry; we ’ ll get to explaining what packages are
shortly. The SSIS Service is turned on by default and is set to automatic. You don ’ t need the SSIS service
to be on to run SSIS packages, but if the service is stopped, the default behavior is for all the SSIS
packages that are currently running to also stop. (You can configure this service differently in the service
configuration if this is not the behavior you require.)

c01.indd 6c01.indd 6 8/28/08 12:01:16 PM8/28/08 12:01:16 PM

Chapter 1: Welcome to SQL Server Integration Services

7

 The SSIS runtime engine and its complementary programs actually run your SSIS packages. The engine
saves the layout of your packages and manages the logging, debugging, configuration, connections, and
transactions. Additionally, it manages handling your events when they are raised within your package.
The runtime executables provide the following functionality, which you ’ ll explore in more detail later
in this chapter:

 Containers: Provide structure and scope to your package .

 Tasks: Provide the functionality to your package .

 Event handlers: Respond to raised events in your package .

 Precedence constraints: Provide ordinal relationship between various items in your package .

 In Chapter 3, you ’ ll spend a lot of time in each of these architectural sections, but the next few sections
provide a nice overview for the ones that are the most important.

 Packages
 A core component of SSIS and DTS is the notion of a package . A package best parallels an executable
program that maintains workflow and business logic. Essentially, a package is a collection of tasks
snapped together to execute in an orderly fashion. Precedence constraints are used to connect the
tasks together and manage the order in which tasks will execute, based on what happens in each task or
specialized rules. The package is compiled into a .DTSX file that is actually an XML - structured file with
collections of properties. Just like other .NET solutions, the file - based code is marked up using the
development environment and can then be saved and compiled for deployment to a SQL Server as a file
in the file system or can be saved into the msdb database metadata. The package XML structure stripped
down to the basic elements looks like this:

 < ?xml version=”1.0”? >
 < DTS:Executable xmlns:DTS=”www.microsoft.com/SqlServer/Dts”
DTS:ExecutableType=”MSDTS.Package.2” >
 < DTS:ConnectionManager > < /DTS:ConnectionManager >
 < DTS:PackageVariable > < /DTS:PackageVariable >
 < DTS:Executable > < /DTS:Executable >
 < DTS:Executable DTS:ExecutableType=”DTS.Pipeline.2” >
 < components >
 < component > < /component >
 < /components >
 < /DTS:Executable >
 < DTS:EventHandler > < /DTS:EventHandler >
 < DTS:PrecedenceConstraint > < /DTS:PrecedenceConstraint >
 < DTS:Executable >

 Here you can see the package collections of connections, package variables, executables, and precedence
constraints. The specific executable named DTS.Pipeline.2 is a special task type that allows for
transformation of a data stream or pipeline that we ’ ll discover later. The point here is that the SSIS
package is an XML - structured file much like .RDL files are to Reporting Services. Of course, there
is much more to packages than that, but you ’ ll explore the other elements of packages, like event
handlers, later in this chapter.

❑

❑

❑

❑

c01.indd 7c01.indd 7 8/28/08 12:01:17 PM8/28/08 12:01:17 PM

Chapter 1: Welcome to SQL Server Integration Services

8

 Tasks
 A task can best be described as an individual unit of work. In the previous XML package snippet these
are the < DTS:Executable > nodes. Tasks provide functionality to your package, in much the same way
that a method does in a programming language. However, in SSIS, you aren ’ t coding the methods;
rather, you are dragging and dropping them onto a design surface and configuring them. You can also
develop your own tasks, but here are the current ETL Tasks available to you out-of-the-box:

 ActiveX Script Task: Executes an ActiveX script in your SSIS package. This task is only to
facilitate conversion of legacy DTS packages that use this deprecated scripting method.

 Analysis Services Execute DDL Task: Executes a DDL Task in Analysis Services. For example,
this can create, drop, or alter a cube (Enterprise and Developer Editions only).

 Analysis Services Processing Task: This task processes a SQL Server Analysis Services cube,
dimension, or mining model.

 Bulk Insert Task: Loads data into a table by using the BULK INSERT SQL command.

 Data Flow Task: This very specialized task loads and transforms data into an OLE DB, and now,
optionally, an ADO.NET Destination.

 Data Mining Query Task: Allows you to run predictive queries against your Analysis Services
data - mining models.

 Data Profiling Task: This exciting new task allows for the examination of data to replace your
ad - hoc data profiling techniques.

 Execute DTS 2000 Package Task: Exposes legacy SQL Server 2000 DTS packages to your SSIS
package.

 Execute Package Task: Allows you to execute a package from within a package, making your
SSIS packages modular.

 Execute Process Task: Executes a program external to your package, such as one to split your
extract file into many files before processing the individual files.

 Execute SQL Task: Executes a SQL statement or stored procedure.

 File System Task: This task can handle directory operations such as creating, renaming, or
deleting a directory. It can also manage file operations such as moving, copying, or deleting files.

 FTP Task: Sends or receives files from an FTP site.

 Message Queue Task: Sends or receives messages from a Microsoft Message Queue (MSMQ).

 Script Task: This task allows you to perform more .NET - based scripting in the Visual Studio
Tools for Applications programming environment.

 Send Mail Task: Sends a mail message through SMTP.

 Web Service Task: Executes a method on a Web service.

 WMI Data Reader Task: This task can run WQL queries against the Windows Management
Instrumentation. This allows you to read the event log, get a list of applications that are
installed, or determine hardware that is installed, to name a few examples.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 8c01.indd 8 8/28/08 12:01:17 PM8/28/08 12:01:17 PM

Chapter 1: Welcome to SQL Server Integration Services

9

 WMI Event Watcher Task: This task empowers SSIS to wait for and respond to certain WMI
events that occur in the operating system.

 XML Task: Parses or processes an XML file. It can merge, split, or reformat an XML file.

 There is also a whole set of tasks that are DBA - oriented, allowing you to create packages that can be used
to maintain your SQL Server environment. These tasks perform functions such as transferring your SQL
Server databases, backing up your database, or shrinking the database. Each of the tasks available to you
is described in Chapter 3 in much more detail, and you will see them in other examples throughout the
book. Tasks are extensible, and you can create your own custom tasks in .NET if you need a workflow
item that doesn ’ t exist or if you have a common scripting function that can benefit from reuse in your
package development. We cover this topic in Chapter 18, “ Programming and Extending SSIS. ”

 Data Source Elements
 The core strength of SSIS is its capability to extract data, transform it, and write it out to an alternative
destination. Data sources are the conduit for these data pipelines and are represented by connections that
can be used by sources or destinations once they ’ ve been defined. A data source uses connections that
are OLE DB – compliant and with SSIS 2008 this now includes ADO.NET Data Sources, such as SQL
Server, Oracle, DB2, or even nontraditional Data Sources, such as Analysis Services and Outlook. The
data sources can be localized to a single SSIS package or shared across multiple packages in BIDS.

 All the characteristics of the connection are defined in the Connection Manager. The Connection
Manager dialog box options vary based on the type of connection you ’ re trying to configure. Figure 1 - 4
shows you what a typical connection to SQL Server would look like.

❑

❑

Figure 1-4

c01.indd 9c01.indd 9 8/28/08 12:01:17 PM8/28/08 12:01:17 PM

Chapter 1: Welcome to SQL Server Integration Services

10

 Connection Managers are used to centralize connection strings to data sources and abstract them from
the SSIS packages themselves. In fact, the connections created by a Connection Manager are typically
created in the registry of a machine and not stored in the package itself — although you can encrypt this
information and store it. This allows you to deploy the SSIS package with a configuration file (which
we ’ ll describe later) that can set the full value of the connection properties at runtime. One nice thing is
that you can even configure the connection offline and completely design an SSIS package without
connecting to the server until you are ready to test. SSIS will not use the connection until you begin to
instantiate it in the package. This provides the ultimate in lightweight development portability for SSIS.

 Data Source Views
 Data source views (DSVs) are handy abstract concepts that you can use in SSIS and other SQL Server
projects. This feature allows you to create logical views of your business data. These views are a
combination of tables, views, stored procedures, and queries that can be shared across your project and
leveraged in Analysis Services and Report Builder projects.

 This is especially useful in large complex data models that are prevalent in ERP systems like Siebel or
SAP. These systems have column names like ER328F2 to make the data model flexible for nearly any
environment. However, this complex naming convention creates difficulties for the typical business user
or developer, impeding productivity that a simple readable name would eliminate. A DSV can be used to
map such columns to entities like LastPaymentDate to increase readability of the model. DSVs can also
be used to map the relationships between the tables that don ’ t necessarily exist in the physical model.

 Another common use of DSVs is to segment large sections of the data model into more security - or
functional - based chunks. DSVs provide an abstraction that transcends schema or even data source
separation. Take, for example, a DSV from the AdventureWorks Human Resource model as shown in
Figure 1 - 5. As you can see in this figure, not only has the DSV unified the different schemas, but a
friendly name has also been assigned to rename the Birth Date column in the Employee entity to DOB.

Figure 1-5

c01.indd 10c01.indd 10 8/28/08 12:01:18 PM8/28/08 12:01:18 PM

Chapter 1: Welcome to SQL Server Integration Services

11

 DSVs are used just like Connection Managers. However, there are a few key differences to remember
when using them. Like data sources, DSVs allow you to define the connection logic once and reuse it
across your SSIS packages. However, unlike connections, DSV structures are stored once, and then are
disconnected from the real source. This means that the underlying structure of the DSVs may change,
but the DSVs are not automatically refreshed. This can cause some problems during execution; if you
were to change the Employee table in a connection to a DSV for Human Resources, the DSV would not
pick up the change. On the other hand, if your model does not change often, this type of caching is a
huge benefit in your development of SSIS packages. The DSVs provide the disconnected capabilities to
allow development of SSIS packages to continue against cached metadata. DSVs also provide a side
advantage in speeding up package development. Because DSVs are most likely defined as a subset of
the actual Data Source, your SSIS connection dialog boxes will connect, realize data, and subsequently
load much faster.

 Precedence Constraints
 Precedence constraints direct the tasks to execute in a given order. In fact, precedence constraints are the
connectors that not only link tasks together but define the workflow of your SSIS package. Constraints
control the execution of the two linked tasks by executing the destination task based upon the final state
of the prior task and business rules that are defined using special expressions. The expression language
embedded in SSIS essentially replaces the need to control workflow using script - based methodologies
that enabled and disabled tasks, as was used in the DTS legacy solution. With expressions, you can direct
the workflow of your SSIS package based on all manner of given conditions. We ’ ll go into many
examples of using these constraints throughout this book.

 To set up a precedence constraint between two tasks, the constraint value must be set, and optionally
you can set an expression. The next sections give a quick overview of the differences between the two.

 Constraint Value
 Constraint values define how the package will react when the prior task of two linked tasks completes
an execution. The choices define whether the destination task of two linked tasks should execute based
solely on how the prior task completes. There are three types of constraint values:

 Success: A task that ’ s chained to another task with this constraint will execute only if the prior
task completes successfully. These precedence constraints are colored green.

 Completion: A task that ’ s chained to another task with this constraint will execute if the prior
task completes. Whether the prior task succeeds or fails is inconsequential. These precedence
constraints are colored blue.

 Failure: A task that ’ s chained to another task with this constraint will execute only if the prior
task fails to complete. This type of constraint is usually used to notify an operator of a failed
event or write bad records to an exception queue. These precedence constraints are colored red.

 Conditional Expressions
 The conditional expression options that you can apply to a precedence constraint allow you to mix in a
dynamically realized expression with the constraint value to determine the package workflow between
two or more linked tasks. An expression allows you to evaluate whether certain conditions have been met

❑

❑

❑

c01.indd 11c01.indd 11 8/28/08 12:01:19 PM8/28/08 12:01:19 PM

Chapter 1: Welcome to SQL Server Integration Services

12

before the task is executed and the path followed. The constraint evaluates only the success or failure of
the previous task to determine whether the next step will be executed. The SSIS developer can set the
conditions by using evaluation operators. Once you create a precedence constraint, you can set the
Evaluation Option property to any one of the following options:

 Constraint: This is the default setting and specifies that only the constraint will be followed in
the workflow.

 Expression: This option gives you the ability to write an expression (much like VB.NET) that
allows you to control the workflow based on conditions that you specify.

 ExpressionAndConstraint: Specifies that both the expression and the constraint must be met
before proceeding.

 ExpressionOrConstraint: Specifies that either the expression or the constraint can be met before
proceeding.

 In Figure 1 - 6, you can see an example that contains three tasks. In this example, the package first
attempts the copying of files using the File System Task. If this prior task is successful and meets the
expression criteria for a good file to transfer, the package will divert to the Data Flow Task to transform
the files. However, if the first step fails, a message will be sent to the user using the Send Mail Task. You
can also see in the graphic a small fx icon above the Data Flow Task and on the precedence constraint.
This is the graphical representation for a conditional expression and visually informs that this task will
not execute unless an expression has also been met. The expression can check anything, such as looking
at a checksum, before running the Data Flow Task.

❑

❑

❑

❑

Figure 1-6

 Containers
 Containers are a core unit in the SSIS architecture to group tasks together logically into units of work.
Besides providing visual consistency, containers allow you to define variables and event handlers (these
are discussed in a moment) within the scope of the container instead of the package. There are four types
of containers in SSIS:

 Task Host Container: The core type of container implements the basic interface to which
every task implicitly belongs by default. The SSIS architecture extends variables and event
handlers to the task through the Task Host Container.

 The Task Host Container is not a visible element that you ’ ll find in the Toolbox, but is an abstract
 concept like an interface.

❑

c01.indd 12c01.indd 12 8/28/08 12:01:19 PM8/28/08 12:01:19 PM

Chapter 1: Welcome to SQL Server Integration Services

13

 Sequence Container: Allows you to group tasks into logical subject areas. Within the
development environment, you can then collapse or expand this container for usability. This is
similar to the region concept in .NET coding.

 For Loop Container: Loops through a series of tasks for a given amount of time or using an
iterator until a condition is met.

 Foreach Loop Container: Loops through a series of files or records in a data set, and then
executes the tasks in the container for each record in the collection.

 Containers are so integral to SSIS development that you ’ ll find Chapter 4 is devoted to them. As you
read through this book, we ’ ll give you many real - world examples of using each of these types of
containers for typical ETL development tasks.

 Variables
 Variables are another vital component of the SSIS architecture. In legacy DTS ETL development,
global variables could be defined either by the Dynamic Property Task or by hand in the Active X Task,
but they could only store static values. SSIS variables can be set to evaluate to an expression at runtime,
removing much of the need to push values into the variables. However, you still can do this with the
Scripting Tasks and Transforms, and as always, the configuration processes can set these variables.
Variables in SSIS have become the method of exchange between many tasks and transforms, making the
scoping of variables much more important. SSIS variables exist within a scope in the package. The
default is to create variables at a package scope, but they can be scoped to different levels within a
package as mentioned earlier in the “ Containers ” section.

 Using variables allows you to configure a package dynamically at runtime. Without variables, each time
you wanted to deploy a package from development to production, you ’ d have to open the package and
change all the hard - coded connection settings to point to the new environment. A best practice is to set
up SSIS packages using variables, so that you can just change the variables at deployment time, and
anything that uses those variables will adjust.

 Data Flow Elements
 You learned earlier that the Data Flow Task is simply another executable task in the package. The Data
Flow replaces the simple black arrow data pump that you may be familiar with from legacy DTS
packages. If this is not familiar, this arrow describes what the Data Flow does, wonderfully. The Data
Flow Task is the pumping mechanism that moves data from source to destination. However, in the case
of SSIS, you have much more control of what happens from start to finish. In fact, you have a set of out -
of - the box transformation components that you snap together to clean and manipulate the data while it
is in the data pipeline.

 One confusing thing for new SSIS developers is that once you drag and drop a Data Flow Task in the
Control Flow, it spawns a new Data Flow design surface with its own new tab in the BIDS user interface.
Each Data Flow Task has its own design surface that you can access by double - clicking the Data Flow Task
or by clicking the Data Flow tab and selecting Data Flow Task from the drop - down list. Just as the Controller
Flow handles the main workflow of the package, the Data Flow handles the transformation of data. Almost

❑

❑

❑

c01.indd 13c01.indd 13 8/28/08 12:01:20 PM8/28/08 12:01:20 PM

Chapter 1: Welcome to SQL Server Integration Services

14

anything that manipulates data falls into the Data Flow category. As data moves through each step of the
Data Flow, the data changes, based on what the transform does. For example, in Figure 1 - 7, a new column
is derived using the Derived Column Transform, and that new column is then available to subsequent
transformations or to the destination.

 In this section, each of the sources, destinations, and transformations are covered from an overview
perspective. These areas are covered in much more detail in later chapters.

Figure 1-7

 Sources
 A source is a component that you add to the Data Flow design surface to specify the location of the source
data that is to feed into the data pump. Sources are configured to use Connection Managers to allow for the
ability to reuse connections throughout your package. Six sources can be used out-of-the-box with SSIS:

 OLE DB Source: Connects to nearly any OLE DB Data Source, such as SQL Server, Access,
Oracle, or DB2, to name just a few.

 Excel Source: Specializes in receiving data from Excel spreadsheets. This source also makes it
easy to run SQL queries against your Excel spreadsheet to narrow the scope of the data that you
wish to pass through the flow.

 Flat File Source: Connects to a delimited or fixed - width file.

 Raw File Source: Produces a specialized binary file format for data that is in transit and is
especially quick to read by SSIS.

 Xml Source: Can retrieve data from an XML document.

 ADO.NET Source: This source is just like the OLE DB Source but only for ADO.NET - based
sources. The internal implementation uses an ADO.NET DataReader as the source. The ADO
.NET connection is much like the one you see in the .NET Framework when handcoding a
connection and retrieval from a database.

❑

❑

❑

❑

❑

❑

c01.indd 14c01.indd 14 8/28/08 12:01:20 PM8/28/08 12:01:20 PM

Chapter 1: Welcome to SQL Server Integration Services

15

 Sources can also be hand coded using two methods. One method is to use the Script Component to create
a source stream using the existing .NET libraries. This method is more practical for single - use applications.
If you need to reuse a custom source, you can develop one by extending the SSIS object model.

 Destinations
 Inside the Data Flow, destinations consume the data after the data pipe leaves the last transformation
components. The flexible architecture can send the data to nearly any OLE DB – compliant, flat - file, or
ADO.NET Data Source. Like sources, destinations are also managed through the Connection Manager.
The following destinations are available to you in SSIS:

 Data Mining Model Training: Trains an Analysis Services mining model by passing in data
from the Data Flow to the destination.

 ADO.NET Destination: Exposes data to other external processes, such as Reporting Services or
your own .NET application. It also uses the ADO.NET DataReader interface similar to the ADO
.NET Source to consume the data.

 Data Reader Destination: Allows the ADO.NET DataReader interface to consume data similar
to the ADO.NET Destination.

 Dimension Processing: Loads and processes an Analysis Services dimension. It can perform a
full, update, or incremental refresh of the dimension.

 Excel Destination: Outputs data from the Data Flow to an Excel spreadsheet.

 Flat File Destination: Enables you to write data to a comma - delimited or fixed - width file.

 OLE DB Destination: Outputs data to an OLE DB data connection like SQL Server, Oracle, or
Access.

 Partition Processing: Enables you to perform incremental, full, or update processing of an
Analysis Services partition.

 Raw File Destination: Outputs data in a binary format that can be used later as a Raw File
Source. Is usually used as an intermediate persistence mechanism.

 Recordset Destination: Writes the records to an ADO record set.

 SQL Server Destination: The destination that you use to write data to SQL Server most
efficiently.

 SQL Server Compact Edition Destination: Inserts data into a SQL Server running on a Pocket PC.

 Transformations
 Transformations are key components within the Data Flow that allow changes to the data in the data
pipe. You can use transformations to split, divert, and remerge data in the data pipe. Data can also be
validated, cleansed, and rejected using specific rules. For example, you may want your dimension data
to be sorted and validated. This can be simply accomplished by dropping a Sort and a Lookup
Transformation onto the Data Flow design surface and configuring them.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 15c01.indd 15 8/28/08 12:01:21 PM8/28/08 12:01:21 PM

Chapter 1: Welcome to SQL Server Integration Services

16

 Transform Components in the SSIS Data Flow affect data in the data pipe in - memory. This is not always
the panacea for ETL processing, especially under high - volume data processing. However, the latest
version of SSIS has changed the way the Data Flow Task breaks down the execution tree for the
transforms to take full advantage of asynchronous processing and parallelism to get the most from
multi - processor machines. Here ’ s a complete list of transforms:

 Aggregate: Aggregates data from transform or source.

 Audit: Exposes auditing information from the package to the data pipe, such as when the
package was run and by whom.

 Character Map: Makes common string data changes for you, such as changing data from
lowercase to uppercase.

 Conditional Split: Splits the data based on certain conditions being met. For example, this
transformation could be instructed to send data down a different path if the State column is
equal to Florida.

 Copy Column: Adds a copy of a column to the transformation output. You can later transform
the copy, keeping the original for auditing purposes.

 Data Conversion: Converts a column ’ s data type to another data type.

 Data Mining Query: Performs a data - mining query against Analysis Services.

 Derived Column: Creates a new derived column calculated from an expression.

 Export Column: Exports a column from the Data Flow to the file system. For example, you can
use this transformation to write a column that contains an image to a file.

 Fuzzy Grouping: Performs data cleansing by finding rows that are likely duplicates.

 Fuzzy Lookup: Matches and standardizes data based on fuzzy logic. For example, this can
transform the name Jon to John.

 Import Column: Reads data from a file and adds it into a Data Flow.

 Lookup: Performs a lookup on data to be used later in a transformation. For example, you can
use this transformation to look up a city based on the zip code.

 Merge: Merges two sorted data sets into a single data set in a Data Flow.

 Merge Join: Merges two data sets into a single data set using a join function.

 Multicast: Sends a copy of the data to an additional path in the workflow.

 OLE DB Command: Executes an OLE DB command for each row in the Data Flow.

 Percentage Sampling: Captures a sampling of the data from the Data Flow by using a
percentage of the total rows in the Data Flow.

 Pivot: Pivots the data on a column into a more non - relational form. Pivoting a table means that
you can slice the data in multiple ways, much like in OLAP and Excel.

 Row Count: Stores the row count from the Data Flow into a variable.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 16c01.indd 16 8/28/08 12:01:21 PM8/28/08 12:01:21 PM

Chapter 1: Welcome to SQL Server Integration Services

17

 Row Sampling: Captures a sampling of the data from the Data Flow by using a row count of the
total rows in the Data Flow.

 Script Component: Uses a script to transform the data. For example, you can use this to apply
specialized business logic to your Data Flow.

 Slowly Changing Dimension: Coordinates the conditional insert or update of data in a slowly
changing dimension.

 Sort: Sorts the data in the Data Flow by a given column.

 Term Extraction: Looks up a noun or adjective in text data.

 Term Lookup: Looks up terms extracted from text and references the value from a reference
table.

 Union All: Merges multiple data sets into a single data set.

 Unpivot: Unpivots the data from a non - normalized format to a relational format.

 Error Handling and Logging
 In SSIS, there are several places that you can control error handling, and they depend on whether you
are handling task or Data Flow errors. For task errors, package events are exposed in the user interface,
with each event having the possibility of its own event handler design surface. This design surface is yet
another area where you can define workflow along with the task and Data Flow surfaces you ’ ve already
learned about. The event - handler design surface in SSIS is where you can specify a series of tasks to be
performed if a given event happens for a task in the task flow. There are event handlers to help you
develop packages that can self - fix problems. For example, the OnError error handler triggers an event
whenever an error occurs anywhere in scope. The scope can be the entire package or an individual
container. Event handlers are represented as a workflow, much like any other workflow in SSIS. An ideal
use for event handlers would be to notify an operator if any component fails inside the package. You
learn much more about event handlers in Chapter 17. You can also use the precedence constraints
directly on the task flow design surface to direct workflow when a proceeding task fails to complete or
evaluates to an expression that forces the workflow change.

 An ultimate error within a Data Flow Task can be captured and handled with an error handler, but for
finer control within the data pipe itself, each transformation must be configured to define the action that
should be taken if a specific error occurs while processing the data. You can define whether the entire data
transformation should fail and exit upon an error, or that only the bad rows should be redirected to a
failed Data Flow branch. You can also choose to ignore any errors. The error handler shown in Figure 1 - 8
defines that if an error occurs during the Derived Column Transformation, the error rows will be output
to a new error data stream. You can then use that outputted information to write to an output log or a
destination connection as seen in Figure 1 - 8.

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 17c01.indd 17 8/28/08 12:01:21 PM8/28/08 12:01:21 PM

Chapter 1: Welcome to SQL Server Integration Services

18

 The On Failure error data stream can be seen in Figure 1 - 9 as a red line connecting the transform Derived
Column Task to a Script Component Destination. The green lines show the normal happy path for the
Data Flow through the data pipeline.

Figure 1-8

Figure 1-9

 Logging has also been improved in SSIS. It is now at a much finer detail than what was available in the
legacy DTS. More than a dozen events can be simply selected within each task or package for logging.
You can enable partial logging for one task and enable much more detailed logging for billing tasks.
Some of the examples of events that can be monitored are: OnError , OnPostValidate , OnProgress ,
and OnWarning , to name just a few. The logs can be written to nearly any connection: SQL Profiler, text
files, SQL Server, the Windows Event log, or an XML file. We go through some examples of this in
Chapter 17.

c01.indd 18c01.indd 18 8/28/08 12:01:22 PM8/28/08 12:01:22 PM

Chapter 1: Welcome to SQL Server Integration Services

19

 Editions of SQL Server
 The available features in SSIS and SQL Server vary widely based on what edition of SQL Server you ’ re
using. As you can imagine, the more high - end the edition of SQL Server, the more features are available.
In order from high - end to low - end, the following SQL Server editions are available:

 SQL Server Enterprise Edition: This edition of SQL Server is for large enterprises that need
higher availability and more advanced features in SQL Server and business intelligence. For
example, there is no limit on processors or RAM in this edition. You ’ re bound only by the
number of processors and amount of RAM that the OS can handle. Microsoft will also continue
to support Developer Edition, which lets developers develop SQL Server solutions at a much
reduced price.

 SQL Server Standard Edition: This edition of SQL Server now has a lot more value than ever
before. For example, you can now create a highly available system in Standard Edition by using
clustering, database mirroring, and integrated 64 - bit support. These features were available only
in Enterprise Edition in SQL Server 2000 and caused many businesses to purchase Enterprise
Edition when Standard Edition was probably sufficient for them. Like Enterprise Edition in SQL
Server 2005, it also offers unlimited RAM. Thus, you can scale it as high as your physical
hardware and OS will allow. However, there is a cap of four processors with this edition.

 SQL Server Workgroup Edition: This new edition is designed for small and medium - sized
businesses that need a database server with limited business intelligence and Reporting
Services. Workgroup Edition supports up to two processors with unlimited database size. In
SQL Server 2008 Workgroup Edition, the limit is 3 GB of RAM.

 SQL Server 2008 Compact Edition: This version was formally called the Express Edition and is
the equivalent of Desktop Edition (MSDE) in SQL Server 2000 but with several enhancements.
For example, MSDE never offered any type of management tool, and this is now included. Also
included are the Import and Export Wizard, and a series of other enhancements. This remains a
free addition of SQL Server for small applications. It has a database size limit of 4 GB. Most
important, the query governor has been removed from this edition, allowing for more people to
query the instance at the same time.

 As for SSIS, you ’ ll have to use at least the Standard Edition to receive the bulk of the SSIS features. In the
Express and Workgroup Editions, only the Import and Export Wizard is available to you. You ’ ll have to
upgrade to the Enterprise or Developer Edition to see some features in SSIS. For example, the following
advanced transformations are available only with the Enterprise Edition:

 Analysis Services Partition Processing Destination

 Analysis Services Dimension Processing Destination

 Data Mining Training Destination

 Data Mining Query Component

 Fuzzy Grouping

 Fuzzy Lookup

 Term Extraction

 Term Lookup

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 19c01.indd 19 8/28/08 12:01:22 PM8/28/08 12:01:22 PM

Chapter 1: Welcome to SQL Server Integration Services

20

 Half of these transformations are used in servicing Analysis Services. To continue that theme, one task is
available only in Enterprise Edition — the Data Mining Query Task.

 Summary
 In this chapter, you were introduced to the historical legacy and the exciting new capabilities of the SQL
Server Integration Services (SSIS) platform. We looked at where SSIS fits into the Business Intelligence
roadmap for SQL Server, and then dove into an overview of the SSIS architecture. Within the architecture
we stayed up at 20,000 feet to make sure you have a good understanding of how SSIS works and the core
parts of the architecture. We talked about the core components of tasks, Data Flows, transformations,
event handlers, containers, and variables — all crucial concepts that you ’ ll be dealing with daily in SSIS.
Packages are executable programs in SSIS that are a collection of tasks. Tasks are individual units of
work that are chained together with precedence constraints. Lastly, transformations are the Data Flow
items that change the data to the form you request, such as sorting the data.

 In the next chapter, you look at some of the tools and wizards you have at your disposal to expedite
tasks in SSIS. In Chapter 3, we do a deep dive into the various tasks in the Toolbox menu that you can
use to create SSIS workflows, then move on to containers in the following chapter. In Chapter 4, we circle
back into the Data Flow Task and examine the data components that are available to use within the data
pipeline to perform the transform in ETL.

c01.indd 20c01.indd 20 8/28/08 12:01:23 PM8/28/08 12:01:23 PM

 The SSIS Tools

 As with any Microsoft product, SQL Server ships with a myriad of wizards and tools to make your
life easier and reduce your time to market. In this chapter you learn about some of the tools that
are available to you and how to create your first basic package. These wizards make transporting
data and deploying your packages much easier and can save you hours of work in the long run.
We start the discussion with the Import and Export Wizard, which allows you to create a package
for importing or exporting data quickly. As a matter of fact, you may run this tool in your day -
to - day work without even knowing that SSIS is the back - end for the wizard. The latter part of this
chapter explores other tools that are available to you, such as Business Intelligence Development
Studio.

 Import and Export Wizard
 The Import and Export Wizard is the easiest method to move data from sources like Oracle,
DB2, SQL Server, and text files to nearly any destination and is available across all the versions
of SQL Server; even those that don ’ t have SSIS. This wizard uses SSIS as a framework and can
optionally save a package as its output prior to executing. The package it produces may not be
the most elegant, but it can take a lot of the hard work of a package development and provide the
building blocks that are necessary for you to build the remainder of the package. Oftentimes as an
SSIS developer, you ’ ll want to relegate the grunt work and heavy lifting to the wizard, and then do
the more complex coding yourself.

 As with any of the SSIS tools, there are numerous ways to open the tool. To open the Import and
Export Wizard, right - click the database you want to import data from or export data to in SQL
Server Management Studio and select Tasks Import Data (or Export Data based on what task
you ’ re performing). You can also open the wizard by right - clicking SSIS Packages in BIDS and
selecting SSIS Import and Export Wizard. Another common way to open it is from the Start menu
under SQL Server 2008, and it’s called Import and Export Data. The last way to open the wizard is
by typing dtswizard.exe at the command line or Run prompt. No matter whether you need to
import or export the data, the first few screens in the wizard will look very similar.

c02.indd 21c02.indd 21 8/28/08 12:03:41 PM8/28/08 12:03:41 PM

Chapter 2: The SSIS Tools

22

 Once the wizard comes up, you ’ ll see the typical Microsoft wizard welcome screen. Click Next to begin
specifying the source connection. If you had opened the wizard from Management Studio by selecting
Export Data, this screen would be pre - populated. In this screen you ’ ll specify where your data is coming
from in the Source drop - down box. Once you select the source, the rest of the options on the dialog box
may vary based on the type of connection. The default source is SQL Native Client, and it looks like
Figure 2 - 1 . You have OLE DB sources like SQL Server, Oracle, and Access available out-of-the-box. You
can also use text files, Excel files, and XML files. After selecting the source, you ’ ll have to fill in the
provider - specific information.

 For SQL Server, you must enter the server name, as well as the user name and password you ’ d like to
use. If you ’ re going to connect with your Windows account, simply select Use Windows Authentication.
Windows Authentication will pass your Windows local or domain credentials into the data source.
Lastly, choose a database that you ’ d like to connect to. For most of the examples in this book, you ’ ll use
the AdventureWorks2008 database. This database can be downloaded as an optional installation on
CodePlex.com.

 Additional sources such as Sybase and DB2 can also become available if you install the vendor ’ s OLE
DB providers. You can download the OLE DB Provider for DB2 for free if you ’ re using Enterprise
Edition by going to the SQL Server 2008 Feature Pack on the Microsoft website.

Figure 2-1

c02.indd 22c02.indd 22 8/28/08 12:03:45 PM8/28/08 12:03:45 PM

Chapter 2: The SSIS Tools

23

 After you click Next, you ’ ll be taken to the next screen in the wizard, where you specify the destination
for your data. The properties for this screen are exactly identical to those for the previous screen with the
exception of the database. Select TempDB from the Database drop - down box. This will just create and
load the tables into a temporary space, which will disappear once you restart your instance of SQL
Server. Click Next again to be taken to the Specify Table Copy or Query screen (see Figure 2 - 2). On the
next screen, if you select “ Copy data from one or more tables or views, ” you can simply check the tables
you want. If you select “ Write a query to specify the data to transfer, ” you ’ ll be able to write an ad hoc
query (after clicking Next) of where to select the data from, or what stored procedure to use to retrieve
your data.

Figure 2-2

 For the purpose of this example, select “ Copy data from one or more tables or views ” and click Next.
This takes you to the screen where you can check the tables or views that you ’ d like to transfer to the
destination (see Figure 2 - 3). For this tutorial, check some of the tables that belong to the
HumanResources schema, other than the Employee table, in the AdventureWorks2008 database.

c02.indd 23c02.indd 23 8/28/08 12:03:46 PM8/28/08 12:03:46 PM

Chapter 2: The SSIS Tools

24

 If you wish, you can click the Edit buttons to go to the Column Mappings dialog box for each table (see
Figure 2 - 4). Here you can change the mapping between each source and destination column. For
example, if you want the DepartmentID column to go to the DepartmentID2 column on the destination,
simply select the Destination cell for the DepartmentID column and point it to the new column, or select
 < ignore > to ignore the column altogether.

Figure 2-3

Figure 2-4

c02.indd 24c02.indd 24 8/28/08 12:03:47 PM8/28/08 12:03:47 PM

Chapter 2: The SSIS Tools

25

 Notice that because you ’ re moving the data to a new database that doesn ’ t have the Department table
already there, the “ Create destination table ” option is one of the few options enabled by default. This
will create the Department table on the destination before populating it with data from the source. If the
table did already exist, you could select that all the rows in the destination table will be deleted before
populating it. The default setting, if you already have the table there, is to append the data from the
source to the destination. You can also specify that you want the table to be dropped and re - created. The
Edit SQL option allows you to specify the schema for the destination table that will be created. Keep in
mind that this import or export process can be rerun later over and over again if you save the package.

 Finally, you can enable the “ identity insert ” option if the table you ’ re going to move data into has an
identity column. If the table did have an identity column in it, the wizard would automatically enable
this option. If you don ’ t have the option enabled and you try to move data into an identity column, the
wizard will fail to execute.

 For the purpose of this example, don ’ t change any of the settings in this screen. Click OK to apply the
settings from the Column Mappings dialog box and Next to proceed to the Save and Execute Package
screen. If there were any mapping errors or warnings from this previous screen, you ’ ll be taken to the
Review Data Type Mapping screen, where you ’ ll be able to specify how you want to handle data
conversion errors.

 If no errors were seen, you will be taken to the Save and Execute Package screen. Here you can specify
whether you want the package to execute only once, or whether you ’ d like to save the package off for
later use. As you saw earlier, you don ’ t necessarily have to execute the package here. You can uncheck
Execute Immediately and just save the package for later modification and execution. In this example, set
the wizard to Execute Immediately, Save the SSIS Package and the File System option. This collection of
options is going to execute the package and also save the package as a .dtsx file to your computer. You
learn more about where to save your SSIS packages later in this chapter.

 You ’ re also asked in this screen how you wish to protect the sensitive data in your package. SSIS
packages are essentially large XML files behind the scenes, and encryption of the sensitive data, such as
passwords, is critical to ensuring that no one sees that information by opening up the XML manually.
Again, you learn more about this later in this chapter, so for the time being, change the Package
Protection Level property to “ Encrypt sensitive data with password ” to protect your sensitive data with
a password, and give the dialog box a password (as shown in Figure 2 - 5).

c02.indd 25c02.indd 25 8/28/08 12:03:47 PM8/28/08 12:03:47 PM

Chapter 2: The SSIS Tools

26

 You will then be taken to the Save SSIS Package screen, where you can type the name of the package and
the location to which you ’ d like to save the package. Optionally, you can add a description to the package.
This helps you later operationally when you need to identify the purpose of the package (see Figure 2 - 6).

Figure 2-5

Figure 2-6

c02.indd 26c02.indd 26 8/28/08 12:03:47 PM8/28/08 12:03:47 PM

Chapter 2: The SSIS Tools

27

 Click Next and confirm what tasks you wish the wizard to perform. The package will then execute when
you click Finish, and you ’ ll see the page in Figure 2 - 7 . Any errors will be displayed in the Message
column. You can also see how many rows were copied over in this column. You can also double - click an
entry that failed to see why it failed.

Figure 2-7

 After the wizard executes, the package can be found in the location that you have specified, but the
default is in the My Documents directory. You can open the package that executed in BIDS if you ’ d like,
by creating a project in BIDS and dragging the package into the project. You will not be able to edit the
package without a BIDS project to contain the package. We discuss how to do this in detail in the
 “ Business Intelligence Development Studio ” section later in this chapter. You can see the Control Flow
tab for the package in Figure 2 - 8 . There is a Control Flow tab that contains the task that prepares the
environment, such as creating the tables. Then, the tables are loaded, and then the same steps occur for
the children tables. So as you can see, referential integrity is completely maintained by the Import and
Export Wizard.

c02.indd 27c02.indd 27 8/28/08 12:03:48 PM8/28/08 12:03:48 PM

Chapter 2: The SSIS Tools

28

 You ’ ll also see in the package that there are only two connections: one for the destination and another for
the source shown in the Connection Manager pane in BIDS. Even though it ’ s a shared connection, each
transformation runs in parallel, which is a marked improvement from SQL Server 2000, where this
would be a serial operation when using a single connection.

 Business Intelligence Development Studio
 The Business Intelligence Development Studio (BIDS) is where you ’ ll spend most of your time as an SSIS
developer. It is where you create and deploy your SSIS projects.

 BIDS uses a light version of Visual Studio 2008. If you have the full version of Visual Studio 2008 and
SQL Server 2008 installed, you can create business intelligence projects there as well in the full interface,
but as far as SSIS is concerned, there ’ s no value in using the full version of Visual Studio. Either way, the
user experience is the same. In SQL Server 2008, the SSIS development environment is detached from
SQL Server, so you can develop your SSIS solution offline, and then deploy it to wherever you ’ d like in a
single click.

 You ’ ll find BIDS in the root of the Microsoft SQL Server 2008 program group from the Start menu.
Once you start BIDS, you ’ ll be taken to the Start Page, an example of which is shown in Figure 2 - 9 ,
before you open or create your first project. You can open more windows (you learn about these various
windows in a moment) by clicking their corresponding icon in the upper - right corner or under the View
menu.

Figure 2-8

c02.indd 28c02.indd 28 8/28/08 12:03:48 PM8/28/08 12:03:48 PM

Chapter 2: The SSIS Tools

29

 The Start Page contains key information about your BIDS environment, such as the last few projects that
you had open under the Recent Projects box. You can also see the latest MSDN news under the Get News
from Microsoft box.

 The nicest thing about SSIS development in the Visual Studio environment is that it gives you full access
to the Visual Studio feature set, such as debugging, automatic integration with Source Safe, and
integrated help. It is a familiar environment for developers and makes deployments easy.

Figure 2-9

 To start a new SSIS project, you will first need to open BIDS and select File New Project. You ’ ll
notice a series of new templates (shown in Figure 2 - 10) in your template list now that you ’ ve installed
SQL Server 2008. Select Integration Services Project, and name your project and solution whatever you ’ d
like. There is another type of SSIS project called the Integration Services Connections that can be seen in
Figure 2 - 10 that is solely meant for creating a shell of a package with the necessary connections but
nothing more.

c02.indd 29c02.indd 29 8/28/08 12:03:49 PM8/28/08 12:03:49 PM

Chapter 2: The SSIS Tools

30

 As you can see in Figure 2 - 10 , BIDS incorporates the concept of solutions and projects. Solutions are
containers for lots of projects or just a single project in most cases. Solutions can hold any type of Visual
Studio project like Reporting Services and a project for SSIS all in the same container. You would
typically want to align projects into the same solution that fit a business project that you ’ re trying to
develop for. For example, you may have a business project that you ’ ve been assigned to for the creation
of a data warehouse. That warehouse project would probably have ETL, Management Studio scripts, and
Reporting Services reports. You could place all of these into a single solution so you could manage them
from a unified interface. You ’ ll notice that once you begin work in Visual Studio, if your solution
contains only a single project, the solution will be hidden by default. If you want to always see the
solution name, go to Tools Options and check Always Show Solution from the Projects and Solutions
group. Once the second project is added to it, you ’ ll see the solution and both projects under the
solution.

 Creating Your First Package
 Before you jump into the fundamentals of the toolset, you should exercise some of the BIDS features by
creating a very basic package. If you don ’ t understand some of this, don ’ t worry yet. It will make much
more sense later in this chapter and in Chapter 3 . This quick example shows you how to configure a task
and how to chain tasks together with precedence constraints.

 Start by opening BIDS by selecting Start Programs Microsoft SQL Server 2008 SQL Server
Business Intelligence Development Studio. Once BIDS is open, select New Project from the File menu.
Under the Business Intelligence Project Type on the left, select Integration Services Project. Call the
project “ Basic Package ” for the Name option, and then click OK.

 In the Solution Explorer to the right of BIDS, you ’ ll see that an empty package called Package.dtsx was
created. On the left of BIDS is your Toolbox, which contains all of the work items that you can apply in

Figure 2-10

c02.indd 30c02.indd 30 8/28/08 12:03:49 PM8/28/08 12:03:49 PM

Chapter 2: The SSIS Tools

31

whatever tab you ’ re in. In the Toolbox, drag the Execute Process task over to the empty design pane in
the middle. Double - click the task to configure it. This opens the editor for the given task, transformation,
or data connection you wish to configure. Name the task Notepad, and you can optionally enter a
description in the General page. Select the Process page in the left pane of the task editor, and for the
Executable option, select Notepad.exe . Click OK to exit the editor.

 Drag another Execute Process task over and double - click it to open the editor again. Name this task Calc.
In the Process page, type calc.exe for the Executable option. Click OK to exit the editor. Click the first
Notepad task and you ’ ll see a green arrow pointing downward from the task. This is a precedence
constraint, which was mentioned in Chapter 1 . Left - click the arrow and drag it onto the Calc task. These
tasks are now connected, and the Calc task will not execute until the first task succeeds.

 Click the Save icon to save the package. Select Debug Start Debugging or hit F5. This will execute the
package. You should first see Notepad open, and once you close Notepad, the Windows calculator will
open (as shown in Figure 2 - 11). Once you close the calculator, the package will complete. The two tasks
should also show as green in color, which means they successfully executed. You can click the Stop
button or select Debug Stop Debugging to complete the package ’ s execution.

 Congratulations, you have created your first package. Granted, this package will never be used in a
production environment, but it does show you the basic concepts in SSIS. It ’ s important to note that you
will not develop packages that have interactive windows like this. If you were to execute this in
production, it would wait for a user ’ s interaction to close the window before the package would
complete. The concepts you were introduced to here are described in greater detail in each upcoming
chapter, and now you ’ ll learn about the features that are available to you in BIDS.

Figure 2-11

c02.indd 31c02.indd 31 8/28/08 12:03:49 PM8/28/08 12:03:49 PM

Chapter 2: The SSIS Tools

32

 The Solution Explorer Window
 The Solution Explorer window is where you can find all of your created SSIS packages, shared
connections, data source views, and any other miscellaneous files needed for the project, such as
installation documents. As we mentioned earlier, a solution is a container that holds a series of projects.
Each project holds a myriad of objects for whatever type of project you ’ re working in. For SSIS, it will
hold your packages, data source views, and shared connections. Once you create a solution, you can
store many projects inside of it. For example, you may have a solution that has your VB.NET application
and all the SSIS packages that support that application. In this example, you would probably have two
projects: one for VB and another for SSIS.

 After creating a new project, your Solution Explorer window will contain a series of empty folders.
Figure 2 - 12 shows you a partially filled Solution Explorer. In this screenshot, there ’ s a solution named
ProSSIS with two projects: SSAS Sample Project and SSIS Sample Project. Inside that project, there are
two SSIS packages.

Figure 2-12

 To create a new project inside an existing open solution, right - click the solution name in the Solution
Explorer window and select Add New Project. To create a new item to your project in the folder, right -
 click the folder that holds the type of item that you wish to add and select New Data Source, New Data
Source View, or New SSIS Package. You can also drag files or copy and paste files into the project that are
of a similar type, like .dtsx files.

 If you look into the directory that contains your solution and project files, you ’ ll see all the files that are
represented in the Solution Explorer window. Some of the base files you may see will have the following
extensions:

 .dtsx : An SSIS package, which uses its legacy extension from the early beta cycles of SQL
Server 2008 when SSIS was still called DTS

 .ds : A shared data source file

 .dsv : A data source view

❑

❑

❑

c02.indd 32c02.indd 32 8/28/08 12:03:50 PM8/28/08 12:03:50 PM

Chapter 2: The SSIS Tools

33

 .sln : A solution file that contains one or more projects

 .dtproj : An SSIS project file

 If you copy any file that does not match the .ds , .dtsx , or .dsv extension, it will be placed in the
Miscellaneous folder. This folder is used to hold any files that describe the installation of the package,
like Word documents or requirements documents. Anything you ’ d like can go into that folder, and it can
potentially all be checked into a source control system like Source Safe with the code. We discuss more
about source control systems in Chapter 15 , “ Source Control and Software Development Life Cycle. ”

 The Toolbox
 The Toolbox contains all the items that you can use in the particular tab ’ s design pane at any given point
in time. For example, the Control Flow tab has a list of tasks (a partial list can be seen in Figure 2 - 13).
This list may grow based on what custom tasks are installed. The list will be completely different when
you ’ re in a different tab, such as the Data Flow tab. All the tasks you see in Figure 2 - 13 are covered in
Chapter 3 in much more detail.

❑

❑

Figure 2-13

c02.indd 33c02.indd 33 8/28/08 12:03:50 PM8/28/08 12:03:50 PM

Chapter 2: The SSIS Tools

34

 If you right - click a particular task, you ’ ll get a menu that will let you customize your view by adding or
removing tabs and adding, renaming, or removing items. You can also change the order in which the
items or tabs appear, just by clicking and dragging from the source to the destination or by right - clicking
and selecting Sort Alphabetically. You can also reset the Toolbox at any time by right - clicking in the
Toolbox and selecting Reset Toolbox. This will remove all non - default items and custom tasks that you
may have installed from the Toolbox.

 The Properties Windows
 The Properties window (shown in Figure 2 - 15) is where you can customize almost any item that you
have selected. For example, if you select a task in the design pane, you ’ ll receive a list of properties to
configure, such as the task ’ s name and what query it ’ s going to use. The view will vary widely based on
what item you have selected. Figure 2 - 15 shows the properties of the Execute Process task you created in
an earlier section of this chapter.

Figure 2-14

 The Toolbox is organized into tabs such as Maintenance Tasks and Control Flow Items. These tabs can be
collapsed and expanded for usability. As you use the Toolbox, you may want to customize your view by
removing tasks or tabs from the default view. You can remove or customize the list of items in your
Toolbox by right - clicking an item and selecting Choose Items. This takes you to the Choose Toolbox
Items dialog box shown in Figure 2 - 14 , and may take a few seconds to open. To customize the list that you
see when you ’ re in the Control Flow tab, select the SSIS Control Flow Items tab, and check the tasks you ’ d
like to see. After you install a custom component, you ’ ll need to come back to this screen again to check
the component that you installed to add it to your Toolbox.

c02.indd 34c02.indd 34 8/28/08 12:03:50 PM8/28/08 12:03:50 PM

Chapter 2: The SSIS Tools

35

 Most tasks can be configured through the user interface of the tasks or by going to the Properties pane
when the task is selected. To edit the properties for the package, simply select the design pane in the
background. If the Properties pane ever gets closed, you can press F4 to reopen it or select the Properties
Window button under View.

 Navigation Pane
 One of the nice usability features that have been added in BIDS is the ability to navigate quickly through
the package by using the navigation pane (as shown in Figure 2 - 16) in the bottom - right corner of the
package. The pane is visible only when your package is more than one screen in size, and it allows you
to quickly navigate through the package. To access the pane, left - click and hold on the cross - arrow in the
bottom - right corner of the screen. You can then scroll up and down a large package with ease.

Figure 2-15

Figure 2-16

c02.indd 35c02.indd 35 8/28/08 12:03:51 PM8/28/08 12:03:51 PM

Chapter 2: The SSIS Tools

36

 Other Windows
 At design time, the BIDS has several other windows that you can choose to dock, undock, show, hide, or
auto - hide based on your needs, or what stage you are at in development. These supplementary windows
include the following:

 Error List window: Shows errors and warnings that have been detected in the package. Double -
 clicking an entry in this window will open the editor of the object causing the error.

 Output window: Shows the results from when you build or execute a package in the BIDS
environment. For example, the Output window will show any errors that occur during building
or deploying or during runtime.

 Task List window: Shows tasks that a developer can create for descriptive purpose or as a
follow - up for later development.

 As you begin to test your packages, you will want to execute them inside of the BIDS. This will shift the
mode into runtime, and no editing will be allowed until the package has completed execution. During
runtime, the following windows will also appear:

 Call Stack window: Shows the names of functions or tasks on the stack.

 Breakpoints window: Shows all of the breakpoints set in the current project.

 Command window: Used to execute commands or aliases directly in the BIDS.

 Immediate window: Used to debug and evaluate expressions, execute statements, and print
variable values.

 Autos window: Displays variables used in the current statement and the previous statement.

 Locals window: Shows all of the local variables in the current scope.

 Watch windows: Allow you to add specific variables to the window that can be viewed as
package execution takes place. You can also directly modify, and read/write variables in this
window.

 You learn more about all of these windows in much more detail in later chapters.

 The SSIS Package Designer
 The SSIS Package Designer contains the design panes that you ’ ll use to create an SSIS package. The tool
contains all the items you need to move data or create a workflow with minimal or no code. The great
thing about SSIS is that it is like programming with building blocks. The Package Designer contains four
tabs: Control Flow, Data Flow, Event Handlers, and Package Explorer. One additional tab, Progress, also
appears when you execute packages. This Progress tab also is renamed to Execution Results after the
package stops running and you click Stop.

 In this chapter, you mainly explore the Control Flow tab, and we ’ ll spend the bulk of the next chapter
really diving into the details about this tab. Unlike SQL Server 2000 DTS, where control and Data Flows
were intermingled, Control Flow and Data Flow editors are completely separated by these tabs. This
usability feature gives you greater control when creating and editing packages. The task that binds the

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c02.indd 36c02.indd 36 8/28/08 12:03:51 PM8/28/08 12:03:51 PM

Chapter 2: The SSIS Tools

37

Control Flow and Data Flow together is the Data Flow Task, which you study in depth over the next two
chapters.

 The difference between the Control Flow and Data Flow tabs is one of the largest learning curves for
a new SSIS developer. The easiest way to keep them straight is to think of the Data Flow tab as simply a
way to configure the Data Flow task. This separation gives you a huge amount of power when
configuring the task. The other way to differentiate the two tabs is that the Control Flow tab handles the
workflow of the package and ties the tasks together, and the Data Flow tab handles a data load.

 Control Flow
 The Control Flow is most similar to SQL Server 2000 DTS, because it contains most of the tasks you ’ re
used to in SQL Server 2000. It contains the workflow parts of the package, which include the tasks,
containers, and precedence constraints. SSIS has introduced the new concept of containers, which was
briefly discussed in Chapter 1 and is covered in detail in Chapter 4 . In the Control Flow tab, you can
click and drag a task from the Toolbox into the Control Flow design pane. Once you have a task created,
you can double - click the task to configure it. Until the task is configured, you may see a yellow warning
or red error indicator on the task.

 After you configure the task, you can link it to other tasks by using precedence constraints. Once you
click the task, you ’ ll notice a green arrow pointing down from the task, as shown in Figure 2 - 17 .

Figure 2-17

 To create an On Success precedence constraint, click the green arrow coming out of the task and drag it
to the task you wish to link to the first task. In Figure 2 - 18 , you can see the On Success precedence
constraint between a File System task called Copy File and a Data Flow task called Load Data. You can
also see an On Failure constraint, which is represented as a red arrow between the File System task and
the Send Mail task. This type of Control Flow may send a message to an operator in the event that the
task named Copy File fails. After the Copy File task succeeds, the Load Data task will execute.

Figure 2-18

c02.indd 37c02.indd 37 8/28/08 12:03:51 PM8/28/08 12:03:51 PM

Chapter 2: The SSIS Tools

38

 When you click a source or a transformation in the Data Flow tab, you ’ ll also see a red arrow pointing
down, enabling you to quickly direct your bad data to a separate output. So if you run a formula that
returns an error in the Data Flow, that single row could be outputted to a different table, and then all
other rows could continue down the proper path.

 In the Control Flow, though, you ’ ll need to use a different approach. If you ’ d like the next task to execute
only if the first task has failed, create a precedence constraint as was shown earlier for the On Success
constraint. After the constraint is created, double - click the constraint arrow and you ’ ll be taken to the
Precedence Constraint Editor (shown in Figure 2 - 19).

Figure 2-19

 In this editor, you can set what type of constraint you ’ ll be using in the Value drop - down field: Success,
Failure, or Completion. In SSIS, you have the option of adding a logical AND or OR when a task has
multiple constraints. In the Precedence Constraint Editor in SSIS 2008, you can configure the task to
execute only if the group of predecessor tasks has completed (AND), or if any one of the predecessor
tasks has completed (OR). If a constraint is a logical AND, the precedence constraint line is solid. If it is
set to OR, the line is dotted. This is useful if you want to be notified if any one of the tasks fails by using
the logical OR constraint.

 In the Evaluation Operation drop - down box, you can edit how the task will be evaluated.

 Constraint: Evaluates the success, failure, or completion of the predecessor task or tasks .

 Expression: Evaluates the success of a customized condition that is programmed using an
expression .

 Expression and Constraint: Evaluates both the expression and the constraint before moving to
the next task.

 Expression or Constraint: Determines if either the expression or the constraint has been
successfully met before moving to the next task .

❑

❑

❑

❑

c02.indd 38c02.indd 38 8/28/08 12:03:52 PM8/28/08 12:03:52 PM

Chapter 2: The SSIS Tools

39

 If you select Expression or one of its variants as your option, you ’ ll be able to type an expression in the
Expression box. An expression is usually used to evaluate a variable before proceeding to the next task.
For example, if you want to ensure that InputFileVariable variable is equal to Variable2 variable,
you would use the following syntax in the Expression box:

 @InputFileVariable == @Variable2

 You can also single - click the constraint and use the Properties window to the right to set these properties,
if you prefer not to use the editor.

 Task Grouping
 A very nice usability feature in SSIS is the ability to group tasks logically in containers . For example, if
you have a group of tasks that create and purge the staging environment, you can group them together
so that your package is not cluttered visually. For example, in Figure 2 - 20 there are two tasks to load data
and send a message. To group them, select both tasks by clicking one task and holding the Ctrl key down
while you select the second task. Then, right - click the tasks and select Group.

Figure 2-20

 Once you have the two tasks grouped, you ’ ll see a box container around the tasks. This container will be
called Group by default. To rename the group, simply double - click the container and type the new name
over the old one. You can also collapse the group so that your package isn ’ t cluttered. To do this, just
click the arrows that are pointing downward in the group. Once collapsed, your grouping will look like
Figure 2 - 21 . You can also ungroup the tasks by right - clicking the group and selecting Ungroup.

Figure 2-21

 We discuss more about containers in Chapter 4 .

 Annotation
 Annotation is a key part of any package that a good developer never wants to leave out. An annotation is
a comment that you place in your package to help others and yourself understand what is happening in

c02.indd 39c02.indd 39 8/28/08 12:03:52 PM8/28/08 12:03:52 PM

Chapter 2: The SSIS Tools

40

the package. To add an annotation, right - click where you ’ d like to place the comment, select Add
Annotation, and begin typing. You can resize the box as well as add a carriage return by pressing
Ctrl+Enter. It is a good idea to always add an annotation to your package that shows the title and
version your package is on. Most SSIS developers like to also put a version history annotation note in the
package, so that they can see what ’ s changed in the package between releases and who performed the
change. You can see an example of this in Figure 2 - 22 . You can also right - click the text to change the color
of the annotation or bold it.

Figure 2-22

 Connection Managers
 You may have already noticed that there is a Connection Managers tab at the bottom of your Package
Designer pane. This tab contains a list of connections that both Control Flow and Data Flow Tasks can
use. Whether the connection is an FTP address or a connection to an Analysis Services server, you ’ ll see a
reference to it here. These connections can be referenced as either sources or targets in any of the
operations and can connect to relational or Analysis Services databases, flat files, or other data sources.

 When you create a new package, there are no connections defined. You can create connections by right -
 clicking in the Connections area and choosing the appropriate data connection type. Once the connection
is created, you can rename it to fit your naming conventions or to better describe what is contained in the
connection. Even if you have a shared connection defined for your project, it won ’ t be usable in the
package until you add it to the Connection Managers tab. Nearly any task or transformation that uses
data or references a file will require a Connection Manager. There are very few exceptions, such as the
Raw File destination and XML source, that allow you to define your connection inline. Figure 2 - 23 shows
a few connections: two to a relational database (AdventureWorksDW2008), an SMTP reference, and
several flat files.

 Notice that there are two Connection Managers that refer to the AdventureWorksDW2008 database. The
one with a database icon is a local Connection Manager that can only be seen inside a single package.
The Connection Manager with the arrows coming out of it is referencing a shared connection, which can
be used anywhere in the project.

Figure 2-23

c02.indd 40c02.indd 40 8/28/08 12:03:53 PM8/28/08 12:03:53 PM

Chapter 2: The SSIS Tools

41

 Variables
 Variables are a powerful piece of the SSIS architecture; they allow you to dynamically control the
package at runtime, much like you do in any .NET language. There are two types of variables: system
and user. System variables are ones that are built into SSIS, such as a package name or the package ’ s start
time; whereas user variables are created by the SSIS developer. Variables can also have varying scope,
with the default scope being the entire package. They can also be set to be in scope of a container, task, or
event handler inside the package.

 One of the optional design - time windows can display a list of variables. To access the Variables window,
right - click in the design pane and select Variables. The Variables window (shown in Figure 2 - 24) will
appear where the Toolbox was, and you can toggle between the two windows by selecting the
corresponding tab below the window. By default, you will see only the user variables; to see the system
variables as well, select the Show System Variables icon in the top of the window. To add a new variable,
click the Add Variable icon in the Variables window and type the name.

Figure 2-24

 When you click the Add Variable icon, whatever task or container you select at the time will be the scope
for the variable. Once the scope is set for the variable, it cannot be changed, so be sure to set it to the
right scope the first time. You can also click the Choose Variable Columns button in order to see more
columns in the pane other than the name, scope, data type, and value. Some of the additional columns
you can see are the namespace and raise event on variable change properties. Lastly, you can select a
variable and go to the Properties pane to see extended properties on the variable. We discuss these
properties in more depth Chapter 3 .

 You ’ ll find yourself using system variables throughout your package habitually for auditing or error
handling. Some of the system variables that are in the scope of a package that you may find interesting
for auditing purposes are listed in the following table.

c02.indd 41c02.indd 41 8/28/08 12:03:53 PM8/28/08 12:03:53 PM

Chapter 2: The SSIS Tools

42

 Variable Name Data Type Description

 CreationDate DateTime The date when the package was created.

 InteractiveMode Boolean Indicates how the package was executed. If the
package was executed from BIDS, this would be set to
true. If it was executed as a job, it would be set to false.

 MachineName String The computer where the package is running.

 PackageID String The globally unique identifier (GUID) for the package.

 PackageName String The name of the package.

 StartTime DateTime The time when the package started.

 UserName String The user that started the package.

 VersionBuild Int32 The version of the package.

 Variables are discussed in greater detail in each chapter. For a full list of system variables, please refer to
Books Online under “ System Variables. ”

 Data Flow
 Most of your time in SSIS is spent in the Data Flow tab. When you create a Data Flow task in the Control
Flow, a subsequent Data Flow is created in the Data Flow tab. You can expand the Data Flow by double -
 clicking the task or by going to the Data Flow tab and selecting the appropriate Data Flow task from the
top drop - down box (shown in Figure 2 - 25). The Data Flow key components are sources, destinations,
transformations (which appear in the Toolbox), and paths. The green and red arrows that were the
precedence constraints in the Control Flow tab are now called paths .

 When you first start defining the Data Flow, you will create a source to a data source, and then a
destination to go to. The transformations (also known as transforms throughout this book) modify the
data before it is written to the destination. As the data flows through the path from transform to
transform, the data changes based on what transform you have selected. This entire process is covered in
much more detail in Chapter 5 .

Figure 2-25

c02.indd 42c02.indd 42 8/28/08 12:03:54 PM8/28/08 12:03:54 PM

Chapter 2: The SSIS Tools

43

 Event Handlers
 The Event Handlers tab allows you to create workflows to handle errors, warnings, or completion in
tasks, containers, or packages. For example, if you want to trap any errors and have them emailed to
you, you could create an OnError event handler that is scoped to the entire package and configure it to
send a message out to an operator, as shown in Figure 2 - 26 .

Figure 2-26

 You can configure the event handler scope under the Executable drop - down box. An executable can be a
package, Foreach Loop container, For Loop container, Sequence container, or a task. In the Event Handler
box, you can specify the event you wish to monitor for. The events you can select are in the following
table:

 Event When Event Is Raised

 OnError When an error occurs

 OnExecStatusChanged When an executable ’ s status changes

 OnInformation When an informational event is raised during the validation
and execution of an executable

 OnPostExecute When an executable completes

 OnPostValidate When an executable ’ s validation is complete

 OnPreExecute Before an executable runs

 OnPreValidate Before an executable ’ s validation begins

 OnProgress When measurable progress has happened on an executable

 OnQueryCancel When a query has been instructed to cancel

 OnTaskFailed When a task fails

 OnVariableValueChanged When a variable is changed at runtime

 OnWarning When a warning occurs in your package

c02.indd 43c02.indd 43 8/28/08 12:03:54 PM8/28/08 12:03:54 PM

Chapter 2: The SSIS Tools

44

 Event handlers are critically important to developing a package that is “ self - healing ” and can correct its
own problems. The key events to trap are the OnError , OnWarning , OnPreExecute , and
 OnPostExecute . You learn more about event handlers in Chapter 17 .

 Package Explorer
 The final tab in the SSIS Package Designer is the Package Explorer tab. This tab consolidates all the
design panes into a single view. The Package Explorer tab (shown in Figure 2 - 27) lists all the tasks,
connections, containers, event handlers, variables, and transforms in your package, and you can double -
 click any item here to configure it easily. You can also modify the properties for the item in the right
Properties window after selecting the item you wish to modify.

Figure 2-27

 This tab is useful if you have a task that is throwing an error and you can ’ t find it to remove or fix it. This
problem happens sometimes when you have tasks that accidentally fall behind a container or another
task.

 Executing a Package
 When you want to execute a package, you can click the Play icon on the toolbar, press F5, or choose
Debug Start. You can also execute packages by right - clicking the package in Solution Explorer and
selecting Execute Package. This technique may be a better habit to get into because clicking the Play
button will initiate a build, and if some properties are selected, which we ’ ll discuss later, it will cause
each package to open prior to your package execution. This puts the design environment into execution
mode, opens several new windows, enables several new menu and toolbar items, and begins to execute
the package. When the package finishes running, BIDS doesn ’ t immediately go back to design mode, but
rather stays in execution mode to allow you to inspect any runtime variables or to view any execution
output. This also means that you can ’ t make any changes to the objects within the package, but you can
modify variables and objects ’ read/write properties. You may already be familiar with this concept from
executing .NET projects.

 To get back to design mode, you must click the Stop icon on the debugging toolbar, press Shift+F5, or
choose Debug Stop Debugging.

c02.indd 44c02.indd 44 8/28/08 12:03:55 PM8/28/08 12:03:55 PM

Chapter 2: The SSIS Tools

45

 Package Installation Wizard
 Another wizard that you may see and use regularly is the Package Installation Wizard, which walks you
through installing your SSIS project onto a new server. You may receive a .SSISDeploymentManifest
file from a vendor or from a developer to run. If you double - click the file ProSSISChapter5
.SSISDeploymentManifest , for example, it will launch the Package Installation Wizard to install the
SSIS project called ProSSISChapter5 into a new environment.

 After the wizard ’ s introduction screen, you must choose whether you ’ d like the wizard to install the
packages onto the SQL Server (msdb database) or install them as files on the server. If you select files,
you will be prompted for the location in which you ’ d like them placed. If you select SQL Server, you ’ ll be
prompted for the SQL Server onto which you ’ d like to install the package.

 This wizard is covered in greater detail in Chapter 21 when deployments are discussed. Until then, you
can create a manifest file yourself by right - clicking a project, properties, and selecting True for the
CreateDeploymentUtility option in the Deployment Utility page. After you do this, you ’ ll have to build
the project from the Build menu in BIDS.

 Management Studio
 In SSIS, there is delineation between the SSIS developer and administrator. Management Studio is where
the administrator will do most of his work, executing, securing, and updating packages. From the
Management Studio interface the administrator will not be able to design packages, however. This
function is reserved for BIDS only.

 You can open SQL Server Management Studio under the Microsoft SQL Server 2008 program group on
the Start menu. Then, in the Object Browser pane (can be opened from the View menu if it ’ s closed)
select Connect Integration Services. Type your SSIS server name and click Connect. Unlike SQL Server,
SSIS contains only a single instance per server or cluster. If you receive an error, you may want to jump
ahead to Chapter 21 on how to correct connectivity issues.

 From the Object Explorer shown in Figure 2 - 28 , you ’ ll be able to see which packages are running and kill
rogue packages. You ’ ll also be able to execute packages by right - clicking a package in the Stored
Packages tree and selecting Execute Package. You can right - click nearly any folder to read reports about
your packages or who is executing packages.

Figure 2-28

c02.indd 45c02.indd 45 8/28/08 12:03:55 PM8/28/08 12:03:55 PM

Chapter 2: The SSIS Tools

46

 In Chapter 22 , we discuss administration of your SSIS packages.

 Summary
 This chapter ’ s goal was to get you acclimated with the main SSIS wizards and core tools. The Import and
Export Wizard is a quick way to create a package that does a simple import or export of data. The wizard
can produce a package that can be run multiple times. The Package Installation Wizard is a method to
deploy your SSIS project after its development is complete.

 You were then taken on a tour of the Business Intelligence Development Studio (BIDS), which is where
you ’ ll be spending most of your time as you develop packages. You looked at the key parts of the
interface and learned how to create your first simple package. Don ’ t worry if you didn ’ t understand all
the components of SSIS yet. Now that you have the core understanding, we ’ ll dive deeper into SSIS to
talk about each component.

 Now that you ’ ve gotten your feet wet, it ’ s time to see the real power of SSIS, which lies in the multitude
of tasks you can use in your packages. You learn about some of the more common ones in Chapter 3 and
containers in Chapter 4 .

c02.indd 46c02.indd 46 8/28/08 12:03:55 PM8/28/08 12:03:55 PM

 SSIS Tasks

 SSIS tasks are the foundation for the Control Flow in SSIS. When you are on the Control Flow design
surface in BIDS, the toolbar is populated with a set of Tasks components that can be snapped
together to represent a logical or control workflow for your package. What you might not know
is that tasks may also be used to define Control Flows in response to an event raised somewhere in
the package. In either case, using Task components to map out the logical sequence of actions for
a package is probably the most similar aspect that SSIS has to the legacy DTS product.

 A task is a discrete unit of work that can perform typical actions required by an ETL process from
moving a file and preparing data sources to sending email confirmations when everything is
complete. This is most evident in the fact that the Data Flow is tied to the controller flow with a
specific Data Flow task. More advanced tasks enable you to perform actions like executing SQL
commands, sending mail, running ActiveX scripts, and accessing Web services. If you look at the
toolbar, you ’ ll see there is a large list of tasks that you can use out - of - the - box for ETL package
development and a few that are more enterprise application integration (EAI) related. Most of the
tasks are covered in this chapter, however some in less detail, since they are covered in other
chapters. The exception will be the Looping and Sequence Containers, which are covered
separately in Chapter 4. This chapter introduces you to most of the tasks you ’ ll be using on a
frequent basis and gives you some examples of how to use them. This will all be reinforced as you
read through the rest of the book, because each of these tasks will be used in at least one further
example in later chapters.

 SSIS Task Objects
 Tasks are component - based small units of work that can be sequenced in an SSIS package Control
or event handler Flow. To add a task to a flow, click and drag it from the Toolbox onto the design
surface. You can then double - click the task to configure it. You may immediately see a red or
yellow warning on the task until you configure any required properties. Setup requirements vary
depending upon the task. You may need to provide a database connection, external mail server
connection, or the name of an external package to complete the configuration of the task itself.
SSIS is quite helpful in this regard. If you hover over the task, a tooltip help window like that
shown in Figure 3 - 1 will provide the details for what needs to be configured for the task to work.

c03.indd 47c03.indd 47 8/28/08 12:04:56 PM8/28/08 12:04:56 PM

Chapter 3: SSIS Tasks

48

 Figure 3 - 1

 Figure 3 - 2

 This Execute SQL Task just needs a valid Connection Manager to an RDBMS (Relational Database
Management Systems) or Excel data source to be configured. To do this you need to use the Task Editor.

 Using the Task Editor
 To configure a task you need to access the Task Editor. You can do this by double - clicking directly on
the task in the Control Flow design surface or by right - clicking the task and selecting the Edit option
in the pop - up menu. In either case, generally you ’ ll see a task editor dialog appear. (We say generally,
because not all tasks have a task editor to configure.) The task editor provides a specialized interface that
allows for the configuration of the properties of the task. Each task has different property and setup
requirements, but the task editor always employs a consistent design that makes it easy to follow.
Figure 3 - 2 is a sample of a typical Task Editor dialog to help get you oriented.

 Each task editor contains a unique image and a description of the task in the top section of the dialog.
Moving clockwise, the Task Properties section of the dialog lists a set of properties for configuration. The
nature and type of the properties displayed depend upon the selection in the Task Tabs section. The Task
Tabs section provides a listing of selectable options that drive the properties in the Task Properties
section. If you select a specific property in the Task Properties section, you ’ ll see a description of the
property in the section below. Finally, the Task Actions section may contain actionable buttons for
specific actions that you can take for the selection in the Task Tabs section.

c03.indd 48c03.indd 48 8/28/08 12:04:57 PM8/28/08 12:04:57 PM

Chapter 3: SSIS Tasks

49

 Familiarizing yourself with this dialog will make configuring new tasks much easier. In the latest version
of SSIS, there have been some improvements to make this UI even more consistent. All of these touches
help make SSIS a more usable, trainable tool for ETL development. For example, the Script Task and
Script Transform Editors now both use an Edit Script caption on their respective actionable buttons, and
all Task Editors now include the Expressions tab, which is discussed next.

 The Task Editor Expressions Tab
 SSIS uses a new concept of setting the value of most task properties to a dynamic expression that is
realized at runtime. This way, you can dynamically configure packages at runtime, replacing the
Dynamic Properties Task and scripting - based configuration of the legacy DTS object model. Common to
all the tasks is an Expressions tab in each of the editors that expose the properties that you can set
dynamically at runtime with an expression. The expression can be a constant value, an expression, or an
SSIS variable that is either a scalar constant or an expression. With this capability, you could read a series
of variables from a configuration file (these are discussed later) and then dynamically set properties in an
Execute Process Task or any other SSIS task. We provide many examples of using the expressions
throughout this book. We ’ ve also added a variables and expressions chapter (Chapter 6) to this new
edition for a complete explanation of how to use variables and expressions in SSIS.

 For a basic understanding of this common tab within each task, click the ellipsis (. . .) button next to
the Expressions option in the Expressions tab of any of the task editors. This will take you to the
Property Expressions Editor, shown in Figure 3 - 3, where you can manage setting properties within a task
directly by providing the actual expression or indirectly by providing the variable that evaluates to the
result of an expression. To create a new one, select the property you wish to set from the Property
column and then type the expression into the Expression column. Optionally, you can also select the
ellipsis button in the Expression column to open the Expression Builder to create an expression using a
visual UI. You ’ ll see this capability in most of the SSIS tasks.

 Figure 3 - 3

c03.indd 49c03.indd 49 8/28/08 12:04:57 PM8/28/08 12:04:57 PM

Chapter 3: SSIS Tasks

50

 Now that you ’ ve looked at the how to add and configure individual tasks in the SSIS package Control
Flow, let ’ s look at how to connect them together and establish precedence constraints between them.

 Execution Results
 Every task must return an execution result of either Cancelled, Failure, or Success. In addition, the
Completion result is always returned once the task has completed. This execution result provides
the foundation for connecting tasks together to design the Control Flow of a package. Setting precedence
between two tasks can be as simple as dragging and dropping the colored arrows between two tasks.
Alternatively, you can right click the preceding task and select the pop - up menu option Add Precedence
Constraint to create a new precedence constraint to the next task as seen in Figure 3 - 4. (The options
available in the To: drop - down list depend upon the tasks that are available in your package. The options
in Figure 3 - 4 represent the tasks available in the blown out example in Figure 3 - 5.)

 Figure 3 - 4

 In the SSIS object model, the named execution results are enforced by the IDTSTaskHost100 interface.
This just means that every task is required to have the same execution results structure. In BIDS, you ’ ll
interact with this property with three colored arrows that appear on the task in the design surface.
These arrows are used to connect a preceding task to the next task in the Control Flow. A blue arrow
indicates that the next task in the Control Flow will execute upon completion of the preceding task.
A green arrow requires that the preceding task completes successfully; the red arrow executes the next
task if the proceeding task fails. You can review Chapter 2 if you need more information about task
Control Flow, or review how Figure 3 - 5 demonstrates the available possibilities for constraints between
SSIS tasks.

c03.indd 50c03.indd 50 8/28/08 12:04:58 PM8/28/08 12:04:58 PM

Chapter 3: SSIS Tasks

51

 Notice the visual differences in each of the constraints between these tasks. If the constraint involves an
expression, you ’ ll see the tiny graphic with the fx designation. Not only do you see colors to indicate
what type of result the preceding task must provide to complete the precedence constraint, but the
dotted lines provide an indicator that an OR condition is also being employed. It is extremely helpful to
be able to simply look at the Control Flow in your package and know what type of constraint it is and
whether the constraint involves an expression. Along with the Execution Results, tasks also implement a
set of properties that are common across every package. Now, let ’ s examine these in detail.

 Common Properties
 No matter what task you use in your packages, there is a standard set of properties exposed in the
design interface of the task. Many of the same properties have been carried over from the legacy DTS
product, but most are new and complete the vision of an enterprise - ready ETL tool. Here is a list of the
properties that you will use (listed alphabetically):

 Disable: If set to true, the task is disabled and will not execute. This is helpful if you are testing
a package and want to disable the execution of a task temporarily.

 DelayValidation: If set to true, SSIS will not validate any of the properties set in the task until
runtime. This is useful if you are operating in a disconnected mode, and you want to enter a
value for production that cannot be validated until the package is deployed, or if you are
dynamically setting the properties using expressions (more about these later). The default value
for this property is false.

❑

❑

 Figure 3 - 5

c03.indd 51c03.indd 51 8/28/08 12:04:58 PM8/28/08 12:04:58 PM

Chapter 3: SSIS Tasks

52

 Description: The description of what the instance of the task does. The default name for this is
 < task name > , or if you have multiple tasks of the same type, it would read < task name 1 >
(where the number 1 increments). This property does not have to be unique and is optional. If
you do provide detail here, it will display in the tooltip when hovering over the task object. For
consistency, the property should accurately describe what the task does for people who may be
monitoring the package in your operations group.

 ExecValueVariable: Contains the name of the custom variable that will store the output of the
task ’ s execution. The default value of this property is < none > , which means that the execution
output is not stored. This variable provides for exciting workflow possibilities because it gives
the task an ability to expose information relating to the results of the internal actions within the
task. An Execute SQL Task can return the number of rows updated, or the WMI Task can return
a filename for a file recently dropped into a folder. Other tasks can now be triggered as a result
of precedence being defined based on the value of the variable named in this property.

 FailPackageOnFailure: If set to true, the entire package will fail if the individual task fails.
Typically, you want to control what happens to a package if a task fails with a custom error
handler or Control Flow. Therefore, by default, this property is set to false.

 FailParentOnFailure: If set to true, the task ’ s parent will fail if the individual task reports an
error. The task ’ s parent can be a package or container. You ’ ll read more about containers later.

 ID: This is read - only, automatically generated unique ID that is associated to an instance of a
task. The ID is in GUID format and looks like this: {BK4FH3I - RDN3 - I8RF - KU3F - JF83AFJRLS}.

 IsolationLevel: Specifies the isolation level of the transaction, if transactions are enabled in the
TransactionMode property. The values are Chaos, ReadCommitted, ReadUncommitted,
RepeatableRead, Serializable, Unspecified, and Snapshot. The default value of this property is
Serializable. These options correspond with standard SQL Server transaction types.

 LoggingMode: Specifies the type of logging that will be performed for this task. The values are
UseParentSetting, Enabled, and Disabled. The default value of this property is UseParentSetting,
which tells the task to use the logging mechanism for the package or container.

 Name: The name associated with the task. The default name for this is < task name > , or if you
have multiple tasks of the same type, it would read < task name 1 > (where the number 1
increments). As an SSIS designer, you should probably change this name to make it more
readable to an operator at runtime, but it must be unique inside your package.

 TransactionOption: Specifies the transaction attribute for the task. The values are
NotSupported, Supported, and Required. The default value of this property is Supported, which
enables the option for you to use transactions in your task.

 Now that you ’ ve got a good idea about what tasks are, let ’ s dive into putting these new tools to work on
some real - world problems. Do you need to retrieve settings from stored procedure output parameters?
Call a Web service for some data? You ’ ll look at these and other advanced implementations of some of
the tasks throughout the rest of the chapter. We ’ ve put the tasks into functional groupings that give them
some relativity to your typical ETL processes.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 52c03.indd 52 8/28/08 12:04:59 PM8/28/08 12:04:59 PM

Chapter 3: SSIS Tasks

53

 Looping and Sequence Tasks
 First up in the Toolbox are three container tasks: For Loop, Foreach, and Sequence. These are all Control
Flow Tasks that simplify the process of repeated processing of a set of logic. In legacy DTS, looping
constructs were not intuitive. If you wanted this type of Control Flow logic, you had to set properties on
the tasks directly using code in the ActiveX Scripting Tasks. To achieve the same thing in SSIS, you only
need to add one of these containers to your Control Flow and define what is being used to enumerate the
loop. Again, these containers are covered in detail in Chapter 4, so we ’ ll only mention them here.

 Scripting Tasks
 Scripting Tasks are extremely useful to perform functions that may not be fully supported within a
provided drag - and - drop control, but may not require full custom task development. SSIS has two script
tasks, the ActiveX Task and the Script Task.

 ActiveX Script Task
 This task exists solely for the purposes of backwards compatibility during the conversion of legacy DTS
packages. If you aren ’ t converting DTS packages, you can probably skip learning about this task, since it
will eventually not be supported. If fact, you can ’ t run this Task on 64 - bit computers and you ’ ll need the
DTS 2000 runtime to run on any machine after SQL Server 2008. However, if you convert a legacy DTS
package, you may find your ActiveX scripting code in this task container; and there ’ s a good chance that
you won ’ t be able to run it. ActiveX script in the legacy DTS packages was largely used to traverse the
package model directly. Unfortunately, this direct type of code - based action is not supported in SSIS. If
you can get the code to run, you ’ ll want to pull this functionality out into the newer Script Task, because
the ActiveX Task is not intended for future use. Here ’ s an example of something that won ’ t convert
from DTS:

[VB Script]
Function Main()
 Dim oPkg
 Dim oConn

 Set oPkg = DTSGlobalVariables.Parent
 Set oConn = oPkg.Connections(“Test File”)
 msgbox oConn.ConnectionString
End Function

 Scripts like this were often used to set the value of the flat file connection to the next file in a directory or
to retrieve the current value of the connection, as in this case. If you put this code into the SSIS ActiveX
Task and run it, you ’ ll get this error:

Error: 0xc0348006 at ActiveX Retrieve File from Connection, ActiveX
Script Task: Retrieving the file name for a component failed with error
code 0x000F2E6C.

c03.indd 53c03.indd 53 8/28/08 12:04:59 PM8/28/08 12:04:59 PM

Chapter 3: SSIS Tasks

54

 If you correctly determined that the connection collection doesn ’ t exist at the same place in the model,
don ’ t also assume that you could attempt to use the new syntax to access a connection starting at the
static DTS object.

[VB.Net] - Doesn’t work in ActiveX Task
mySqlConn = _
 DirectCast(Dts.Connections(“local.aw”).AcquireConnection(Dts.Transaction), _
 SqlClient.SqlConnection)

 The new way won ’ t work either because VBScript doesn ’ t know this syntax. VBScript will also not be
able to interpret a modified VBScript version of this VB.NET code. The problem is that SSIS simply does
not allow direct access to the package object model. This was a common coding activity in the older DTS
packages, so you ’ ll find that many things that used to work will need to be converted into existing SSIS
tasks or re - coded in the new Script Tasks.

 However, there is one exception to this rule and that is for scripts and functions that only interact with
the global variable collection. Examples of these scripts are those that you may have for generating new
filenames or doing odd tasks that don ’ t involve the object model. These will convert into SSIS just fine.
Here is an example of a legacy DTS script that checks to see if a specific file provided by a variable
named MyFile in the variables collection exists:

[VB Script]
Function Main()
 Dim objFSys
 Dim objFStream
 Dim strFile

 strFile = DtsGlobalVariables(“User::MyFile”)
 Set objFSys = CreateObject(“Scripting.FileSystemObject”)
 Set objFStream = objFSys.OpenTextFile(strFile, 1, 0)
 sLine = objFStream.ReadLine

 if trim(sLine) = “” or err.number < > 0 then
 Main = DTSTaskExecResult_Failure
 else
 MsgBox “File “ + strFile + “ exists”
 Main = DTSTaskExecResult_Success
 end if

 objFStream.Close
 Set objFStream = Nothing
 set objFSys = nothing
End Function

 If you copy this into an ActiveX Script Task and set the EntryMethod property to point to the Main()
function, you can run this successfully and the full file path provided for the variable MyFile will be
checked for a file existence. Obviously, you can find better ways to do this and we ’ ll show you how.

c03.indd 54c03.indd 54 8/28/08 12:04:59 PM8/28/08 12:04:59 PM

Chapter 3: SSIS Tasks

55

 Script Task (. NET)
 The Script Task allows you to access the Microsoft Visual Studio Tools for Applications (VSTA)
environment to write and execute scripts using the VB and C# languages. The VSTA environment is new
in the latest version of SSIS and replaces the Visual Studio for Applications (VSA) environment from the
2005 version. Scripting now is almost a misnomer because the latest SSIS edition solidifies the connection
to the full .NET libraries for both VB and C#. The latest addition to SSIS of the VSTA environment and
the Script Task in general also offer these extra functional advantages:

 A coding environment with the advantage of IntelliSense

 An integrated Visual Studio design environment within SSIS

 An easy - to - use methodology for passing parameters into the script

 The ability to add breakpoints into your code for testing and debugging purposes (for only one
Script Task per package)

 The automatic compiling of your script into binary format for a speed advantage (This was
configurable in earlier releases of SSIS.)

 The Script Task is configured through the Script tab in the Script Task Editor (shown in Figure 3 - 6). The
ScriptLanguage property is where you select the .NET language you ’ d like to use in the task. Notice that
the default language is set to C#, so if you are coding in VB.NET, don ’ t whiz through these settings when
setting up your Script Tasks. If you have done any SSIS development with the previous versions, you ’ ll
also notice that the PreCompileScriptIntoBinaryCode property has been permanently removed. The
result is that all scripting code will automatically compile and persist into the package. This speeds up
and reduces runtime errors in the task significantly.

❑

❑

❑

❑

❑

 Figure 3 - 6

c03.indd 55c03.indd 55 8/28/08 12:05:00 PM8/28/08 12:05:00 PM

Chapter 3: SSIS Tasks

56

 The EntryPoint property allows you to provide an alternative function to call initially when the
ScriptMain class is instantiated. Typically, you ’ ll leave this set to the default Main() function. The
ReadOnlyVariables and ReadWriteVariables properties allow you to pass SSIS variables into the script as
a listing of variable names separated by commas. The typing out of the variable names was a little
unconventional in the earlier versions of SSIS, but the latest version provides the capability of browsing
to the variable collection and selecting the variables. Having these variables provides a significant
advantage when coding. You only need to refer to them by ordinal position or by name in the Variable
collection to be able to access their values without worrying about locking, unlocking, or blocking
variables during read and write actions. Just make sure you have the variables you wish to write back to
in the ReadWriteVariables property, or you ’ ll get an error in the script. There are also alternative methods
for altering variables that aren ’ t provided in these collections during set up that are demonstrated in
Chapter 9 on scripting.

 When you click the actionable Edit Script button, the Visual Studio Tools for Applications environment
opens to allow coding directly in the class ScriptMain . In this IDE, you have access to all the advanced
debugging tactics, breakpoints, and IntelliSense found in the Visual Studio environment. If you create a
package with a variable named myValue containing the string “ Hello World ” , and set up the Script
Task like Figure 3 - 7, the following example shows you how to write code that uses the passed - in
 myValue variable:

C#
public void Main()
{
 if(Dts.Variables.Contains(“User::MyValue”))
 {
 System.Windows.Forms.MessageBox.Show(“MyValue=” + Dts.Variables
[“User::MyValue”].Value.ToString());
 }

 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 If Dts.Variables.Contains(“User::MyValue”) = True Then
 System.Windows.Forms.MessageBox.Show(“myValue=” & Dts.Variables
(“User::MyValue).Value.ToString())
 End If

 Dts.TaskResult = ScriptResults.Success
End Sub

c03.indd 56c03.indd 56 8/28/08 12:05:00 PM8/28/08 12:05:00 PM

Chapter 3: SSIS Tasks

57

 First, the script checks for the existence of the variable, and then pops up a message box with the famous
message “ Hello World ” as you see in Figure 3 - 7.

 Figure 3 - 7

 This is just a very simple example of the Script Task in action. We ’ ve created an entire chapter to dive
into the details and specific use cases for both the Script Task and the Data Flow version called the Script
Component, so go read Chapter 9 for more information.

 Analysis Services Tasks
 The Analysis Services tasks are provided in the SSIS environment to deal with generating and updating
cubes and working with data mining projects in SQL Server only. There are three tasks that can be used
for Analysis Services in SSIS: the Analysis Services Execute DDL Task, Processing Task, and Data Mining
Task. To review the tasks in this section, you ’ ll need to have installed the sample Analysis Services
databases from Microsoft SQL Server.

 Analysis Services Execute DDL Task
 The SQL Server Analysis Services Execute DDL Task is the Analysis Services equivalent of the Execute
SQL Task, but limited in scope to issuing Data Definition Language statements. The task simply
executes a DDL statement against an Analysis Services system. Typically, you would use DDL statements
to create a cube, a dimension, or any other online analytical processing (OLAP) object.

 To configure the task, go to the DDL tab and select the Connection Manager that you wish to
execute the DDL statement against in the Connection option. Then in the SourceType property, select
whether the DDL statement will be directly inputted, pulled from a file, or pulled from a variable option.
Essentially the source type option determines whether you need to key in the DDL statement directly,
provide a variable, or point to a file where the DDL statement is stored. Figure 3 - 8 shows an example of
the DDL being directly entered into the SourceDirect property.

c03.indd 57c03.indd 57 8/28/08 12:05:00 PM8/28/08 12:05:00 PM

Chapter 3: SSIS Tasks

58

 The Analysis Services DDL statement shown in this example from the SQL Server Books Online would
be used to resubmit against the AdventureWorks2008 data to regenerate the warehouse cube. Note that
this task can only be used to submit DDL statements. If you wish to query cubes to retrieve data, you
need to use the Analysis Services Processing or Data Mining Tasks.

 Analysis Services Processing Task
 The SQL Server Analysis Services Processing Task takes care of the processing of Analysis Services
objects. If you are familiar with using the Analysis Service projects in BIDS, then you ’ ll be familiar with
the task of processing a cube, dimension, or mining object. The configuration of the task is done in the
Analysis Services Processing Task Editor in the Processing Settings tab. First, select the Analysis Services
Connection Manager that you wish to process. Next, click the Add button and select the Analysis
Services objects you ’ d like to process. After clicking OK, you ’ ll be taken back to the Processing Settings
tab, where you can change the type of processing you will be performing. To do this, right - click each
object and select the process option you ’ d like. The option varies based on the type of object.

 If you click Impact Analysis, analysis is performed on the selected objects, showing you the objects that
will be affected by the processing. The Change Settings button lets you configure the batch settings for
the task. For example, here you can change whether you want the objects to be processed in sequential
order or in parallel and how you want errors handled.

 To get a feel for how this SSIS task works, you ’ ll need to download and install the
AdventureWorksDW2008 database. Create an Analysis Services project to connect to the database and
create a data source view with all the dimension tables. Then create a cube that uses the Employee
dimension and select all the defaults to build the cube. Right - click the cube and select the process option
to create the cube in the Analysis Services server. In SSIS, you can process the same cube using the

 Figure 3 - 8

c03.indd 58c03.indd 58 8/28/08 12:05:01 PM8/28/08 12:05:01 PM

Chapter 3: SSIS Tasks

59

Analysis Services Processing Task. Connect to the same Analysis Services server, and in the Processing
Settings tab select the Employee Cube and the Sales Territory dimension to process. The Task Editor
should look like Figure 3 - 9.

 Figure 3 - 9

 The Analysis Services Processing Task can then be run to reprocess the existing dimension and employee
cube. These SSIS tasks allow the possibilities to periodically update your warehouse structures based on
events that can be processed using an event captured by the Message Queue Task, which we cover later.

 Data Mining Query Task
 The Data Mining Query Task is an evolution of its SQL Server 2000 predecessor. The Data Mining Query
Task allows you to run predictive queries against your Analysis Services data - mining models and output
the results to a data source. The Data Mining Query Task is more similar to the Analysis Service Execute
DDL Task in that you can execute subsequent mining queries against a processed mining model in
Analysis Server. The Task Editor allows configuration to a source Analysis Services server and can
output the results in any ADO.NET or OLE DB data source. An example of the Data Mining Task
configured to run a mining query against a predefined Employee Dimensional Mining model can be
seen in Figure 3 - 10.

c03.indd 59c03.indd 59 8/28/08 12:05:01 PM8/28/08 12:05:01 PM

Chapter 3: SSIS Tasks

60

 Figure 3 - 10

 This task would be used to run predictive queries based on built - in prediction models in Analysis
Services. The query uses a Data Mining Extension to TSQL called DMX. If you are not fluent in DMX,
don ’ t worry, the Query tab in this task will walk you through building one. However, first you need a
mining structure to query against. In the Analysis Service server, a deployed data mining model would
look like the highlighted Employee dimension in Figure 3 - 11.

 Figure 3 - 11

 The results of the prediction query can be set to return single or multi - row results and can be saved to
table structures for further analysis. These results can be useful for additional SSIS packages that can
integrate the predictive results into further Data Flows. But before we can step any further into these
capabilities, let ’ s first go over the Data Flow Task itself.

c03.indd 60c03.indd 60 8/28/08 12:05:02 PM8/28/08 12:05:02 PM

Chapter 3: SSIS Tasks

61

 Data Flow Task
 If you are familiar with SQL Server 2000 DTS, you won ’ t recognize the Data Flow Task in SSIS. In legacy
DTS, there was a dark arrow called the Transform Data Task that connected an input source with a
destination. Within this object you could build ActiveX - based transformations to apply at a column level
as the data flowed through the data task. In contrast, the SSIS Data Flow Task can be selected directly
from the BIDS Toolbox, and then the source and destinations are defined within the task. However, this
comparison isn ’ t even close. The Data Flow Task doesn ’ t stop at being simply a mapping transform for
input and output columns. This task has its own design surface like the Control Flow, where you can
arrange task - like components called transforms to manipulate data as it flows in a pipeline from the
source to a destination. The Data Flow, as you can imagine, is the heart of SSIS, because it encapsulates
all the data transformation aspects of ETL.

 Where DTS could only process data in one stream, Data Flows can split the data in the pipeline based
on a data element and handle each stream separately. In the case study in Chapter 23, you can find an
example of a flat file that contains header and detail information. In the Data Flow, the header line of the
file can be split off and examined separately from the detail lines. As the pipeline exits the data cleansing
process, the streams can be sent to separate destinations or converged to a final combined destination.
One thing that some may not realize is that you may have several different Data Flows within an SSIS
package. For each of the Data Flow Tasks you add to the control surface, you ’ ll have a corresponding
Data Flow surface. Figure 3 - 12 shows an example of three Data Flow Tasks and how you ’ d navigate
to each.

 Figure 3 - 12

 This task is so important and such a part of moving data in SSIS that we will leave the details until later
in this book. It is covered separately in Chapter 5.

 Data Preparation Tasks
 Before processing data from other systems, you sometimes have to go and retrieve it or validate the
content to determine your confidence level of the quality of the data. SSIS provides a set of tasks that can
be used to retrieve data files using the files and folders available in the file system, or can reach out using
FTP and Web Service protocols. This next section explores these tasks in SSIS.

c03.indd 61c03.indd 61 8/28/08 12:05:02 PM8/28/08 12:05:02 PM

Chapter 3: SSIS Tasks

62

 Data Profiler
 New to the latest version of SSIS is the Data Profiler Task that should really replace some of the script -
 based methods that have been devised since the introduction of DTS. Data profiling is the process of
examining data and collecting metadata about the quality of the data, about frequency of statistical
patterns, interdependencies, uniqueness, and redundancy. This type of analytical activity is important
for the overall quality and health of an operational data store (ODS) or data warehouse. In fact, you ’ ve
most likely been doing this activity whether or not you actually have a defined tool to perform the
activity. Now instead of having a set of complicated queries or relying on a third - party product, you
have a Data Profiler Task as part of the SSIS development environment.

 The Data Profiler Task is located in the Task Toolbox, but you should probably not attempt to use the
results to make an automated workflow decision in the SSIS package Control Flow. Rather it is more like
an ad - hoc tool to be placed in a design - time package that will be run manually outside of a scheduled
process. In fact, the task doesn ’ t have built - in conditional workflow logic, but technically, you can use
XPath queries on the results. Someone will probably come up with a way to parse through the output to
attempt to drive a workflow based on some profiling results, but you need to be careful with this. The
profiler can only report on statistics in the data; you still need to make judgments about these statistics.
For example, a column may contain an overwhelming amount of NULL values, but the profiler doesn ’ t
know whether this scenario is a valid business scenario.

 The structured output file that is produced by the Data Profiler Task can be viewed in a special Data
Profiler Viewer that provides drill - downs back to the detail level. You can access this viewer by going to
Start Accessories Run and typing DataProfileViewer . This will run the tool located in c:\
program files\microsoft SQL Server\100\DTS\binn . Once the tool is loaded, use the Open
button to browse to the output file that will be generated by the Data Profiler Task. Figure 3 - 13 shows an
example of an analysis of the Person.EmailAddress table in the AdventureWorks2008 database. You can
see here that the majority of the email addresses in the table are between 26 and 29 characters long.

 Figure 3 - 13

c03.indd 62c03.indd 62 8/28/08 12:05:02 PM8/28/08 12:05:02 PM

Chapter 3: SSIS Tasks

63

 The task provides a set of defined profile request types that can be modified like the other tasks in
specific properties. Here is an explanation of the different request types and how you can use them to
profile your data:

 Candidate Key Profile Request: The profiling request will examine a column or set of columns
to determine the likelihood of there being a unique candidate key for the dataset. Use this to
determine if you ’ ve got duplicate key values or if it is possible to build a natural key with
the data.

 Column Length Distribution Profile: This request allows you to analyze the statistical profile of
all the data in a column with the percentage of incidence for each length. Use this to help you
figure out if you ’ ve got your data column length settings set correctly or to look for bad data in
attributes that are known to be one fixed size.

 Column Null Ratio Profile Request: This profiler looks at the ratio of NULL values in a
column. Use this to determine whether you ’ ve got a data quality problem in your source system
for critical data elements.

 Column Pattern Profile Request: This profiler allows you to apply regular expressions to a
string column to determine the pass/fail ratio across all the rows. Use this profiler to evaluate
business data using business formatting rules.

 Column Statistics Profile Request: This request can analyze all the rows and provide statistical
information about the unique values across the entire source. This can help you find low
incidence values that may indicate bad data. For example, a finding of only one color type in a
set of 1 million rows may indicate that you ’ ve got a bad color attribute value.

 Functional Dependency Profile Request: This is one of two profiles that allow you to examine
relationships between tables and columns to look for discrepancies within a known dependency.
For example, you can use this request to find countries with incorrect currency codes.

 Value Inclusion Profile Request: This profile tests to see if the values in one column are all
included in a separate lookup or dimension table. Use this request to test foreign key
relationships.

 There are two ways to activate these profiles. The first is to click the Quick Profile button on the Data
Profiling Task Editor. This creates a set of profiles to run against the same table. You can also skip the
quick profile option and create the profiles one by one. Either way you can navigate to the Profile
Requests table to configure the request and add regular expressions or other parameter values to the task
properties. Figure 3 - 14 is an example of the Data Profiling Task Editor with all the requests defined for
the Person.StateProvince table.

❑

❑

❑

❑

❑

❑

❑

c03.indd 63c03.indd 63 8/28/08 12:05:03 PM8/28/08 12:05:03 PM

Chapter 3: SSIS Tasks

64

 For each profile request type, the lower section of the editor for the Request Properties will change to
accept the configurable values. One thing to note is that the ConnectionManager property must be set to
an ADO.NET - based Connection Manager like the one here connected to AdventureWorks2008. The
oddity is that you must have this connection created prior to attempting to configure this task. This is a
minor inconvenience to have such a powerful and welcome addition to the SSIS toolset rivaling the more
expensive ETL tools.

 File System Task
 The File System Task is a configurable GUI component that performs file operations available in the
 System.IO.File .NET class. If you are converting from legacy DTS, this is an out - of - the box
replacement for the VBScript utility classes that you use to write using the COM - based
 FileSystemObject . In either case, the File System Task can perform basic file operations such as:

 Copy Directory: Copies all files from one directory to another. Must provide the source and
destination directories.

 Copy File: Copies a specific file. Must provide the source and destination filename.

 Create Directory: Creates a directory. Must provide the source directory name and indicate
whether the task should fail if the destination directory already exists.

 Delete Directory: Deletes a directory. Must provide the source directory to delete.

 Delete Directory Content: Deletes all files in a source directory.

❑

❑

❑

❑

❑

 Figure 3 - 14

c03.indd 64c03.indd 64 8/28/08 12:05:03 PM8/28/08 12:05:03 PM

Chapter 3: SSIS Tasks

65

 Figure 3 - 15

 Delete File: Deletes a specifically provided source file.

 Move Directory: Moves a provided source directory to a destination directory. Must indicate
whether the task should fail if the destination directory already exists.

 Move File: Moves a specific provided source file to a destination. Must indicate whether the
task should fail if the destination file already exists.

 Rename File: Moves a specific provided source file to a destination by changing the name. Must
indicate whether the task should fail if the destination file already exists.

 Set Attributes: Sets Hidden, Read - Only, Archive, or System attributes on a provided source file.

 One benefit that may not be apparent in these functional descriptions is that the creation of directory
structures does not have to be made recursively. For example, you may create the path named c:\ssis\
tasks\my file system task\ using the Create Directory form of the File System Task by simply
providing the path. You don ’ t have to create each part of the directory separately like you did in the DTS
legacy product. This capability really reduces the typical file operation coding to a simple configuration
task for directory operations. However, don ’ t assume that you can do the same with a file - level
operation. If you attempt to rename a file from c:\ssis\ to c:\ssis\my archive\ and the folder
\my archive\ doesn ’ t exist, you ’ ll get an error that the path is not found.

 Another feature of this task that may not be so apparent is that the task is written for a single operation.
This is by design. If you need to iterate over a series of files or directories, the File System Task can be
simply placed within a Looping or iterative task. By keeping the task granular and singularly focused, it
is simplified and easily reused.

 Most of the properties in this task are set in the General tab of the File System Task Editor. This tab is
shown in Figure 3 - 15. The contents of this tab may vary widely based on what you set in the Operation
property. These options correspond to specific file operations that the task can perform. Once the option
is set, you may be prompted to complete other properties not shown in this figure.

❑

❑

❑

❑

❑

c03.indd 65c03.indd 65 8/28/08 12:05:04 PM8/28/08 12:05:04 PM

Chapter 3: SSIS Tasks

66

 The Operation property in Figure 3 - 15 is set to “ Move file, ” which should move a file from a working
source path to an archive destination path. The IsDestinationPathVariable property allows you to specify
whether the destination path will be set to an SSIS variable or using a Connection Manager. If this is set
to true, the dynamic property DestinationVariable sets the destination path to a variable. If it ’ s set to
false, then the DestinationConnection option will be available for you to select the Connection Manager
that contains your file or directory. These same properties exist for the source connection in the bottom of
the tab. The OverwriteDestination option is set to false by default and specifies whether the task will
overwrite the destination file or directory if it already exists. To get an idea of how you ’ d configure this
task, let ’ s look at an example.

 Archiving a File
 Consider a typical use of the File System Task for an ETL process from a mainframe system. To automate
a nightly data load the process would look like this:

 A file or series of similar files would be generated from a mainframe or other source system and
dumped to a network drive.

 An SSIS package would start on a schedule to poll a directory looking for files to process. If any
files were found, they would be moved into a staging or working directory.

 The data would then be extracted out of the file(s).

 The file(s) would then be archived to another directory.

 In legacy DTS packages, each of these steps would have required some coding in the ActiveX Script Task.
You would have had to write one task in VBScript to poll the directory to see if the file had arrived.
Another script would pick up the file and move it to another directory. The last script would archive the
file. To make this worse, the ActiveX scripts had to use the code - and - paste method of code reuse to
perform the same function in other packages. Typically, this would lead to various states of unfinished
code that was better in some packages than others and most certainly a nightmare to maintain.

 In SSIS, the File System Task can simplify the creation of a package to perform these ETL file - based
requirements. We ’ ll postpone the task of polling until later in this chapter when we get to the WMI
Event Watcher Task. The iteration of files is also discussed later in detail in Chapter 4. However, you
can use what you know about the File System Task to move the file to an archive directory. Create a
package in c:\ssis\Tasks\FileSystemTask\ or download the complete code from www.wrox.com .
Create a subdirectory called c:\ssis\Tasks\FileSystemTask\Archive\ . Create a dummy file called
 myfile.txt in c:\ssis\Tasks\FileSystemTask\ .

 Now add a File System Task into the Control Flow. Configure the task to look like Figure 3 - 15. In the new
task, select the option < New Variable . . . > in the drop - down for the properties DestinationVariable and
SourceVariable to create the new variables and provide their values. In the FileSource Variable, set
the value to c:\ssis\tasks\filesystemtask\myfile.txt . In the FileDestination Variable, set the
value to c:\ssis\tasks\filesystemtask\archive\ . This configures the task to move the file
 myfile.txt to the archive directory.

 Now run the SSIS package, and you ’ ll see the file myfile.txt move into the archive directory. If you
wanted to rename the file as you moved it to a date - based filename, you ’ ll want to specify the full
filename in the variable and use the Rename File option of the File System Task. Then you get the
movement of the file and a new filename in one task. The filename can also be dynamically set using a

❑

❑

❑

❑

c03.indd 66c03.indd 66 8/28/08 12:05:04 PM8/28/08 12:05:04 PM

Chapter 3: SSIS Tasks

67

 Figure 3 - 16

variable as an expression. For examples of how you can rename this file using a dynamically generated
name as you archive, see Chapters 6 and 23.

 FTP Task
 The SSIS FTP Task enables the use of the File Transfer Protocol (FTP) in your package development tasks.
New to the SSIS version of the FTP Task is the ability to send files using the FTP protocol as well as
retrieving files for ETL processing. Additionally, the SSIS FTP Task exposes more FTP command
capability, allowing you to create or remove local and remote directories and files. Another change from
the legacy DTS FTP Task is the ability to use FTP in Passive Mode. This solves the problem that DTS had
in communicating with FTP servers where the firewalls filtered the incoming data port connection to the
server.

 The General tab in the FTP Task Editor is where you specify the FTP Connection Manager
for the FTP site you wish to access. If you haven ’ t specified one, select < New Connection . . . > under the
FTPConnection property. This will open the FTP Connection Manager and allow you to configure
the FTP connection. In Figure 3 - 16, the Server Name property contains the FTP address for the FTP
server. The Server Port property is set to 21, which is the default port for most FTP sites. You can change
this if you need to. The other important option to note here is the “ Use passive mode ” checkbox option
that is new to SSIS.

c03.indd 67c03.indd 67 8/28/08 12:05:05 PM8/28/08 12:05:05 PM

Chapter 3: SSIS Tasks

68

 Once you have the FTP connection configured, move to the File Transfer tab. The IsRemotePathVariable
and IsLocalPathVariable properties allow the paths to be set to an optional variable. Using variables
allows you the option of setting these values dynamically at runtime. The RemotePath property sets the
directory or files for the remote FTP system. Once the ftpConnection property from the General tab has
been selected, you can browse to the actual remote file system to select the remote path or file by clicking
the ellipsis in the Remote Path property. You ’ ll see a dialog similar to Figure 3 - 17 for browsing the FTP
remote paths.

 Figure 3 - 17

 The LocalPath property is the Connection Manager that contains a directory on the SSIS side that is
going to receive or send the files via FTP. The OverwriteFileAtDest option sets whether the file at the
destination will be overwritten if a conflict exists. Like many FTP clients, you can set an option to
transport the files in ASCII format by setting the IsTransferAscii option to true. If you set this option to
false, the files will be transported in a default binary format. The most important option, of course, is the
Operation option, which selects what type of action you ’ d like to perform. Let ’ s try to set up an SSIS FTP
Task to get a file from an FTP server like Microsoft.com.

 Getting a File Using FTP
 To build an SSIS package that can use FTP to retrieve a file from an FTP server, create a directory called
 c:\ssis\tasks\ftptask\ or copy the code from www.wrox.com . Then, create a new package in this
folder and add an FTP Task to the Control Flow work surface.

 Double - click the FTP Task to open the editor, and set it up similar to what was shown in Figure 3 - 17. For
the FTPConnection drop - down box, select < New connection... > . This will open the FTP Connection
Editor. Set the Server Name option to ftp.microsoft.com and click Test Connection. Click OK to go back
to the FTP Task Editor.

c03.indd 68c03.indd 68 8/28/08 12:05:05 PM8/28/08 12:05:05 PM

Chapter 3: SSIS Tasks

69
 Figure 3 - 18

 Next, go to the File Transfer tab and click the ellipsis to browse to the /bussys/readme.txt folder on
the remote path.

 You may have to allow the FTP Task temporary access to bypass your firewall if you are using
Windows Vista.

 For the Local Path option, set the IsLocalPathVariable property to true and select < New Variable . . . > to
create a new variable named LocalPath that is set to the value of c:\ssis\tasks_chapter\ftptask\ .
The Operation drop - down box should be set to Receive Files. For the OverwriteFileAtDest property,
select True. The final task should look like Figure 3 - 17. If you run the package, you ’ ll see that the file will
be downloaded from the FTP site at Microsoft to your local file system. In a real - world scenario, you ’ d
download the file, load it into a SQL Server, and then archive it. This complete scenario is discussed in
detail in Chapter 8.

 Web Service Task
 The Web Service Task in SSIS is used to retrieve XML - based result sets by executing a method on a Web
service. Just like the other tasks we ’ ve separated out into the Data Preparation Task category for this
chapter, this task only retrieves the data; it doesn ’ t yet address the need to navigate through the data, or
extract sections of the resulting documents. Web services are a big part of advancing service - oriented
architectures, and can be used in SSIS to provide real - time validation of data in your ETL processes or to
maintain lookup or dimensional data.

 The task requires the establishment of an HTTP Connection Manager to a specific HTTP endpoint on a
website or to a specific WSDL file on a website. If the HTTP Connection Manager doesn ’ t point to a WSDL
file on the site, a local version must be provided. The WSDL file provides a standard XML - formatted list
of available methods that can be called in the Web service. The WSDL file also provides information about
what type of parameters can be provided and what results can be expected in return. Figure 3 - 18 provides
a look at how you can configure the HTTP Connection Manager to access a Web service called USZIP at
 www.webservicex.net .

c03.indd 69c03.indd 69 8/28/08 12:05:06 PM8/28/08 12:05:06 PM

Chapter 3: SSIS Tasks

70

 This is a simplistic HTTP Connection Manager setup. In this case, no special proxy, credentials, or
certificate setup is required. If you are using secure, corporate Web services, this undoubtedly will not be
the case. See Books Online if you need information on how to set up secure Web services.

 The General tab on the Web Service Task is where you set the HttpConnection property of the task to the
HTTP Connection Manager that you have already created or alternatively create at the same time by
selecting the < New Connection . . . > option in the property. Note in Figure 3 - 19 that the value for the
WSDL parameter file has been provided. This indicates to the Connection Manager that the definitions
of the Web service can be obtained remotely. In this case, you are not required to provide a local version of
the WSDL file as well. This property is only required if you don ’ t provide the WSDL parameter in the
Connection Manager. If this is the case, simply provide the local filename and click the Download WSDL
button that you see in Figure 3 - 19 to have the task in design time reach out to the HTTP endpoint and
retrieve a copy of the WSDL file for you.

 Figure 3 - 19

 The next step is to define the input that you want to retrieve from the Web service. It makes sense that if
you ’ ve defined the Web service in the General tab, you now need to specify the web method that you ’ ll
want to access for the input to the task. The Web Service Task makes this easy by using the WSDL file to
provide a drop - down in the Input tab to allow for specific named method selection like you see in
Figure 3 - 20.

c03.indd 70c03.indd 70 8/28/08 12:05:06 PM8/28/08 12:05:06 PM

Chapter 3: SSIS Tasks

71

 Once you select a web method like the GetInfoByAreaCode, the Web Service Task uses the WSDL to set
up the interface for you to provide how the input parameters will be fed into the task. You can choose to
set up hard - coded values as you see in Figure 3 - 21 or fill these parameters with variables.

 Figure 3 - 20

 Figure 3 - 21

 You can see here that all the named parameters, in this case only USAreaCode, are provided with the
expected data types. If you selected the Variable option here, the Value column would morph into a
drop - down list to allow the selection of a variable. Using variables allows you the flexibility to send
something into the Web Service Task dynamically at runtime.

 The remaining tab is the Output tab, shown in Figure 3 - 22. Here you have really only two options in this
task. The resulting retrieval from the Web service method can be stored in a file or in a variable. The
output is in XML format, so if you choose to save in a variable, select a data type of string. In this
example, we ’ ll set the OutputType property to a file connection, and then set the location of the file to a
spot on the local file system.

c03.indd 71c03.indd 71 8/28/08 12:05:07 PM8/28/08 12:05:07 PM

Chapter 3: SSIS Tasks

72

 Running the Web Service Task using this configuration will result in calling the web method
GetInfoByZipCode on the Web service USZip and retrieving data into an XML file that looks like this:

 < ?xml version=”1.0” encoding=”utf-16”? >
 < NewDataSet xmlns=”” >
 < Table >
 < CITY > Saint Augustine < /CITY >
 < STATE > FL < /STATE >
 < ZIP > 32084 < /ZIP >
 < AREA_CODE > 904 < /AREA_CODE >
 < TIME_ZONE > E < /TIME_ZONE >
 < /Table >
 < Table >
 < CITY > Jacksonville < /CITY >
 < STATE > FL < /STATE >
 < ZIP > 32226 < /ZIP >
 < AREA_CODE > 904 < /AREA_CODE >
 < TIME_ZONE > E < /TIME_ZONE >
 < /Table >
 < Table >
 < CITY > Macclenny < /CITY >
 < STATE > FL < /STATE >
 < ZIP > 32063 < /ZIP >
 < AREA_CODE > 904 < /AREA_CODE >
 < TIME_ZONE > E < /TIME_ZONE >
 < /Table >
 < /NewDataSet >

 Figure 3 - 22

c03.indd 72c03.indd 72 8/28/08 12:05:07 PM8/28/08 12:05:07 PM

Chapter 3: SSIS Tasks

73

 Retrieving data into a file is good, but using it in an SSIS package is even better. Let ’ s look at an example
of how you ’ d use the XML Task to retrieve this same ZIP Code data and use it in a Data Flow.

 Retrieving Data Using the Web Service Task and XML
Source Component

 Set up a package in the directory c:\SSIS\tasks_chapter\websvc\ or download the complete
package from www.wrox.com . Drop a Web Service Task onto the control design surface and configure the
task to use the GetInfoByZipCode on the Web service USZip as shown earlier in this section. However,
instead of sending the output to the XML file, set the OutputType to store the results of the Web service
method call to a variable named MyZipsByAreaCode. The variable should be set to the data type string
to store the resulting XML data.

 Now drop a Data Flow Task onto the Control Flow design surface and connect the Web Service Task to
the Data Flow. In the Data Flow, drop an XML Source component on the design surface. If the XML
Source contained schema information you could select the Use Inline Schema option, the Data Access
Mode of XML data from Variable, and you ’ d be done. However, you ’ ve seen the data we are getting
from the Web service, and there is no schema provided. You are going to have to generate an XML
Schema Definition language file so that SSIS can predict and validate data types and lengths. Here ’ s a
little trick that will save you some time. To demonstrate the Web Service Task initially, you set the XML
output to go to a file. This was not by accident. Having a concrete file gives you a basis to create an XSD,
and you can do it right from the design - time XML Source component. Just provide the path to the
physical XML file you downloaded earlier and click the Generate XSD button. Now you should have an
XSD file that looks similar to this:

 < ?xml version=”1.0”? >
 < xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema” >
 < xs:element name=”NewDataSet” >
 < xs:complexType >
 < xs:sequence >
 < xs:element minOccurs=”0” maxOccurs=”unbounded” name=”Table” >
 < xs:complexType >
 < xs:sequence >
 < xs:element minOccurs=”0” name=”CITY” type=”xs:string” / >
 < xs:element minOccurs=”0” name=”STATE” type=”xs:string” / >
 < xs:element minOccurs=”0” name=”ZIP” type=”xs:unsignedShort” / >
 < xs:element minOccurs=”0” name=”AREA_CODE” type=”xs:unsignedShort” / >
 < xs:element minOccurs=”0” name=”TIME_ZONE” type=”xs:string” / >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:schema >

 You ’ ll notice that the XSD generator is not perfect. It can only predict a data type based on what it sees
in the data. Not to give the generator anthropomorphic qualities, but the ZIP and AREA_CODE data

c03.indd 73c03.indd 73 8/28/08 12:05:08 PM8/28/08 12:05:08 PM

Chapter 3: SSIS Tasks

74

elements “ look ” like numeric values to the generator. You should always examine the XSD that is created
and edit it accordingly. Change the sequence element lines for ZIP and AREA_CODE to look like this:

 < xs:element minOccurs=”0” name=”ZIP” type=”xs:string “ / >
 < xs:element minOccurs=”0” name=”AREA_CODE” type=” xs:string” / >

 Now if you refresh the XML Source and select the Columns tab, as shown in Figure 3 - 23, you should be
able to see the columns extracted from the physical XML file.

 Figure 3 - 23

 Now, it is just as easy to change back to retrieving this same data from a variable instead of having to
save into a file from the task and picking it back up from a file in the Data Flow XML source. Since we
know the data in the variable is in the same XML format, go back to the Connection Manager tab on the
XML Source and reselect the Data Access Mode of XML data from Variable. Then select the variable
MyZipsByAreaCode as the location of the XML data. The task will complain a bit, since you ’ ve changed
the source and the lineages must be reset, but click OK, and now the columns will again look like
Figure 3 - 23.

c03.indd 74c03.indd 74 8/28/08 12:05:08 PM8/28/08 12:05:08 PM

Chapter 3: SSIS Tasks

75

 If you save and run the package it will download the XML file into a variable, and then export the
columns and rows to an Excel spreadsheet. Hardly a robust example, but you should be able to see that
the Web Service Task has made retrieving data from a Web service a very simple point - and - click task.
However, the Web Service Task can only retrieve the results of a Web service call. You may find that you
need to prepare, extract, or validate your XML files before running them through your ETL processes.
This is where the XML task comes in.

 XML Task
 The XML Task is used when you need to validate, modify, extract, or even create files in an XML format.
Earlier we used a Web Service Task to retrieve data in an XML - formatted Web service response. In terms
of validating this type of XML result, the WSDL that you copy down locally is your contract with the
Web service that will break if the XML contents of the results change. In other situations, you may be
provided with XML data from a third - party source outside of a contractual relationship. In these cases, it
is a good practice to validate the XML file against the schema definition before processing the file. This
provides an opportunity to handle the issue programmatically.

 If you look at the task in Figure 3 - 25, the editor looks simple. There are two tabs: only one for General
configuration and the obligatory Expressions tab.

 To complete the package, add an Excel Destination to dump the data into an Excel spreadsheet. Connect
the output pipeline of the XML Source to the Excel Destination. Set the OLE DB Connection Manager to
a new XLS file and click the New button to define the name of the Excel sheet. Click the Mappings tab in
the Excel Destination Editor to map the output to the Excel sheet. The final Data Flow should look like
Figure 3 - 24.

 Figure 3 - 24

c03.indd 75c03.indd 75 8/28/08 12:05:08 PM8/28/08 12:05:08 PM

Chapter 3: SSIS Tasks

76

 The current OperationType is set in this example to the Diff operation. The option is one of the more
involved operations and requires two XML sources, one as the Input and the other as the Second
Operand. However, these properties change based on the selection you make for the OperationType
property. The options are:

 Validate: This option allows for the schema validation of an XML file against both Document
Type Definition (DTD) or XML Schema Definition (XSD) binding control documents. You can
use this option to ensure that a provided XML file adheres to your expected document format.

 XSLT: The Extensible Stylesheet Language Transformations (XSLT) are a subset of the XML
language to allow for transformation of XML data. You might use this operation at the end of an
ETL process to take resulting data and transform it to meet a presentation format.

 XPATH: This option XML Path Language allows the extraction of sections or specific nodes from
the structure of the XML document. You would use this option if you want to extract data
from the XML document prior to using the content. An example would be pulling out only the
orders for a specific customer from an XML file.

 Merge: This option allows for the merging of two XML documents with the same structure. You
might use this option to combine the results of two extracts from disparate systems into one
document.

 Diff: This option uses difference algorithms to compare two XML documents to produce a third
document called an XML Diffgram that contains the differences between the two. Use this
option with another XML Task using the Patch option to produce a smaller subset of data to

❑

❑

❑

❑

❑

 Figure 3 - 25

c03.indd 76c03.indd 76 8/28/08 12:05:09 PM8/28/08 12:05:09 PM

Chapter 3: SSIS Tasks

77

insert into your data store. An example use of this task is to extract only the prices that have
changed from a new price sheet in XML format.

 Patch: This option applies the results of a Diff operation to an XML document to create a new
XML document.

 As you might expect, you can configure the task to use either a file source or a variable. The option to
input the XML directly is also available, but not as practical. The best way to get an idea of how this task
can be used is to demonstrate with a few examples. Therefore, we ’ ll do this now.

 Validating an XML File
 First up is a basic use case of validating the internal schema format of an XML file. To make sure you are
clear on what the XML Task does for you, the validation is not whether the XML file is properly formed,
but contains the proper internal elements. If an XML file is malformed, simply attempting to load the
XML file in the task will generate an error. However, if there is a missing node that is defined within the
XSD contract, the XML Task Validation option will inform you that the XML file provided doesn ’ t meet
the conditions of the XSD validation. To set up an example, we ’ ll borrow the information from the XML
and XSD files in the Web Service Task example. If you recall we had an XSD that validated string node
for City, State, Zip, Area_Code, and Time_Zone. (See the Web Service Task example to see the XSD
format.) You can download this complete example at www.wrox.com .

 We ’ ll use three files to exercise this task. The first will be a valid XML file named MyGetZipsData.xml
that looks like this:

 < ?xml version=”1.0” encoding=”utf-16”? >
 < NewDataSet xmlns=”” >
 < Table >
 < CITY > Saint Augustine < /CITY >
 < STATE > FL < /STATE >
 < ZIP > 32084 < /ZIP >
 < AREA_CODE > 904 < /AREA_CODE >
 < TIME_ZONE > E < /TIME_ZONE >
 < /Table >
 < /NewDataSet >

 The second file will be an invalid XML file named MyGetZipsData_Bad.xml . This file has an
improperly named node < CITYZ > that doesn ’ t match the XSD specification:

 < ?xml version=”1.0” encoding=”utf-16”? >
 < NewDataSet xmlns=”” >
 < Table >
 < CITYZ > Saint Augustine < /CITYZ >
 < STATE > FL < /STATE >
 < ZIP > 32084 < /ZIP >
 < AREA_CODE > 904 < /AREA_CODE >
 < TIME_ZONE > E < /TIME_ZONE >
 < /Table >
 < /NewDataSet >

❑

c03.indd 77c03.indd 77 8/28/08 12:05:09 PM8/28/08 12:05:09 PM

Chapter 3: SSIS Tasks

78

 The last file is a malformed XML file named MyGetZipsData_ReallyBad.xml . This file has an empty
 < Table > node and is not a valid XML format:

 < ?xml version=”1.0” encoding=”utf-16”? >
 < NewDataSet xmlns=”” >
 < Table > < /Table >
 < CITY > Saint Augustine < /CITY >
 < STATE > FL < /STATE >
 < ZIP > 32084 < /ZIP >
 < AREA_CODE > 904 < /AREA_CODE >
 < TIME_ZONE > E < /TIME_ZONE >
 < /Table >
 < /NewDataSet >

 Create a package and add a new XML Task to the Control Flow surface. First, select the
OperationType of Validate, set the Input Source Type to a new file connection, and browse to select the
 MyGetZipsData.xml file. Expand the OperationResult property in the Output section to configure an
additional text file to capture the results of the validation. The result values are only true or false, so a
simple text file is all you ’ ll need to see how this works. Typically, you ’ d store the result in a variable, so
you can test the results to determine the next action to take after validation. Set the OverwriteDestination
property to True to allow the result to be overwritten in each run of the task.

 In the Second Operand, you ’ ll need to create another file connection to the XSD file that will be used
for validation of the schema. Create another file connection that points to this XSD file. Finally, set the
validation type to XSD, since we are using an XSD file to validate the XML. The editor at this point
should look like Figure 3 - 26.

 Figure 3 - 26

c03.indd 78c03.indd 78 8/28/08 12:05:09 PM8/28/08 12:05:09 PM

Chapter 3: SSIS Tasks

79

 This completes the happy path use case. If you execute this task, it should execute successfully and the
results file should contain the value of “ true ” to indicate the XML file contains the correct schema as
defined by the XSD file. Now onto the true test: Change the source to a new connection for the
 MyGetZipsData_Bad.xml file. Execute the task again. This time although the task completes
successfully, the result file contains the value of “ false ” to indicate a bad schema. This is really the whole
point of the Validation option.

 Finally, change the source to create a new connection to the poorly formatted XML file MyGetZipsData_
ReallyBad.xml to see what happens. You ’ ll see that the task actually fails — even though the Validation
options ’ FailOnValidationFail property is set to False. This is because the validation didn ’ t fail — the
loading of the XML file failed. The error message indicates the problem accurately:

[XML Task] Error: An error occurred with the following error message: “The
‘NewDataSet’ start tag on line 2 does not match the end tag of ‘Table’. Line 9,
position 5.”.
[XML Task] Error: An error occurred with the following error message: “Root element
is missing.”.

 Just be aware of the difference between validating the schema and validating the XML file itself when
designing your package Control Flows and set up accordingly. You ’ ll need to have a Control Flow for the
failure of the task and for the successful completion with a failure result.

 This is just one of the examples of how you can use the XML Task for SSIS development. There are
obviously several other uses for this task that are highly legitimate and useful for preparing data to
feed into your SSIS ETL package Data Flows. Let ’ s now turn to another set of data preparation tasks that
we ’ ve separated into their own category, since they deal specifically with retrieval and preparation of
RDBMS data.

 RDBMS Server Tasks
 These tasks could also be considered Data Preparation Tasks as well, since they are responsible for
bringing data sources into the ETL processes, but we ’ ve separated the Bulk Insert Task and the Execute
SQL Task into this separate category because of the unique expectation of working with data from
Relational Database Management Systems (RDBMS) like SQL Server, Oracle, and DB2. The exception is
the Bulk Insert Task, which is a wrapper for the SQL Server bulk - copy - process.

 Bulk Insert Task
 The Bulk Insert Task allows you to insert data from a text or flat file into a SQL Server database table in
the same high - octane manner as using a BULK INSERT statement or the bcp.exe command - line tool. In
fact, the task is basically just a wizard to store the information needed to create and execute a bulk
copying demand (BCP) command at runtime. If you aren ’ t familiar with using BCP, then you can
research the topic in detail in Books Online. The downside with the Bulk Insert Task is that it is strict in
data format and precludes being able to work with data in a Data Flow within one action. This can be
seen as a disadvantage in that it does not allow any transformations to occur to the data in flight, but not
all ETL processes are efficiently modified in the Data Flow. In high - volume extracts, you may be better
served to lay the initial extract down in a staging table and extract data in discrete chunks for processing
within specific Data Flows. This tradeoff in functionality gives you have the fastest way to load data
from a text file into a SQL Server database.

c03.indd 79c03.indd 79 8/28/08 12:05:10 PM8/28/08 12:05:10 PM

Chapter 3: SSIS Tasks

80

 When you add a Bulk Insert Task to your Control Flow, open the Bulk Insert Task Editor to configure it.
As in most tasks, the General tab allows you to name and describe the task. Make sure you name it
something that describes its unit of work, like “ Prepare Staging. ” This will help you later when you
deploy the package and troubleshoot problems. The next tab called the Connection tab is the most
important. This tab lets you specify the source and destination for the data. Select the destination from
the Connection drop - down box in the Destination Connection group. Next, specify a destination table
from the next drop - down box below the destination connection. While you ’ re specifying connections,
drop down to the bottom to specify the source connection ’ s filename in the File drop - down box. Both the
source and destination connections use the Connection Manager. If you haven ’ t already created the
shared connections, you ’ ll be prompted to create them in either case by selecting < New Connection . . . > .

 Both the source and the optional format file must be relative to the destination SQL Server, because the
operation occurs there when a Bulk Insert Task is used. If you are using a network file location, use
the UNC path (\\MachineName\ShareName\FileName.csv) to the source or format file.

 After you specify the connections, you need to provide file specifications for the format of file you ’ re
importing. If you created the file using the BCP utility, you can use the - f option to create a format file as
well. The Bulk Insert Task can then use the BCP format file to determine how the file is formatted, or you
can select the column and row delimiters in the Format property of the task. The two options are Use
File, which uses the BCP format (.fmt) file, or Specify, which allows you to select the file delimiters. The
available delimiters are New Line ({CR}{LF}), Carriage Return ({CR}), Line Feed ({LF}), Semicolon (;),
Comma (,), Tab, or Vertical Bar (|). Note that the defaults are for the row to be {CR}{LF} delimited and
the column tab - delimited. Figure 3 - 27 shows how the Task Editor provides two different interfaces for
these optional file specifications.

 Figure 3 - 27

c03.indd 80c03.indd 80 8/28/08 12:05:10 PM8/28/08 12:05:10 PM

Chapter 3: SSIS Tasks

81

 In the Options tab of the Bulk Insert Task Editor, you ’ ll be able to use some lesser - known options. Here
you can specify the code page for the source file. You will rarely want to change the code page from
RAW, which is the default. Using RAW is the fastest data loading option because no code page
conversion takes place. Other options include OEM, which you should use when copying from one SQL
Server to another, ACP to convert non - Unicode data to the ANSI code page of the SQL Server you are
loading the data into, or you can specify a specific code page mapping. The DataFileType option can
specify what type of file the source file is. Options here include char, native, widechar, and widenative.
Generally, files you receive will be the default char option, but in some cases, you may see a file with
native format. A file (myzips_native.txt) in native format was created from SQL Server by using the
 bcp.exe program with the – n (native) switch and supplied with the download from www.wrox.com .
You ’ ll see how to import it later in an example.

 In the Options tab, you can also specify the first and last row to copy if you ’ d like only a sampling of the
rows. Commonly this is used to set the first row to two (2) when you want to skip a header row. The
BatchSize option shows how many records will be written to SQL Server before committing the batch.
If you have a BatchSize of 0 (the default), this means that all the records will be written to SQL Server in
a single batch. If you have more than 100,000 records, then you may want to adjust this setting to 50,000
or adjust to a number based on how many you want to commit at a time. The adjustment may vary
based on the width of your file. Figure 3 - 28 shows an example of the Bulk Insert Task Editor options.

 Figure 3 - 28

 The Options drop - down box contains five options that you can turn off and on:

 Check Constraints: The option that checks table and column constraints before committing the
record. This option is the only one turned on by default.

 Keep Nulls: By selecting this option, the Bulk Insert Task will replace any empty columns in the
source file with NULLs in SQL Server.

❑

❑

c03.indd 81c03.indd 81 8/28/08 12:05:10 PM8/28/08 12:05:10 PM

Chapter 3: SSIS Tasks

82

 Enable Identity Insert: Enable this option if your destination table has an identity column that
you ’ re inserting into. Otherwise, you will receive an error.

 Table Lock: This option creates a SQL Server lock on the target table from insert and updates
other than the records you ’ re inserting. This option will speed up your process but may cause
a production outage, since others will be blocked from modifying the table. If you check this
option, SSIS will not have to compete for locks to insert massive amounts of data into the target
table. Set this option only if you ’ re certain that no other process will be competing with your
task for table access.

 Fire Triggers: By default, the Bulk Insert Task will ignore triggers for maximum speed. By
checking this option, the task will no longer ignore triggers and will fire the insert triggers for
the table you ’ re inserting into.

 There are a few other options you can set in the Options tab. The SortedData option specifies what
column you wish to sort by, while inserting the data. This option defaults to sort nothing, which means
 False . If you have a need to set this option, type the column name that you wish to sort. The MaxErrors
option specifies how many errors are acceptable before the task is stopped with an error. Each row that
does not insert is considered an error; by default, if a single row has a problem, the entire task fails.

 The Bulk Insert Task does not log error - causing rows. If you want your bad records to be written to an
error file or table, it ’ s better to use the Data Flow Task.

 Using the Bulk Insert Task
 Take time out briefly to exercise the Bulk Insert Task with a typical data load. First, create a new SSIS
project called BulkInsert. Rename the package called Package.dtsx that ’ s created with the project to
 BulkLoadZip.dtsx . If you haven ’ t already downloaded the code files for this chapter from www.wrox
.com , do so. Then extract the four files for this chapter named: myzips.csv , myzips_native.txt ,
 zip5.xml , and zip5.fmt . Two of these files contain formatted data for all of the postal codes in the state
of Florida. The other two are format files to help the BCP process read the files.

 Create a table in the AdventureWorks2008 database using SQL Management Studio or the tool of your
choice to store postal code information:

CREATE TABLE PROSSIS_ZIPCODE (
 ZipCode CHAR(5),
 State CHAR(2),
 ZipName VARCHAR(16)
)

 Back in your empty SSIS solution, drag the Bulk Insert Task onto the Control Flow design pane. Notice
that the task has a red icon on it telling you that the task hasn ’ t been configured yet. Double - click the
task to open the editor. In the General tab, provide the name “ Load Zip Codes ” for the Name option and
 “ Loads zip codes from a flat file ” for the description.

 Click the Connection tab. From the Connection drop - down box, select < New connection . . . > . This will
open the Configure OLE DB Connection Manager dialog box. You ’ re going to create a connection to the
AdventureWorks2008 database that can be reused throughout this chapter. Click New to add a new

❑

❑

❑

c03.indd 82c03.indd 82 8/28/08 12:05:11 PM8/28/08 12:05:11 PM

Chapter 3: SSIS Tasks

83

Connection Manager. For the Server Name option, select the server that contains your
AdventureWorks2008 database. For the database, select the AdventureWorks2008 database. Your final
connection configuration should look like Figure 3 - 29, but your login information will vary based on
your server ’ s security configuration. Click OK to go back to the previous screen, and click OK again to
go back to the Bulk Insert Task Editor.

 Figure 3 - 29

 You ’ ll now see that the Connection Manager you just created has been transposed into the Connection
drop - down box. Now you need to define the destination. For the DestinationTable option, select the
[AdventureWorks2008].[dbo].[PROSSIS_ZIPCODE] table. For the first attempt, you ’ ll import a comma -
 delimited version of the zip codes. This simulates importing a file that would have been dumped out of
another SQL Server (with the same table name) using this bcp command:

bcp AdventureWorks2008.dbo.prossis_zipcode out c:\ssis\tasks\bulk\myzips.csv
-c -t, -T

 Leave the remaining options set to the defaults. The RowDelimiter property option will be {CR}{LF}
(a carriage return) and the ColumnDelimiter property should be set to comma delimited. For the File
option, you will again select < New connection . . . > to create a new Connection Manager. This will open
the File Connection Manager Editor. For the Usage Type, select Existing File. Then point to myZips.csv
for the File option. Your final screen should look something like Figure 3 - 30.

c03.indd 83c03.indd 83 8/28/08 12:05:11 PM8/28/08 12:05:11 PM

Chapter 3: SSIS Tasks

84

 If you open the myzips.csv file, you ’ ll notice that there is no header row with the column names before
the data. If you had a column header and needed to skip it, go into the Options tab and change the
FirstRow option to 2. This would start the import process on the second row, instead of the first that is
the default.

 You should be able to run the package now. When the package executes, the table will be populated with
all the postal code from the import file. You should be able to verify this by selecting all the rows from
the PROSSIS_ZIPS table.

 To see how the Bulk Insert Task uses the BCP format file, go back to the Format property and change the
option from Specify to Use File. Now the designer will change a bit, and you ’ ll need to click into the
FormatFile property and browse to the zip5.fmt file (also in code download). This format file was
created by using the BCP command:

bcp AdventureWorks2008.dbo.prossis_zipcode format nul -c -t,
c:\ssis\tasks\bulk\zip5.fmt -T

 Now rerun the package to re - import the data using the BCP format file. The data loads just as well. If
you are using a BCP client 10.0 or greater, you can also load a file using an XML format file. To do this,
add a connection to the myzips_native.txt file and set the format file to zip5.xml . The xml format
file can be created using the BCP command:

Figure 3-30

c03.indd 84c03.indd 84 8/28/08 12:05:12 PM8/28/08 12:05:12 PM

Chapter 3: SSIS Tasks

85

bcp AdventureWorks2008.dbo.prossis_zipcode format nul -f
c:\ssis\tasks\bulk\zip5.xml -x -T -n

 All these different methods are demonstrated in the download package for this chapter from
www.wrox.com . The point here is that the Bulk Insert Task is designed to be used to exchange highly
reliable sources of data — namely from one SQL Server to another. As you can see, the Bulk Insert Task is
a useful tool to load staging files quickly, but you may need to further process the file. One reason is that
this task provides no opportunity to divert the data into a transformation workflow to examine the
quality of the data. The other reason is that you have to import character - based data to avoid raising
errors during the loading process. The Bulk Insert Task has an all - or - nothing nature in its method of
error handling. If a single row fails to insert, then your task may fail (based on your setting for the
maximum number of allowed errors). These problems could be easily solved by using a Data Flow Task
if the data is unreliable or in smaller volumes.

 Execute SQL Task
 The Execute SQL Task is one of the most widely used tasks in SSIS for interacting with an RDBMS data
source. The Execute SQL Task is used for all sorts of things, like truncating staging data table prior to
importing, retrieving row counts to determine the next step in a workflow, or to call stored procedures to
perform business logic against sets of staged data. You ’ ll also see the task used to retrieve information
from a database repository. This same task could also be found in the legacy DTS product, but the SSIS
version provides a better configuration editor and methods to map stored procedure parameters to read
back result and output values. In this section, it is simply easier to introduce you to all the possible ways
to configure this task by working through the different ways you can use the Execute SQL Task. You ’ ll
work through how to execute parameterized SQL statements, batches of SQL statements, capturing
single row and multiple row results, and how to execute stored procedures.

 Executing a Parameterized SQL Statement
 The task can execute a SQL Task in two basic ways: by executing inline SQL statements, or by executing
stored procedures. The resulting action can also result in the need to perform one of two options: to
accept return values in parameters or in a result set. You can get an idea of how the task can be
configured to do these combinations in the General tab of the Execute SQL Task Editor shown in
Figure 3 - 31. In this figure, the Execute SQL Task is set to perform an Update operation on the Person.
Address table using an inline SQL statement with a variable - based parameter. This is the easiest use of
the Execute SQL Task because you don ’ t need to configure the Result Set tab properties.

c03.indd 85c03.indd 85 8/28/08 12:05:12 PM8/28/08 12:05:12 PM

Chapter 3: SSIS Tasks

86

 Notice in Figure 3 - 31 that the General tab contains the core properties of the task. Here the task is
configured to point to an OLE DB connection. The other options for the ConnectionType include ODBC,
ADO, ADO.NET, SQLMOBILE, and even EXCEL connections. The catch to all this connection flexibility
is that the Execute SQL Task behaves differently depending upon the underlying data provider. For
example, the SQLStatement property in Figure 3 - 31 shows a directly inputted TSQL statement with a
question mark in the statement. The full statement is here:

Update Person.Address
 Set ModifiedDate = ?
 where AddressId = 1

 This ? that indicates that a parameter is required is classic ODBC parameter marking and is used in most
of the other providers; with the exception of the ADO.NET provider, which uses named parameters. This
matters because in the task you need to configure the parameters to the SQL statement in the Parameters
Mapping tab. The tab for this query would look like Figure 3 - 32.

Figure 3-31

c03.indd 86c03.indd 86 8/28/08 12:05:12 PM8/28/08 12:05:12 PM

Chapter 3: SSIS Tasks

87

 Here the parameter mapping collection maps the first parameter [ordinal position of zero (0)] to a system
variable. When mapping parameters to connections and underlying providers use this table to set up
this tab in the Task Editor:

 If Using Connection of Type Parameter Marker to Use Parameter Name to Use

 ADO ? Param1 , Param2 , …

 ADO.NET @ < Real Param Name > @ < Real Param Name >

 ODBC ? 1,2,3 (Note ordinal starts at 1)

 OLEDB & EXCEL ? 0,1,2,3 (Note ordinal starts at 0)

 Because we are using an OLE DB provider here, the parameter marker is ? , and the parameter is using
the zero - based ordinal position. The other mapping you would have needed to do here is for the data
type of the parameter. These data types will also change based on your underlying provider. SSIS is very
specific about how you map data types, so you may need to experiment or check Books Online for the
mapping equivalents for your parameters and provider. We ’ ll go over many of the common issues in this
regard throughout this section, but for this initial example, we mapped the System::ContainerStartTime
to the OLE DB data type of DATE. At this point, the Execute SQL Task with this simple update statement
could be executed and the ModifyDate would be updated in the database with a current datetime value.

 A variation in this example is a case where the statement can be dynamically generated at runtime and
simply fired into the Connection Manager. The SQLSourceType property on the General tab allows for
three different types of SQL statement resolution: either directly input (as we did), via a variable, or from
a file connection. Another way to build the SQL statement is to use the Build Query action button. This
brings up a Query - By - Example (QBE) tool that helps you build a query by clicking the tables and
establishing the relationships. The variable - based option is also straightforward. Typically, you ’ d define
a variable that is resolved from an expression. Setting the SQLSourceType property in the Execute SQL

Figure 3-32

c03.indd 87c03.indd 87 8/28/08 12:05:13 PM8/28/08 12:05:13 PM

Chapter 3: SSIS Tasks

88

Task to Variable allows you to select the variable that will resolve to the SQL statement that you want the
task to execute. The only thing you need to pay attention to here is that SSIS limits the size of a string to
4,000 characters.

 Building inline Dynamic SQL statements with variables has a limitation of 4,000 characters.

 The other option of using a file connection warrants a little more discussion.

 Executing a Batch of SQL Statements
 If you use the File Connection option of the Execute SQL Task ’ s SQLSourceType property, typically you
are doing so to execute a batch of SQL statements. All you need to do is have the file that contains the
batch of SQL statements available to the SSIS package during runtime. Set up a File Connection to point
to the batch file you need to run. Make sure that your SQL batch follows a few rules. Some of these rules
are typical SQL rules, like using a GO command between statements, but others are specific to the SSIS
Execute SQL Task. Use these rules as a guide for executing a batch of SQL statements:

 Use GO statements between each distinct command. Note that some providers allow you to use
the semicolon (;) as a command delimiter.

 If there are multiple parameterized statements in the batch, all parameters must match in type
and order.

 Only one statement can return a result, and it must be the first statement.

 If the batch returns a result, the columns must match the same number and properly named
result columns for the Execute SQL Task. If the two don ’ t match and you have subsequent
 UPDATE or DELETE statements in the batch, these will execute even though the results don ’ t
bind, and you get an error. The batch is sent to SQL Server to execute and behaves the same way.

 Returning results is something that we haven ’ t explored in the Execute SQL Task, so let ’ s look at some
examples that do this in SSIS.

 Capturing Singleton Results
 On the General tab of the Execute SQL Task, you can set up the task to capture the type of result that you
expect to have returned by configuring the ResultSet property. This property can be set to return nothing
or None, a singleton result set, a multi - line result, or an XML - formatted string. Any other setting besides
the selection of None will require the configuration of the Result Set tab on the editor. In the Result Set
tab, you are defining the binding of returned values into a finite set of SSIS variables. For most data - type
bindings, this is not an issue. You select the SSIS variable data type that most closely matches that of
your provider. The issues that arise from this activity are caused by invalid casting that occurs as data in
the Tabular Data Stream (TDS) from the underlying provider collide with the variable data types they
are being assigned to. This casting happens internally within the Execute SQL Task and you don ’ t have
control over it like you would in a Script Task. Before you think that it is just a simple data - type -
 assignment issue, you need to understand that SSIS is the lowest common denominator when it comes to
being able to bind to data types from all the possible data providers. For example, SSIS doesn ’ t have a
currency or decimal data type. The only thing close is the double data type. This is the type that must be
used for real, numeric, current, decimal, float, and other similar data types.

 Let ’ s set up a simple inline SQL statement that will return a single row (or singleton result) to show both
the normal cases and the exception cases for configuring the Execute SQL Task and handling these

❑

❑

❑

❑

c03.indd 88c03.indd 88 8/28/08 12:05:13 PM8/28/08 12:05:13 PM

Chapter 3: SSIS Tasks

89

binding issues. First, we ’ ll use a simple TSQL statement against the AdventureWorks2008 database that
looks like this:

SELECT TOP 1
 CarrierTrackingNumber,
 LineTotal,
 OrderQty,
 UnitPrice
From Sales.SalesOrderDetail

 We ’ ve chosen this odd result set because of the multiple data types in the SalesOrderDetail table. These
data types provide an opportunity to highlight some of the solutions to difficulties with mapping
these data types in the Execute SQL Task that we ’ ve been helping folks with since the first release of
SSIS. Figure 3 - 33 shows the structure of the SalesOrderDetail table, where you can see we are pulling
columns with nvarchar, smallint, money, and numeric data types.

Figure 3-33

 To capture these columns from this table, you need to create some variables in the package. Then these
variables will be mapped one - for - one to the result columns. Some of the mappings are simple. The
CarrierTrackingNumber can be easily mapped to a string variable data type. However, in the first release
of SSIS, this didn ’ t work that well, and you ’ d get TDS data stream errors. In this release, the mapping
works for Nvarchar and Varchar data types. The OrderQty field that is using the smallint SQL Server
data type will need to be mapped to an INT16 SSIS data type, or you will get an error like this.

[Execute SQL Task] Error: An error occurred while assigning a value to variable
“OrderQty”: “The type of the value being assigned to variable “User::OrderQty”
differs from the current variable type. Variables may not change type during
execution. Variable types are strict, except for variables of type Object.”.

 The other two values for the SQL Server UnitPrice (money) and LineTotal (numeric) columns get more
difficult. There really is no SSIS variable data type equivalent as you can see in Figure 3 - 34.

c03.indd 89c03.indd 89 8/28/08 12:05:13 PM8/28/08 12:05:13 PM

Chapter 3: SSIS Tasks

90

 So what can you do? There are really only two options. The first is to capture these results in a string
variable and cast them in a later Script Task, or depending upon your data you may be able to cast the
results directly in the query. In both instances, you ’ ll be casting in the SQL statement, but if you directly
cast in the SQL statement, you avoid a later conversion task. You just need to pay attention to these
casting operations, because it is possible to lose some significant figures depending upon the nature of
your data. Because you can ’ t directly set the value of the current money and numeric columns to a
double, you have to explicitly cast these values in the SQL statement like this:

SELECT TOP 1
 CarrierTrackingNumber,
 Convert(float, LineTotal),
 OrderQty,
 Convert(float, UnitPrice)
From Sales.SalesOrderDetail

 Converting to a float is not really a good option either because this is not a precise number, but it ’ s the
only option. Just make sure you understand your data and any casting issues that may result.

 Now the parameters can simply be mapped in the Execute SQL Task Result Set tab, as shown in
Figure 3 - 35.

Figure 3-34

c03.indd 90c03.indd 90 8/28/08 12:05:14 PM8/28/08 12:05:14 PM

Chapter 3: SSIS Tasks

91

 Notice in Figure 3 - 35 that the result names are provided by ordinal position. This is following the
guide provided earlier for the OLE DB provider that uses ordinal positions. If you were using ADO.NET
providers, then the result name could actually be the parameter name itself. Just use the Add and
Remove buttons to put the result elements in order of how they will be returned, name them according
to the provider requirements, get the right data types, and you ’ ll be fine. If these are in the incorrect
order, or if the data types can ’ t be cast by the Execute SQL Task from the TDS data stream into the
corresponding variable data type, you will get a binding error. This should give you a general guide to
using the Execute SQL Task for capturing singleton results. Let ’ s now look at capturing multiple row
results.

 Multi - Row Results
 Typically, you capture multi - row results from a database as a recordset or as an XML file (particularly
between SQL Server data sources) to use in either another Script Task for analysis or decision - making
purposes, to provide an enumerator in a Foreach or Looping task, or to feed into a Data Flow Task for
processing. Set up the SQLSourceType and SQLStatement properties to call either an inline SQL
statement or a stored procedure. In either case, the Result Set tab will be set up to capture the results. The
only change from capturing a singleton result is that you only need to capture the whole result into a
variable instead of mapping each column. The data type you should use to capture the results depends
upon what you are capturing. The XML file can be captured in either a string or object data type. The
recordset can only be captured in a variable with object data type. An example of the Execute SQL Task
configured to create an object data type to store the results of a selection of rows from the Sales.
SalesOrderDetail table can be seen in Figure 3 - 36. Notice that the Result Set tab shows the capturing of
these rows with the required zero - ordinal position.

Figure 3-35

c03.indd 91c03.indd 91 8/28/08 12:05:14 PM8/28/08 12:05:14 PM

Chapter 3: SSIS Tasks

92

 Once the recordset is stored as a variable, you can do things like “ shred ” the recordset. The term
 shredding means to iterate through the recordset one row at a time in a Foreach Loop operation. For each
iteration, you can capture the variables from and perform an operation per row. Figure 3 - 37 shows how
the Foreach Task would look using the variable - based recordset.

Figure 3-36

Figure 3-37

c03.indd 92c03.indd 92 8/28/08 12:05:15 PM8/28/08 12:05:15 PM

Chapter 3: SSIS Tasks

93

 Another way to use the variable - based recordset is to use it to feed a data transform. To do this just
create a Source Script Transform in a Data Flow and add to it the columns that you want to realize from
the stored recordset and pass in the recordset variable. Then add code similar to this to turn the column
data from the recordset into the output stream. (To save time and space only two columns are being
realized in the recordset.)

C#
public override void CreateNewOutputRows()
{
 System.Data.OleDb.OleDbDataAdapter oleDA =
 new System.Data.OleDb.OleDbDataAdapter();
 System.Data.DataTable dT = new System.Data.DataTable();

 oleDA.Fill(dT, Variables.RecordSetResult);
 foreach (DataRow dr in dT.Rows)
 {
 Output0Buffer.AddRow();
 //by Name
 Output0Buffer.CarrierTrackingNumber =
 dr[“CarrierTrackingNumber”].ToString();
 //by Ordinal
 Output0Buffer.UnitPrice = System.Convert.ToDecimal(dr[6]);
 }
}

VB
Public Overrides Sub CreateNewOutputRows()
 Dim oleDA As New System.Data.OleDb.OleDbDataAdapter()
 Dim dT As New System.Data.DataTable()
 Dim row As System.Data.DataRow

 oleDA.Fill(dt, Variables.RecordSetResult)
 For Each row In dT.Rows
 Output0Buffer.AddRow()
 Output0Buffer.CarrierTrackingNumber = _
 row(“CarrierTrackingNumber”).ToString()
 Output0Buffer.UnitPrice = System.Convert.ToDecimal(row(6))
 Next
 End Sub

 The XML version of capturing the result in a string is even easier. You don ’ t need to use the Script
Component to turn the XML string back into a source of data. Instead, use the out - of - the - box component
called the XML Data source in the Data Flow that can accept a variable as the source of the data. (Go
back and review the example on how to do this in the “ Web Service Task ” section of this chapter.) You
can see that the Execute SQL Task is really quite useful at executing inline SQL statements and retrieving
results, so now let ’ s look at how you can use stored procedures as well in this task.

c03.indd 93c03.indd 93 8/28/08 12:05:15 PM8/28/08 12:05:15 PM

Chapter 3: SSIS Tasks

94

 Executing a Stored Procedure
 Another way to interact with an RDBMS is to execute stored procedures that can perform operations on
a data source to return values, output parameters, or results. Set up the SSIS Execute SQL Task to execute
stored procedures by providing the call to the proc name in the General tab ’ s SQLStatement property.
The catch is the same as before. Because the Execute SQL Task sits on top of several different data
providers, you need to pay attention to the way each provider handles the stored procedure call. The
following table provides a guide to how you should code the SQLStatement property in the Execute
SQL Task:

 If Using Connection
Type And IsQueryStoredProcedure Code the SQL Statement Property Like This

 OLEDB & EXCEL N/A EXEC usp_StoredProc ?, ?

 ODBC N/A {call usp_StoredProc (?, ?)}

 ADO False EXEC usp_StoredProc ?, ?

 True usp_StoredProc

 ADO.NET False EXEC usp_StoredProc @Parm1, @Parm2

 True usp_StoredProc @Parm1, @Parm2

 Following the earlier example where you used an inline SQL statement to update the modified date in
the sales order detail, create a TSQL stored procedure that does the same thing like this:

CREATE PROCEDURE usp_UpdatePersonAddressModifyDate(
 @MODIFIED_DATE DATETIME
)
AS
BEGIN
 Update Person.Address
 Set ModifiedDate = @MODIFIED_DATE
 where AddressId = 1
END

 In the online downloads for this chapter, we ’ ve created a package that shows you how to call this
procedure using both the OLE DB and ADO.NET Connection Managers. The Execute SQL Task should
look like Figure 3 - 38 for the OLE DB connection.

c03.indd 94c03.indd 94 8/28/08 12:05:15 PM8/28/08 12:05:15 PM

Chapter 3: SSIS Tasks

95

 The SQLStatement property in Figure 3 - 38 is set up as prescribed earlier in the guide with the ?
parameter markers for the one input parameter. Note also that the IsQueryStoredProcedure property is
not enabled. You can ’ t set this property for the OLE DB provider. However, this property would be
enabled in the ADO.NET version of the Execute SQL Task to execute this same procedure. If you set the
IsQueryStoredProcedure for the ADO.NET version to True, the SQLStatement property would also need
to change. Remove the execute command and the parameter markers to look like this: Usp_
UpdatePersonAddressModifyDate . In this mode, the Execute SQL Task will actually build the
complete execution statement using the parameter listing that you ’ d provide in the Parameter Mapping
tab of the Task Editor.

 The Parameter Mapping tab of the Task Editor would vary based upon the underlying provider set on
the Execute SQL Task as shown in Figure 3 - 39.

Figure 3-38

Figure 3-39

c03.indd 95c03.indd 95 8/28/08 12:05:16 PM8/28/08 12:05:16 PM

Chapter 3: SSIS Tasks

96

 For brevity sake, Figure 3 - 39 just shows the differences in the parameter settings. You ’ ll notice that the
parameter names follow the same rules you used when applying parameters to inline SQL statements
earlier in this chapter.

 Retrieving Output Parameters from a Stored Procedure
 Mapping input parameters for SQL statements is one thing, but there are some issues to consider when
handling output parameters from stored procedures. The main thing to remember is that all retrieved
output or return parameters have to be pushed into variables to have any downstream use. The variable
types are defined within SSIS, and you have the same issues that we went over in the section “ Capturing
Singleton Results ” for this task. In short, you have to be able to choose the correct variables when you
bind the resulting provider output parameters to the SSIS variables, so that you can get a successful type
conversion.

 As an example, we ’ ll duplicate the same type of SQL query we used earlier with the inline SQL
statement to capture a singleton result, but we ’ ll use a stored procedure object instead. Put this stored
procedure in the AdventureWorks2008 database:

CREATE PROCEDURE usp_GetTop1SalesOrderDetail
 (
 @CARRIER_TRACKING_NUMBER nvarchar(25) OUTPUT,
 @LINE_TOTAL numeric(38,6) OUTPUT,
 @ORDER_QTY smallint OUTPUT,
 @UNIT_PRICE money OUTPUT
)
AS
BEGIN
 SELECT TOP 1
 @CARRIER_TRACKING_NUMBER = CarrierTrackingNumber,
 @LINE_TOTAL = LineTotal,
 @ORDER_QTY = OrderQty,
 @UNIT_PRICE = UnitPrice
 From Sales.SalesOrderDetail
END

 In this contrived example, the proc will provide four different output parameters that you can use to
demonstrate how to set up the output parameter bindings. (Integer values are consistent and easy
to map across almost all providers, so there is no need to demonstrate in this example.) One difference in
returning singleton output parameters and a singleton row is that the General tab of the Execute SQL
Task will set the ResultSet property to None since no row should be returned to capture. Instead, the
Parameters in the Parameter Mapping tab will be set to the Direction of Output and the Data Types
mapped based on the provider.

c03.indd 96c03.indd 96 8/28/08 12:05:16 PM8/28/08 12:05:16 PM

Chapter 3: SSIS Tasks

97

 To get the defined SQL Server data type parameters to match to the SSIS variables, you ’ ll need to setup
the parameters with these mappings:

 Parameter Name SQL Server Data Type SSIS Data Type

 @CARRIER_TRACKING_NUMBER nvarchar string

 @LINE_TOTAL numeric double

 @ORDER_QTY smallint int16

 @UNIT_PRICE money double

 You ’ d think that you ’ d still have an issue with this binding, since if you recall, you attempted to return a
single - row set from an inline SQL statement with these same data types and ended up with all types of
binding and casting errors. You ended up having to change your inline statement to cast these values to
get them to bind. You actually don ’ t have to do this when binding to parameters, because this casting
occurs outside of the tabular data stream. When binding parameters (as opposed to columns in a data
stream), the numeric data type will bind directly to the double , and you will not get the error that you ’ d
get if the same data was being bound from a rowset. We ’ re not quite sure why this is the case, but it is a
good thing that stored procedures don ’ t have to be altered to use them in SSIS because of output
parameter binding issues.

 The remaining task to complete the parameter setup is to provide the correct placeholder for the
parameter. Figure 3 - 40 is an example of the completed parameter setup for the procedure in OLE DB and
ADO.NET connection contexts.

Figure 3-40

 So far, we ’ ve covered every scenario concerning binding to parameters and result sets. Stored procedures
can also return multi - row results, but there is really no difference in how you will handle these rows
from a stored procedure and an inline SQL statement. We covered multi - row scenarios earlier in this
section on the Execute SQL Task. Now let ’ s move away from tasks in the RDBMS world and into other
tasks that involve other controlling external processes like other packages or applications in the
operating system.

c03.indd 97c03.indd 97 8/28/08 12:05:16 PM8/28/08 12:05:16 PM

Chapter 3: SSIS Tasks

98

 Workflow Tasks
 So far, we ’ ve been focused on tasks that are occurring within the immediate realm of ETL processing.
You ’ ve looked at tasks for creating control structures, preparing data, and performing RDBMS
operations. Now let ’ s look at being able to control other processes and applications in the operating
system. Here we sidestep a bit from typical ETL definitions into things that can be more enterprise
application integration (EAI) oriented. SSIS packages can also be organized to execute other packages or
to call external programs that zip up files or send email alerts and even put messages directly into
application queues for processing.

 Execute Package Task
 The Execute Package Task enables you to build SSIS solutions called parent packages that execute other
packages called child packages . You ’ ll find this capability an indispensable part of your SSIS development
as your packages begin to grow. Separating packages into discrete functional workflows makes for shorter
development and testing cycles and facilitates best development practices. Though the Execute Package
Task has been around since the legacy DTS, several improvements have simplified the task. First, the child
packages can be run as either in - or out - of - process executables. In the Package tab of the Task Editor
(shown in Figure 3 - 41), you can see the new ExecuteOutOfProcess property, which if set to the default
value of false, will execute the package in its own process and memory space. Another key difference is
that the parent package no longer pushes parameters to the child package. Instead, the child package
is aware of and can reach into the parent package to access parent - package - level configuration values.

 The majority of the configurable properties are in the Package tab of the Execute Package Task Editor. The
first option is to provide the location of the child package. The options here are File System and SQL
Server. You can deploy an SSIS package in the File System Task as a .dtsx file, or within the msdb
database of a SQL Server instance. If you select File System, you must first create a new Connection
Manager connection to the package by selecting < New Connection . . . > from the Connection drop - down
box. If the child package is located in a SQL Server, you ’ ll need to provide the OLE DB Connection
Manager for the SQL Server that holds your package. In either case, browse to and then select the child
package within the connection to set the package to execute in the task, as shown in Figure 3 - 41.

Figure 3-41

c03.indd 98c03.indd 98 8/28/08 12:05:17 PM8/28/08 12:05:17 PM

Chapter 3: SSIS Tasks

99

 Setting Up Child Packages to Use Parent Variables
 Once you start using parent and child package combinations with the Execute Package Task, it won ’ t be
long before the need arises to pass a common variable value at the parent level down into the child
package. One such need occurs when you have child packages that need a foreign key passed down into
them to use to build supporting data relationships. To demonstrate the concept of variable passing, first
create a directory called ExecutePackage to store both a parent and a child package or download this
entire parent/child example from www.wrox.com . In you are creating from scratch, first create the parent
package, name the package parent , and then add a variable in the parent package called MYSTRING that
is of the type string. Set the value of this variable to be “ PARENT VALUE ” without the quotes. Now
create a child package, name it child , and close it. Reopen the parent package, and add an Execute
Package Task that calls the child package using the File System option as explained earlier in this section.
Finally add a Script Task after the Execute Package Task and connect the two. In the Script Task, add the
following code to display the value of the parent variable:

C#
public void Main()
 {
 string myMsg = “In Parent Package: MYSTRING Value={0}”;
 myMsg = string.Format(myMsg, Dts.Variables[“MYSTRING”].Value.ToString());
 System.Windows.Forms.MessageBox.Show(myMsg);
 Dts.TaskResult = (int)ScriptResults.Success;
 }

VB
Public Sub Main()
 Dim myMsg As String = “In Parent Package: MYSTRING Value={0}”
 myMsg = String.Format(myMsg, Dts.Variables(“MYSTRING”).Value.ToString())
 System.Windows.Forms.MessageBox.Show(myMsg)
 Dts.TaskResult = ScriptResults.Success
End Sub

 Now close the parent package and open up the child package. Add a new variable in the child package
called PARENT_MYSTRING with an empty string for the value. To be able to reach into the parent and
access the variables collection, you must first create a configuration for the child package. Do this by
selecting the menu option SSIS Package Configurations. (Sometimes you have to click around in
different places on the Control Flow surface to see this option.) When the Package Configurations
Organizer dialog appears (shown in the background in Figure 3 - 42), select the checkbox to enable
package configurations, and then click the Add button to bring up the Package Configuration Wizard.

c03.indd 99c03.indd 99 8/28/08 12:05:17 PM8/28/08 12:05:17 PM

Chapter 3: SSIS Tasks

100

 Click Next to be able to select the configuration settings. Figure 3 - 43 is a montage of the different sections
of the configuration wizard. In the first panel, you need to select a configuration type of “ Parent package
variable. ” Then you need to specify the variables. You ’ ll need the exact variable name here, and there
will be no selection help. (Remember that variables are case - sensitive.) The second panel allows you to
select the property of the child package that you wish to set using the variable value obtained from the
parent. Here ’ s where you could set the connection string in a child package level connection using a
value in the parent package, or in this example, just set the value of the variable PARENT_MYSTRING .
Notice that you have to open up the variable object and specifically point to the value property in the
variable. Click Next to complete the wizard and save the configuration setting.

Figure 3-42

c03.indd 100c03.indd 100 8/28/08 12:05:18 PM8/28/08 12:05:18 PM

Chapter 3: SSIS Tasks

101

 To verify that the child package now can see the value of the parent variable, drop a Script Task onto the
control design surface. Set the read - only variable to PARENT_MYSTRING , and then within the Script Task,
apply this code:

C#
public void Main()
 {
 string myMsg = “In Child Package: PARENT_MYSTRING Value={0}”;
 myMsg = string.Format(myMsg,
 Dts.Variables[“PARENT_MYSTRING”].Value.ToString());
 System.Windows.Forms.MessageBox.Show(myMsg);
 Dts.TaskResult = (int)ScriptResults.Success;
 }

VB
Public Sub Main()
 Dim myMsg As String = “In Child Package: PARENT_MYSTRING Value={0}”
 myMsg = String.Format(myMsg, _
 Dts.Variables(“PARENT_MYSTRING”).Value.ToString())
 System.Windows.Forms.MessageBox.Show(myMsg)
 Dts.TaskResult = ScriptResults.Success
End Sub

 Now close the child package and reopen the parent package. You should now be able to run the parent
package to see a dialog box once in the child package and then again in the parent package. Both
instances report on the same variable value that you started out with in the parent package. Now that
you ’ ve experienced passing variable values down into the child packages, let ’ s look at changing the
value of that variable for the parent down in the child package.

Figure 3-43

c03.indd 101c03.indd 101 8/28/08 12:05:18 PM8/28/08 12:05:18 PM

Chapter 3: SSIS Tasks

102

 Changing Parent Variables in Child Packages
 Using parent and child packages also requires the ability for the child package to perform some work
and inform the parent package by passing variables back to the parent. You might think that you can just
change the variable value in the child and the parent value will change. This depends on what you mean
by the variable. If you change the new variable created in the child to hold the value of the parent
variable, nothing in the parent will change. However, if you update the parent variable in a Script Task,
the variable is global to both packages, and the value in the parent will change. To demonstrate how this
works, replace the following code in the child package Script Task so that the parent variable is updated:

C#
public void Main()
 {
 string myMsg = “In Child Package: PARENT_MYSTRING Value={0}”;
 myMsg = string.Format(myMsg,
 Dts.Variables[“PARENT_MYSTRING “].Value.ToString());
 System.Windows.Forms.MessageBox.Show(myMsg);
 //Here we change the parent value
 Dts.Variables[“MYSTRING”].Value = “CHILD VALUE”;
 Dts.TaskResult = (int)ScriptResults.Success;
 }

VB
Public Sub Main()
 Dim myMsg As String = “In Child Package: PARENT_MYSTRING Value={0}”
 myMsg = String.Format(myMsg, _
 Dts.Variables(“PARENT_MYSTRING “).Value.ToString())
 System.Windows.Forms.MessageBox.Show(myMsg)
 ‘Here we change the parent value
 Dts.Variable(“MYSTRING”).Value = “CHILD VALUE”
 Dts.TaskResult = ScriptResults.Success
End Sub

 Now when you run the parent package, you ’ ll see two messages: First the dialog will display the value of
the parent package when it first goes into the child package. It should have the variable value “ PARENT
VALUE ” . When the second dialog in the Parent package executes, the variable in the parent has been
changed to “ CHILD VALUE ” .

 This is just a simple example of how you can link packages together and share properties using the
Package Configuration Wizard. There are many other ways you can use the configurations as well. We ’ ll
cover these options later in this book.

 Execute Process Task
 The Execute Process Task will execute a Windows or console application inside of the Controller Flow.
You ’ ll find great uses for this task to run command - line based programs and utilities prior to performing
other ETL tasks. The most common example would have to be unzipping packed or encrypted data files
with a command - line tool. The Execute Process Task has been improved on since SQL Server 2000,
and now it is more robust in its error handling. For example, you may now store any errors resulting
from the execution of the task into a variable that can be read later and logged. In addition, any
output from the command file can also be written to a variable for logging purposes. Figure 3 - 44 is a
sample of using the Execute Process Task to expand a compressed customers.zip file.

c03.indd 102c03.indd 102 8/28/08 12:05:19 PM8/28/08 12:05:19 PM

Chapter 3: SSIS Tasks

103

 The Process tab in the Execute Process Task Editor contains most of the important configuration items
for this task. The RequireFullFileName property tells the task whether it needs the full path to execute
the command. If the file is not found at the full path or in the PATH environment variables of the
machine, the task will fail. Typically, a full path is used only if you want to be explicit about the
executable you want to run. However, if the file exists in the System32 directory, you wouldn ’ t normally
have to type the full path to the file because this path is automatically known to a typical Windows
system.

 The Executable property is the path and file name to the executable you ’ d like to run. Be careful not to
provide any parameters or optional switches in this property that would be passed to the executable.
Use the Arguments property to set these types of options separately. For example, Figure 3 - 44 shows that
the task will execute expand.exe and pass in the cabinet from which you want to extract and where
you ’ d like it to be extracted. The WorkingDirectory option contains the path from which the executable
or command file will work.

 The StandardInputVariable parameter is the variable you ’ d like to pass into the process as an argument.
Use this property if you want to dynamically provide a parameter to the executable based on a variable.
You can also capture the result of the execution by setting the property StandardOutputVariable to a
variable. Any errors that occurred from the execution can be captured in the variable you provide in the
StandardErrorVariable property. These variable values can be used to send back to a scripting
component to log or can be used in a precedence constraint that checks the length of the variables to
determine if you should go to the next task. This provides the logical functionality of looping back and
trying again if the result of the execution of the expand.exe program was a sharing violation or another
similar error. Another option for validating the task is the FailTaskIfReturnCodeIsNotSuccessValue
property. The Execute Process Task will fail if the exit code passed from the program is different from the
value provided in the SuccessValue option. The default value of 0 indicates that the task was successful
in executing the process.

Figure 3-44

c03.indd 103c03.indd 103 8/28/08 12:05:19 PM8/28/08 12:05:19 PM

Chapter 3: SSIS Tasks

104

 The Timeout property determines the number of seconds that must elapse before the program is
considered a runaway process. A value of 0, which is the default, means the process can run for an infinite
amount of time. This property is used in conjunction with the TerminateProcessAfterTimeOut property,
which, if set to true, will terminate the process after the timeout has been surpassed. The last option is
WindowStyle, which can set the executable to be run minimized, maximized, hidden, or normal. If this is
set to any option other than hidden, the user will be able to see windows potentially pop up and may
interact with them during runtime. Typically, you set these to hidden once the package is fully tested.

 With the Execute Process Task, you can continue to use command - line or out - of - processes executables to
organize work for ETL tasks. Now let ’ s look at how SSIS can interact and integrate with your enterprise
messaging bus.

 Message Queue Task
 The Message Queue Task allows you to send or receive messages from Microsoft Message Queuing
(MSMQ) right out of the box. For integration with other messaging systems like IBM ’ s MQ Series or
Tibco ’ s Rendezveus, you ’ ll need to either code to a library within a Script Task, create a custom
component, or execute TSQL statements to a SQL Server Service broker. Messaging architectures are
created to ensure reliable communication between two disparate subsystems. A message can be a string,
file, or variable. The main benefit to using this task is the ability to make packages communicate with
each other at runtime. You can use this to scale out your packages, having multiple packages executing
in parallel, with each loading a subset of the data, and then checking in with the parent package after
they ’ re at certain checkpoints. You can also use this task for enterprise - level information integration
to do things like delivering dashboard - level information using XML files to an enterprise bus or
distributing report content files across your network. Satellite offices or any other subscriber to those
services could pull content from the queue for application - level processing.

 The task is straightforward. In the General tab, shown in Figure 3 - 45, you specify the MSMQ Connection
Manager under the MSMQConnection property. Then, you specify whether you ’ d like to send or receive
a message under the Message option. In this tab, you can also select whether you ’ d like to use the legacy
Windows 2000 version of MSMQ, which is by default set to false.

Figure 3-45

c03.indd 104c03.indd 104 8/28/08 12:05:19 PM8/28/08 12:05:19 PM

Chapter 3: SSIS Tasks

105

 The bulk of the configuration is under the Send or Receive tab (the one you see varies based on the
Message option you selected in the General tab). If you ’ re on the Receive tab, you can configure the task
to remove the message from the queue after it has been read. You can also set the timeout properties
here, to control whether the task will produce an error if it experiences a timeout.

 No matter whether you ’ re sending or receiving messages, you ’ ll be able to select what type of message
you wish to send under the MessageType option. You can either send or receive a string message, a
variable, or a data file. Additionally, if you ’ re receiving a message, you can immediately convert the
message you receive into a variable by selecting String Message to Variable and then specifying a
variable in the Variable option.

 Send Mail Task
 The Send Mail Task provides a configurable SSIS task for sending out email messages via SMTP. In
legacy DTS packages, you had to send messages out through MAPI, which meant installing Outlook
on the server that the package was running on. That is now no longer a requirement. Most of the
configuration options are set in the Mail tab (shown in Figure 3 - 46) of the Send Mail Task Editor.
The SMTPConnection property is where you either create a new or select an existing SMTP Connection
Manager.

Figure 3-46

c03.indd 105c03.indd 105 8/28/08 12:05:20 PM8/28/08 12:05:20 PM

Chapter 3: SSIS Tasks

106

 Most of the configuration options will depend upon your specific SMTP connection. One option that is
of special interest is the MessageSourceType property, which specifies whether the message source will
be provided from a file, a variable, or be directly inputted into the MessageSource property. Typically, the
best practice is to use a variable - based approach to set the message source property. You can see an
example of this in Chapter 23.

 WMI Data Reader Task
 Windows Management Instrumentation (WMI) is one of the best - kept secrets in Windows. WMI allows
you to manage Windows servers and workstations through a scripting interface similar to running a
TSQL query. The WMI Data Reader Task allows you to interface with this environment by writing WQL
queries (the query language for WMI) against the server or workstation (to look at the Application Event
Log, for example). The output of this query can be written to a file or variable for later consumption. The
following are some applications for which you could use the WMI Data Reader Task:

 Read the event log looking for a given error.

 Query the list of applications that are running.

 Query to see how much RAM is available at package execution for debugging.

 Determine the amount of free space on a hard drive.

 To get started, you first need to set up a WMI Connection Manager in the Connection Manager Editor.
Connection requirements vary, but Figure 3 - 47 is an example of a WMI connection for a typical stand -
 alone workstation.

❑

❑

❑

❑

Figure 3-47

c03.indd 106c03.indd 106 8/28/08 12:05:20 PM8/28/08 12:05:20 PM

Chapter 3: SSIS Tasks

107

 Notice here that the Use Windows Authentication option has been set. WMI typically requires some
higher level of security authorization since you are able to query OS - level data. With a WMI connection,
you can configure the WMI Data Reader Task Editor using the WMI Options tab shown in Figure 3 - 48.

Figure 3-48

 First, set the WMIConnection, and then determine whether the WMI query will be directly inputted,
retrieved from a variable, or retrieved from a file, and set the WqlQuerySourceType. The
WqlQuerySource is where you select the source for query that you wish to run against the connection.
This may be a variable name, a text file name, or a hard - coded query itself.

 The OutputType option is where you specify whether you want the output of the query to retrieve
just the values from the query or also the column names with the values. The OverwriteDestination
option sets whether you wish the destination to be overwritten each time it is run, or whether you want
it to just append to any configured destination. If you save the output to an object variable, you can use
some of the same technique of shredding a recordset that you learned earlier in the Execute SQL Task.

 WQL queries look like SQL queries, and for all practical purposes they are, with the exception that you
are getting back datasets from the operating systems. For example, the following query selects the free
space, name, and a few other metrics about the C: drive:

SELECT FreeSpace, DeviceId, Size, SystemName, Description FROM Win32_LogicalDisk
WHERE DeviceID = ‘C:’

 The output of this type of query would look like this in a table:

Description, Local Fixed Disk
DeviceID, C:
FreeSpace, 32110985216
Size, 60003381248
SystemName, BKNIGHT

c03.indd 107c03.indd 107 8/28/08 12:05:20 PM8/28/08 12:05:20 PM

Chapter 3: SSIS Tasks

108

 This example of a WQL query selects information written to the Application Event Log after a certain
date and about the SQL Server and SSIS services:

SELECT * FROM Win32_NTLogEvent WHERE LogFile = ‘Application’ AND
(SourceName=’SQLISService’ OR SourceName=’SQLISPackage’) AND TimeGenerated >
‘20050117’

 The results would look like this:

0
BKNIGHT
12289
1073819649
3
System.String[]
Application
3738
SQLISPackage
20050430174924.000000-240
20050430174924.000000-240
information
BKNIGHT\Brian Knight
0

 Typically, the WMI Data Reader Task is used in SQL Server administration packages to gather up
operational type data from the SQL Server environments. However, the WMI Event Watcher Task has
some interesting uses for ETL processes that you ’ ll look at next.

 WMI Event Watcher Task
 The WMI Event Watcher Task empowers SSIS to wait for and respond to certain WMI events that occur
in the operating system. The task operates in much the same way as the WMI Data Reader Task operates.
The following are some of the useful things you can do with this task:

 Watch a directory for a certain file to be written .

 Wait for a given service to start .

 Wait for the memory of a server to reach a certain level before executing the rest of the package
or before transferring files to the server .

 Watch for the CPU to be free .

 To illustrate the last example of polling to determine when the CPU is less than 50% utilized, you could
have the WMI Event Watcher Task look for an event with this WQL code:

SELECT * from __InstanceModificationEvent WITHIN 2 WHERE TargetInstance ISA
‘Win32_Processor’ and TargetInstance.LoadPercentage < 50

 Let ’ s now look at a direct application of this WMI Event Watcher Task to get a better idea of how to
configure it and what it can do.

❑

❑

❑

❑

c03.indd 108c03.indd 108 8/28/08 12:05:21 PM8/28/08 12:05:21 PM

Chapter 3: SSIS Tasks

109

 Polling a Directory for the Delivery of a File
 One very practical use of the WMI Event Watcher for ETL processing is to provide a buffer between the
times an SSIS job starts and the time a file is actually delivered to a folder location. If there is a window
of variability in file delivery and an SSIS package starts on a one - time schedule, then it is possible to miss
processing the file for the day. By using a WMI Event Watcher, you can set up your SSIS packages to poll
a folder location for a set period until a file is detected. To set up a task to perform this automated action,
open the task editor for the WMI Event Watcher and go to the WMI Options tab to review the options for
this task. (See Figure 3 - 49.) You ’ ll notice that this WMI Task is completely different from the WMI Data
Reader Task.

Figure 3-49

 This WMI Event Watcher Task provides properties like the AfterEvent option to set whether the task
should succeed, fail, or keep querying if the condition is met. You also need to provide an amount of
time that the WMI Event Watcher stops watching by setting the Timeout property. The timeout value is
in seconds. The default of zero (0) indicates that there is no timeout. Be very careful outside of your
development activities with leaving this setting on zero (0). The WMI Event Watcher could leave your
SSIS package running indefinitely.

 You can also configure what will happen if a timeout occurs under the ActionAtTimeout and
AfterTimeout settings. The NumberOfEvents option configures the number of events to watch for. You
can use this setting to look for more than one file before you start processing.

 The WqlQuerySource for the File Watcher Configuration for this WMI Task would look like this code:

SELECT * FROM __InstanceCreationEvent WITHIN 10
WHERE TargetInstance ISA “CIM_DirectoryContainsFile”
AND TargetInstance.GroupComponent = “Win32_Directory.Name=\”c:\\\\SSIS\””

c03.indd 109c03.indd 109 8/28/08 12:05:21 PM8/28/08 12:05:21 PM

Chapter 3: SSIS Tasks

110

 If you run this task with no files in the C:\ssis\ directory, the task will remain yellow as the watcher
continuously waits for an event to be raised. If you copy a file into the directory, the task will turn green
and complete successfully. This is a great addition that is less resource intensive than the legacy DTS
version of iterating in a for loop until the file is found. As you can see, there are some major
improvements in the capabilities of controlling workflow in SSIS.

 SMO Administration Tasks
 The last section of this chapter is reserved for a set of tasks that are convenient for copying or moving
schema and data - level information. These tasks are similar to the Transfer SQL Objects tasks from DTS,
and should be compatible if you transfer any packages using these tasks from DTS to SSIS. These tasks
can do the following:

 Move or copy entire databases. This can be accomplished by detaching the database and moving
the files (faster) or by moving the schema and content (slower).

 Transfer error messages from one server to another.

 Move or copy selected or entire SQL Agent jobs.

 Move or copy server - level or database - level logins.

 Move or copy objects such as tables, views, stored procedures, functions, defaults, user - defined
data types, partition functions, partition schemas, schemas (or roles), SQL assemblies, user -
 defined aggregates, user - defined types, and XML schemas. These objects can be copied over by
selecting all, by individually selecting each desired object types, or even by selecting individual
objects themselves.

 Move or copy master stored procedures between two servers.

 Transfer Database Task
 The Transfer Database Task has, as you would expect, a source and destination connection and a
database property. The other properties address how the transfer should take place. Figure 3 - 50 is an
example of the Transfer Database Task filled out to copy a development database on the same server as a
QA instance.

❑

❑

❑

❑

❑

❑

c03.indd 110c03.indd 110 8/28/08 12:05:21 PM8/28/08 12:05:21 PM

Chapter 3: SSIS Tasks

111

 Notice that the destination and source are set to the same server. For this copy to work, the
DestinationDatabaseFiles property has to be set to new mdf and ldf filenames. The property is set by
default to the SourceDatabaseFiles property. To set the new destination database file names, click the
ellipsis, and then change the Destination File or Destination Folder properties.

 The Action property controls whether the task should copy or move the Source Database. The Method
property controls whether the database should be copied while the source database is kept online, using
SQL Server Management Objects (SMO), or by detaching the database, moving the files, and then
reattaching the database. The DestinationOverwrite property controls whether the creation of
the destination database should be allowed to overwrite. This includes deleting the database in the
destination if it is found. This is useful in the case where you want to copy a database from production
into a quality - control or production test environment, and the new database should replace any existing
similar database. The last property is the ReattachSourceDatabase, which allows control over what action
should be taken upon failure of the copy. Use this property if you have a package running on a schedule
that takes a production database offline to copy it, and you need to guarantee that the database goes
back online even if the copy fails.

 What ’ s really great about the Transfer Database Task is that the logins, roles, object permissions, and
even the data can be transferred as well. This task may in some instances be too big of a hammer. You
may find it more advantageous to just transfer specific sets of objects from one database to another. The
next four tasks will give you these abilities.

Figure 3-50

c03.indd 111c03.indd 111 8/28/08 12:05:22 PM8/28/08 12:05:22 PM

Chapter 3: SSIS Tasks

112

 Transfer Error Messages
 If you are using custom error messages in the sys.messsages table, you need to remember to copy these
over when you move a database from one server to another. In the past, you needed to code a cursor -
 based script to fire the sp_addmessage system stored procedure to move these messages around — and
you needed to remember to do it. Now you can create a package that moves your database with the
Transfer Database Task and add this Transfer Error Messages Task to move the messages as well.

 One thing you ’ ll find in this task that you ’ ll see in the rest of the SMO administration tasks is the
opportunity to select the specific things that you want to transfer. The properties ErrorMessagesList and
ErrorMessageLanguagesList in the Messages tab, shown in Figure 3 - 51, are examples of this selective
type UI. If you click the ellipsis, you ’ ll get into a dialog where you can select specific messages to
transfer.

Figure 3-51

 Generally, unless you are performing a one - off update, you should set the TransferAllErrorMessages
property to True, and then set the IfObjectExists property to skip existing messages if they already exist
in the destination database.

 Transfer Logins Task
 The Transfer Logins Task focuses only on the security aspects of your databases. Have you ever backed
up and restored a database or used the SQL 2000 DTS to transfer logins only to find that the SIDs
associated with the logins don ’ t match? Now you can transfer the logins from one database and have
them corrected at the destination.

c03.indd 112c03.indd 112 8/28/08 12:05:22 PM8/28/08 12:05:22 PM

Chapter 3: SSIS Tasks

113

 Of course, you ’ ll have your obligatory source and destination connection properties in this editor. You
also have the choice to move logins from all databases or selected databases, or you can select individual
logins to transfer. Make this choice in the LoginsToTransfer property; the default is SelectedLogIns.
The partner properties to LoginsToTransfer are the LoginsList and DatabasesList. One will be activated
based on your choice of logins to transfer. Figure 3 - 52 shows an example Transfer Logins Task Editor.

 Two last properties to cover relate to what you want the transfer logins process to do if it encounters an
existing login in the destination. If you want the login to be replaced, set the IfObjectExists property to
Overwrite. Other options are to fail the task or to skip that login. The long - awaited option to resolve
unmatched user security IDs is found in the property CopySids, and can be true or false.

Figure 3-52

 Transfer Master Stored Procedures Task
 This task is used to transfer master stored procedures. If you need to transfer your own stored
procedure, use the Transfer SQL Server Objects Task instead. To use this task, set the source and
destination connections, and then set the property TransferAllStoredProcedures to true or false. If you set
this property to false, you ’ ll be able to select individual master stored procedures to transfer. The
remaining property, IfObjectExists, allows you to select what action should take place if a transferring
object exists in the destination. Again the choices are to Overwrite, FailTask, or Skip. Figure 3 - 53 is an
example of a completed Transfer Master Stored Procedures Task Editor.

c03.indd 113c03.indd 113 8/28/08 12:05:22 PM8/28/08 12:05:22 PM

Chapter 3: SSIS Tasks

114

 Transfer Jobs Task
 This task allows you to transfer any of the existing SQL Server Agent jobs between SQL Server
instances. Just like the other SMO tasks, you can either select to transfer all jobs to synchronize
two instances, or use the task to selectively pick which jobs you want to move to another instance, as
shown in Figure 3 - 54.

Figure 3-53

Figure 3-54

c03.indd 114c03.indd 114 8/28/08 12:05:23 PM8/28/08 12:05:23 PM

Chapter 3: SSIS Tasks

115

 Transfer SQL Server Objects Task
 The Transfer SQL Server Objects Task is the most flexible of the Transfer tasks. Within this task lies the
ability to transfer all types of database objects. To use this task, set the properties to connect to a source
and destination database; if the properties aren ’ t visible, expand the Connection category. As you can see
in Figure 3 - 55, there are many options available in this task. Some may be hidden until categories are
expanded.

 This task exists for those instances when selective object copying is needed. The selectivity is why this
is not called the Transfer Database Task. You specifically have to set the property CopyData to true to
get the bulk transfers of data. The property CopyAllObjects means that only the tables, views, stored
procedures, defaults, rules, and UDFs will be transferred. If you want the table indexes, triggers, primary
keys, foreign keys, full - text indexes, or extended properties, you ’ ll have to select these individually. By
expanding the ObjectsToCopy category, you ’ ll expose properties that allow individual selections for
tables, views, and other programmable objects. The security options give you some of the same abilities
as the Transfer Database Task. You can transfer database users, roles, logins, and object - level permissions
by selecting true for these properties.

 The power lies in the complexity, since this task can be customized and used in packages to move only
specific items, for example, during the promotion of objects from one environment to another, or to be
less discriminate and copy all tables, views, and other database objects, with or without the data.

Figure 3-55

c03.indd 115c03.indd 115 8/28/08 12:05:23 PM8/28/08 12:05:23 PM

Chapter 3: SSIS Tasks

116

 Summary
 This chapter attempted to stick with the everyday nuts - and - bolts uses of the SSIS tasks. Throughout the
chapter, you looked at each task, learned how to configure it, and were shown an example of the task in
action. In fact, you saw a number of examples of how to use the tasks in real - world ETL and EAI
applications. In the next chapter, you ’ ll circle back to look at the Control Flow again to explore containers,
which enable you to loop through tasks. In subsequent chapters, you ’ ll come back to the Data Flow Task
and dive deeper into configuring Data Flow and learn about all the transformations options that are
available in this task.

c03.indd 116c03.indd 116 8/28/08 12:05:24 PM8/28/08 12:05:24 PM

 Containers

 In the last chapter, you read about tasks and how they interact in the Control Flow. There was one
critical piece that was left out of that discussion. Containers are objects that help SSIS provide
structure to one or more tasks. They can help you loop through a set of tasks until a criterion has
been met or can help you group a set of tasks logically. Containers can also be nested, containing
other containers. Containers are set in the Control Flow tab in the Package Designer. There are four
types of containers in the Control Flow tab: Task Host, Sequence, For Loop, and Foreach Loop
Containers.

 Task Host Containers
 The Task Host Container is the default container that single tasks fall into. You ’ ll notice that this
type of container is not in the Toolbox in Visual Studio, and is implicitly given to each task. In fact,
even if you don ’ t specify a container for a task, it will be placed in a Task Host Container. The SSIS
architecture extends variables and event handlers to the task through the Task Host Container.

 Sequence Containers
 Sequence Containers handle the flow of a subset of a package and can help you divide a package
into smaller, more manageable pieces. Some nice applications that you can use sequence containers
for include the following:

 Grouping tasks so that you can disable a part of the package that ’ s no longer needed

 Narrowing the scope of the variable to a container

 Managing the properties of multiple tasks in one step by setting the properties of the
container

❑

❑

❑

c04.indd 117c04.indd 117 8/28/08 12:05:52 PM8/28/08 12:05:52 PM

Chapter 4: Containers

118

 Using one method to ensure that multiple tasks have to execute successfully before the next task
executes

 Creating a transaction across a series of data - related tasks, but not on the entire package

 Creating event handlers on a single container, wherein you could send an email if anything
inside one container fails and perhaps page if anything else fails

 Sequence containers show up like any other task in your Control Flow tab. Once you drag and drop any
container from your Toolbox onto the design pane, you just have to drag the tasks you ’ d like to use into
the container. Figure 4 - 1 gives you an example of a Sequence Container. The container is a Sequence
Container where two tasks must execute successfully before the task called “ Run Script 3 ” will be
executed. If you were to click the up - pointing arrows, the tasks inside the container will minimize.

❑

❑

❑

Figure 4-1

 A container can be considered to be a miniature package. Inside the container, all task names must be
unique, just like from within a package where there are no containers. You also cannot connect a task in
one container to anything outside of the container. If you try to do this, you will receive the following
error:

Cannot create connector.
Cannot connect executables from different containers.

 Containers such as the Sequence Container can also be embedded in each other. As a best practice each
of your SSIS packages should contain a series of containers to help organize the package and to make it
easy to disable subject areas quickly. Each set of tables that you must load probably fits into a subject
area, such as Accounting or HR. Each of these loads should be placed in its own Sequence Container.
Additionally, you may want to create a Sequence Container for the preparation and cleanup stages of
your package.

 Groups
 Groups are very similar to Sequence Containers with some very important differences. Groups are
simply a collection of tasks and are not true containers. A key difference is that properties cannot be
delegated through a container. Because of this, they don ’ t have precedence constraints originating from

c04.indd 118c04.indd 118 8/28/08 12:05:53 PM8/28/08 12:05:53 PM

Chapter 4: Containers

119

them (only from the tasks). You also can ’ t disable the entire group as in a Sequence Container. What they
are good for is a quick compartmentalization of tasks for aesthetics.

 To create a group, you highlight the tasks that you wish to place in the group, right - click, and select
Group. To ungroup the tasks, right - click the group and select Ungroup. To add additional tasks into the
group, simply drag the task into the group.

 The same type of logic you saw in the Sequence Container earlier (Figure 4 - 1) can be seen in Figure 4 - 2 .
As you can see, the precedence constraint is originating from the task called “ Run Script 2 ” to “ Run
Script 3 ” .

Figure 4-2

Figure 4-3

 For Loop Container
 The For Loop Container is a method to create looping in your package, similar to how you would loop in
nearly any programming language. In this looping style, SSIS optionally initializes an expression and
continues to evaluate it until the expression evaluates to false.

 In the example in Figure 4 - 3 , you can see that the Script Task called “ Wait for File to Arrive ” is
continuously looped through until a condition is evaluated as false. Once the loop is broken, the Script
Task is executed. Another real - world example would be to use a Message Queue Task inside the loop to
continuously loop until a message arrives in the queue. Such a configuration would allow for scaling out
your SSIS environment.

c04.indd 119c04.indd 119 8/28/08 12:05:53 PM8/28/08 12:05:53 PM

Chapter 4: Containers

120

 Let ’ s try a simple example to demonstrate the functionality of the For Loop Container, where we ’ ll use
the container to loop over a series of tasks five times. Although this example is pretty rudimentary, you
can plug whatever task you want in place of the Script Task.

 1. Create a new SSIS project called Chapter 4, and change the name of the default package to
 ForLoop.dtsx .

 2. Open the ForLoop.dtsx package, create a new variable, and call it Counter . You may have to
open the Variable window if it isn ’ t already open. To do this, right - click in the design pane and
select Variables. Once the window is open, click the Add Variable button. Accept all the defaults
for the variable (int32) and a default value of 0.

 3. Drag the For Loop Container to the Control Flow and double - click it to open the editor. Set the
 InitExpression option to @Counter = 0 . This will initialize the loop by setting the Counter
variable to 0. Next, in the EvalExpression option, type @Counter < 5 and
 @Counter = @Counter + 1 for the AssignExpression . This means that the loop will
iterate as long as the Counter variable is less than 5, and each time it loops, 1 will be added to
the variable. The last step to configure the For Loop page is to type for the Name option
“ Iterate through a Script ” (shown in Figure 4 - 4) and click OK.

Figure 4-4

c04.indd 120c04.indd 120 8/28/08 12:05:53 PM8/28/08 12:05:53 PM

Chapter 4: Containers

121

 4. Next, drag a Script Task into the For Loop Container and double - click the task to edit it. In the
General tab, name the task “ Pop Up the Iteration. ”

 5. In the Script tab, set the ReadOnlyVariables (Figure 4 - 5) to Counter and select Microsoft
Visual Basic 2008. Finally, click Edit Script to open the Visual Studio designer. By typing Counter
for that option, you ’ re going to pass in the Counter parameter to be used by the Script Task.

Figure 4-5

 6. When you click Design Script, the Visual Studio 2008 design environment will open. Double -
 click ScriptMain.vb to open the script and replace the Main() subroutine with the following
code. This code will read the variable and pop up a message box that tells you what the value of
the Counter variable is.

Public Sub Main()
 ‘
 ‘ Add your code here
 ‘
 MsgBox(Dts.Variables(“Counter”).Value)
 Dts.TaskResult = ScriptResults.Success
End Sub

 7. Save and exit the Visual Studio design environment, and click OK to exit the Script Task. When
you execute the package, you should see results similar to Figure 4 - 6 . You should see five pop -
 up boxes starting at iteration 0 and proceeding through iteration 4. Only one popup will appear

c04.indd 121c04.indd 121 8/28/08 12:05:54 PM8/28/08 12:05:54 PM

Chapter 4: Containers

122

at any given point. You ’ ll see the Script Task go green and then back to yellow as it transitions
between each iteration of the loop. After the loop is complete, the For Loop Container and the
Script Task will both be green.

Figure 4-6

 Foreach Loop Container
 The Foreach Loop Container is a powerful looping mechanism that allows you to loop through a
collection of objects. As you loop through the collection, the container will assign the value from the
collection to a variable, which could later be used by tasks or connections inside or outside the container.
You can also map the value to a variable. The type of objects that you will loop through can vary based
on the enumerator you set in the editor in the Collection page. The behavior of the editor varies widely
based on what you set for this option:

 Foreach File Enumerator: Performs an action for each file in a directory with a given file
extension .

 Foreach Item Enumerator: Loops through a list of items that are set manually in the container .

 Foreach ADO Enumerator: Loops through a list of tables or rows in a table from an ADO
record set .

 Foreach ADO.NET Schema Rowset Enumerator: Loops through an ADO.NET schema .

 Foreach From Variable Enumerator: Loops through an SSIS variable .

 Foreach Nodelist Enumerator: Loops through a node list in an XML document .

 Foreach SMO Enumerator: Enumerates a list of SQL Management Objects (SMO) .

❑

❑

❑

❑

❑

❑

❑

c04.indd 122c04.indd 122 8/28/08 12:05:54 PM8/28/08 12:05:54 PM

Chapter 4: Containers

123

 Foreach File Enumerator Example
 In this example we ’ ll use the most common type of enumerator, the Foreach File enumerator, to loop
through a list of files and simulate some type of action that has occurred inside the container. This
example has been simplified in an effort to just show the core functionality, but if you ’ d like a much
more detailed example, turn to Chapter 8 , which has an end - to - end example. For this example to work,
you ’ ll need a C:\Projects\Pro SSIS 2008\Temp folder and a C:\Projects\Pro SSIS 2008\Temp\
Archive folder, which SSIS will be enumerating through.

 To start, create a new package and string variable called sFileName with a default value of the word
 default . This variable will hold the name of the file that SSIS is working on during each iteration of the
loop. Create the variable by right - clicking in the Package Designer area of the Control Flow tab and
selecting Variables. Then, click the Add New Variable option, changing the data type to a String.

 Next, drag over a Foreach Loop Container onto the Control Flow and double - click on the container to
configure it, as shown in Figure 4 - 7 . Set the Enumerator option to Foreach File Enumerator. Then, set the
Folder property to C:\Projects\Pro SSIS 2008\Temp and leave the default Files property of *.* .

Figure 4-7

c04.indd 123c04.indd 123 8/28/08 12:05:55 PM8/28/08 12:05:55 PM

Chapter 4: Containers

124

 In the Variable Mappings page in the container, select the earlier created variable from the Variable drop -
 down box and then accept the default of 0 for the index, as shown in Figure 4 - 8 . Click OK to save the
settings and to get back to the Control Flow tab in the Package Designer.

Figure 4-9

 Drag over a new File System Task into the container ’ s box. Double - click the new task to configure it.
After setting the operation to Move File, you ’ ll see the screen ’ s properties change to resemble Figure 4 - 9
(once this example ’ s step is complete). Select < New Connection > for the DestinationConnection
property. When the Connection Manager dialog box opens, select Existing Folder and type C:\
Projects\Pro SSIS 2008\Temp\Archive for the directory. Lastly, set the IsSourcePathVariable
property to True and set the SourceVariable to User::sFileName .

Figure 4-8

c04.indd 124c04.indd 124 8/28/08 12:05:55 PM8/28/08 12:05:55 PM

Chapter 4: Containers

125

 You ’ re now ready to execute the package. Place any set of files you wish into the C:\Projects\
Pro SSIS 2008 folder and execute the package. During execution you ’ ll see each file picked up and
moved in Windows Explorer, and in the package you ’ ll see what resembles Figure 4 - 10 . If you had set
the OverwriteDestination property to True in the File System Task, the file would have been
overwritten if there was a conflict in duplicate file names.

Figure 4-10

 Foreach ADO Enumerator Example
 The Foreach ADO Enumerator loops through a collection of records, and will execute anything inside the
container for each row that is found. For example, if you had a table that contained metadata about your
environment like the following table, you could loop over that table and reconfigure the package for
each iteration of the loop. The first time through the loop, your Connection Managers would point to
Client1, and retrieve their files from one directory. The next time, the Connection Managers would point
to another client. Doing this could enable you to create a single package that would work for all of your
partners.

 Client FTPLocation ServerName DatabaseName

 Client1 C:\Client1\Pub localhost Client1DB

 Client2 C:\Client2\Pub localhost Client2DB

 Client3 C:\Client3\Pub localhost Client3DB

 In this example, you will create a simple package that will simulate this type of example. The package
will loop over a table, and then change the value for a variable for each row that is found. Inside the
container, you will create a Script Task that will pop up the current variable ’ s value.

c04.indd 125c04.indd 125 8/28/08 12:05:55 PM8/28/08 12:05:55 PM

Chapter 4: Containers

126

 To start the example, create a new package called ForeachADOEnumerator.dtsx . Create a new
Connection Manager called MasterConnection that points to the master database on your development
machine. Create two variables: one called sDBName , which is a string with no default, and the other called
 objResults , which is an object data type. Next, drag over an Execute SQL Task. You ’ ll use the Execute
SQL Task to populate the ADO recordset that is stored in a variable.

 In the Execute SQL Task, point the Connection property to the MasterConnection Connection Manager.
Change the ResultSet property to Full Result Set , which captures the results of the query run in this
task to a result set in a variable. Type the following query for the SQLStatement property (as shown in
Figure 4 - 11):

Select database_id, name from sys.databases

Figure 4-11

 Still in the Execute SQL Task, go to the Result Set page and type 0 for the Result Name, as shown in
Figure 4 - 12 . This is the zero - based ordinal position for the result that you want to capture into a variable.
If your previously typed query created multiple recordsets, then you could capture each here by giving
their ordinal position. Map this recordset to a variable called objResults that is scoped to the package
and an object data type. The object variable data type can store up to 2 GB of data in memory. If you do
not select that option, the package will fail upon execution, because it is the only way to store a recordset
in memory in SSIS.

c04.indd 126c04.indd 126 8/28/08 12:05:56 PM8/28/08 12:05:56 PM

Chapter 4: Containers

127

 Back in the Control Flow tab, drag over a Foreach Loop Container and open it to configure the container,
as shown in Figure 4 - 13 . In the Collection page, select Foreach ADO Enumerator from the Enumerator
drop - down box. Then, select the objResults variable from the ADO Object Source Variable drop - down
box. This will tell the container that you wish to loop over the results stored in that variable.

Figure 4-12

Figure 4-13

c04.indd 127c04.indd 127 8/28/08 12:05:56 PM8/28/08 12:05:56 PM

Chapter 4: Containers

128

 Go to the Variable Mappings page for the final configuration step of the container. Just like the Foreach
File Enumerator, you must tell the container where you wish to map the value retrieved from the ADO
result set. Your result set contains two columns: ID and Name from the sys.databases table. In this
example, you want the second column, so select the sDBName variable by selecting the variable from the
Variable drop - down box (shown in Figure 4 - 14) and type 1 for the Index. Typing 1 means you want the
second column in the result set. The index starts at 0 and goes up by one for each column to the right.
Because of this, be careful if you change the Execute SQL Task ’ s query.

Figure 4-14

 With the container now configured, drag over a Script Task into the container ’ s box. In the Script tab of
the Script Task, set the ReadOnlyVariables to sDBName and select Microsoft Visual Basic 2008. Finally,
click Edit Script to open the Visual Studio designer. By typing sDBName for that option, you ’ re going to
pass in the Counter parameter to be used by the Script Task.

 When you click Edit Script, the Visual Studio 2008 design environment will open. Double - click
 ScriptMain.vb to open the script and replace the Main() subroutine with the following code. This
code will read the variable and pop up a message box that tells you what the value of the sDBName
variable is.

Public Sub Main()
 ‘
 ‘ Add your code here
 ‘
 MsgBox(Dts.Variables(“sDBName”).Value)
 Dts.TaskResult = ScriptResults.Success
End Sub

 Close the editor and task and execute the package. The final package should look like Figure 4 - 15 , which
pops up the value of the sDBName variable, showing you the current database. As you click OK to each
popup, the next database name will display. This Script Task will obviously be replaced with a Data
Flow Task to load the client ’ s data in a less - contrived example.

c04.indd 128c04.indd 128 8/28/08 12:05:56 PM8/28/08 12:05:56 PM

Chapter 4: Containers

129

 Summary
 In this chapter, we ’ ve explored the four containers in SSIS: Task Host, For Loop, Foreach Loop, and the
Sequence Containers. The For Loop Container will iterate through a loop until a requirement has been
met. A Foreach Loop Container will loop through a collection of objects like files or records in a table. We
covered one of the most common examples of looping through all the records in a table, but looping
through files is also common and is covered in Chapter 8 . Lastly, a Sequence Container helps you
compartmentalize your various tasks into logical groupings. Each of the looping containers will execute
all the items in the container for each time it iterates through the loop. Now that we have the basics out
of the way of the Control Flow, the next chapter focuses on the Data Flow.

Figure 4-15

c04.indd 129c04.indd 129 8/28/08 12:05:57 PM8/28/08 12:05:57 PM

 The Data Flow

 In the last two chapters you were introduced to the Control Flow tab through tasks and
containers. In this chapter, you ’ ll continue along those lines with an exploration of the Data Flow
tab, which is where you ’ ll spend most of your time as an SSIS developer. The Data Flow Task is
where the bulk of your data heavy lifting will occur in SSIS. This chapter walks you through how
each transformation in the Data Flow Task can help you move and clean your data.

 The Data Flow
 One of the toughest concepts to understand for a new SSIS developer is the difference between the
Control Flow and Data Flow tabs. Chapter 2 goes into this further, but just to restate a piece of that
concept, the Control Flow tab controls the workflow of the package and the order of when each
task will execute. Each task in the Control Flow has a user interface to configure the task with the
exception of the Data Flow Task. The Data Flow Task is configured in the Data Flow tab. Once you
drag a Data Flow Task over onto the Control Flow tab and double - click it to configure it, you ’ re
immediately taken to the Data Flow tab.

 The Data Flow is made up of three components that will be discussed in this chapter: sources,
transformations (also known as transforms), and destinations. These three components make up the
fundamentals of ETL. Sources extract data out of flat files, OLE DB databases, and other locations.
Transforms process the data once it has been pulled out, and destinations write the data to its final
location.

 Much of this ETL processing is done in memory, which is what gives SSIS its speed. It is much
faster to apply business rules to your data in memory using a transform than have to constantly
update a staging table. Because of this, though, your SSIS server will potentially need a large
amount of memory based on the size of the file that you ’ re processing.

c05.indd 131c05.indd 131 8/28/08 12:07:28 PM8/28/08 12:07:28 PM

Chapter 5: The Data Flow

132

 Data Viewers
 Data viewers are a very important feature in SSIS for debugging your data pump pipeline. They
allow you to view data at points in time at runtime. If you place a data viewer before and after the
Aggregate Transform, you can see the data flowing into the transform at runtime and what it looks like
after the transform happens. Once you deploy your package and run it on the server as a job or with
the service, the data viewers do not show because they are only a debug feature. Anytime the package is
executed outside the designer, the data viewers won ’ t show. There are four types of data viewers:

 Grid: Shows a snapshot of the data in grid format at that point in time .

 Histogram: Shows the distribution of numeric data in a histogram graph .

 Scatter Plot: Shows the distribution of numeric data using an x - and y - axis .

 Column Chart: Displays the occurrence count of discrete values in a selected column .

 To place a data viewer in your pipeline, right - click one of the paths (red or green arrows leaving a
transform or source) and select Data Viewers. The Configure “ Data Flow Path Editor ” dialog box will
appear. Click Add to enter the Configure Data Viewer dialog box, and select the type of data viewer you
wish to use and optionally give it a name if needed. You can go to the other tab that ’ s named after the
type of data viewer you ’ re using to select what columns will be used in the data viewer.

 Once you run the package, you ’ ll see the data viewers open and populate with data when the package
runs the transform that it ’ s attached to. The package will not proceed until you click the > button. You
can also copy the data into a viewer like Excel or Notepad for further investigation by clicking Copy
Data. The data viewer will show up to 10,000 rows by default, so you may have to click the > button
multiple times in order to go through all the data.

 As you add more and more data viewers, you may want to remove them eventually to speed up your
development execution. You can remove them by right - clicking the path that has the data viewer and
selecting Data Viewers. You could then select the data viewer to remove and click Delete. You can also
delete all the data viewers and breakpoints at one time by selecting Delete All Breakpoints from the
Debug menu.

 Sources
 A source is where you specify the location of your source data. Most sources will point to the Connection
Manager in SSIS. By pointing to the Connection Manager, you can reuse connections throughout your
package, because you need only change the connection in one place. To reach the Data Flow tab, create a
new Data Flow Task in the Control Flow tab. You can then drag the source from the Toolbox.

 OLE DB Source
 The OLE DB Source is the most common type of source, and it can point to any OLE DB – compliant Data
Source such as SQL Server, Oracle, or DB2. To configure the OLE DB Source, double - click the source once
you ’ ve added it to the design pane in the Data Flow tab. In the Connection Manager page of the OLE DB

❑

❑

❑

❑

c05.indd 132c05.indd 132 8/28/08 12:07:29 PM8/28/08 12:07:29 PM

Chapter 5: The Data Flow

133

Source Editor (Figure 5 - 1), select the Connection Manager of your OLE DB Source from the OLE DB
Connection Manager drop - down box. You can also add a new Connection Manager in the editor by
clicking the New button.

 The “ Data access mode ” option sets how you wish to retrieve the data. Your options here are Table/View
or SQL Command, or you can pull either from variables. Once you select the Data Access Mode, you will
need the table or view, or you can type a query. It is a best practice for multiple reasons that will be
mentioned momentarily to retrieve the data from a query. This query can also be a stored procedure.
Additionally, you can pass a variable into the query by substituting a question mark (?) for where the
parameter should be, then clicking the Parameters button. We ’ ll discuss more about parameterization of
your queries later in this chapter.

 Figure 5 - 1

 Like most sources, you can go to the Columns page to set columns that you wish to output to the Data
Flow, as shown in Figure 5 - 2 . Simply check the columns you wish to output, and you can then assign the
name you wish to send down the Data Flow in the Output column. Select only the columns that you will
want to use, because the smaller the dataset, the better performance you will receive.

 This is where it ’ s better from a performance perspective to have typed the query in the Connection
Manager page versus selecting a table. Selecting a table to pull data from essentially selects all columns
and all rows from the target table, transporting all of that data across the network. Then, going to the
Columns page and unchecking the unnecessary columns applies a client - side filter on the data, which is
not nearly as efficient as selecting only the necessary columns in the SQL query.

c05.indd 133c05.indd 133 8/28/08 12:07:29 PM8/28/08 12:07:29 PM

Chapter 5: The Data Flow

134

 Optionally, you can go to the Error Output page (shown in Figure 5 - 3) and specify how you wish to
handle rows that have errors. For example, you may wish to output any rows that have a data type
conversion issue to a different path in the Data Flow. On each column, you can specify that if an error
occurs, you wish the row to be ignored, be redirected, or fail. If you choose to ignore failures, the column
for that row will be set to NULL. If you redirect the row, the row will be sent down the red path in the
Data Flow coming out of the OLE DB Source.

 The Truncation column specifies what to do if a data truncation occurs. A truncation error would occur,
for example, if you try to place 200 characters of data into a column in the Data Flow that only supports
100. You have the same options available to you for Truncation as you do for the Error option.

 Figure 5 - 2

 Figure 5 - 3

c05.indd 134c05.indd 134 8/28/08 12:07:30 PM8/28/08 12:07:30 PM

Chapter 5: The Data Flow

135

 Excel Source
 The Excel Source is a source that points to an Excel spreadsheet, just like it sounds. Once you point to an
Excel Connection Manager (shown in Figure 5 - 4), you can select the sheet from the “ Name of the Excel
sheet ” drop - down box, or you can run a query by changing the Data Access Mode. This source treats
Excel just like a database, where an Excel sheet is the table and the workbook is the database.

 Figure 5 - 4

 SSIS supports Excel data types, but it may not support them the way you wish by default. For example,
the default format in Excel is General. If you right - click a column and select Format Cells, you ’ ll find that
most of your columns in your Excel spreadsheet have probably been set to General. SSIS translates this
general format as a Unicode data type. In SQL Server, Unicode translates into nvarchar, which is
probably not what you want. If you have a Unicode data type in SSIS and you try to insert into a varchar
column, it will potentially fail. The answer is then to place a Data Conversion Transform between the
source and the destination in order to change the Excel data types. You can read more about Data
Conversion Transforms later in this chapter.

c05.indd 135c05.indd 135 8/28/08 12:07:30 PM8/28/08 12:07:30 PM

Chapter 5: The Data Flow

136

 If you are connecting to an Excel 2007 spreadsheet or later, ensure that you select the proper Excel
version when creating the Excel Connection Manager. You will not be able to connect to an Excel 2007
spreadsheet otherwise. Additionally the Excel driver is a 32 bit driver only and your packages will have
to run in 32 bit mode when using Excel connectivity.

 Flat File Source
 The Flat File Source provides a Data Source for connections that are not relational. Flat File Sources are
typically comma - or tab - delimited files, or they could be fixed - width or ragged - right. A fixed - width file
is typically received from the mainframe, and it has fixed start and stop points for each column. This
method makes for a fast load but takes longer at design - time for the developer to map each column. You
specify a Flat File Source the same way you specify an OLE DB Source. Once you add it to your Data
Flow pane, you point it to a Connection Manager connection that is a flat file or a multi - flat file. After
that, you go to the Columns tab to specify what columns you want to be presented to the Data Flow. All
the specifications for the flat file, such as delimiter type, were previously set in the Flat File Connection
Manager.

 In this example, you ’ ll create a Connection Manager that points to a file called FactSales.csv , which
you can download from this book ’ s website at www.wrox.com . The file has a date column, a few string
columns, integer columns, and a currency column. Because of its variety in data types, it presents an
interesting case study to show how to configure a Flat File Connection Manager.

 First, right - click in the Connection Manager area of the Package Designer and select New Flat File
Connection Manager. This will open the Flat File Connection Manager Editor, which is seen in Figure 5 - 5 .
Name the Connection Manager Fact Sales and point it to wherever you placed the FactSales.csv file.
Check the “ Column names in the first data row ” option, which specifies that the first row of the file
contains a header row with the column names.

 Another important option is the “ Text qualifier ” option. Although there isn ’ t one for this file, sometimes
your comma - delimited files may require that you have a text qualifier. A text qualifier places a character
around each column of data to show that any comma delimiter inside that symbol should be ignored.
For example, if you had the most common text qualifier of double - quotes around your data, a row may
look like the following, where there are only three columns, even though the commas may indicate five:

“Knight,Brian”, 123, “Jacksonville, FL”

c05.indd 136c05.indd 136 8/28/08 12:07:30 PM8/28/08 12:07:30 PM

Chapter 5: The Data Flow

137

 In the Columns page of the Connection Manager, you can specify what will delimit each column in the
flat file if you chose a delimited file. The row delimiter specifies what will indicate a new row.
The default option is a carriage return followed by a line feed. The Connection Manager ’ s file will be
automatically scanned to determine the column delimiter and as you can see in Figure 5 - 6 , you want to
use a tab delimiter for the example file.

 Often, once you make a major change to your header delimiter or your text qualifier, you ’ ll have to click
the Reset Columns button. Doing so will requery the file in order to obtain the new column names.
If you click this option, though, all of your metadata in the Advanced page will be re - created as well, and
you may lose a sizable amount of work.

 Figure 5 - 5

c05.indd 137c05.indd 137 8/28/08 12:07:31 PM8/28/08 12:07:31 PM

Chapter 5: The Data Flow

138

 The Advanced page of the Connection Manager is the most important feature in the Connection
Manager. In this tab, you specify the data type for each column in the flat file and the name of the
column, as shown in Figure 5 - 7 . This column name and data type will be later sent to the Data Flow. If
you need to change the data types or names, you can always come back to the Connection Manager, but
be aware that you ’ ll need to open the Flat File Source again to refresh the metadata.

 Making a change to the Connection Manager ’ s data types or columns will require that you refresh any
Data Flow Task using that Connection Manager. To do so, open the Flat File Source Editor, which will
prompt you to refresh the metadata of the Data Flow. Answer yes to that question and the metadata will
be corrected throughout the Data Flow.

 If you don ’ t want to go to each column and specify the data type, you can click the Suggest Types button
on this page to have SSIS scan the first 100 records (by default) in the file to guess the appropriate data
types. Generally speaking, it does a bad job at guessing, but it ’ s a great place to start if you have a lot of
columns.

 Figure 5 - 6

c05.indd 138c05.indd 138 8/28/08 12:07:31 PM8/28/08 12:07:31 PM

Chapter 5: The Data Flow

139

 A Flat File Connection Manager will initially treat each column as a 50 - character string by default.
Leaving this default behavior will harm you when you have a truly integer column that you ’ re trying
to insert into SQL Server, or if your column contains more data than 50 characters of data. This
Advanced page in the Connection Manager is the most important work you can do to ensure that all
the data types for the columns are properly defined. You will also want to keep the data types as small
as possible. If you have a zip code column, for example, that ’ s only 9 digits in length, define it as a
9 - character string. Doing this will save an additional 41 bytes in memory multiplied by however many
rows you have.

 A frustrating point with SSIS sometimes is how it deals with SQL Server data types. For example, a
varchar maps in SSIS to a string column. It was made this way to translate well into the .NET
development world and to make an agnostic product. The following table contains some of the common
SQL Server data types and what they ’ re going to map to in a Flat File Connection Manager.

 Figure 5 - 7

 If you wish to do this manually, you can select each column, and then specify the data type for each
column. You can also hold the Ctrl key or Shift key and select multiple columns at once and change the
data types or column length for multiple columns all at the same time.

c05.indd 139c05.indd 139 8/28/08 12:07:31 PM8/28/08 12:07:31 PM

Chapter 5: The Data Flow

140

 SQL Server Data Type Connection Manager Data Type

 bigint eight - byte signed integer [DT_I8]

 binary byte stream [DT_BYTES]

 Bit Boolean [DT_BOOL]

 tinyint single - byte unsigned integer [DT_UI1]

 Datetime database timestamp [DT_DBTIMESTAMP]

 Decimal numeric [DT_NUMERIC]

 real float [DT_R4]

 Int four - byte signed integer [DT_I4]

 Image image [DT_IMAGE]

 Nvarchar or nchar Unicode string [DT_WSTR]

 Ntext Unicode text stream [DT_NTEXT]

 Numeric numeric [DT_NUMERIC]

 Smallint two - byte signed integer [DT_I2]

 Text text stream [DT_TEXT]

 Timestamp byte stream [DT_BYTES]

 Tinytint single - byte unsigned integer [DT_UI1]

 Uniqueidentifier unique identifier [DT_GUID]

 Varbinary byte stream [DT_BYTES]

 Varchar or char string [DT_STR]

 Xml Unicode string [DT_WSTR]

 FastParse Option
 By default, there is a contract that SSIS issues between flat files and a Data Flow, which states that it must
validate any numeric or date column. For example, if you have a flat file where a given column is set to a
four - byte integer, every row must first go through a short validation routine to ensure it is truly an
integer and no character data has passed through. On date columns, a quick check is done to ensure that
every date is indeed a valid in - range date.

 This process is fast but it does require approximately 20 to 30 percent more time to validate that contract.
To set the property, go into the Data Flow Task where you ’ re using a Flat File Source. Right - click the Flat
File Source and select Show Advanced Editor. Once there, go to the Input and Output Properties and
select any number or date column. In the right pane, change the Fast Parse property to True as shown
in Figure 5 - 8 .

c05.indd 140c05.indd 140 8/28/08 12:07:32 PM8/28/08 12:07:32 PM

Chapter 5: The Data Flow

141

 MultiFlatFile Connection Managers
 If you know that you want to process a series of flat files in a Data Flow or refer to many files in the
Control Flow, you can optionally use the MultiFlatFile or “ multiple files Connection Manager. ” The
Multiple Files Connection Manager refers to a list of files for copying, moving, or that may hold a series
of SQL scripts to execute similar to the File Connection Manager. The Multiple Flat File Connection
Manager gives you the same view as a Flat File Connection Manager but allows you to point to multiple
files. In either case, you can point to a list of files by placing a vertical bar (|) between each filename:

C:\Projects\011305c.dat|C:\Projects\053105c.dat

 The way the Multiple Flat File Connection Manager reacts in the Data Flow is by combining the total
number of records from all the files that you have pointed to and appearing like a single merged file.
Using this is a matter of personal preference in many cases compared to the Foreach Loop Containers.
In either case, the metadata from the file must match in order to use them in the Data Flow. Most lean
toward using For Loop Containers though, because it ’ s easier to make them dynamic. With these
Multiple File or Multiple Flat File Connection Managers, you ’ ll have to parse your file list and add the
vertical bar between them. In the Foreach Loop Containers case, it takes care of that for you.

 Figure 5 - 8

c05.indd 141c05.indd 141 8/28/08 12:07:32 PM8/28/08 12:07:32 PM

Chapter 5: The Data Flow

142

 Raw File Source
 The Raw File Source is a specialized type of flat file that is optimized for quick usage from SSIS. A Raw
File Source is created by a Raw File Destination (this will be discussed later in this chapter). You can ’ t
add columns to the Raw File Source, but you can remove unused columns from the source in much the
same way you do in the other sources. Because the Raw File Source requires little translation, it can load
data much faster than the Flat File Source, but the price of this is that you have little flexibility. Typically,
you see raw files used to capture data at checkpoints to be used later in case of a package failure.

 These sources are typically used for cross - package or cross - data flow communication. For example, if
you have a Data Flow that takes four hours to run, you may wish to stage the data to a raw file halfway
through the processing in case a problem occurs. Then, the second Data Flow Task would continue the
remaining two hours of processing.

 XML Source
 The XML Source is a powerful SSIS source that can use a local or remote (via HTTP or UNC) XML file
as the source. This Data Source is a bit different from the OLE DB Source in its configuration. First, you
point to the XML file locally on your machine or at a UNC path. You can also point to a remote HTTP
address for an XML file. This is useful for interaction with a vendor. This source is very useful when
used in conjunction with the Web Service Task or the XML Task. Once you point the data item to an XML
file, you must generate an XSD file (XML Schema Definition) by clicking the Generate XSD button or
point to an existing XSD file. The schema definition can also be an in - line XML file, so you don ’ t
necessarily have to have an XSD file. The rest of the source resembles the other sources, where you can
filter the columns you don ’ t want to see down the chain.

 ADO.NET Source
 The ADO.NET Source allows you to make a .NET provider a source and allows you to make it available
for consumption inside the package. The source uses an ADO.NET Connection Manager to connect to
the provider. It is preferred for performance to use the OLE DB Source, but some providers may require
that you use the ADO.NET Source. The source is identical in its interface appearance to the OLE DB
Source, but it does require an ADO.NET Connection Manager.

 Destinations
 Inside the Data Flow, destinations accept the data from the Data Sources and from the transformations.
The architecture can send the data to nearly any OLE DB – compliant Data Source, a flat file, or Analysis
Services, to name just a few. Like sources, destinations are managed through the Connection Manager.
The configuration difference between sources and destinations is that in destinations, you have a
Mappings page (shown in Figure 5 - 9), where you specify how the inputted data from the Data Flow
maps to the destination. As you can see in the Mappings page in this figure, the columns are
automatically mapped based on column names but don ’ t necessarily have to exactly be lined up. You
can also choose to ignore given columns, such as when you ’ re inserting into a table that has an identity
column and don ’ t wish to inherit the value from the source table.

c05.indd 142c05.indd 142 8/28/08 12:07:32 PM8/28/08 12:07:32 PM

Chapter 5: The Data Flow

143

 You won ’ t be able to configure the destination until it is connected to the Data Flow. To do this, select the
source or a transformation and drag the green arrow to the destination. If you want to output the bad
data to a destination, you would drag the red arrow to that destination. If you try to configure the
destination before attaching it to the transformation or source, you would see the error in Figure 5 - 10 .

 Figure 5 - 9

 Figure 5 - 10

 Data Mining Model Training
 The Data Mining Model Training Destination can train an Analysis Services data mining model by
passing it data from the Data Flow. You can train multiple mining models from a single destination and
Data Flow. To use this destination, you would select an Analysis Services Connection Manager and the
mining model. Analysis Services mining models are out of the scope of this book, and for more
information on this, please see Professional SQL Server Analysis Services 2008 with MDX (Harinath 2009).

 The data you pass into the Data Mining Model Training Destination must be presorted. To do this, you
would use the Sort Transformation, which is discussed in the next section.

c05.indd 143c05.indd 143 8/28/08 12:07:32 PM8/28/08 12:07:32 PM

Chapter 5: The Data Flow

144

 DataReader Destination
 The DataReader Destination is a way of extending SSIS Data Flows to external packages or programs
that can use the DataReader interface, such as a .NET application. When you configure this destination,
you should make sure that the name of your destination is something that ’ s easy to recognize later in
your program, because you will be calling that name later. After you ’ ve configured the name and basic
properties, check the columns you ’ d like outputted to the destination in the Input Columns tab.

 Dimension and Partition Processing
 The Dimension Processing Destination loads and processes an Analysis Services dimension. You
have the option to perform full, incremental, or update processing. To configure the destination, select
the Analysis Services Connection Manager that contains the dimension that you ’ d like to process on the
Connection Manager page in the Dimension Processing Destination Editor. You will then see a list of
dimensions and fact tables in the box. Select the dimension you ’ d like to load and process, and go to the
Mappings page, where you ’ ll map the data from the Data Flow to the selected dimension. Lastly, you
can configure how you ’ d like to handle errors, such as unknown keys in the Advanced page. Generally,
the default options are fine for this page unless you have special needs for error handling.

 The Partition Processing Destination has identical options, but it processes an Analysis Services partition
instead of a dimension.

 Excel Destination
 The Excel Destination (shown in Figure 5 - 11) is identical to the Excel Source, except that the destination
accepts data instead of sending data. First, select the Excel Connection Manager from the Connection
Manager page, and then specify which worksheet you wish to load data into.

 Figure 5 - 11

 The big caveat with the Excel Destination is that unlike the Flat File Destination, an Excel spreadsheet
must already exist with the sheet that you wish to copy data into. If the spreadsheet doesn ’ t exist, you
will receive an error. If you wish to work around this issue, you can create a blank spreadsheet to use as
your template, and then use the File System Task to copy the file over.

c05.indd 144c05.indd 144 8/28/08 12:07:33 PM8/28/08 12:07:33 PM

Chapter 5: The Data Flow

145

 Flat File Destination
 The commonly used Flat File Destination sends data to a flat file, and can be fixed - width or delimited. The
destination uses a Flat File Connection Manager. You can also add a custom header to the file by typing it
into the Header option in the Connection Manager page. Lastly, you can specify on this page that the
destination file will be overwritten each time the Data Flow is run.

 OLE DB Destination
 The most commonly used destination for you will probably be the OLE DB Destination (Figure 5 - 12).
It can write data from the source or transformation to OLE DB – compliant Data Sources such as Oracle,
DB2, Access, and SQL Server. It configures like any other destination and source, using OLE DB
Connection Managers. A dynamic option it does have is the Data Access Mode. If you select Table or
View - Fast Load, or its variable equivalent, you will have a number of options below, such as Table
Lock. This Fast Load option is available only for SQL Server database instances.

 A few options of note here are the Rows Per Batch option, which specifies how many rows are in each
batch sent to the destination, and another option is the Maximum Insert Commit Size, which specifies
how large the batch size will be prior to issuing a commit statement. The Table Lock option will place a
lock on the destination table to speed up the load. As you can imagine, this will cause grief for your
users if they ’ re trying to read from the table at the same time. The other important option is Keep
Identity. This option allows you to insert into a column that has the identity property set on it. Generally
speaking, you can gain performance by setting the Max Insert Commit Size to a number like 10,000, but
that number may vary based on how wide the columns are.

 Figure 5 - 12

c05.indd 145c05.indd 145 8/28/08 12:07:33 PM8/28/08 12:07:33 PM

Chapter 5: The Data Flow

146

 A common question is what is the difference between fast load and the normal load (table or view
option) for the OLE DB Destination. The Fast Load option specifies that SSIS will load data in bulk into
the OLE DB Destination ’ s target table. Because this is a bulk operation, error handling via a redirection
or ignoring of the data errors is not allowed. If you require this level of error handling, you need to turn
off bulk loading of the data by selecting Table or View for the Data Access Mode option. Doing so will
allow you to redirect your errors down the red line but will cause a slow down of the load by a factor of
at least four.

 Raw File Destination
 The Raw File Destination is an especially speedy Data Destination that does not use a Connection
Manager to configure. Instead, you point to the file on the server in the editor. This destination is written
to typically as an intermediate point for partially transformed data. Once written to, other packages
could read the data in by using the Raw File Source. The file is written in native format and so is
very fast.

 Recordset Destination
 The Recordset Destination populates an ADO recordset that can be used outside the transformation. For
example, you can populate the ADO recordset, and then a Script Task could read that recordset by
reading a variable later in the Control Flow. This type of destination does not support an error output
like some of the other destinations.

 SQL Server and Mobile Destinations
 The SQL Server Destination is the destination that is optimized for SQL Server. It gains its speed
advantages by using the bulk insert features that are built into SQL Server. What ’ s nice about this
destination is that you can perform transformations earlier in the Data Flow and actually load data
quickly in bulk into SQL Server after it has been transformed. Through the Advanced tab in the
destination, you can configure the same features that are available in the bulk insert feature, such as
executing triggers or locking the table. Note that this destination can be used only if the package is
running on the same machine as SQL Server, because it uses an interface that ’ s in - memory. Lastly, the
SQL Server Mobile Destination is a destination that can direct data to a Pocket PC device.

 Transformations
 Transformations (the term transform will be used throughout this book) are key components to the Data
Flow that transform the data to a desired format as you move from step to step. For example, you may
wish a sampling of your data to be sorted and aggregated. Three transforms can accomplish this task for
you: one to take a random sampling of the data, one to sort, and another to aggregate. The nicest thing
about transforms in SSIS is that it is all done in - memory and it no longer requires elaborate scripting as in
SQL Server 2000 DTS. As you add a transform, the data is altered and passed down the path in the Data
Flow. Also, because this is done in - memory, you no longer have to create staging tables to perform most
functions. When dealing with very large datasets, though, you may still choose to create staging tables.

 You set up the transform by dragging it onto the Data Flow tab design area. Then, click the source or
transform you ’ d like to connect it to, and drag the green arrow to the target transform or destination.

c05.indd 146c05.indd 146 8/28/08 12:07:33 PM8/28/08 12:07:33 PM

Chapter 5: The Data Flow

147

If you drag the red arrow, then rows that fail to transform will be directed to that target. After you have
the transform connected, you can double - click it to configure the transform.

 Synchronous versus Asynchronous Transformations
 Transformations are broken into two main categories: synchronous and asynchronous. In SSIS, you want
to ideally use all synchronous components. Synchronous transformations are components like the
Derived Column and Data Conversion Transforms where rows flow into memory buffers in the
transform and the same buffers come out. No rows are held and typically these transforms perform very
quickly with minimal impact to your Data Flow.

 There are two types of asynchronous transforms: fully blocking and partial blocking. Partial
blocking transforms, such as the Union All Transform, create new memory buffers for the output of
the transform than what come into the transform. Full blocking transforms, such as the Sort and
Aggregate Transforms, do the same thing but cause a full block of the data. In order to sort the data, SSIS
must first see every single row of the data. If you have a 100MB file, then you may require 200MB of
RAM in order to process the Data Flow because of a fully blocking transform. These fully blocking
transforms represent the single largest slowdown in SSIS and architecture decisions you must make.
Chapter 14 covers this concept in much more breadth.

 Aggregate
 The Aggregate Transform allows you to aggregate data from the Data Flow to apply certain TSQL
functions that are done in a GROUP BY statement like Average, Minimum, Maximum, and Count. For
example, in Figure 5 - 13 , you can see that the data is grouped together on the ProductID column and then
the Quantity and ActualCost columns are summed. Lastly for every ProductID, the maximum
TransactionDate is aggregated. This produces four new columns that can be consumed down the path,
or future actions can be performed on them and the other columns are dropped at that time.

 The Aggregate Transform is configured in the Aggregate Transformation Editor (see Figure 5 - 13). To
configure it, first check the column that you wish to perform the action on. After you check the column,
the input column will be filled below in the grid. Optionally, type an alias in the Output Alias column
that you wish to give the column when it ’ s outputted to the next transform or destination. For example,
if the column now holds the total money per customer, you may change the name of the column that ’ s
outputted from InvoiceAmt to TotalCustomerSaleAmt. This will make it easier for you to recognize what
the column is along the path of the data. The most important option is the Operation drop - down box.
For this option, you can select the following:

 Group By: Breaks the dataset into groups by the column you specify .

 Average: Averages the selected column ’ s numeric data .

 Count: Counts the records in a group .

 Count Distinct: Counts the distinct non - NULL values in a group .

 Minimum: Returns the minimum numeric value in the group .

 Maximum: Returns the maximum numeric value in the group .

 Sum: Returns sum of the selected column ’ s numeric data in the group .

❑

❑

❑

❑

❑

❑

❑

c05.indd 147c05.indd 147 8/28/08 12:07:34 PM8/28/08 12:07:34 PM

Chapter 5: The Data Flow

148

 You can click the Advanced tab to see the options that allow you to configure multiple outputs from the
transform. After you click Advanced, you can type a new Aggregation Name to create a new output. You
will then be able to check the columns you ’ d like to aggregate again as if it were a new transform.

 Figure 5 - 13

 In the Advanced tab, the “ Key scale ” option sets an approximate number of keys. The option is set to
Unspecified by default and optimizes the transform ’ s cache to the appropriate level. For example, setting
it to Low will optimize the transform to write 500,000 keys. Setting it to Medium will optimize it for
5,000,000 keys, and High will optimize the transform for 25,000,000 keys. You can also set the exact
number of keys by using the “ Number of keys ” option.

 The “ Count distinct scale ” option will optionally set the amount of distinct values that can be written
by the transform. The default value is unspecified, but if you set it to Low, the transform will be
optimized to write 500,000 distinct values. Setting the option to Medium will set it to 5,000,000 values,
and High will optimize the transform to 25,000,000. The Auto Extend Factor specifies to what factor your
memory can be extended by the transform. The default option is 25%, and you can specify other settings
to keep your RAM from getting away from you.

c05.indd 148c05.indd 148 8/28/08 12:07:34 PM8/28/08 12:07:34 PM

Chapter 5: The Data Flow

149

 Audit
 The Audit Transform allows you to add auditing data to your Data Flow. In the age of HIPPA and
Sarbanes - Oxley (SOX) audits, you often must be able to track who inserted the data into a table and
when. This transform helps you with that function. For example, if you ’ d like to track what task inserted
data into the table, you can add those columns to the Data Flow path with this transform.

 The task is easy to configure. All other columns are passed through to the path as an output, and any
auditing item you add will also be added to the path. Simply select the type of data you ’ d like to audit in
the Audit Type column (shown in Figure 5 - 14), and then name the column that will be outputted to the
flow. The following are some of the options you ’ ll have available to you:

 Execution Instance GUID: The GUID that identifies the execution instance of the package

 PackageID: The unique ID for the package

 PackageName: The name of the package

 VersionID: The version GUID of the package

 ExecutionStartTime: The time the package began

 MachineName: The machine that the package ran on

 UserName: The user that started the package

 TaskName: The Data Flow Task name that holds the Audit Task

 TaskID: The unique identifier for the Data Flow Task that holds the Audit Task

❑

❑

❑

❑

❑

❑

❑

❑

❑

 Figure 5 - 14

c05.indd 149c05.indd 149 8/28/08 12:07:34 PM8/28/08 12:07:34 PM

Chapter 5: The Data Flow

150

 Cache Transform
 The Cache Transform is a new transform to SQL Server 2008 that allows you to load a cache file on disk
in the Data Flow. This cache file is later used for fast lookups in a Lookup Transform. The Cache
Transform can be used to populate a cache file in the Data Flow as a transform, and then immediately
used, or it can be used as a destination and then used by another package or Data Flow in the same
package.

 The cache file that ’ s created allows you to perform lookups against large datasets that were previously
not possible in the Lookup Transform. It also allows you to share the same lookup cache across many
Data Flows. We cover this transform and the Lookup Transform much more in Chapter 7 .

 Character Map
 The Character Map Transform (shown in Figure 5 - 15) performs common character translations in the
flow. This simple transform can be configured in a single tab. To do so, check the columns you wish to
transform. Then, select whether you want this modified column to be added as a new column or
whether you want to update the original column. You can give the column a new name under the
Output Alias column. Lastly, select the operation you wish to perform on the inputted column.
The available operation types are as follows:

 Byte Reversal: Reverses the order of the bytes. For example, for the data 0x1234 0x9876 ,
the result is 0x4321 0x6789 . This uses the same behavior as LCMapString with the
LCMAP_BYTEREV option.

 Full Width: Converts the half - width character type to full width.

 Half Width: Converts the full - width character type to half width.

 Hiragana: Converts the Katakana style of Japanese characters to Hiragana.

 Katakana: Converts the Hiragana style of Japanese characters to Katakana.

 Linguistic Casing: Applies the regional linguistic rules for casing.

 Lowercase: Changes all letters in the input to lowercase.

 Traditional Chinese: Converts the simplified Chinese characters to traditional Chinese.

 Simplified Chinese: Converts the traditional Chinese characters to simplified Chinese.

 Uppercase: Changes all letters in the input to uppercase.

 In Figure 5 - 15 , you can see that two columns are being transformed. Both columns will be transformed
to uppercase. For the TaskName input, a new column is added, and the original is kept. The
PackageName column is replaced in - line.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd 150c05.indd 150 8/28/08 12:07:35 PM8/28/08 12:07:35 PM

Chapter 5: The Data Flow

151

 Conditional Split
 The Conditional Split Transform is a fantastic way to add complex logic into your Data Flow. The
transform allows you to send the data from a single data path to various outputs or paths based on
conditions that use the SSIS expression language. For example, you could configure the transform to
send all products with sales that have a quantity greater than 500 to one path, and products that have no
sales down another path. Lastly, if neither condition is met, the sales would go down a third path, which
is called “ Small Sales, ” which essentially acts as an ELSE statement in TSQL. This exact situation is
shown in Figure 5 - 16 . You can drag and drop the column or code snippets from the tree above. After you
complete the condition, you will need to name it something logical rather than the default name of Case
1. You ’ ll use this case name later. You also can configure the Default Output Column Name, which will
output any data that does not fit any case.

 Figure 5 - 15

c05.indd 151c05.indd 151 8/28/08 12:07:35 PM8/28/08 12:07:35 PM

Chapter 5: The Data Flow

152

 You can also conditionally read string data by using SSIS expressions like the following example, which
reads the first letter of the City column:

SUBSTRING(City,1,1) == “F”

 You can learn much more about the expression language in Chapter 6 . Once you connect the transform
to the next transform in the path or destination, you ’ ll see a pop - up dialog box that lets you select which
case you wish to flow down this path, as shown in Figure 5 - 17 . In this figure, you can see three cases.
The “ Large Sales ” condition can go down one path, “ Unknown Sales Data ” down another, and the
default “ Small Sales ” down the last path. After you complete the configuration of the first case, you can
create a path for each case in the conditional split.

 Figure 5 - 16

c05.indd 152c05.indd 152 8/28/08 12:07:35 PM8/28/08 12:07:35 PM

Chapter 5: The Data Flow

153

 If our previous example was flushed out a bit more, your path may look like Figure 5 - 18 , where the third
data path, which had rows for the condition “ Unknown Sales Data, ” would be just thrown away since
it ’ s not used.

 Figure 5 - 18

 Figure 5 - 17

 A much more detailed example is given in Chapter 8 .

 Copy Column
 The Copy Column Transform is a very simple transformation that copies the output of a column to a
clone of itself. This is useful if you wish to create a copy of a column before you perform some elaborate
transformations. You could then keep the original value as your control subject and the copy as the
modified column. To configure this transform, go to the Copy Column Transformation Editor and check
the column you ’ d like to clone. Then assign a name to the new column.

 Many transforms will allow you to transform the data from a column to a new column inherently.

 Data Conversion
 The Data Conversion Transform performs a similar function to the CONVERT or CAST functions in
TSQL. The transform is configured in the Data Conversion Transformation Editor (Figure 5 - 19), where
you would check each column that you wished to convert and then assign what you wish to convert it to
under the Data Type column. The Output Alias is the column name you want to assign to the column
after it is transformed. If you don ’ t assign it a new name, it will show as Data Conversion: ColumnName
later in the Data Flow.

c05.indd 153c05.indd 153 8/28/08 12:07:36 PM8/28/08 12:07:36 PM

Chapter 5: The Data Flow

154

 Data Mining Query
 The Data Mining Query Transformation typically is used to fill in gaps in your data or predict a new
column for your Data Flow. This transformation runs a data - mining query and adds the output to
the Data Flow. It also can optionally add columns, such as the probability of a certain condition being
true. A few great scenarios for this transformation would be the following:

 You could take columns, such as number of children, household income, and marital income, to
predict a new column that states whether the person owns a house or not.

 You could predict what customers would want to buy based on their shopping cart items.

 You could fill in the blank holes in your data where customers didn ’ t enter all the fields in a
questionnaire.

 The possibilities are endless with this.

 Derived Column
 The Derived Column Transform creates a new column that is derived from the output of another
column. It is one of the most important transforms in your Data Flow arsenal. You may wish to use this
transformation, for example, to multiply the quantity of orders by the cost of the order to derive the total
cost of the order, as shown in Figure 5 - 20 . You can also use it to find out the current date or to fill in the
blanks in the data by using the ISNULL function. This is one of the top five transforms that you ’ ll find
yourself using to alleviate the need for TSQL scripting in the package.

 To configure this transform, drag the column or variable into the Expression column as shown in
Figure 5 - 20 . Then add any functions to it. A list of functions can be found in the top - right corner of the
Derive Column Transformation Editor. You must then specify, in the Derived Column drop - down box,
if you want the output to replace an existing column in the Data Flow or to create a new column. As you

❑

❑

❑

 Figure 5 - 19

c05.indd 154c05.indd 154 8/28/08 12:07:36 PM8/28/08 12:07:36 PM

Chapter 5: The Data Flow

155

see in Figure 5 - 20 , the second derived column expression is doing an in - place update of the Quantity
column. The expression states that if the Quantity column is null, then convert it to 0, otherwise, keep
the existing data in the Quantity column. If you create a new column, specify the name in the Derived
Column Name column.

 Figure 5 - 20

 Export Column
 The Export Column Transformation is a transformation that exports data to a file from the Data Flow.
Unlike the other transformations, the Export Column Transform doesn ’ t need a destination to create the
file. To configure it, go to the Export Column Transformation Editor, which is shown in Figure 5 - 21 .
Select the column that contains the file from the Extract Column drop - down box. Select the column that
contains the path and filename to send the files to in the File Path Column drop - down box.

 The other options specify where the file will be overwritten or dropped. The Allow Append checkbox
specifies whether the output will be appended to the existing file, if one exists. If you check Force
Truncate, the existing file will be overwritten if it exists. The Write BOM option specifies whether a
byte - order mark is written to the file if it is a DT_NTEXT or DT_WSTR data type.

 If you do not check the Append or Truncate options and the file exists, the package will fail if the error is
not handled. The following error is a subset of the complete error you ’ d receive:

Error: 0xC02090A6 at Data Flow Task, Export Column [61]: Opening the file
“wheel_small.gif” for writing failed. The file exists and cannot be
overwritten. If the AllowAppend property is FALSE and the ForceTruncate
property is set to FALSE, the existence of the file will cause this failure.

 The Export Column Transformation Task is used to extract blob - type data from fields in a database and
create files in their original formats to be stored in a file system or viewed by a format viewer, such as
Microsoft Word or Microsoft Paint. The trick to understanding the Export Column Transformation is that
it requires an input stream field that contains digitized document data and another field that can be used

c05.indd 155c05.indd 155 8/28/08 12:07:36 PM8/28/08 12:07:36 PM

Chapter 5: The Data Flow

156

for a fully qualified path. The Export Column Transformation will convert the digitized data into a
physical file on the file system for each row in the input stream using the fully qualified path.

 In this example, you ’ ll use existing data in the AdventureWorks2008 database to output some stored
documents from the database back to file storage. The AdventureWorks2008 database has a table named
[production].[document] that contains a file path and a field containing an embedded Microsoft Word
document. Pull these documents out of the database and save them into a directory on the file system.

 1. Create a directory with an easy name like c:\exports\ that you can use when exporting these
documents.

 2. Create a new SSIS package named Export Column Example. Add a Data Flow Task to the
Control Flow design surface.

 3. On the Data Flow design surface, add an OLE DB Data Source configured to the
AdventureWorks2008 database table [Production].[Document].

 4. If you preview the data in this table, you ’ ll notice that the FileName field in the table is a
super - long file path. Modify that path so that it points to your directory c:\exports\ .

 5. Add a Derived Column Transformation Task to the Data Flow design surface. Connect the
output of the OLE DB data to the task.

 6. Create a Derived Column Name named NewFilePath. Use the Derived Column setting of
< add as new column > . To derive a new filename, just use the primary key for the filename and
add your path to it. To do this, set the expression to the following:

“c:\\exports\\” + (DT_WSTR,50)DocumentID + “.doc”

 The \\ is required in the expressions editor instead of \ because of its use as an escape sequence.

 7. Add an Export Column Transformation Task to the Data Flow design surface. Connect the
output of the Derived Column Task to the Export Column Task. The Export Column Task will
consume the input stream and separate all the fields into two usable categories: fields that can
possibly be in digitized data formats, and fields that can possibly be used as filenames. Figure 5 - 21
is a graphic that has been created to show the contents of both categories for this example.

 Figure 5 - 21

c05.indd 156c05.indd 156 8/28/08 12:07:37 PM8/28/08 12:07:37 PM

Chapter 5: The Data Flow

157

 Notice that fields like the primary key [DocumentID] do not appear in either collection. This field
doesn ’ t contain embedded data, and it cannot be resolved to a filename.

 8. Set the Extract Column equal to the [Document] field, since this contains the embedded MS
Word object. Set the File Path Column equal to the field name [NewFilePath]. This field is the
one that you derived in the Derived Column Task.

 9. Check the Force Truncate option to rewrite the files if they exist. (This will allow you to run the
package again without an error if the files already exist.)

 10. Run the package and check the contents of the c:\exports\ directory. You should see a list
of MS Word files in sequence from 1 to 9. Open one and you ’ ll be able to read the document in
MS Word.

 Fuzzy Lookup
 If you ’ ve done some work in the world of extract, transfer, and load processes (ETL), you ’ ve run into the
proverbial crossroads of handling bad data. The test data is staged, but all attempts to retrieve a foreign
key from a dimension table result in no matches for a number of rows. This is the crossroads of bad data.
At this point, there are a finite set of options. You could create a set of hand - coded complex lookup
functions using SQL Sound - Ex, full - text searching, or distance - based word calculation formulas. This
strategy is time - consuming to create and test, complicated to implement, and dependent on language
lexicon, and it isn ’ t always consistent or reusable (not to mention that everyone from now on will be
scared to alter the code for fear of breaking it). You could just give up and divert the row for manual
processing by subject matter experts (that ’ s a way to make some new friends). You could just add the
new data to the lookup tables and retrieve the new keys. If you just add the data, the foreign key
retrieval issue gets solved, but you could be adding an entry into the dimension table that will skew
data - mining results downstream. This is what we like to call a lazy - add . This is a descriptive, not a
technical, term. A lazy - add would import a misspelled job title like “ prasedent ” into the dimension
table when there is already an entry of “ president. ” It was added, but it was lazy.

 The Fuzzy Lookup and Fuzzy Grouping Transformations add one more road to take at the crossroads of
bad data. These transformations allow the addition of a step to the process that is easy to use, consistent,
scalable, and reusable, and they will reduce your unmatched rows significantly — maybe even
altogether. If you ’ ve already allowed bad data in your dimension tables, or you are just starting a new
ETL process, you ’ ll want to put the Fuzzy Grouping Transformation to work on your data to find data
redundancy. This transformation can examine the contents of a suspect field in a staged or committed
table and provide possible groupings of similar words based on provided tolerances. This matching
information can then be used to clean up that table. Fuzzy Grouping is discussed later in this chapter.

 If you are correcting data during an ETL process, use the Fuzzy Lookup Transformation — my
suggestion is to do so only after attempting to perform a regular lookup on the field. This best practice is
recommended because Fuzzy Lookups don ’ t come cheap. Fuzzy Lookups build specialized indexes of
the input stream and the reference data for comparison purposes. You can store them for efficiency, but
these indexes can use up some disk space or can take up some memory if you choose to rebuild them on
each run. Storing matches made by the Fuzzy Lookups over time in a translation or pre - dimension table

c05.indd 157c05.indd 157 8/28/08 12:07:37 PM8/28/08 12:07:37 PM

Chapter 5: The Data Flow

158

is a great design. Regular Lookup Transforms can first be run against this translation table and then
divert only those items in the Data Flow that can ’ t be matched to a Fuzzy Lookup. This technique uses
Lookup Transforms and translation tables to find matches using INNER JOINS . Fuzzy Lookups
whittle the remaining unknowns down if similar matches can be found with a high level of confidence.
Finally, if your last resort is to have the item diverted to a subject matter expert, you can save that
decision into the translation table so that the ETL process can match it next time in the first iteration.

 Using the Fuzzy Lookup Transformation requires an input stream of at least one field that is a string.
Unlike the Term Lookup Transformation, which requires a NULL - terminated Unicode string, this
transform just needs a DT_WSTR or DT_STR data type. Internally the transform has to be configured to
connect to a reference table that will be used for comparison. The output to this transform will be a set of
columns containing the following:

 Input and Pass - Through Field Names and Values: This column contains the name and value of
the text input provided to the Fuzzy Lookup Transform Task or passed through during the
lookup.

 Reference Field Name and Value: This column contains the name and value(s) of the matched
results from the reference table.

 Similarity: This column contains a number between 0 and 1 representing similarity. Similarity is
a threshold that you set when configuring the Fuzzy Lookup Task. The closer this number is
to 1, the closer the two text fields must match.

 Confidence: This column contains a number between 0 and 1 representing confidence of the
match relative to the set of matched results. Confidence is different from similarity, because it is
not calculated by examining just one word against another but rather by comparing the chosen
word match against all the other possible matches. Confidence gets better the more accurately
your reference data represents your subject domain, and it can change based on the sample of
the data coming into the ETL process.

 The Fuzzy Lookup Transformation Editor has three configuration tabs.

 Reference Table: This tab (shown in Figure 5 - 22) sets up the OLE DB Connection to the source of
the reference data. The Fuzzy Lookup takes this reference data and builds a token - based index
(which is actually a table) out of it before it can begin to compare items. In this tab are the options
to save that index or to use an existing index from a previous process. There is also an option to
maintain the index, which will detect changes from run to run and keep the index current. Note
that if you are processing large amounts of potential data, this index table can grow large.

 Columns: This tab allows mapping of the one text field in the input stream to the field in the
reference table for comparison. Drag and drop a field from the Available Input Column onto the
matching field in the Available Lookup Column. You can also click the two fields to be
compared and right - click to create a relationship. Another neat feature is the ability to add the
foreign key of the lookup table to the output stream. To do this, just click that field in the
Available Input Columns.

❑

❑

❑

❑

❑

❑

c05.indd 158c05.indd 158 8/28/08 12:07:37 PM8/28/08 12:07:37 PM

Chapter 5: The Data Flow

159

 Advanced: This tab contains the settings that control the fuzzy logic algorithms. You can set the
maximum number of matches to output per incoming row. The default is set to 1, which means
pull the best record out of the reference table if it meets the similarity threshold. Incrementing
this setting higher than this may generate more results that you ’ ll have to sift through, but it
may be required if there are too many closely matching strings in your domain data. A slider
controls the Similarity threshold. A recommendation is to start this setting at .75 when
experimenting and move up or down as you review the results. This setting is normally decided
based on a business person ’ s review of the data, not the developer ’ s review. If a row cannot be
found that ’ s similar enough, the columns that you checked in the Columns tab will be set to
NULL. The token delimiters can also be set if, for example, you don ’ t want the comparison
process to break incoming strings up by a period (.) or spaces. The default for this setting is all
common delimiters. See Figure 5 - 23 for an example of an Advanced tab.

❑

 Figure 5 - 22

c05.indd 159c05.indd 159 8/28/08 12:07:38 PM8/28/08 12:07:38 PM

Chapter 5: The Data Flow

160

 Back in the Reference Table tab (shown in Figure 5 - 22), there are a few additional settings that are of
interest. The default option to set is the “ Generate new index ” option. By setting this, a table will be
created on the reference table ’ s Connection Manager each time the transform is run and that table will be
populated with loads of data as was mentioned earlier in this section. The creation and loading of the
table can be an expensive process. This table is removed after the transform is complete.

 An alternative to that is to select the “ Store new index ” option, which will instantiate the table and not
drop the table. You can then reuse that table from other Data Flows or packages and in additional days.
As you can imagine though by doing this, your index table becomes stale soon after its creation. There
are stored procedures you can run to refresh it in SQL, or you can click the “ Maintain stored index ”
checkbox to create a trigger on the underlying reference table to automatically maintain the index table.
This is available only with SQL Server reference tables and may slow down your insert, update, and
delete statements to that table.

 It ’ s also important to not use Fuzzy Lookup as your primary Lookup Transform for lookups because of
the slow down. You should always try an exact match using a Lookup Transform and then redirect
non - matches to the Fuzzy Lookup if you need that level of lookup. Additionally, the Fuzzy Lookup
Transform does require the Enterprise Edition of SQL Server 2008.

 Although this transform neatly packages some highly complex logic in an easy - to - use component, the
results won ’ t be perfect. You ’ ll need to spend some time experimenting with the configurable setting and
monitoring the results. We ’ ll show you an example of putting this transform to work.

 You are going to create a quick demonstration of the Fuzzy Lookup Transform ’ s capabilities by setting
up a small table of occupation titles that will represent your dimension table. You will then import a set
of person records that will require a lookup on the occupation to your dimension table. Not all will
match, of course. The Fuzzy Lookup Transformation will be employed to find matches, and you will
experiment with the settings to learn about its capabilities.

 Figure 5 - 23

c05.indd 160c05.indd 160 8/28/08 12:07:38 PM8/28/08 12:07:38 PM

Chapter 5: The Data Flow

161

 1. First copy the following data into a text file named c:\Projects\FuzzyExample.txt . This file
can also be downloaded from www.wrox.com . This data will represent employee data that you
are going to import. Notice that some of the occupation titles are cut off in the text file because of
the positioning within the layout. Also notice that this file has an uneven right margin. Both of
these issues are typical ETL situations that are especially painful.

EMPIDTITLE LNAME
00001EXECUTIVE VICE PRESIDENWASHINGTON
00002EXEC VICE PRES PIZUR
00003EXECUTIVE VP BROWN
00005EXEC VP MILLER
00006EXECUTIVE VICE PRASIDENSWAMI
00007FIELDS OPERATION MGR SKY
00008FLDS OPS MGR JEAN
00009FIELDS OPS MGR GANDI
00010FIELDS OPERATIONS MANAGHINSON
00011BUSINESS OFFICE MANAGERBROWN
00012BUS OFFICE MANAGER GREEN
00013BUS OFF MANAGER GATES
00014BUS OFF MGR HALE
00015BUS OFFICE MNGR SMITH
00016BUS OFFICE MGR AI
00017X-RAY TECHNOLOGIST CHIN
00018XRAY TECHNOLOGIST ABULA
00019XRAY TECH HOGAN
00020X-RAY TECH ROBERSON

 2. Run the following SQL code in AdventureWorks2008 or in a database of your choice. This code
will create your dimension table and add the accepted entries that will be used for reference
purposes. Again, this file can be downloaded from www.wrox.com .

CREATE TABLE [Occupation](
 [OccupationID] [smallint] IDENTITY(1,1) NOT NULL,
 [OccupationLabel] [varchar] (50) NOT NULL
 CONSTRAINT [PK_Occupation_OccupationID] PRIMARY KEY CLUSTERED
(
 [OccupationID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

GO

INSERT INTO [Occupation] Select ‘EXEC VICE PRES’
INSERT INTO [Occupation] Select ‘FIELDS OPS MGR’
INSERT INTO [Occupation] Select ‘BUS OFFICE MGR’
INSERT INTO [Occupation] Select ‘X-RAY TECH’

 3. Create a new SSIS package and drop a Data Flow Task on the Control Flow design surface and
click the Data Flow tab.

c05.indd 161c05.indd 161 8/28/08 12:07:38 PM8/28/08 12:07:38 PM

Chapter 5: The Data Flow

162

 4. Add a Flat File Connection to the Connection Manager. Name it “ Employee Data, ” and then set
the filename to c:\projects\fuzzyexample.txt . Set the Format property to Ragged Right.
(By the way, for those of you who use flat files, the addition of the ability to process a ragged -
 right file is a welcome one.) Set the option to pull the column names from the first data row as
shown in Figure 5 - 24 .

 Figure 5 - 24

 5. Click the Columns tab and set the columns to break at positions 5 and 28. Click the Advanced
tab and set the OuputColumnWidth property for the TITLE field to 50. Save the connection

 6. Add a Flat File Source to the Data Flow surface and configure it to use the Employee Data
connection. Add an OLE DB Destination and configure it to point to the AdventureWorks2008
database or to the database of your choice.

 7. Add a Fuzzy Lookup Transform Task to the Data Flow design surface. Connect the output of the
Flat File Source to the Fuzzy Lookup and the output of the Fuzzy Lookup to the OLE DB
Destination.

 8. Open the Fuzzy Lookup Transformation Editor. Set the OLE DB Connection Manager in the
Reference tab to use the AdventureWorks2008 database connection and the Occupation table.
Set up the Columns tab connecting the input to the reference table columns as in Figure 5 - 22 ,
and set up the Advanced tab with a Similarity threshold of 50 (.50).

c05.indd 162c05.indd 162 8/28/08 12:07:39 PM8/28/08 12:07:39 PM

Chapter 5: The Data Flow

163

 9. Open the editor for the OLE DB Destination. Set the OLE DB connection to the
AdventureWorks2008 database. Click New to create a new table to store the results. Change the
table name in the DDL statement that is presented to you to create the [FuzzyResults] table.
Click the Mappings tab, accept the defaults, and save.

 10. Add a Data View of type grid to the Data Flow between the Fuzzy Lookup and the OLE DB
Destination.

 Run the package, and your results at the Data View should resemble those in Figure 5 - 25 . Notice that the
logic has matched most of the items at a 50% similarity threshold — and you have the foreign key
OccupationID added to your input for free! Had you used a strict INNER JOIN or Lookup Transform,
you would have made only four matches, a dismal 21% hit ratio. These items can be seen in the Fuzzy
Lookup output where the values are 1 for similarity and confidence. A few of the columns are set to
NULL now, and those are because the row like Executive VP wasn ’ t 50% similar to the Exec Vice Pres
value. You would typically send those NULL records with a conditional split to a table for manual
inspection.

 Figure 5 - 25

 Fuzzy Grouping
 In the previous section, you learned about situations where bad data creep into your dimension tables.
The blame was placed on the “ lazy - add ” ETL processes that add data to dimension tables to avoid
rejecting rows when there are no natural key matches. Processes like these are responsible for state
abbreviations like “ XX ,” and entries that look to the human eye like duplicates but are stored as two
separate entries. The occupation titles “ X - Ray Tech ” and “ XRay Tech ” are good examples of duplicates
that humans can see but computers have a harder time with.

c05.indd 163c05.indd 163 8/28/08 12:07:39 PM8/28/08 12:07:39 PM

Chapter 5: The Data Flow

164

 The Fuzzy Grouping Transformation can look through a list of similar text and group the results using
the same logic as the Fuzzy Lookup. You can use these groupings in a transformation table to clean up
source and destination data or to crunch fact tables into more meaningful results without altering the
underlying data. The Fuzzy Group Transformation also expects an input stream of text. It also requires a
connection to an OLE DB Data Source because it creates in that source a set of structures to use during
the analysis of the input stream.

 The Fuzzy Lookup Editor has three configuration tabs:

 Connection Manager: This tab sets the OLE DB connection that the transform will use to write
the storage tables that it needs.

 Columns: This tab displays the Available Input Columns and allows the selection of any or all
input columns for fuzzy grouping analysis. See Figure 5 - 26 for a completed Columns tab.

 Each column selected will be analyzed and grouped into logical matches resulting in a new
column representing that group match for each data row. Each column can also be selected for
Pass - Through — meaning the data is not analyzed, but is available in the output stream. You can
choose the names of any of the output columns: Group Output Alias, Output Alias, Clean
Match, and Similarity Alias Score column.

 The minimum similarity evaluation is available at the column level if you select more than one
column.

 The numerals option (which is not visible in Figure 5 - 26 but can be found by scrolling to the
right) allows configuration of the significance of numbers in the input stream when grouping
text logically. The options are to consider leading, trailing, leading and trailing, or neither leading
nor trailing numbers significant. This option would need to be considered when comparing
address or similar types of information.

 Comparison flags are the same options to ignore or pay attention to case, kana type, nonspacing
characters, character width, symbols, and punctuation.

❑

❑

 Figure 5 - 26

c05.indd 164c05.indd 164 8/28/08 12:07:39 PM8/28/08 12:07:39 PM

Chapter 5: The Data Flow

165

 Advanced: This tab contains the settings controlling the fuzzy logic algorithms that assign
groupings to text in the input stream. You can set the names of the three additional fields that
will be added automatically to the output of this transform. These fields are named _key_in,
_key_out, and _score by default. A slider controls the Similarity threshold. A recommendation
for this transform is to start this setting at 0.5 while experimenting and then move it up or down
as you review the results. The token delimiters can also be set if, for example, you don ’ t want
the comparison process to break incoming strings up by a period (.) or spaces. The default for
this setting is all common delimiters. See Figure 5 - 27 for a completed Advanced tab.

❑

 Figure 5 - 27

 Suppose you are tasked with creating a brand - new occupations table using the employee occupations
text file you imported in the Fuzzy Lookup example. Using only this data, you need to create a new
employee occupations table with occupation titles that can serve as natural keys and that best represent
this sample. You can use the Fuzzy Grouping Transform to develop the groupings for the dimension
table, like this:

 1. Create a new SSIS project named Fuzzy Grouping Example. Drop a Data Flow Task on the
Control Flow design surface and click the Data Flow tab.

 2. Add a Flat File Connection to the Connection Manager. Name it “ Employee Data. ” Set the
filename to c:\Projects\FuzzyExample.txt . (Use the FuzzyExample.txt file from
the Fuzzy Lookup example.) Set the Format property to Ragged Right. Set the option to pull the
column names from the first data row. Click the Columns tab and set the columns to break at
positions 5 and 28. Click the Advanced tab and set the OuputColumnWidth property for the
TITLE field to 50. Save the connection.

 3. Add a Flat File Source to the Data Flow surface and configure it to use the Employee Data
connection. Add an OLE DB Destination.

 4. Add a Fuzzy Grouping Transform Task to the Data Flow design surface. Connect the output of
the Flat File Source to the Fuzzy Lookup and the output of the Fuzzy Lookup to the OLE DB
Destination.

c05.indd 165c05.indd 165 8/28/08 12:07:40 PM8/28/08 12:07:40 PM

Chapter 5: The Data Flow

166

 5. Open the Fuzzy Grouping Editor and set the OLE DB Connection Manager to the
AdventureWorks2008 connection.

 6. In the Columns tab, select the Title column in the Available Input Columns. Accept the other
defaults. Figure 5 - 26 is an example of a completed Columns tab for this example.

 7. In the Advanced tab, set the Similarity threshold to .50. This will be your starting point for
similarity comparisons as was shown in Figure 5 - 27 .

 8. Add an OLE DB Destination to the Data Flow design surface. Configure the destination to use
the AdventureWorks2008 database or database of your choice. For the Name of Table or View,
click the New button. Change the name of the table in the CREATE table statement to
[FuzzyGrouping]. Click the Mappings tab to complete the task and save it.

 9. Add a Data Viewer in the pipe between the Fuzzy Grouping Transform and the OLE DB
Destination. Set the type to grid so that you can review the data at this point. Run the package.
The output shown at multiple similarity thresholds would look similar to Figure 5 - 28 .

 Figure 5 - 28

 Now you can look at these results and see more logical groupings and a few issues even at the lowest
level of similarity. The title of “ X - Ray Tech ” is similar to the title “ Xray Technologist. ” The title
 “ Executive Vice Presiden ” isn ’ t really a complete title, and really should be grouped with “ Exec VP. ”
But this is pretty good for about five minutes of work.

 To build a dimension table from this output, look at the two fields in the Data View named _key_in and
_key_out. If these two values match, then the grouped value is the “ best ” representative candidate for
the natural key in a dimension table. Separate the rows in the stream using a Conditional Split Transform
where these two values match, and use an OLE Command Transform to insert the values in the
dimension table. Remember that the more data, the better the grouping.

c05.indd 166c05.indd 166 8/28/08 12:07:40 PM8/28/08 12:07:40 PM

Chapter 5: The Data Flow

167

 The output of the Fuzzy Grouping Transform is also a good basis for a translation table in your ETL
processes. By saving both the original value and the Fuzzy Grouping value — with a little subject matter
expert editing — you can use a Lookup Transform and this table to provide much - improved foreign key
lookup results. You ’ ll be able to improve on this idea with the Slowly Changing Dimension Transform
later in the chapter.

 Import Column
 The Import Column Transform is a partner to the Export Column Transform. These transforms do the
work of translating physical files from system file storage paths into database blob - type fields and vice
versa. The trick to understanding the Import Column Transform is that its input source requires at least
one column that is the fully qualified path to the file you are going to store in the database, and you
need a destination column name for the output of the resulting blob and file path string. This transform
also has to be configured using the Advanced Editor — something you ’ ve only briefly looked at in
earlier chapters. The Advanced Editor is not intuitive, nor wizard - like in appearance, hence the name
 “ Advanced, ” which you will incidentally be once you figure it out. In the editor, you won ’ t have
the ability to merge two incoming column sources into the full file path, so if your source data for the file
paths have the filename separate from the file path, you should use the Merge Transforms to concatenate
the columns before connecting that stream to the Import Column Transform.

 Now you ’ ll do an example where you ’ ll import some images into your AdventureWorks2008 database.
Create a new SSIS package. Transforms live in the Data Flow tab, so add a Data Flow Task to the Control
Flow, and then add an Import Column Transform to the Data Flow surface. To make this easy, you ’ re
going to need to complete the following short tasks:

 1. Create a directory called c:\import\ .

 2. Find a small JPEG file and copy it three times into c:\import\images . Change the filenames to
 1.jpg , 2.jpg , and 3.jpg .

 3. Create a text file with the following content and save it in c:\import\ as filelist.txt :

C:\import\1.JPG
C:\import\2.JPG
C:\import\3.JPG

 4. Run the following SQL script in AdventureWorks2008 to create a storage location for the image
files:

use AdventureWorks2008
Go
CREATE TABLE dbo.tblmyImages
(
 [StoredFilePath] [varchar](50) NOT NULL,
 [Document] image
)

 5. You are going to use the filelist.txt file as your input stream for the files that you need to
load into your database, so add a Flat File Source to your Data Flow surface and configure it
to read one column from your filelist.txt flat file. Name the column ImageFilePath.

c05.indd 167c05.indd 167 8/28/08 12:07:40 PM8/28/08 12:07:40 PM

Chapter 5: The Data Flow

168

 Take advantage of the opportunity to open up the Advanced Editor on the Flat File Transform by
clicking the Show Advanced Editor link in the property window or by right - clicking the transform and
selecting Advanced Editor. Look at the difference between this editor and the normal Flat File Editor.
The Advanced Editor is stripped down to the core of the transform object — no custom wizards, just an
interface sitting directly over the object properties themselves. It is possible to mess these properties up
beyond recognition, but even in the worst case you can just drop and re - create the Transform Task. Look
particularly at the Input and Output Properties of the Advanced Editor.

 You didn ’ t have to use the Advanced Editor to set up the import of the filelist.txt file. However,
looking at the way the Advanced Editor displays the information will be really helpful when you
configure the Import Column Transform. Notice that you have an External Columns (Input) and Output
Columns collection with one node in each collection named “ ImageFilePath. ” This reflects the fact that
your connection describes a field called “ ImageFilePath ” and that this transform will simply output data
with the same field name. The Column Mappings tab shows a visual representation of this mapping. If
you changed the Name property value to myImageFilePath, you ’ d see the column mappings morph to
reflect the new name. Notice also that the ID property for the one output column is 71 and its
ExternalMetaDataColumnID is set to 70. Clicking the one External Column reveals that its ID property is
70. From this, you can determine that if you had to create this transform using the Advanced Editor, you
would have had to add both columns and link the external source (input) to the output source. Secondly
you ’ d notice that you can add or remove outputs, but you are limited in this editor by the transformation
as to what you can do to the output. You can ’ t, for example, apply an expression against the output to
transform the data as it flows through this transform. That makes sense because this transform has a
specific task. It moves data from a flat file into a stream.

 Connect the Flat File Source to the Import Column Transform Task. Open the Advanced Editor for the
Import Column Transform and click the Input Columns tab. The input stream for this task is the output
stream for the Flat File. Select the one available column, move to the Input and Output Properties tab,
and expand these nodes. This time you don ’ t have much help. An example of this editor can be seen in
Figure 5 - 29 . The input columns collection has a column named ImageFilePath, but there are no output
columns. On the Flat File Source, you could ignore some of the inputs. In the Import Column Transform,
all inputs have to be re - output. In fact, if you don ’ t map an output, you ’ ll get the following error:

Validation error. Data Flow Task: Import Column [1]: The “input column
“ImageFilePath” (164)” references output column ID 0, and that column is not
found on the output.

 Add an output column by clicking the Output Columns folder icon and click the Add Column button.
Name the column myImage. Notice that the DataType property is [DT_IMAGE] by default. That is
because producing image outputs is what this transform does. You can also pass DT_TEXT, DT_NTEXT,
or DT_IMAGE types as outputs from this task. Your last task is to connect the input to the output. Take
note of the output column ’ s ID property for myImage. This ID will need to be updated in the
FileDataColumnID property of the input column ImageFilePath. If you fail to link the output column,
you ’ ll get this error:

Validation error. Data Flow Task: Import Column [1]: The “output column
“myImage” (207)” is not referenced by any input column. Each output column
must be referenced by exactly one input column.

c05.indd 168c05.indd 168 8/28/08 12:07:41 PM8/28/08 12:07:41 PM

Chapter 5: The Data Flow

169

 The Advanced Editor for each of the different transforms follows a similar layout but may have other
properties available. Another property of interest in this task is Expect BOM, which you would set to
True if you expect a byte - order mark at the beginning of the file path. A completed editor would
resemble Figure 5 - 29 .

 Figure 5 - 29

 Complete this example by adding an OLE Destination to the Data Flow design surface. Connect the data
from the Import Column to the OLE Destination. Configure the OLE Destination to the
AdventureWorks2008 database and to the tblmyImages structure that was created for database storage.
Click the Mappings setting. Notice that you have two available input columns from the Import Column
Task. One is the full path and the other will be the file as DT_IMAGE type. Connect the input and
destination columns to complete the transform. Go ahead and run it.

 Take a look at the destination table to see the results:

FullFileName Document
---------------------- -----------------------------------
C:\import\images\1.JPG 0xFFD8FFE120EE45786966000049492A00...
C:\import\images\2.JPG 0xFFD8FFE125FE45786966000049492A00...
C:\import\images\3.JPG 0xFFD8FFE1269B45786966000049492A00...
(3 row(s) affected)

c05.indd 169c05.indd 169 8/28/08 12:07:41 PM8/28/08 12:07:41 PM

Chapter 5: The Data Flow

170

 Lookup Transform
 The Lookup Transform performs what equates to an INNER JOIN on the Data Flow and a second
dataset. The second dataset can be an OLE DB table or a cached file, which is loaded in the Cache
Transform. After you perform the lookup, you can retrieve additional columns from the second column.
If no match is found, an error will occur by default. You can later choose in the Configure Error Output
button to ignore the failure (setting any additional columns retrieved from the reference table to NULL)
or redirect the rows down the second non - matched green path. This is a very detailed transform and it is
covered in much more detail in Chapter 7 and again in Chapter 8 .

 Merge Transform
 The Merge Transform can merge data from two paths into a single output. The transform is useful when
you wish to break out your Data Flow into a path that handles certain errors and then merge it back into
the main Data Flow downstream after the errors have been handled. It ’ s also useful if you wish to merge
data from two Data Sources.

 The transform is similar to the Union All Transformation, which you ’ ll learn about in a moment, but the
Merge Transform has some restrictions that may cause you to lean toward using Union All:

 The data must be sorted before the Merge Transform. You can do this by using the Sort
Transform prior to the merge or by specifying an ORDER BY clause in the source connection.

 The metadata must be the same between both paths. For example, the CustomerID column can ’ t
be a numeric column in one path and a character column in another path.

 If you have more than two paths, you should choose the Union All Transformation.

 To configure the transform, ensure that the data is sorted exactly the same on both paths and drag the
path onto the transform. You ’ ll be asked if the path you ’ d like to merge is Merge Input 1 or 2. If this is the
first path you ’ re connecting to the transform, select Merge Input 1. Next, connect the second path into
the transform. The transformation will automatically configure itself. Essentially, it will map each of the
columns to the column from the other path, and you have the choice to ignore a certain column ’ s data.

 Merge Join
 One of the overriding themes of SSIS is that you shouldn ’ t have to write any code to create your
transformation. One case to prove this is the Merge Join Transformation. This transformation will merge
the output of two inputs and perform an INNER or OUTER Join on the data. An example of where this
would be useful is if you have a front - end web system in one data stream that has a review of a product
in it, and you have an inventory product system in another data stream with the product data. You could
merge the two data inputs together and output the review and product information into a single path.

 If both inputs are in the same database, it would be faster to perform a join at the OLE DB Source level
instead of using a transformation through TSQL. This transformation is useful when you have two
different Data Sources you wish to merge, or when you don ’ t want to write your own join code.

❑

❑

❑

c05.indd 170c05.indd 170 8/28/08 12:07:41 PM8/28/08 12:07:41 PM

Chapter 5: The Data Flow

171

 To configure the Merge Join Transformation, connect your two inputs into the Merge Join Transform,
and then select what represents the right and left join as you connect each input. Open the Merge Join
Transformation Editor and verify the linkage between the two tables. You can see an example of this in
Figure 5 - 30 . You can right - click the arrow to delete a linkage or drag a column from the left input onto
the right input to create a new linkage if one is missing. Lastly, check each of the columns you want to be
passed as output to the path and select the type of join you wish to make (LEFT, INNER, or FULL).

 Figure 5 - 30

 Multicast
 The Multicast Transform, as the name implies, can send a single data input to multiple output paths
easily. You may want to use this transformation to send a path to multiple destinations sliced in different
ways. To configure the transform, simply connect the transform to your input, and then drag the output
path from the Multicast Transform onto your next destination or transform. After you connect the
Multicast Transform to your first destination or transform, you can keep connecting it to other
transforms or destinations. There is nothing to configure in the Multicast Transformation Editor other
than the names of the outputs.

 The Multicast Transformation is similar to the Split Transform in that both transformations send data
to multiple outputs. The Multicast will send all the rows from the path, whereas the Split will
conditionally send part of the data to the path.

c05.indd 171c05.indd 171 8/28/08 12:07:42 PM8/28/08 12:07:42 PM

Chapter 5: The Data Flow

172

 OLE DB Command
 The OLE DB Command Transform is a component designed to execute a SQL statement for each row in
an input stream. This task is analogous to an ADO Command object being created, prepared, and
executed for each row of a result set. The input stream provides the data for parameters that can be set
into the SQL statement that is either an in - line statement or a stored procedure call. We don ’ t know about
you, but just hearing the “ for each row ” phrase in the context of SQL makes us think of another phrase —
 ” performance degradation. ” This involves firing an update, insert, or delete statement, prepared or
unprepared some unknown number of times. This doesn ’ t mean there aren ’ t any good reasons to use
this transformation — you ’ ll actually be doing a few in this chapter. Just understand the impact and
think about your use of this transformation. Pay specific attention to the volume of input rows that will
be fed into it. Weigh the performance and scalability aspects during your design phases against a
solution that would cache the stream into a temporary table and use set - based logic instead.

 To use the OLE DB Command Transform Task, you basically need to determine how to set up the
connection where the SQL statement will be run, provide the SQL statement to be executed, and
configure the mapping of any parameters in the input stream to the SQL statement. Take a look at the
settings for the OLE DB Command Transformation by opening its editor. The OLE DB Command
Transform is another component that uses the Advanced Editor. There are four tabs in the editor:

 Connection Manager: Allows the selection of an OLE DB Connection. This connection is where
the SQL statement will be executed. This doesn ’ t have to be the same connection that is used to
provide the input stream.

 Component Properties: Here you can set the SQL Command statement to be executed in the
SQLCommand property and set the amount of time to allow for a timeout in the CommandTimeout
property in seconds. The property works the same way as the ADO Command object. The value for
the CommandTimeout of 0 indicates no time - out. You can also name the task and provide a
description in this tab.

 Column Mappings: This tab will display columns available in the input stream and the
destination columns, which will be the parameters available in the SQL command. You can map
the columns by clicking a column in the input columns and dragging it onto the matching
destination parameter. It is a one - to - one mapping, so if you need to use a value for two
parameters, you ’ ll need use a Derived Column Transform to duplicate the column in the input
stream prior to configuring the columns in this transform.

 Input and Output Properties: Most of the time you ’ ll be able to map your parameters in the
Column Mappings tab. However, if the OLE DB provider doesn ’ t provide support for deriving
parameter information (parameter refreshing), you ’ ll have to come here to manually set up your
output columns using specific parameter names and DBParamInfoFlags.

 The easiest way to learn this task is by example. Suppose you have a requirement to process a small
daily volume of validated, electronically sent deposit entries and to run them through logic to create
deposit entries in your accounting database. You also have to build payment transactions that will need
to be reviewed by accounting personnel using the accounting software, which applies the money to each
customer ’ s account. Fortunately, you don ’ t need to know how to create deposit transactions or payment
transactions. You ’ ve been given two stored procedures that will do the work of building the transactions,
so you ’ ll use them in the example.

❑

❑

❑

❑

c05.indd 172c05.indd 172 8/28/08 12:07:42 PM8/28/08 12:07:42 PM

Chapter 5: The Data Flow

173

 1. Create an SSIS package named “ OLE DB Command. ” Add a Data Flow Component to the
Control Flow.

 2. Create a text file containing the following entries and save it to c:\Projects\
ole db eft data.txt . You can also download this file from www.wrox.com .

CustomerID,DepositAmt,DepositDate,Invoice
XY-111-222,$100.00,07/13/2005,222-063105
XX-Z11-232,$1000.00,07/13/2005,232-063105
XX-Y88-233,$555.00,07/13/2005,233-053105

 3. Run the following SQL script to create the simulated stored procedures in your
AdventureWorks2008 database (this script can also be downloaded from www.wrox.com).

USE ADVENTUREWORKS2008
GO
CREATE PROC usp_DepositTrans_Add (
 @CUSTOMERID varchar(10),
 @DEPOSITAMT money,
 @DEPOSITDATE smalldatetime,
 @INVOICE varchar(15))

AS

 ---THIS IS A DUMMY PROCEDURE FOR DEMO PURPOSES
GO
CREATE PROC usp_PaymentTrans_Add (
 @CUSTOMERID varchar(10),
 @DEPOSITAMT money,
 @DEPOSITDATE smalldatetime,
 @INVOICE varchar(15))

AS

 --THIS IS A DUMMY PROCEDURE FOR DEMO PURPOSES

 4. Add a Flat File Source to your Data Flow to consume the comma - delimited text file
c:\projects\ole db eft file.txt .

 5. Add an OLE DB Command Transform Task to the Data Flow design surface. Connect the output
of the Flat File Source to the OLE DB Command Transform.

 6. Configure the OLE DB Command Transform Task to a connection to AdventureWorks2008.
Update the SQLCommand property for the transform to add a deposit for each input row by
setting the property to usp_DepositTrans_Add ?, ?, ?, ? . Each of the “ ? ” marks stand in
place of a parameter. Click Refresh to pull the parameters from the proc. The completed tab
should look like Figure 5 - 31 .

c05.indd 173c05.indd 173 8/28/08 12:07:42 PM8/28/08 12:07:42 PM

Chapter 5: The Data Flow

174

 7. In the Column Mappings tab, map each column in the input columns collection to a column in
the destination columns collection. This should look like Figure 5 - 32 .

 Figure 5 - 31

 Figure 5 - 32

 8. Add another OLE DB Command Transform Task to the Data Flow design surface. Connect the
output of the first OLE DB Command Transform to the second and then go through the same
configuration as for the deposit command, but this time set the SQLCommand property to
usp_PaymentTrans_Add ?, ?, ?, ? .

c05.indd 174c05.indd 174 8/28/08 12:07:43 PM8/28/08 12:07:43 PM

Chapter 5: The Data Flow

175

 When you run this package, you ’ ll see that three rows were processed by each OLE DB Command
Transform. If the procedures were functional, they would have created three deposit and three payment
transactions. In this example, you found a good reason to use this task — reusability. If you have 2,000
rows running through the transform, this stored procedure would have been executed 2,000 times.
It may be more efficient to process these transactions in a SQL batch, but then you ’ d have to stage the
data and code the batch transaction. In this example, you were able to reuse existing logic that was
designed for manual or one - at - a - time data entry and bundle that into an automated SSIS package fairly
quickly. The main problem with this transformation is performance.

 Percentage and Row Sampling
 The Percentage and Row Sampling Transformations give you the ability to take the data from the source
and randomly select a subset of data. The transformation produces two outputs that you can select. One
output is the data that was randomly selected, and the other is the data that was not selected. You can
use this to send a subset of data to a development or test server. The most useful application of this
transform is to train a data - mining model. You can use one output path to train your data - mining model,
and the sampling to validate the model.

 To configure the transformation, select the percentage or number of rows you wish to be sampled. As you
can imagine, the Percentage Sampling Transformation allows you to select the percentage of rows, and the
Row Sampling Transformation allows you to specify how many rows you wish to be outputted randomly.
Next, you can optionally name each of the outputs from the transformation. The last option is to specify
the seed that will randomize the data. If you select a seed and run the transformation multiple times, the
same data will be outputted to the destination. If you uncheck this option, which is the default, the seed
will be automatically incremented by one each at runtime, and you will see random data each time.

 Pivot Transform
 Do you ever get the feeling that pivot tables are the modern - day Rosetta Stone for translating data to
your business owners? You store it relationally, but they ask for it in a format that you have to write a
complex case statement to generate. Well, not anymore. Now you can use an SSIS transformation to
generate the results. A pivot table is a result of cross - tabulated columns generated by summarizing data
from a row format. Prior to SQL Server 2005, a pivot table could be generated only by using a
 SELECT...CASE statement to build summary columns based on one field in the row.

 Typically a Pivot Transform is generated using the following input columns:

 Pivot Column: A pivot column is the element of input data to “ pivot. ” The word “ pivot ” is
another way of saying “ to create a column for each unique instance of. ” However, this data must
be under control. Think about creating columns in a table. You wouldn ’ t create 1,000 uniquely
named columns in a table. So for best results when choosing a data element to pivot, pick an
element that can be run through a GROUP BY statement that will generate 15 or fewer columns.
If you are dealing with dates, use something like a DATENAME function to convert to the month
or day of the year.

 Row Columns: Row columns are elements of input data that act as row (not column) identifiers.
Just like any GROUP BY statement, some of the data are needed to define the group (row),
whereas other data are just along for the ride.

 Value Columns: These columns are aggregations for data that provide the results in the matrix
between the row columns and the pivot columns.

❑

❑

❑

c05.indd 175c05.indd 175 8/28/08 12:07:43 PM8/28/08 12:07:43 PM

Chapter 5: The Data Flow

176

 The Pivot Transform Task can accept an input stream, use your definitions of the preceding columns, and
generate a pivot table output. It helps if you are familiar with your input needs and format your data
prior to this transform. Aggregate the data using GROUP BY statements. Pay special attention to sorting
by row columns — this can significantly alter your results.

 The Pivot Transform Task uses the Advanced Editor to set up pivot rules. To set your expectations
properly, you are going to have to define each of your literal pivot columns. A common misconception,
and source of confusion, is approaching the Pivot Transform with the idea that you can simply set the
pivot column to pivot by the month of the purchase date column, and the transformation should
automatically build 12 pivot columns with the month of the year for you. It will not. It is your task to
create an output column for each month of the year. If you are using colors as your pivot column, you ’ ll
need to add an output column for every possible color. What happens if columns are set up for Blue,
Green, and Yellow, and the color Red appears in the input source? The Pivot Transform Task will fail. So
plan ahead and know the possible pivots that can result from your choice of a pivot column or provide
for an error output for data that doesn ’ t match your expected pivot values.

 In this example, you ’ ll use some of the AdventureWorks2008 product and transactional history to generate
a quick pivot table to show product quantities sold by month. This is a typical upper - management request
and you can cover all the options with this example. Adventure Works Management wants a listing of
each product with the total quantity of transactions by month for the year 2003.

 First identify the pivot column. The month of the year looks like the data that is driving the creation of
the pivot columns. The row data columns will be the product name and the product number. The value
field will be the total number of transactions for the product in a matrix by month. Now you are ready to
set up the Pivot Transformation.

 1. Create a new SSIS project named “ Pivot Example. ” Add a Data Flow Task to the Control Flow
design surface.

 2. Add an OLE DB Source Transform to the Data Flow design surface. Configure the connection to
the AdventureWorks2008 database. Set the Data Access Mode to SQL Command. Add the
following SQL statement into the SQL Command text box:

SELECT p.[Name] as ProductName, p.ProductNumber,
 datename(mm, t.TransactionDate) as TransMonth,
 sum(t.quantity) as TotQuantity
FROM production.product p
INNER JOIN production.transactionhistory t
ON t.productid = p.productid
WHERE t.transactiondate between ‘01/01/03’ and ‘12/31/03’
GROUP BY p.[name], p.productnumber, datename(mm,t.transactiondate)
ORDER BY productname, datename(mm, t.transactiondate)

 3. Add the Pivot Transform and connect the output of the OLE DB Source to the input of
the transform. Open the Advanced Editor and navigate to the Input Columns tab. In many
of the transforms, you have the option of passing through some values from the input to
the output. In the Pivot Transform, you have to select all the columns that will be included in the
output of the Pivot. All nonselected input columns will be ignored. Select all the input columns
for this example.

c05.indd 176c05.indd 176 8/28/08 12:07:43 PM8/28/08 12:07:43 PM

Chapter 5: The Data Flow

177

 4. Move to the Input and Output Properties tab. There is a collection of input, output, and error
outputs. Remember that the input columns are the raw data coming in. The output columns will
be the pivot data coming out. Figure 5 - 33 shows the input columns expanded and a view of the
properties for the ProductName column. There are two important properties in that property
editor:

❑ The LineageID property can ’ t be changed, but you will need to know it in order to map
output columns to an input column.

❑ The PivotUsage has to be set using the following codes:

❑ 0: The column is just passed through as a row attribute.

❑ 1: The column is the “ part of column ” (BOL calls this the Set Key).

❑ 2: The pivot column.

❑ 3: The value column.

 Figure 5 - 33

 5. Set the PivotUsage properties for each of the Input Columns to match these codes:

❑ ProductName: 0 — A row attribute

❑ ProductNumber: 1 — A row identifier

❑ TransMonth: 2 — The pivot column

❑ TotQuantity: 3 — The value column

c05.indd 177c05.indd 177 8/28/08 12:07:44 PM8/28/08 12:07:44 PM

Chapter 5: The Data Flow

178

 6. Expand the Output Column Node. Click the Add Column button to add a column to the output
column collection. Set the name of the new output column to ProductName. Set the
SourceColumn value to the LineageID of the same - named input column. Do the same thing for
the ProductNumber column. Figure 5 - 34 shows an example of the properties that appear for the
output column. There are some new properties here:

❑ Comparison Flags: Allows ignoring of case, kana type, nonspacing characters, character
width, and symbols when sorting the field. The defaults use each of these settings when
sorting.

❑ SortKeyPosition: Provides for custom sorting by position. Each field has a number
that indicates the order by which it is sorted. A zero (0) indicates that it is nonsorted. A one
(1) indicates that it is sorted.

❑ PivotKeyValue: This property is important only for the output columns that you define for
the pivot column. In this column, you ’ ll place the exact text or an expression that will
resolve to the groupings that you want to appear as your pivot columns. When pivoting
on colors, this value would be Blue, Green, or Red.

❑ SourceColumn: This property requires the LineageID (not the ID) of the source column.
This is a “ poor man ’ s ” way of connecting the input columns to the output columns.

 The output columns will be generated in exactly the same order that they appear on the output columns
collection. You can ’ t move them once they are added either, so pay attention to this as you add output
columns.

 Figure 5 - 34

c05.indd 178c05.indd 178 8/28/08 12:07:44 PM8/28/08 12:07:44 PM

Chapter 5: The Data Flow

179

 7. Add an output column named “ January. ” Now for the big secret to making the whole thing
work: Set the source column value to the LineageID of the TotQuantity column — not the
TransMonth column. Remember that you are building a two - dimensional grid. The TransMonth
field dictates one of the dimensions. The value in the column should be the total quantity at that
dimension. Set the PivotKeyValue to “ January ” (without quotes). The pivot key is the literal
value that will be examined in the data to determine when to put a value in a column. It is
important that the incoming data sorts on this column to get consistent results. Repeat this
process of creating an output column for each month of the year.

 Do not use the LineageID values that you see in any of these figures. LineageIDs are specific to your
own examples.

 8. To finish the example, add an OLE DB Destination. Configure to the AdventureWorks2008
connection. Connect the Pivot Default Output to the input of the OLE DB Destination. Click the
New button to alter the CREATE TABLE statement to build a table named PivotTable.

 9. Add a Data Viewer in the pipe between the PIVOT and OLE DB destination and run the
package. You ’ ll see the data in a pivot table in the Data Viewer as in the partial results seen in
Figure 5 - 35 .

 Figure 5 - 35

 Unpivot
 As you know, mainframe screens rarely conform to any normalized form. For example, a screen may
show a Bill To Customer, a Ship To Customer and a Dedicated To Customer field. Typically the Data
Source would store these three fields as three columns in a file [such as virtual storage access system
(VSAM)]. So, when you receive an extract from the mainframe you may have three columns as shown in
Figure 5 - 36 .

c05.indd 179c05.indd 179 8/28/08 12:07:44 PM8/28/08 12:07:44 PM

Chapter 5: The Data Flow

180

 Your goal is to load this file into a Customer table in SQL Server. You want a row for each customer in
each column for a total of 13 rows in the Customer table as shown in the CustomerName and OrderID
columns in Figure 5 - 37 .

 Figure 5 - 36

 Figure 5 - 37

 The Unpivot Transform is a way to accomplish this business requirement. In this example, you ’ ll be
shown how to use the Unpivot Transform to create rows in the Data Flow from columns and is the
opposite of the Pivot Transform.

 Our first step is to create a new package and drag over a new Data Flow Task onto the Control Flow.
Go into the Data Flow tab to configure the task. For this example, create a Flat File Connection Manager
that points to PivotExample.csv , which looks like Figure 5 - 38 and can be downloaded from www.wrox
.com . Name the Connection Manager Pivot Source, and the first row is a header row. The file is comma -
 delimited so you will want to specify the delimiter on the Columns page.

c05.indd 180c05.indd 180 8/28/08 12:07:45 PM8/28/08 12:07:45 PM

Chapter 5: The Data Flow

181

 Once the Connection Manager is created, add a new Flat File Source and rename it “ Mainframe Data. ”
Point the connection to the Pivot Source Connection Manager. Ensure that all the columns are checked in
the Columns page on the source and click OK to go back to the Data Flow.

 The next step is the most important step. Now, you need to unpivot the data and make each column into
a row in the Data Flow. You can do this by dragging an Unpivot Transform onto the Data Flow and
connect it to the source. In this example, you want to unpivot the BillToName, ShipToName, and the
DedicatedToName columns; and the OrderID column will just be passed through for each row. To do
this, check each column you wish to unpivot as shown in Figure 5 - 39 , and check Pass Through for the
OrderID column.

 As you check each column that you wish to unpivot on, the column will be added to the grid below
(shown in Figure 5 - 39). You ’ ll then need to type CustomerName for the Destination Column property for
each row in the grid. This will write the data from each of the three columns into a single column called
CustomerName. Optionally, you can also type “ Original Column ” for the Pivot Key Column Name
property. By doing this, each row that ’ s written by the transform will have an additional column called
Original Column. This new column will state where the data came from.

 Figure 5 - 38

c05.indd 181c05.indd 181 8/28/08 12:07:45 PM8/28/08 12:07:45 PM

Chapter 5: The Data Flow

182

 The Pivot Transform will take care of columns that have NULL values. For example, if your
DedicatedToName column for OrderID 1 had a NULL value as shown in Figure 5 - 36 , that column will
not be written as a row. You may wish to handle empty string values though, which will create blank
rows in the Data Flow. To throw these records out, you can use a Conditional Split Transform. In this
transform, you can create one condition for your good data that you wish to keep with the following
code, which only brings rows with actual data:

ISNULL(CustomerName) == FALSE & & TRIM(CustomerName) != “”

 The else condition handles empty string and NULL customers and in this example is called NULL
Customer. After this, you ’ re ready to send the data to the destination of your choice. The simplest
example is to send the data to a new SQL Server table in the AdventureWorks2008 database.

 Execute the package, and you ’ ll see that the Valid Customer output goes to the customer table, and the
NULL data condition just gets thrown out. You could also place a data viewer prior to the OLE DB
Destination to see the data interactively.

 Row Count
 The Row Count Transformation provides the ability to count rows in a stream that is directed to its input
source. This transformation must place that count into a variable that could be used in the Control Flow
for inserting into an audit table, for example. This transformation is useful for tasks that require knowing
 “ How many? ” It is especially valuable since you don ’ t physically have to commit stream data to a

 Figure 5 - 39

c05.indd 182c05.indd 182 8/28/08 12:07:45 PM8/28/08 12:07:45 PM

Chapter 5: The Data Flow

183

physical table to retrieve the count, and it can act as a destination, terminating your data stream. If you
need to know how many rows are split during the Conditional Split Transformation, direct the output of
each side of the split to a separate Row Count Transformation. Each Row Count Transformation is
designed for an input stream and will output a row count into a Long (integer) or compatible data type.
You can then use this variable to log information into storage, to build e - mail messages, or to
conditionally run steps in your packages.

 This transformation uses the Advanced Editor. As you recall, you used this editor in the Import Columns
section of this chapter. Configuring this transformation is much easier though. All you really need to
provide in terms of configuration is the name of the variable to store the count of the input stream.

 You will now simulate a situation where you have a conditional step in a package that should run only if
an input stream row count is evaluated to have a row count greater than zero. You could use this type of
logic to implement conditional execution of any task, but for simplicity, you ’ ll conditionally execute a
SQL statement.

 1. Create an SSIS package named Row Count Example. Add a Data Flow Task to the Control Flow
design surface.

 2. In the Control Flow tab, add a variable named MyRowCount. Ensure that the variable is
package scoped and of type Int32. If you don ’ t know how to add a variable, select Variable from
the SSIS menu and click the Add Variable button.

 3. Create a Connection Manager that connects to the AdventureWorks2008 database. Add an OLE
DB Data Source to the Data Flow design surface. Configure the source to point to your
AdventureWorks2008 database ’ s Connection Manager and the table [ErrorLog].

 4. Add a Row Count Transformation Task to the Data Flow tab. Open the Advanced Editor. Select
the variable named User::MyRowCount as the VariableName property. Your editor should
resemble Figure 5 - 40 .

 Figure 5 - 40

c05.indd 183c05.indd 183 8/28/08 12:07:46 PM8/28/08 12:07:46 PM

Chapter 5: The Data Flow

184

 5. Return to the Control Flow tab and add a Script Task. This task is not really going to perform
any action. It will be used to show the conditional ability to perform steps based on the value
returned by the Row Count Transformation.

 6. Connect the Data Flow Task to the Script Task.

 7. Right - click the arrow connecting the Data Flow and Script Tasks. Select the Edit menu. In the
Precedence Constraint Editor, change the Evaluation Operation to Expression. Set the
Expression to @MyRowCount > 0.

 When you run the package, you ’ ll see that the Script Task is not executed. If you are curious, insert a row
into the [ErrorLog] table and rerun the package or change the source table that has data. You ’ ll see that
the Script Task will turn green, indicating that it was executed as shown in Figure 5 - 41 .

 Figure 5 - 41

 Script Component
 The Script Component Transform allows you to write custom scripts as transforms, sources,
or destinations. Some of the things you can do with this transform include the following:

 Create a custom transform that would use a .NET assembly to validate credit card numbers
or mailing addresses.

 Validate data and skip records that don ’ t seem reasonable. For example, you can use it in a
human resource recruitment system to pull out candidates that don ’ t match the salary
requirement at a job code level.

 Write a custom component to integrate with a third - party vendor.

 Scripts used as sources can support multiple outputs, and you have the option of precompiling the scripts
for runtime efficiency. You learn much more about the Scripting Component Transform in Chapter 9 .

 Slowly Changing Dimension
 The Slowly Changing Dimension (SCD) Transform provides a great head start in helping to solve a
common, classic changing - dimension problem that occurs in the outer edge of your data model — the
dimension or lookup tables. The changing - dimension issue in online transaction and analytical
processing database designs is too big to cover in this chapter, but a little background may be necessary
to help you understand the value of service the SCD Transformation provides.

 A dimension table contains a set of discrete values with a description and often other measurable
attributes such as price, weight, or sales territory. The classic problem is what to do in your dimension

❑

❑

❑

c05.indd 184c05.indd 184 8/28/08 12:07:46 PM8/28/08 12:07:46 PM

Chapter 5: The Data Flow

185

data when an attribute in a row changes, particularly when you are loading data automatically through
an ETL process. This transform can shave days off of your development time in relation to creating the
load manually through TSQL. Loading data warehouses is covered in Chapter 10 .

 Sort
 The Sort Transformation is an asynchronous transform that allows you to sort data based on any column
in the path. This will probably be one of the top ten transformations you use on a regular basis because
some other transforms require sorted data. To configure the transform, open the Sort Transformation
Editor once it ’ s connected to the path and check the column that you wish to sort by. Then, uncheck
any column you don ’ t want passed through to the path from the Pass Through column. By default, every
column will be passed through the pipeline. You can see this in Figure 5 - 42 , where the user is sorting by
the Name column and passing all other columns in the path as output.

 In the bottom grid, you can specify the alias that you wish to output and whether you ’ re going to sort in
ascending or descending order. The Sort Order column shows which column will be sorted on first,
second, third, and so on. You can optionally check the Remove Rows with Duplicate Sort Values option
to “ Remove rows that have duplicate sort values. ” This is a great way to do rudimentary de - duplication
of your data. If a second value comes in that matches your same sort key, it is ignored and the row is
dropped.

 It ’ s important to note that this transform is an asynchronous transform and will slow down your Data
Flow immensely. Use these only when you have to and sparingly.

 Figure 5 - 42

c05.indd 185c05.indd 185 8/28/08 12:07:46 PM8/28/08 12:07:46 PM

Chapter 5: The Data Flow

186

 As was mentioned previously, you should avoid using the Sort Transform when you can due to speed.
However, some transforms like the Merge Join require the data be sorted. If you place an ORDER BY
statement in the OLE DB Source, SSIS is not aware of the ORDER BY statement because it could just have
easily been in a stored procedure.

 If you have an ORDER BY clause in your TSQL statement in the OLE DB Source or the ADO.NET Source,
you can notify SSIS that the data is already sorted, alleviating the need for the Sort Transform in the
Advanced Editor. After ordering the data in your SQL statement, right - click the source and select Advanced
Editor. Go to the Input and Output Properties and select the OLE DB Source Output. In the Properties pane,
change the IsSorted property to True.

 Then, under Output Columns, select the column you are ordering on in your SQL statement, and change
the SortKeyPosition to 1 if you ’ re only sorting by a single column ascending as shown in Figure 5 - 43 .
If you have multiple columns, you could change this SortKeyPosition value to the column position in the
 ORDER BY statement starting at 1. A value of - 1 would sort the data in descending order.

 Figure 5 - 43

 Term Extraction
 If you have done some word and phrase analysis on websites for better search engine placement, you
will be familiar with the job that this transformation Task performs. The Term Extraction Transformation
is a tool to mine free - flowing text for word and phrase frequency. You can feed any text - based input
stream into the transformation and it will output two columns: a text phrase and a statistical value for
the phrase relative to the total input stream. The statistical values or scores that can be calculated can be
as simple as a count of the frequency of the words and phrases, or they can be a little more complicated

c05.indd 186c05.indd 186 8/28/08 12:07:47 PM8/28/08 12:07:47 PM

Chapter 5: The Data Flow

187

as the result of a formula named TFIDF score. The TFIDF acronym stands for Term Frequency and
Inverse Document Frequency, and it is a formula designed to balance the frequency of the distinct words
and phrases relative to the total text sampled. If you ’ re interested, here ’ s the formula:

TDIDF (of a term or phrase) = (frequency of term) * log((# rows in sample)/
(# rows with term or phrase))

 The results generated by the Term Extraction Transformation are based on internal algorithms and
statistical models that are encapsulated in the component. You can ’ t alter or gain any insight into this
logic by examining the code. However, some of the core rules for how the logic breaks apart the text to
determine word and phrase boundaries are documented in Books Online. What you can do is tweak
some external settings and make adjustments to the extraction behavior by examining the resulting
output. Since text extraction is domain - specific, the transform also provides the ability to store terms and
phrases that you have predetermined are noisy or insignificant in your final results. You can then
automatically remove these items from future extractions. Within just a few testing iterations, you can
have the transform producing meaningful results.

 Before you write this transformation off as a cool utility that you ’ ll never use, consider this: How useful
would it be to query into something like a customer service memo field stored in your data warehouse
and generate some statistics about the comments that are being made? This is the type of use for which
the Term Extraction Transform is perfectly suited. The trick to understanding how to use the component
is to remember that it has one input. That input must be either a NULL - terminated ANSI (DT_WSTR) or
Unicode (DT_NTEXT) string. If your input stream is not one of these two types, you can use the Data
Conversion Transform to convert it. Since this transformation can best be learned by playing around
with all the settings, put this transform to work on exactly what we proposed before — mining some
customer service memo fields.

 You have a set of comment fields from a customer service database for an appliance manufacturer. In this
field, the customer service representative will record a note that summarizes the contact with the
customer. For simplicity’s sake, you ’ ll create these comment fields in a text file and analyze them in the
Term Extraction Transformation.

 1. Create the customer service text file using the following text (download this file from
 www.wrox.com). Save it as c:\projects\custsvc.txt .

Ice maker in freezer stopped working model XX-YY3
Door to refrigerator is coming off model XX-1
Ice maker is making a funny noise XX-YY3
Handle on fridge falling off model XX-Z1
Freezer is not getting cold enough XX-1
Ice maker grinding sound fridge XX-YY3
Customer asking how to get the ice maker to work model XX-YY3
Customer complaining about dent in side panel model XX-Z1
Dent in model XX-Z1
Customer wants to exchange model XX-Z1 because of dent in door
Handle is wiggling model XX-Z1

 2. Create a new SSIS package. Add a Data Flow Task to the Control Flow design surface.

 3. Create a Flat File connection to c:\projects\custsvc.txt . Change the output column named
in the Advanced tab to CustSvcNote. Change OutputColumnWidth to 100 to account for the
length of the field.

c05.indd 187c05.indd 187 8/28/08 12:07:47 PM8/28/08 12:07:47 PM

Chapter 5: The Data Flow

188

 4. Add a Flat File Source to the Data Flow design surface. Configure the source to use the Flat File
connection.

 5. Since the Flat File Source output is string (DT_STR), you ’ ll need to convert the string to either
the DT_WSTR or DT_NTEXT data type. Add a Data Conversion Transform to the Data Flow
design surface and connect the output of the Flat File Source. Set the Input Column to
CustSvcNote, the Output Alias to ConvCustSvcNote, and the Data Type to Unicode string
[DT_WSTR]. Click OK to save.

 6. Add a Term Extraction Transform to the Data Flow design surface. Connect the output of the
Data Conversion Transform to its input. Open the Term Extraction Editor. Figure 5 - 44 shows the
available input columns from the input stream and the two default - named output columns. You
can change the named output columns if you wish. Only one input column can be chosen. Click
the column ConvCustSvcNote, since this is the column that is converted to a Unicode string.
If you click the unconverted column, you ’ ll see a validation error like the following:

 The input column can only have DT_WSTR or DT_NTEXT as its data type.

 Figure 5 - 44

 7. Even though we ’ re not going to set these tabs, the Exclusion tab would allow you to specify
noise words for the Term Extraction to ignore. The Advanced tab allows you to control how
many times the word must appear before you output it as evidence. Close the Term Extraction
Editor. Ignore the cautionary warnings about rows sent to error outputs. You didn ’ t configure an
error location for bad rows to be saved, but it ’ s not necessary for this example.

 8. Add an OLE DB Destination to the Data Flow. Connect the output of the Term Extraction Task to
the OLE DB Destination. Configure the OLE DB Destination to use your AdventureWorks2008
connection.

c05.indd 188c05.indd 188 8/28/08 12:07:47 PM8/28/08 12:07:47 PM

Chapter 5: The Data Flow

189

 9. Click the New button to configure the Name of Table or View property. A window will come up
with a CREATE TABLE DDL statement. Notice that the data types are a Unicode text field and a
double. Alter the statement to read:

CREATE TABLE [TermResults] (
 [Term] NVARCHAR(128),
 [Score] DOUBLE PRECISION
)

 10. When you click OK, the new table TermResults will be created in the AdventureWorks2008
database. Click the Mappings tab to confirm the mapping between the Term Extract outputs of
Term and Score to the table [TermResults].

 11. Add a Data Viewer by right - clicking the Data Flow between the Term Extract Transform and the
OLE DB Destination. Set the type to grid and accept defaults.

 12. Run the package.

 The package will stop on the Data Viewer that is shown in Figure 5 - 45 to allow you to view the results
of the Term Extract Transform. You should see a list of terms and an associated score for each word. Since
you just accepted all of the Term Extraction settings, the default score is a simple count of frequency. Stop
the package, open the Term Extraction Transformation Editor, and view the Advanced tab.

 Figure 5 - 45

 The Advanced tab allows for some configuration of the task and can be divided into four categories:

 Term Type: Settings that control how the input stream should be broken into bits called tokens .
The Noun Term Type will focus the transform on nouns only, Noun Phrases will extract noun
phrases, and Noun and Noun Phrases will extract both.

 Score Type: Choose between analyzing words by frequency or by a weighted frequency.

 Parameters: Frequency threshold is the minimum number of times a word or phrase must
appear in tokens. Maximum length of term is the maximum number of words that should be
combined together for evaluation.

 Options: Check this option to consider case - sensitivity or leave unchecked to disregard.

 This is where the work really starts. How you set the transform up really affects the results you ’ ll see.
Figure 5 - 46 shows an example of the results using each of the different Term Type (noun) settings
combined with the different score types [Tascam Digital Interface (TDIF)].

❑

❑

❑

❑

c05.indd 189c05.indd 189 8/28/08 12:07:48 PM8/28/08 12:07:48 PM

Chapter 5: The Data Flow

190

 One of the unusual things to notice is that the term “ model XX - Z1 ” shows a frequency score of 3 when the
Term Type option is set to “ Both, ” even though you can physically count five instances of this phrase in the
customer service data. However, the term “ XX - Z1 ” is counted with the correct frequency when you break
the source text into nouns only. This demonstrates that the statistical models are sensitive to where and how
noun phrases are used. As a consequence, the tagging of noun phrases may not be completely accurate.

 At the moment, using a combination of these statistics, you can report that customer service is logging a
high percentage of calls concerning the terms “ model, ” “ model XX - Z1, ” “ model XX - YY3, ” “ ice maker, ”
 “ dent, ” and “ customer. ” An assumption can be made that there may be some issues with models XX - Z1
and XX - YY3 that your client needs to look into.

 In evaluating this data, you may determine that some words over time are just not of interest to the
analysis. In this example, the words “ model ” and “ customer ” really serve no purpose but to dampen the
scores for other words. To remove these words from your analysis, take advantage of the exclusion
features in the Term Extraction Transform by adding these words to a table with a single Unicode
NULL - terminated string column.

 To really make sense of that word list, you need to add some human intervention and the next
transform — Term Lookup.

 Term Lookup
 The Term Lookup Transform uses the same algorithms and statistical models as the Term Extraction
Transform to break up an incoming stream into noun or noun phrase tokens, but it is designed to
compare those tokens to a stored word list and output a matching list of terms and phrases with simple
frequency counts. Now a strategy for working with both term - based transforms should become clear.
Periodically use the Term Extraction Transform to mine the text data and to generate lists of statistical
phrases. Store these phrases in a word list, along with phrases that you think the term extraction process
should identify. Remove the phrases that you don ’ t want identified. Use the Term Lookup Transform to
reprocess the text input to generate your final statistics. This way, you are generating statistics on known
phrases of importance. A real - world application of this would be to pull out all the customer service
notes that had a given set of terms or that mention a competitor ’ s name.

 You can use results from the Term Extraction example by removing the word “ model ” from the
[TermExclusions] table for future Term Extractions. You would then want to review all of the terms
stored in the [TermResults] table, sort them out, remove the duplicates, and add back terms that make
sense to your subject matter experts reading the text. Since you want to generate some statistics about

 Figure 5 - 46

c05.indd 190c05.indd 190 8/28/08 12:07:48 PM8/28/08 12:07:48 PM

Chapter 5: The Data Flow

191

which model numbers are generating customer service calls, but you don ’ t want to restrict your
extractions to only the occurrences of the model number in conjunction with the word “ model, ” remove
phrases combining the word “ model ” and the model number. The final [TermResults] table looks like a
dictionary and should look something like the following:

 term

dent
door
freezer
ice
ice maker
maker
XX-1
XX-YY3
XX-Z1

 Take a copy of the package you built in the Extraction example, but exchange the Term Extraction
Transform for a Term Lookup Transform and change the OLE Destination to output to a table
[TermReport].

 Open the Term Lookup Editor. It should look similar to Figure 5 - 47 . In the Reference Table tab, change
the Reference Table Name option to TermResults. In the Term Lookup tab, map the ConvCustSvrNote
column to the Term column on the right. Check the ConvCustSvrNote as a pass - through column. There
are three basic tabs used to set up this task (in the Term Lookup tab):

 Figure 5 - 47

c05.indd 191c05.indd 191 8/28/08 12:07:48 PM8/28/08 12:07:48 PM

Chapter 5: The Data Flow

192

 Reference Table: This is where you will configure the connection to the reference table. The
Term Lookup Task should be used to validate each tokenized term that it finds in the input
stream.

 Term Lookup: After selecting the lookup table, you will map the field from the input stream to
the reference table for matching.

 Advanced: This tab has one setting to check if the matching is case - sensitive.

 The results of running this package will be a list of phrases that you are expecting from your stored word
list. A sample of the first six rows is displayed in the following code. Notice that this result set doesn ’ t
summarize the findings. You are just given a blow - by - blow report on the number of terms in the word
list that were found for each row of the customer service notes. In this text sample, it is just a coincidence
that each term appears only once in each note.

Term Frequency ConvCustSvcNote
------------- --------- --
freezer 1 ice maker in freezer stopped working model XX-YY3
ice maker 1 ice maker in freezer stopped working model XX-YY3
XX-YY3 1 ice maker in freezer stopped working model XX-YY3
door 1 door to refrigerator is coming off model XX-1
XX-1 1 door to refrigerator is coming off model XX-1
ice maker 1 ice maker is making a funny noise XX-YY3
(Only first six rows of resultset are displayed)

 To complete the report, add an Aggregate Transform between the Term Lookup Transform and the OLE
DB Destination Transform. Set up the Aggregate Transform to ignore the ConvCustSvcNote column,
group by the Term column, and summarize the Frequency Column. Connect the Aggregate Transform to
the OLE DB Destination and remap the columns in the OLE DB Transform.

 Although this is a very rudimentary example, you will start to see the possibilities of using SSIS for very
raw and unstructured Data Sources like this customer service comment data. In a short period of time,
you have pulled some meaningful results from the data. Already you can provide the intelligence that
model XX - Z1 is generating 45% of your sample calls and that 36% of your customer calls are related to
the ice maker. Pretty cool results from what is considered unstructured data. This transform is often used
for advanced text mining.

 Union All
 The Union All Transform works much the same way as the Merge Transform, but it does not require the
data be sorted. It takes the outputs from multiple sources or transforms and combines them into a single
result set. For example, in Figure 5 - 48 , the user combines the data from three Data Conversion
Transforms into a single output using the Union All Transform, and then sends the single result set into
the Term Lookup Transform.

 To configure the transform, connect the first source or transformation to the Union All Transform, and
then continue to connect the other sources or transforms to it until you are complete. You can optionally
open the Union All Editor to make sure the columns map correctly, but SSIS will take care of that for you

❑

❑

❑

c05.indd 192c05.indd 192 8/28/08 12:07:49 PM8/28/08 12:07:49 PM

Chapter 5: The Data Flow

193

automatically. The transform fixes minor metadata issues. For example, if you have one input that is a
20 - character string and another that is 50 characters, the output of this from the Union All Transform will
be the longer 50 - character column. You will only need to open the Union All Editor if the column names
from one of the transforms that feed the Union All Transform have a different column name.

 Figure 5 - 48

 Data Flow Example
 Now you can practice what you ’ ve learned in this chapter and pull together some of the transforms and
connections to create a small ETL process. This process will pull transactional data from the
AdventureWorks2008 database and then massage the data by aggregating, sorting, and calculating new
columns. This extract may be used by another vendor or an internal organization.

 1. Create a new package and rename it AdventureWorks2008Extract.dtsx . Start by dragging a
Data Flow Task onto the Control Flow. Double - click the task to go to the Data Flow tab.

 2. In the Data Flow tab, drag an OLE DB Source onto the design pane. Right - click the source and
rename it TransactionHistory. Double - click it to open the editor. Click the New button next to
the OLE DB Connection Manager drop - down box. The connection to the AdventureWorks2008
database may already be in the Data Connections list on the left. If it is, select it, and click OK.
If it ’ s not there yet, click New to add a new connection to the AdventureWorks2008 database on
any server.

 3. When you click OK, you ’ ll be taken back to the OLE DB Source Editor. Ensure that the Data
Access Mode option is set to “ Table or View. ” Select the [Production].[TransactionHistoryArchive]
table from the “ Name of the table ” drop - down box, as shown in Figure 5 - 49 .

c05.indd 193c05.indd 193 8/28/08 12:07:49 PM8/28/08 12:07:49 PM

Chapter 5: The Data Flow

194

 4. Go to the Columns page (shown in Figure 5 - 50) and uncheck every column except for
ProductID, Quantity, and ActualCost. Click OK to exit the editor.

 Figure 5 - 49

 Figure 5 - 50

c05.indd 194c05.indd 194 8/28/08 12:07:49 PM8/28/08 12:07:49 PM

Chapter 5: The Data Flow

195

 5. Drag a Derived Column Transform onto the Data Flow, right - click it, and select Rename.
Rename the transform “ Calculate Total Cost. ” Click the TransactionHistory OLE DB Source and
drag the green arrow (the data path) onto the Derived Column Transform.

 6. Double - click the Derived Column Transform to open the editor (shown in Figure 5 - 51). For the
Expression column, type the following code or drag and drop the column names from the
upper - left box: [Quantity]* [ActualCost] . The Derived Column should have the < add as a new
column > option selected, and type TotalCost for the Derived Column Name option. Click OK to
exit the editor.

 Figure 5 - 51

 7. Drag an Aggregate Transform onto the Data Flow and rename it “ Aggregate Data. ” Drag the
green arrow from the Derived Column Transform onto this transform. Double - click the
Aggregate Transform to open the editor (shown in Figure 5 - 52). Select the ProductID column
and note that it is transposed into the bottom section. The ProductID column should have
Group By for the Operation column. Next, check the Quantity and TotalCost columns and set
the operation of both of these columns to Sum. Click OK to exit the editor.

c05.indd 195c05.indd 195 8/28/08 12:07:50 PM8/28/08 12:07:50 PM

Chapter 5: The Data Flow

196

 8. Drag a Sort Transform onto the Data Flow and rename it “ Sort by ProductID. ” Connect the
Aggregate Transform to this transform by the green arrow as in the preceding step. Double - click
the Sort Transform to configure it in the editor. You can sort by the most popular products, by
checking the Quantity column and selecting Descending for the Sort Type drop - down box. Click
OK to exit the editor.

 9. You ’ ve now done enough massaging of the data and are ready to export the data to a flat file
that can be consumed by another vendor. Drag a Flat File Destination onto the Data Flow.
Connect it to the Sort Transform by using the green arrow as you saw in the last few steps.
Rename the Flat File Destination “ Vendor Extract. ”

 10. Double - click the destination to open the Flat File Destination Editor. You ’ re going to output the
data to a new Connection Manager, so click New. When prompted for the Flat File Format, select
Delimited. Name the Connection Manager “ Vendor Extract ” also, and type whatever description
you ’ d like. If you have the directory, point the File Name option to C:\Projects\
VendorExtract.csv (make sure this directory is created before proceeding). Check the Column
Names in the First Data Row option. Your final screen should look like Figure 5 - 53 . Click OK to
go back to the Flat File Destination Editor.

 Figure 5 - 52

c05.indd 196c05.indd 196 8/28/08 12:07:50 PM8/28/08 12:07:50 PM

Chapter 5: The Data Flow

197

 11. Go to the Mappings page and make sure that each column in the Inputs table is mapped to the
Destination table. Click OK to exit the editor and go back to the Data Flow.

 Now, your first larger ETL package is complete! This package is very typical of what you ’ ll be doing day -
 to - day inside of SSIS, and you will see this expanded on greatly, in Chapter 8 . Execute the package and
you should see the rows flow through the Data Flow as shown in Figure 5 - 54 . Note that as the data flows
from transform to transform you can see how many records were passed through the transform.

 Figure 5 - 53

 Figure 5 - 54

 Summary
 In this chapter, you learned about containers and transformations. Containers allow you as an SSIS
developer to group tasks or loop through a series of tasks. Transformations allow you to change the data
from a source or another transform and pass the results as output to a destination or another
transformation in the path. In the next chapter, you learn how to use the SSIS expression language that is
used throughout many of the transforms and tasks.

c05.indd 197c05.indd 197 8/28/08 12:07:50 PM8/28/08 12:07:50 PM

 Using Expressions and
Variables

 If you have used SSIS or DTS packages for any involved ETL process, you have inevitably
encountered the need to have dynamic capabilities. A dynamic package can reconfigure itself at
runtime to do things like run certain steps conditionally, to create a series of auto - generated
filenames for export, or to retrieve and set send - to addresses on an alert email from a data table.
The paradigm shifted radically on how to do this as SQL Server evolved from DTS to the current
SSIS packages and frankly, expressions was one of the features that was under - represented in the
Books Online. As a result, the concept of expressions was a topic of many inquires as developers
and architects began rolling out SSIS projects in their development shops.

 This chapter is our attempt to remedy the confusion and get you up to speed on expressions.
Here we will consolidate the common questions, answers, and best practices about expressions
that we ’ ve been hearing about and explaining since the first release of SSIS. The good news is that
expressions are easy to use and impressively powerful. The even better news is that Microsoft has
now supplemented the Books Online with a hefty section on expressions. As you read this chapter
you will gain an understanding not only about how expressions work, but you ’ ll also gain some
insight to how you can use expressions now on your current SSIS project.

 The Paradigm
 The model in DTS for realizing values and stuffing them into properties of a package was largely a
 “ push ” paradigm. The need for dynamic capabilities was important. The first versions of DTS
required that you use an ActiveX Script Task to accomplish this dynamic capability. First, you ’ d
create a value, and then use the ActiveX Script Task to navigate and set the property in the DTS
model programmatically. Later when SQL Server 2000 arrived, the Dynamic Property task
appeared and made the task of pushing the values into the model a little easier. The Dynamic
Property task gathered the DTS package model into one user - navigable interface where individual
properties could be set. Typically, you ’ d still need to retrieve the value with the ActiveX script, but

c06.indd 199c06.indd 199 8/28/08 12:08:45 PM8/28/08 12:08:45 PM

Chapter 6: Using Expressions and Variables

200

instead of navigating the package model, all you had to do was stuff the value into an intermediate
variable for the Dynamic Property task to retrieve.

 If you implemented only the first method of dynamically configuring DTS packages, then the SSIS
model is almost the opposite paradigm and can take some getting used to. If you have used the dynamic
property model in DTS, you ’ ll find the “ variable - value - parking ” aspect a familiar place to start
understanding expressions in SSIS. Figure 6 - 1 provides a graphical description of the new expression
paradigm in SSIS. SSIS uses a “ pull ” paradigm where a property in the task or transform objects is set
either directly to an expression or to a variable that is resolved from an expression. When the package is
run, the value of the expression is pulled into the property as each task or transform is accessed.

Use ActiveX
Script

Use ActiveX
Script to Set
Variable

Dynamic Property
Uses Variable

To Push Values
Into Package
Model

To Push Values
Into Package
Model

Package Realizes
Expression at
Runtime and Pulls
Value Into the
Package Property

DTS
Push Paradigm

SSIS
Pull Paradigm

Create Value Create Value Expression

 Figure 6 - 1

 Expression Overview
 Expressions are the key to understanding how to create dynamic packages in SSIS. One way to think
about expressions is by comparing them to the familiar model of a spreadsheet cell in a program like
Microsoft Excel. A spreadsheet cell can hold a literal value, a reference to another cell on the spreadsheet,
or functions ranging from simple to complex arrangements. In each instance, the result is a resolved
value displayed in the cell. Figure 6 - 2 shows these same capabilities of the expressions, which can hold
literal values, identifiers available to the operation (references to variables or columns), or functions
(built - in or user - defined). The difference in the SSIS world is that these values can be substituted directly
into properties of the package model and provide powerful and dynamic workflow and operational
functionalities.

c06.indd 200c06.indd 200 8/28/08 12:08:46 PM8/28/08 12:08:46 PM

Chapter 6: Using Expressions and Variables

201

 Variable Overview
 Variables fit into the SSIS package development process similarly to the way they were used for DTS
packages. Principally, they are used for “ variable parking, ” in other words, they provide a method for
objects in a package to communicate between themselves. The communication is always in two steps as
demonstrated in Figure 6 - 3 . First, a process either initializes the value of a variable from the package
configuration or changes the variable value directly. This is represented by the package configurations
and arrows from each of the tasks and transforms directed at the variable. Once the variable has been set
by any of these, then the tasks and transforms can retrieve the value of the variable to use within SSIS or
be restored back into the package configuration for future retrieval.

1

A

Literal

Identifier

Built-In Function

User-Defined Function

Similarity of Expressions to Microsoft Excel Cells

 Figure 6 - 2

Script Task Conditional Split

Script
Component

Derived Column

Foreach Loop
Container

Execute SQL
Task

Tasks Transforms

Package
Configuration

@MyVariable

 Figure 6 - 3

 If these visual analogies explaining how expressions and variables fit into the SSIS picture make sense,
then you are almost ready to dig into the details of how to build an expression. First, let ’ s look at some of
the details about data types and variables that cause most of the issues for SSIS package developers.

c06.indd 201c06.indd 201 8/28/08 12:08:46 PM8/28/08 12:08:46 PM

Chapter 6: Using Expressions and Variables

202

 Understanding Data Types
 In DTS package development, you only had to consider data types loosely, and even then only when you
declared global variables. In the DTS Visual Basic Script Task, all variables were variants. A variant was
used because it is a data type that can represent virtually any data. In fact, you could not even define a
variable with a defined type in DTS or you ’ d get an error. This led to many ambiguous pieces of code,
and as a result, there was a lot of implicit conversion going on within DTS packages.

 In SSIS, you simply have to pay attention to the data types, whether the data is coming from your Data
Flow, being stored in variables, or being included in expressions. You have to pay attention because the
syntax checker will complain to your utter frustration about incompatible data types when you are
building expressions. If something in your Data Flow allows incompatible data types, your packages
will raise either warnings or errors (if implicit conversions are made). This will happen even if the
conversion is between Unicode and non - Unicode character sets. Even comparison operations are subject
to either hard or soft errors during implicit conversion. Bad data type decisions can have a serious
impact on performance. This seemingly simple topic causes significant grief for those SSIS developers
that don ’ t spend the time to get a handle on the specifics. Use this section to get a quick brain dump
about resolutions to common data - type conversion issues, starting first with a primer on SSIS data types.

 SSIS Data Types
 If you research the topic of data types for SSIS in the Books On l ine, you ’ ll first notice that the data types
are named much differently than similar types found in .NET or TSQL. This nomenclature is
troublesome for most. The following table provides a matrix between SSIS data types and a typical SQL
Server set of data types. You ’ ll need this to interpret between data stream contents and data types in an
expression. The .NET Managed types are important only if you are using script component, CLR, or
.NET - based coding to manipulate your Data Flows.

 The following table is just for SQL Server. To do a similar analysis for your own data source, look at the
mapping files that can be found in this directory: C:\Program Files\Microsoft SQL Server\100\
DTS\MappingFiles\ . If you ’ re familiar with OLE DB data types, you ’ ll understand these SSIS data type
enumerations, because they are similar. However, there is more going on than just naming differences.
First, SSIS supports some data types that may not be familiar at all, nor are they applicable to SQL Server,
namely most of the unsigned integer types and a few of the date types. You ’ ll also notice the availability
of the separate date - only (DT_DBDATE) and time - only (DT_DBTIME) types that were previously only
available for RDMS databases like DB2 and ORACLE. With the introduction of similar data types in the
SQL Server engine, they are now applicable in SSIS. Finally, notice the arrow “ ” in the table, which
indicates that these data types are converted to other SSIS Data Types in Data Flow operations that may
be opportunities for performance enhancements.

c06.indd 202c06.indd 202 8/28/08 12:08:47 PM8/28/08 12:08:47 PM

Chapter 6: Using Expressions and Variables

203

 SSIS Data Type SQL Server Data Type .NET Managed Type

 DT_WSTR

 DT_STR DT_WSTR

 DT_TEXT DT_WSTR

 DT_NTEXT DT_WSTR

 nvarchar, nchar

 varchar, char

text

ntext, sql_variant, xml

 System.String

 DT_BYTES

DT_IMAGE DT_BYTES

 binary, varbinary

timestamp, image

 Array of System.Byte

 DT_DBTIMESTAMP

DT_DBTIMESTAMP2 DT_DBTIMESTAMP

DT_DBDATE DT_DBTIMESTAMP

 DT_DATE DT_DBTIMESTAMP

 DT_FILETIME DT_DBTIMESTAMP

DT_DBDATETIMESTAMPOFFSET

 smalldatetime, datetime

datetime

 date

datetimeoffset

 System.DateTime

 DT_TIME2

DT_TIME DT_TIME2

 time System.TimeSpan

 DT_NUMERIC

DT_DECIMAL DT_NUMERIC

 DT_CY DT_NUMERIC

 numeric

decimal

numeric, decimal

 System.Decimal

 DT_GUID uniqueidentifier System.Guid

 DT_I1

DT_I2

 DT_I4

 DT_I8

 smallint

int

 bigint

 System.SByte,

System.Int16,

 System.Int32,

 System.Int64

 DT_BOOL DT_I4 Bit System.Boolean

 DT_R4

DT_R8

 real

float

 System.Single,

 System.Double

 DT_U1

 DT_U2

 DT_U4

 DT_U8

 tinyint System.Byte,

System.UInt16,

 System.UInt32,

 System.UInt64

c06.indd 203c06.indd 203 8/28/08 12:08:47 PM8/28/08 12:08:47 PM

Chapter 6: Using Expressions and Variables

204

 Additional Date and Time Type Support
 The latest version of SQL Server includes new data types for separate date and time values and an
additional time zone – based data type compliant to the ISO 8601 standard. SSIS has always had these
data type enumerations for the other RDMS sources, but now these can also be used for SQL Server as
well. You ’ ll also notice the availability of the latest additions of DT_DBTIMESTAMP2 and DT_DBTIME2
added for more precision, and DT_DBTIMESTAMPOFFSET added for the new ISO DateTimeOffset SQL
Server data type.

 A common issue that we see in SSIS packages is the improper selection of an SSIS date data type. For
some reason DT_DBDATE and DT_DATE seem to be common selections for date types in Data Flow
transforms. Improper use of these types can result in overflow errors or the removal of the time element
from the date values. The idea is that SSIS data types provide a larger net for processing incoming values
than you may have in your destination data source. It is your responsibility to manage the downcasting
or conversion operations. Make sure you are familiar with the data type mappings in the mapping file
for your data source and destination and the specific conversion issues with each type. A good start
would be the date/time types, because there are many rules for conversions evidenced by the large
section in the Books Online. You can find these conversion rules for date/time data types under the topic
index “ data types [Integration Services] ” subsection “ listed. ”

 Wrong Data Types and Sizes Can Affect Performance
 If you ’ ve been working with SSIS for a while, you might have realized that it is much faster than DTS
used to be, but that it can also use some serious memory resources and sometimes can even be slower
than you ’ d expect. That ’ s because most of the work of the Data Flow transforms is done in memory. This
can be good because it eliminates the most time - consuming IO operations. However, because SSIS uses
memory buffers to accomplish this, the number of rows that can be loaded into a buffer is directly related
to the width of the row. The narrower the row, the more rows that can be processed. If you are defining
the data types of a large input source, pick your data types carefully, so that you are not using the default
50 characters per column for a text file, or the suggested data types of the Connection Manager when you
do not need this extra safety cushion. Also, be aware that there are some tradeoffs for selecting specific
data types if this requires any conversion as the data is being loaded into the buffers.

 Data conversion is a fact of life, and you ’ ll have to pay for it somewhere in the ETL process. These
general guidelines can give you a start:

 Convert only when necessary. There is no need to convert all columns from a data source that
are going to be dropped from the data stream. Each conversion costs something.

 Convert to the closest type for your destination source using the mapping files. If a value is
converted to a non - supported data type, you ’ ll have to incur an additional conversion internal
to SSIS to the mapped data type.

 Convert using the closest size and precision. There is no need to import all columns as 50 -
 character data columns if you are working with a fixed or reliable file format with columns that
don ’ t require as much space.

 Evaluate the option to convert after the fact. Don ’ t forget that SSIS is still an ETL tool and
sometimes it is more efficient to stage the data and convert the data using set - based methods.

❑

❑

❑

❑

c06.indd 204c06.indd 204 8/28/08 12:08:48 PM8/28/08 12:08:48 PM

Chapter 6: Using Expressions and Variables

205

 The bottom line is that data type issues can be critical in high - volume scenarios, so plan with these
guidelines in mind.

 Unicode and Non - Unicode Conversion Issues
 One of the things that you might not be used to in ETL package development is the default use of
Unicode data types in SSIS packages. Not only is this the default import behavior, but all of the string
functions in SSIS expect Unicode strings as input. Unicode is a great protective selection for handling
data from import files with special characters. However, if you ’ re not used to using this character set,
this creates some unnecessary confusion. At the very least, using Unicode requires an additional step
that is frequently missed, resulting in errors. For a typical demonstration, create a package that imports
an Excel Data Source into a table defined with non - Unicode fields or download the samples from
www.wrox.com . Excel data is imported as Unicode by default, so the mapping step in the destination
transform complains that the data is not compatible, as you can see in Figure 6 - 4 .

 Note that you may experience some data being replaced by NULLs when importing Excel files using the
Excel Connection Manager. This typically occurs when numeric and text data is stored within one
 column. One solution is to update the extended properties section of the connect string to look like this:
 Extended Properties= “ EXCEL 8.0;HDR=YES;IMEX=1 ” .

 Figure 6 - 4

 At first, you may think that all you need to do is change the source data type to match the non - Unicode
destination. Using the SQL conversion table as a guide, change the column type in the advanced editor
to DT_STR to match the destination SQL Server varchar data type. Now you ’ ll find that the same error
from Figure 6 - 4 is occurring on both the source and the destination transforms. As we discussed earlier
in this section, SSIS requires purposeful conversion and casting operations. To complete the task, you
only need to add a data conversion transform to convert the DT_WSTR and DT_R8 data types to DT_STR
and DT_CY . The conversion transform should look similar to Figure 6 - 5 .

c06.indd 205c06.indd 205 8/28/08 12:08:48 PM8/28/08 12:08:48 PM

Chapter 6: Using Expressions and Variables

206

 Notice in this data conversion transform that the data types and lengths are changed to truncate and
convert the incoming string to match the destination source. Also, notice the Code Page setting that
auto - defaults to 1252 for ANSI Latin 1. The Code Page setting depends on the source of the Unicode data
you are working with. If you are working with international data sources, this may need to be changed
to interpret incoming Unicode data correctly.

 This type casting operation is a good, simple example of the difference between how SSIS and DTS
packages handle data of differing types. However, within expressions it is not necessary to bring in the
conversion transform to cast between different types. You can simply use casting operators to change
the data types within the expression. The next section goes over this in more detail.

 Casting in SSIS Expressions
 If you want to experience poking your eye out, forget to put a casting operator in your expression Data
Flow formulas. In the DTS environment, you could indiscriminately move varchar data from one server
into another server ’ s nvarchar field. However, if the servers had different code pages, corruption of the
data could occur. SSIS is much more declarative about data type issues than DTS was. SSIS requires
casting, which is simply, explicitly defining the data type for a value or expression.

 You can run into some frustrating issues if you don ’ t do it, but it is not always intuitive that casting is
needed. For example, the result of any string function defaults to the Unicode string type. If you are
attempting to store that value in a non - Unicode column, you are going to need a cast. If you are storing
the value in a variable, you don ’ t need to cast. (That ’ s because the data types in variable definitions only
allow Unicode; more about that later in the section “ Defining Variables. ”) The good news is that casting

 Figure 6 - 5

c06.indd 206c06.indd 206 8/28/08 12:08:49 PM8/28/08 12:08:49 PM

Chapter 6: Using Expressions and Variables

207

is easy. In the expression language, this is going to look just like a .NET primitive cast. The new data
type is provided in parentheses right next to the value to be converted. A simple example is casting a
2 - byte signed integer to a 4 - byte signed integer.

(DT_I4)32

 Not all the casting operators are this simple. Some require additional parameters when specific precision,
lengths, or code pages have to be considered to perform the operation. These operators are listed in the
following table:

 Casting Operator Additional Parameters

 DT_STR(< < length > > , < < code_page > >) length — Final string length

code_page — Unicode character set

 DT_WSTR(< < length > >) length — Final string length

 DT_NUMERIC(< < precision > > , < < scale > >) precision — Max number of digits

scale — Number of digits after decimal

 DT_DECIMAL(< < scale > >) scale — Number of digits after decimal

 DT_BYTES(< < length > >) length — Number of final bytes

 DT_TEXT(< < code_page > >) code_page — Unicode character set

 One place where casting causes the most visible trouble is during comparison operations and logical
expressions. Remember that all operands in comparison operations must evaluate to a compatible data
type. The same rules apply for complex or compound logical expressions. In this case, the entire
expression must return a consistent data type, which may require casting of sections of the expression
that may not readily appear to need casting. This is similar to the issue that you have in TSQL
programming when you attempt to use a number in a where clause for a numeric column, or when using
a case statement that needs to return columns of different types. In the where predicate, both the
condition and the column must be convertible into a compatible type. For the case statement, each
column must be cast to the same variant data type. We ’ ll get into examples where you ’ ll need to pay
attention to casting when using comparison and logical expressions, later in this chapter, after we discuss
a little more about the expression language.

 The other place casting can create an invisible issue is when truncation of data occurs during casting of
data. For example, casting Unicode double - byte data to non - Unicode data can result in lost characters.
Significant digits can be lost in forced casting from unsigned to signed types or within types like 32 - bit
integers to 16 - bit integers. These errors underscore the importance of wiring up the error outputs in the
Data Flow Components that have them. Before we get there, let ’ s look at variables and see how they are
used in dynamic SSIS package development.

c06.indd 207c06.indd 207 8/28/08 12:08:49 PM8/28/08 12:08:49 PM

Chapter 6: Using Expressions and Variables

208

 Using Variables
 Variables are the glue holding dynamic package development together. As discussed earlier, variables
are used to park and retrieve values between package components. They are no different than variables
in any programming environment. Variables in SSIS packages are scoped, or can be accessed, within
either the package level or to a specific package component. One major difference within variable
definitions and expressions is that the available data types in variables are only a subset of the data types
available in the rest of the SSIS environment.

 Defining Variables
 Variables can be created, deleted, renamed, and have their data types changed as long as the package is
in design mode. Once the package is compiled and in runtime mode, the variable definition is locked;
only the value of the variable can change. This is by design, so that the package is more declarative and
type - safe. Creating a new variable is done through a designer that defines the scope of the variable
depending upon how it is accessed. Variables can be scoped to either the package or to a specific
component in the package. If the variable is scoped at a component level, only the component or its
subcomponents have access to the variable. These important tips can keep you out of trouble when
dealing with variables:

 Variables are case - sensitive. When you refer to a variable in a script task or in an expression, pay
attention to the case of the name. Different shops have their own rules, but typically, variables
are named using camel - case style.

 Variables can hide other variable values higher in the hierarchy. It is a good practice not to name
variables similarly. This is a standard readability programming issue. If you have one variable
outside a task and one inside the task, name them using identifiers like “ inner ” or “ outer ” to
keep them separated.

 Variables can be created by right - clicking the design surface of the package where you need a variable.
The Variables window allows for creating, editing, and deleting variables. Figure 6 - 6 shows an example
of two variables created within the Data Flow Task and Package scope levels.

❑

❑

 Figure 6 - 6

c06.indd 208c06.indd 208 8/28/08 12:08:49 PM8/28/08 12:08:49 PM

Chapter 6: Using Expressions and Variables

209

 The reason for displaying the Properties window for the SelectSQL variable is to point out the
 EvaluateAsExpression and Expression properties. The value of a variable can either be a literal
value, or can be defined dynamically. By setting the EvaluateAsExpression property to True , the
variable takes on a dynamic quality that is defined by the expression provided in the Expression
property. The SelectSQL variable is actually holding the result of a formula that concatenates the string
value of the base select statement stored in the BaseSelect variable and a user - provided date parameter.
The point often missed by beginning SSIS developers is that these variables can be used to store
expressions that can be reused throughout the package. Instead of re - creating the expression all over the
package, an expression can be created in a variable and then plugged in where needed. This greatly
improves package maintainability by centralizing the expression definition. We ’ ll create an example of
an expression - based variable later in this chapter.

 Variables can also be set programmatically using the script tasks. Refer to Chapter 9 for examples on
how this is accomplished.

 Variable Data Types
 You may have noticed that the data types that are available for variable definition are a little different
than the SSIS variables that were discussed earlier in this chapter. For example, the value type for string
variable storage is String instead of DT_WSTR or DT_STR . Admittedly, this is confusing. Why does SSIS
use what looks like a generalized managed type in the variable definition and yet a more specific set of
data types in the Data Flows? The answer lies in the implementation of variables within the SSIS engine.
Variables can be set from outside of the package, so variables are implemented in SSIS as COM variants.
This allows the SSIS engine to use some late binding to resolve to the variable value within the package.
However, note that this variant data type is not available anywhere within your control as an SSIS

 Figure 6 - 7

 However, the Variables window does not expose all the capabilities of the variables. By selecting a
variable and pressing F4, the Properties window for the SelectSQL variable is displayed, as shown in
Figure 6 - 7 .

c06.indd 209c06.indd 209 8/28/08 12:08:50 PM8/28/08 12:08:50 PM

Chapter 6: Using Expressions and Variables

210

programmer. Variants are only an internal implementation in SSIS unlike DTS. Use the following table to
help map the variable data types to SSIS Data Flow data types:

 Variable Data Type SSIS Data Type Description

 Boolean DT_BOOL Boolean value. Either True or False . Be careful
setting these data types in code because the
expression language and .NET languages define
these differently.

 Byte DT_UI1 A 1 - byte unsigned int. (Note this is not a byte array.)

 Char DT_UI2 A single character.

 DateTime DT_DBTIMESTAMP A datetime structure that has spots for year, month,
hour, minute, second, and fractional seconds.

 DBNull N/A A declarative NULL value.

 Double DT_R8 A double - precision, floating - point value.

 Int16 DT_I2 A 2 - byte signed integer.

 Int32 DT_I4 A 4 - byte signed integer.

 Int64 DT_I8 An 8 - byte signed integer.

 Object N/A An object reference. Typically used to store datasets
or large object structures.

 SByte DTI1 A 1 - byte, signed integer.

 Single DT_R4 A single - precision, floating - point value.

 String DT_WSTR Unicode string value.

 UInt32 DT_UI4 A 4 - byte unsigned integer.

 UInt64 DT_UI8 An 8 - byte unsigned integer.

 For most of the data types, there is ample representation. Typically, the only significant issues with
variable data types center around the date/time and string data types. The only choices are the higher
capacity data types. This is not a big deal from a storage perspective, because variable declaration is
rather finite. You won ’ t have too many variables defined in a package. If a package requires a string data
type, one of the things from this table to point out again is that the default data type for strings is the
Unicode version, and if you shove values into a variable of the string data type you ’ ll need to convert for
non - Unicode values.

 This seems like a lot of preliminary information to go over before diving into creating an expression, but
with at least a basic understanding of these core concepts, you will avoid most of the typical issues that
we ’ ve seen SSIS developers encounter. Now let ’ s use this knowledge to dive into the expression
language and then into some sample uses of expressions in SSIS.

c06.indd 210c06.indd 210 8/28/08 12:08:50 PM8/28/08 12:08:50 PM

Chapter 6: Using Expressions and Variables

211

 Working with Expressions
 The language used to build expressions can be a bit disorienting at first. If you are used to using the
ActiveX Script Task, then you ’ ll be dealing with a difference similar to switching between using Visual
Basic, C#, and sometimes TSQL, but all in the same language. The key to being proficient in building
expressions is in understanding that the syntax of this new scripting language really is a combination of
all these different languages.

 C# - Like? Close, but Not Completely
 Why not write the expression language in TSQL or in a .NET - compliant language? The marketing reason
is that expressions should reflect the multi - platform capability of being able to operate on more than just
SQL Server databases. Remember that expressions can be used on data from other RDMS sources, like
Oracle, DB2, and even data from XML files. However, the technical explanation is that the SSIS and SQL
Server core engines are written in native code, so any extension of the expression language to use .NET
functions would incur the performance impact of loading the CLR and the memory management
systems. The expression language without .NET integration can be more optimized for the custom
memory management required for pumping large row sets through Data Flow operations. As the SSIS
product matures, you ’ ll see the SSIS team add more expression enhancements to expand on the existing
functions. Meanwhile, let ’ s look at some of the pitfalls of using the expression language.

 The expression language is marketed as having a heavily C# - like syntax, and for the most part that is
true. However, you can ’ t just put on your C# hat and start working because there are some peculiarities
mixed into the scripting language. The language is heavily C# - like when it comes to using logical and
comparison operators, but leans toward a Visual Basic flavor and sometimes a little TSQL for functions.
For example, notice that the following common operators are undeniably from a C# lineage:

 Expression Operator Description

 || Logical OR operation

 & & Logical AND operation

 == Comparison of two expressions
to determine if equivalent

 != Comparison of two expressions
to determine inequality

 ? : Conditional operator

 The logical operators are syntactical changes if you are converting from DTS Visual Basic script. The
conditional operator may be new to you, but it is especially important for creating compound
expressions. In earlier releases of SSIS, the availability of this operator wasn ’ t readily intuitive. If you
aren ’ t used to this C - style ternary operator, it is equivalent to similar IF..THEN or IIF(< Condition > ,
 < True Action > , < False Action >) constructs.

c06.indd 211c06.indd 211 8/28/08 12:08:51 PM8/28/08 12:08:51 PM

Chapter 6: Using Expressions and Variables

212

 The following functions look more like Visual Basic script or TSQL language functions than C#:

 Expression Function Description C# Equivalent

 POWER() Raise numeric to a power . Pow()

 LOWER() Convert to lowercase . ToLower()

 GETDATE() Return current date . Now()

 This makes things interesting because you can ’ t just plug in a C# function without checking to make sure
there isn ’ t an SSIS expression function to perform the same operation that is named differently. However,
if you make this type of mistake, don ’ t worry. Either the expression turns red, or you ’ ll immediately get
a descriptive error instructing you that the function is not recognized upon attempting to save. A quick
look in the Books Online can help resolve these types of function syntax differences.

 In some instances, the function you are looking for can be drastically different and cause some
frustration. For example, if you are used to coding in C#, it may not be intuitive to look for the
 GETDATE() function to return the current date. The GETDATE() function is typically something one
would expect from a TSQL language construct. Thankfully, it performs as a TSQL function should to
return the current date. This is not always the case. Some functions look like TSQL functions but work in
ways that are not the same:

 Expression Function Description Difference

 DATEPART() Parses date part from a date . Requires quotes on date part .

 ISNULL() Tests an expression for NULL . Doesn ’ t allow for default value .

 This departure from the TSQL standard can leave you scratching your head when the expression doesn ’ t
compile. The biggest complaint about this function is that you have to use composite DATEPART()
functions to get to any date part other than month, day, or year. This is a common task for naming files
for archiving. The ISNULL() function also doesn ’ t work like the TSQL function at all. It returns either
 true or false to test a value for existence of NULL . You can ’ t substitute a default value as you would
in TSQL.

 These slight variations in the expression language between full - scale implementations of TSQL, C#, or
Visual Basic syntaxes do cause some initial confusion and frustration at first, but these differences are
minor in the grand scheme of things. Later in this chapter, you ’ ll find a list of expressions that you can
cut and paste to emulate many of the functions that are not immediately available in the expression
language.

c06.indd 212c06.indd 212 8/28/08 12:08:51 PM8/28/08 12:08:51 PM

Chapter 6: Using Expressions and Variables

213

 The Expression Builder
 Several locations in the SSIS development environment allow the creation of an expression. In the
Variables window or within any property expression editor, ultimately the expression is created within a
UI called the Expression Builder. This UI maintains easy references to variables both system - and
user - based as well as access to expression functions and operators. The most important feature of
the Expression Builder is that you can test an expression to see the evaluated value by clicking an
Evaluate Expression button. This is especially helpful as you learn the syntax of the expression language.
By dragging and dropping variables and operators onto the expression workspace, you can see how to
format expressions properly. Inside Data Flow Components, typically a specific expression builder
includes additional elements related to the Data Flow. In Figure 6 - 8 , you can see that the UI on the far
right for the derived column transformation includes a column folder to allow expressions to be built
with data from the Data Flow.

 Figure 6 - 8

 The only downside in the Data Flow Component versions of the expression builder is that you don ’ t
have the option to see the results of evaluating the expression to see if you ’ ve got the expression coded
properly. The reason is that you can ’ t see the data from the Data Flow, because this information would
not be realizable without running the package.

 This brings up a point about maintainability. If you have an involved expression that can be realized
independent of data from the data stream, you should build the expression outside of the Data Flow
Component and simply plug it in as a variable. However, there are certain instances where you have no
choice but to build the expression at the Data Flow Component level. In this case, one of the best practices
that we recommend is to create one variable at the package level called MyExpressionTest . This
variable gives you a quick jumping off point to build up and test expressions to make sure you ’ ve got the
syntax coded correctly. Simply access the variable property window and click the ellipsis beside the
expression property, and the Expression Builder pops up. Use this technique to experiment with some of
the basic syntax of the expression language in the next section.

c06.indd 213c06.indd 213 8/28/08 12:08:51 PM8/28/08 12:08:51 PM

Chapter 6: Using Expressions and Variables

214

 Syntax Basics
 Building an expression in SSIS requires an understanding of the syntax details of the expression
language. Each of the following sections dive into an aspect of the expression syntax and explore the
typical issues encountered with the topic with solutions.

 Equivalence Operator
 This operator is a binary operator used to compare two values. This operator seems to create some
problems for SSIS developers not used to using the double equal sign syntax (==). Forgetting to use the
double equal sign in a comparison operation can produce head - scratching results. Take for an example a
precedence operation that tests a variable value to see if the value is equal to True , but the expression is
written with a regular equal sign. Imagine that the variable is set by a previous script task that checks to
see if there is a file available to process.

@MyBooleanValue = True

 The expression is evaluated and the expression @MyBooleanValue is assigned the value of True . This
overwrites any previous value for the variable. The precedence constraint succeeds, the value is true ,
and the tasks continue to run with a green light. If you aren ’ t used to using the double equal sign syntax,
this will bite you, and this is the reason we ’ ve discussed this operator by itself at the front of the syntax
section.

 String Concatenation
 There are many uses for building strings within an expression. Strings are built to represent a SQL
statement that can be executed against a database, to provide information in the body of an email
message, or to build file paths for file processing. Building strings is one of those core things that you
have to be able to do for any development task. In SSIS the concatenation operator is the “ + ” sign. Here
is an example that you can quickly put together in the expression builder and test:

“The Server [“ + LOWER(@[System::MachineName]) + “] is running this package”

 This returns the string:

The Server [myserver] is running this package

 If you need to build a string for a file path, use the concatenation operator to build the fully qualified
path with the addition of an escape character to add the backslashes. See the later section on string
literals for all the common escape characters that you ’ ll need for string building. A file path expression
would look like this:

“c:\\mysourcefiles\\” + @myFolder + “\\” + @myFile

 Note that strings are built using double quotes (“ “) not single quotes (‘’) as you might see in TSQL. The
only things to worry about here are keeping the strings all Unicode or all non - Unicode and not exceeding
the limitation of 4000 characters on an expression. (Note that data types can be 8000 characters if you are
building a Data Flow expression for a non - Unicode data type). The length limitation applies to the

c06.indd 214c06.indd 214 8/28/08 12:08:52 PM8/28/08 12:08:52 PM

Chapter 6: Using Expressions and Variables

215

expression before and after all substitutions have been made. One of the issues that we ’ ve seen is that
the expression is just under the limit, but during certain instances, the expression exceeds the boundaries
of the limit, and the task fails. If you find that a task is exceeding this limit, and you are executing a SQL
task, then it ’ s time to think about creating a stored procedure to perform this work. Otherwise, you ’ ll be
out of luck, since this is the limit for an expression size.

 Line Continuation
 There two reasons to use line continuation characters in SSIS expressions. One is to make the expression
easier to troubleshoot later, and the other is to format output for email or diagnostic use. Unfortunately,
the expression language does not support the use of comments, but you can use the line hard returns to
help the expression look more organized. In the expression builder, simply press the Enter key to have
your expression displayed with the carriage - return - line - feed character sequence. This formatting is
maintained even after you save the expression. To format output of the expression language, use the C -
 like escape character \n . Here ’ s an example of using it with a simple expression:

“My Line breaks here\nAnd then here\n;)”

 This returns the string:

My Line breaks here
And then here
;)

 Note that it was not necessary to show the expression in code form in one line. The expression could be
written out on multiple lines to ease the viewing of the expression in design time. The output would
remain the same.

 Literals
 Literals are hard - coded information that you must provide when building expressions. SSIS expressions
have three types of literals: numeric, string, and Boolean.

 Numeric Literals
 A numeric literal is simply a fixed number. Typically, a number will be assigned to a variable or used in
an expression. SSIS has the same issues with numeric literals that you do in C# or Java — you can ’ t just
implicitly define numeric literals. Well, that ’ s not completely true; SSIS does interpret numeric values
with a few default rules, but the point is that the rules are probably not what you might expect. A value
of 12 would be interpreted as the default data type of DT_UI4 , or the 4 - byte unsigned integer. This might
be what you want to happen, but if the value were changed to 3000000000 during the evaluation process,
an error similar to this will generate:

The literal “3000000000” is too large to fit into type DT_UI4. The magnitude of the
literal overflows the type.

c06.indd 215c06.indd 215 8/28/08 12:08:52 PM8/28/08 12:08:52 PM

Chapter 6: Using Expressions and Variables

216

 SSIS operates on literals using logic similar to the underlying .NET CLR. Numeric literals are checked to
see if they contain a decimal point. If they do not, the literal is cast using the unsigned integer DT_UI4
data type. If there is a decimal point, the literal is cast as a DT_NUMERIC . To override these rules, a suffix
must be appended to the numeric literal. The suffix enables a declarative way to define the literal. The
following are examples of suffixes that can be used on numeric literals:

 Suffix Description Example

 L or l Indicates that the numeric literal should be
interpreted as the long version of either the
 DT_UI8 or DT_R8 value types depending
upon whether a decimal is present.

 3000000000L DT_I8

3.14159265L DT_R8

 U or u Indicates that the numeric literal should
represent the unsigned data type.

 3000000000UL DT_UI8

 F or f Indicates the numeric literal represents a
float value.

 100.55f DT_R4

 E or e Indicates the numeric literal represents
scientific notation.

 Note: Expects at least one digit scientific
notation followed by float or long suffix.

 6.626 × 10� 34 J/s 6.626E - 34F DT_R8

 6.626E won ’ t work. If you don ’ t have a
digit then format like this:

 6.626E+0L or 6.626E+0f

 Knowing these suffixes and rules, the previous example can be altered to 3000000000L, and the
expression can be validated.

String Literals
 When building strings, there are times when you ’ ll need to supply special characters in the string. For
example, Postgres database sources require the use of quoted column and table names. The key here is to
understand the escape sequences that are understood by the expression syntax parser. The escape
sequence for the double quote symbol is \ ” . A sample expression generated SQL statement might look
like this:

“Select \”myData\” from \”owner\”.\”myTable\””

 This expression would generate this string:

Select “myData” from “owner”.”myTable”

c06.indd 216c06.indd 216 8/28/08 12:08:53 PM8/28/08 12:08:53 PM

Chapter 6: Using Expressions and Variables

217

 Other common literals that you may need are listed in this table:

 Suffix Description Example

 \n New Line or Carriage Feed Line
Return

 “ Print this on one line\nThis on
another ”

 Print this on one line

This on another

 \t Tab character “ Print\twith\ttab\tseparation ”

Print with tab separation

 \ “ Double - quotation mark
character

 “ \ “ Hey! “ \ ”

“ Hey! “

 \\ Backslash “ c:\\myfile.txt ”

c:\myfile.txt

 There are a few other string escape sequences supported, but you ’ ll find that the elements in this table
list the most frequently used. The backslash escape sequences come in handy when building file and
path strings. The double - quote escape sequence is more often used to interact with data sources that
require quoted identifiers. This escape sequence is also used in combination with the remaining new line
and tab characters to format strings for logging or other reporting purposes.

Boolean Literals
 The Boolean literals of True and False don ’ t have to be capitalized, nor are they case sensitive at all.
Boolean expressions are shortcut versions of the logical operators. To drive certain package functionality
conditionally based on whether the package is running in an off - line mode, you could write an
expression in a variable using an artificial on or off type switch mechanism like this:

@[System::OfflineMode]==True ? 1 : 0 (Not Recommended)

 The idea would be to use the results of this operation to determine whether a precedence constraint
should operate. The precedence operator would retest the expression to see if the value was 1 or 0. This
is an awfully long way to do something. How much easier is it to just create an expression in a variable
called MyPrecedenceBool that looks like this:

@[System::OfflineMode]==False

 Then all you have to do is plug the expression into the precedence editor like Figure 6 - 9 .

c06.indd 217c06.indd 217 8/28/08 12:08:53 PM8/28/08 12:08:53 PM

Chapter 6: Using Expressions and Variables

218

 Note that using the literal is recommended over using any numeric values for evaluation. Programming
any expression to evaluate numeric versions of Boolean values is dangerous and should not be a part of
your SSIS techniques.

 Referencing Variables
 Referencing variables is easy when using the expression builder. Drag and drop variables onto the
expression builder to format the variable into the expression properly. Notice that the format of the
variable automatically dropped into the expression is preceded with an @ symbol followed by the
namespace, a C++ - like scope resolution operator, and then the variable name:

@[namespace::variablename]

 Technically, if the variable is not repeated in multiple namespaces and there are no special characters
(including spaces) in the variable name, you could get away with referring to the variable using a
short identifier like @variablename or just using the variable name. However, this type of lazy
variable referencing can get you into trouble later. We recommend that you stick with the fully qualified
way of referencing variables in all SSIS expressions.

 Typically, where folks have issues with variable references is in the Precedence Constraint Editor, as seen
in Figure 6 - 9 . This is most likely because there is no expression builder to help build the expression, and
the whole thing has to be typed in. This is where the tip of creating the dummy variable
 MyExpressionTester comes in handy. You can create an expression within this dummy variable
expression builder, and then simply cut - and - paste the value into the Precedence Constraint Editor.

 Referencing Columns
 Columns can be referenced in expressions, but only within a Data Flow Transformation Component. This
makes sense. Creating a global expression to reference a value in a Data Flow is the equivalent of trying to
use a single variable to capture a value of a set - based processing operation. Even a variable expression,

 Figure 6 - 9

c06.indd 218c06.indd 218 8/28/08 12:08:54 PM8/28/08 12:08:54 PM

Chapter 6: Using Expressions and Variables

219

defined at the same level or scope of a Data Flow Transformation, should not be able to reference a single
column in the Data Flow under constant change. However, from within specific transformations like the
Derived Column Transform, the expression builder can reference a column because from within the
transform, operations occur at a row level. Expressions within a data transform can access column
identifiers to allow point - and - click building of expressions. There are a few things to remember when
referencing columns in expressions:

 Data flow column names must follow the SSIS standards for special characters.

 Column names must be uniquely named or qualified within a Data Flow.

 Columns can be referred to using lineage identifiers.

 A common issue with building expressions referencing columns in a Data Flow has less to do with the
expression language than the names of the columns themselves. This is particularly true when dealing
with Microsoft Excel or Access data where columns can be found with non - standard naming
conventions. SSIS requires that columns being used in an expression either start with a valid Unicode
letter or with an underscore (_). Any other special characters require qualification of the column to use
within an expression with the exception of bracket characters.

 Brackets ([or]) are the designators for SSIS to qualify a column name. Qualification of column names is
required if the name contains special characters — including spaces. Because bracket characters are
column name qualifiers, any column with brackets in the name must be renamed to use in an expression.
Change the column name inside of the Data Flow Source Component. This doesn ’ t require changing
the column name back in the originating source. Column names also must be qualified when two or
more columns in a Data Flow have the same name to avoid ambiguous references. The following are
examples of columns that needed qualification:

 Column Name Qualified Column Name Description

 My Column [My Column] Column names can ’ t contain
spaces.

 File#

 @DomainName

Enrolled?

 [File#]

[@DomainName]

 [Enrolled?]

 Column names can ’ t contain
special characters.

 Source1 ID

 Source2 ID

 [Source1].[ID]

[Source2].[ID]

 Column names can ’ t have the
same name within a Data Flow.

 Another way to refer to columns that is unique to SSIS package development is by lineage number.
A lineage number is something that SSIS assigns to each input and output as it is added to a transform
component in a package. The lineage number is quickly replaced by the real column name once the
expression is syntax compiled. To find the lineage number for a column, look at any advanced editor
dialog box and find the column in the input column properties under LineageID.

❑

❑

❑

c06.indd 219c06.indd 219 8/28/08 12:08:54 PM8/28/08 12:08:54 PM

Chapter 6: Using Expressions and Variables

220

 Boolean Expressions
 Boolean expressions of course evaluate to either true or false . These expressions in their simplest
implementation are used in precedence constraints as gatekeepers to determine whether or not an
operation should occur. Within Data Flow operations, Boolean expressions are typically employed in the
conditional split transform to determine whether a row in a Data Flow is directed to another transform.

 A Boolean expression to determine whether a Control Flow step would run only on Friday would
require code to parse the day of the week from the current date and compare to the 6th day like this:

DATEPART(“dw”, GETDATE()) == 6

 This is a useful Boolean expression for end of the week activities. To control tasks that run on the first
day of the month, use an expression like this:

DATEPART (“dd”, GETDATE()) == 1

 This expression validates as true only when the first day of the month occurs. Boolean expressions don ’ t
have to be this singular. Compound expressions can be built to test a variety of conditions. Here is an
example where three conditions must all evaluate to true for the expression to return a true value:

BatchAmount == DepositAmount & & @Not_Previously_Deposited == True & & BatchAmount >
0.00

 The @Not_Previously_Deposited argument in this expression is a variable; the other arguments
represent columns in a Data Flow. Of course, an expression can just as easily evaluate alternate
conditions, like this:

(BatchAmount > 0.00 || BatchAmount < 0.00) & & @Not_Previously_Deposited == True

 In this case, the BatchAmount must not be equal to $0.00. An alternative way to express the same thing is
using the inequality operator:

(BatchAmount != 0.00) & & @Not_Previously_Deposited == True

 Don ’ t get tripped up with these simple examples. They were defined for packages where the Data Flow
was pumped in from data sources with known column data types, so there was no need to take extra
precautions with casting conversions. If you are dealing with Data Flow from less reliable data sources,
or if you know that two columns have different data types, then take extra casting precautions with your
expression formulas like this expression:

(DT_CY)BatchAmount == (DT_CY)DepositAmount & & @Not_Previously_Deposited == True & &
(DT_CY)BatchAmount > (DT_CY)0.00

 The Boolean expression examples here are generally the style of expressions that are used to enable
dynamic SSIS package operations. We did not cover the conditional, date/time, and string - based
Boolean expressions, which are covered in the following sections. String expression development
requires a little more information about how to handle a NULL or missing value, which is covered in the
next section. Look for some examples of these Boolean expressions put to work at the end of this chapter.

c06.indd 220c06.indd 220 8/28/08 12:08:55 PM8/28/08 12:08:55 PM

Chapter 6: Using Expressions and Variables

221

 Dealing with NULL s
 In SSIS, variables can ’ t really ever be set to NULL . Instead, there are default values that each variable data
type maintains when there is an absence of a value. For strings, the default value is an empty string
instead of the default of NULL that you might be used to in database development. However, in Data Flow
operations and transforms there most certainly can be NULL values. This creates problems when
variables are intermixed within Data Flow Transformations. This mixture occurs either within a Script
Task or within an Expression. If a value in the Data Flow needs to be set to NULL or even tested for a NULL
value, this is another matter altogether and can be accomplished rather easily with the ISNULL()
expression function and the NULL(type) casting functions. Just understand that variables are going to
behave a little differently.

NULL s and Variables
 The issue with not being able to set variables to NULL values has to do with the COM object variant
implementation of variables in the SSIS engine. Regardless of the technical issue, if you are testing a variable
for an absence of value, you have to decide ahead of time what value you are going to use to represent the
equivalent of a NULL value, so that you can test for it accurately. For example, the DateTime variable data type
defaults to 12/30/1899 if you purposely set it to NULL . You can test this out yourself by creating a DateTime
variable and setting it equal to an expression defined using the casting function NULL(DT_DBTIMESTAMP) .

 It helps to get a handle on the default value for the SSIS variable data types. You can find them in this table:

 Variable Data Type Default Value

 Boolean False

 Byte 0

 Char 0

 DateTime 12/30/1899

 DBNull (Can ’ t test in an expression)

 Double 0

 Int16 0

 Int32 0

 Int64 0

 Object (Can ’ t test in an expression)

 SByte 0

 Single 0

 String “ ” (empty string)

 UInt32 0

 UInt64 0

c06.indd 221c06.indd 221 8/28/08 12:08:55 PM8/28/08 12:08:55 PM

Chapter 6: Using Expressions and Variables

222

 Using this table of default values, the following expression could be used in a precedence operation after
testing for the absence of a value in a string variable MyNullStringVar :

@[User::MyNullStringVar]==””

 If the value of the user variable is an empty string, the expression evaluates to a TRUE value and the step
will be executed.

 A frequent logic error that SSIS developers make is to use a variable to set a value from an expression
that will be used within a multiple instance looping structure. If the value is not reset in a way that clean
retesting can be done, the value of the variable will remain the same for the life of the package. No error
will be raised, but the package may not perform multiple iterations as expected. Make sure a variable is
reset to enable retesting if the test is performed multiple times. This may require additional variables to
cache intermediate results.

NULL s in Data Flow
 Using the NULL function in the Data Flow Transforms are a different matter. Values in a Data Flow can be
 NULL . Here you can use the expression function to test for NULL values in the data stream. The trouble
usually stems from either a misunderstanding of how the ISNULL() function works, or what to do after
a NULL value is found. First, the ISNULL() expression function tests the expression in the parentheses for
the value of NULL . It does not make a substitution if a NULL value is found like the same - named function
does in TSQL. To emulate the TSQL function ISNULL() build an SSIS expression in a Data Flow like this:

IsNull(DATA_COLUMN) ? YOUR_DEFAULT_VALUE : DATA_COLUMN

 If you wanted instead to set a column to NULL based on some attribute of the data in the incoming data
stream, the logical structure is similar. First, provide the testing expression followed by the actions to
take if the test is true or false. Here is a function that sets a data column in a Data Flow to NULL if the first
character starts with “ A ” :

SUBSTRING([MyColumn] , 1, 1)==”A” ? NULL(DT_WSTR, 255) : [MyColumn]

 A typical issue that occurs when handling NULL s doesn ’ t actually have anything to do with NULL values
themselves, but more with string expressions. When creating data streams to punch back into RDMS
data destinations, you will often want to send back a column with NULL values when a test on the data
can ’ t be completed. The logic is to either send the column data back or replace the column data with a
 NULL value. For most data types, this works by sending the results of the NULL function for the data type
desired. For some reason this works differently when you want to save non - Unicode data with a NULL
value. You ’ d expect the following expression to work, but it doesn ’ t:

SUBSTRING([MyColumn] , 1, 1)==”A” ?
NULL(DT_STR, 255, 1252) : [MyColumn] (This doesn’t work in SSIS)

 This won ’ t work because of an issue with how the SSIS handles NULL values for the non - Unicode string
type as parameters. The only way to fix this is to cast the NULL function like this:

SUBSTRING([MyColumn] , 1, 1)==”A” ?
(DT_STR, 255, 1252)NULL(DT_STR, 255, 1252) : [MyColumn]

 This section should clear up the common issues dealing with NULL values, especially as they relate to
strings. There are still some tricks to learn about dealing with strings that we ’ ll deal with next.

c06.indd 222c06.indd 222 8/28/08 12:08:55 PM8/28/08 12:08:55 PM

Chapter 6: Using Expressions and Variables

223

 String Functions
 Handling strings in SSIS expressions is different from dealing with string data in SQL Server. The
previous section discussed some of the differences with handling NULL values. You also have to pay
attention to the Unicode and non - Unicode strings. If a package is moving data between multiple
Unicode string sources, you have to pay attention to the code pages between the strings. If you are
comparing strings, you also have to pay attention to string padding, trimming, and issues with data
truncations. Handling strings is a little more involved than it used to be with DTS, but there are really
only a few things to remember to get going.

 Expression functions return Unicode string results. If you are writing an expression to return the
uppercase version of a varchar - type column of data, the result will be a Unicode column with all capital
letters. The string function Upper() returns a Unicode string. In fact, SSIS sets all string operations to
return a Unicode string. This can be clearly seen with a demonstration expression in the Derived Column
Transform in Figure 6 - 10 .

 Figure 6 - 10

 Here you are just adding a string column that includes the concatenation of a date value. The function is
using a DatePart() function where the results are cast to a non - Unicode string, but the default data
type chosen in the editor is a Unicode string data type. This can be overridden of course, but it is
something to watch for, as you develop packages. On one hand, if the data type is reverted to
non - Unicode, then the string has to be converted for each further operation. On the other hand, if the
value is left as a Unicode string and the end result is to persist in a non - Unicode format, then at some
point it has to be converted to a non - Unicode value. The rule that usually works out is to leave the
strings converted as Unicode and convert back to non - Unicode if required during persistence. This of
course depends upon whether there is a concern about using Unicode data.

c06.indd 223c06.indd 223 8/28/08 12:08:56 PM8/28/08 12:08:56 PM

Chapter 6: Using Expressions and Variables

224

 Comparing strings requires that you get the two strings into the same padding length and case. The
comparison is case - and padding - sensitive. Expressions should use the concatenation operator (+) to get
the strings into the same padding style. Typically, this type of work is done when putting together date
strings with an expected type of padding like this:

SUBSTRING(“0” + @Day, 1, 2) + “/” + SUBSTRING(“0” + @Month, 1, 2) + “/” +
SUBSTRING(“00” + @Year, 1, 2)

 This type of zero padding ensures that the values in both variables are in the same format for comparison
purposes. By padding both sides of the comparison, you can ensure the proper equality check:

SUBSTRING(“0” + @Day, 1, 2) + “/” + SUBSTRING(“0” + @Month, 1, 2) + “/” +
SUBSTRING(“00” + @Year, 1, 2) == SUBSTRING(“0” + @FileDay, 1, 2) + “/” +
SUBSTRING(“0” + @FileMonth, 1, 2) + “/” + SUBSTRING(“00” + @FileYear, 1, 2)

 The same type of padding operation can be used to fill in spaces between two values:

SUBSTRING(@Val1 + “ “, 1, 5) + SUBSTRING(@Val2 + “ “, 1, 5) +
SUBSTRING(@Val3 + “ “, 1, 5)

 Typically, space padding is used for formatting output, but could be used for comparisons. More often
than not, spaces are removed from strings for comparison purposes. To remove spaces from strings in
expressions, use the trim functions: LTrim() , RTrim() , and Trim() . These functions are self -
 explanatory, and they enable comparisons for strings that have leading and trailing spaces. Comparing
these strings: “ Canterbury ” and “ Canterbury ” return a false unless the expression is written like this:

Trim(“Canterbury”) == Trim(“Canterbury “)

 This expression returns true because the significant spaces are declaratively removed. Be careful of
these extra spaces in string expressions as well. Spaces are counted in all string functions. This can result
in extra character counts for trailing spaces when using the LEN() function and can affect carefully
counted SUBSTRING() functions that are not expecting leading spaces. If these issues are of importance,
employ a Derived Column Transform to trim these columns early in the Data Flow process.

 Conditional Expressions
 You use the conditional expression operator to build logical evaluation expressions in the format of an
 IF..THEN logical structure:

Boolean_expression ? expression_if_true : expression_if_false

 The first part of the operator requires a Boolean expression that will be tested for a true or false return
value. If the Boolean expression returns true, then the first expression after the ternary operator (?) will
be evaluated and returned as the final result of the conditional expression. If the Boolean expression
returns false , then the expression after the separation operator (:) will be evaluated and returned. One
rule is that both expressions as operands must adhere to this set of data type rules:

 Both operands must be numeric data types that can be implicitly converted.

 Both operands must be string data types of either Unicode or non - Unicode. Each operand can
evaluate to separate types — except for the issue of setting explicit NULL values. In this case, the
 NULL value for DT_STR non - Unicode NULL values must be cast.

❑

❑

c06.indd 224c06.indd 224 8/28/08 12:08:56 PM8/28/08 12:08:56 PM

Chapter 6: Using Expressions and Variables

225

 Both operands must be date data types. The result if more than one data type is represented in
the operands is a DT_DBTIMESTAMP data type.

 Both operands for a text data type must have the same code pages.

 If any of these rules are broken, or the compiler detects incompatible data types, you will have to supply
explicit casting operators on one or both of the operands to get the condition expression to evaluate.
This is more of an issue as the conditional expression gets compounded and nested. A typical
troubleshooting issue is looking at an incompatible data type message resulting from a comparison deep
into a compound conditional expression. This can be a result of a column that has changed to an
incompatible data type, or from a literal that has been provided without a suffix consistent with the rest
of the expression. The best way to test the expression is to copy it into Notepad and test each piece of the
expression until the offending portion is located.

 Casting issues can also create false positives. Casting truncation can be seen in this example of a Boolean
expression comparing the new datetimestampoffset and a date value.

 (DT_DBDATE) “2008-01-31 20:34:52.123 -3:30” == (DT_DBDATE)”2008-01-31”

 Casting converts the expression (DT_DBDATE) “ 2008 - 01 - 31 20:34:52.123 - 3:30 ” to
“ 2008 - 01 - 31 ” making the whole expression evaluate to true . Date and time conversion issues are one
example of casting issues, but can also occur on any data type that allows forced conversion.

 Date Time Functions
 Date and time functions seem to cause more than a little confusion for new SSIS developers. In most
instances, the syntax is just different, and that is causing the issue. As mentioned earlier, the DatePart()
function is a perfect example of this. TSQL programmers will need to double quote the date part portion
of the function, or they will see an error similar to this:

The expression contains unrecognized token “dd”. If “dd” is a variable then it
should be expressed as “@dd”. The specific token is not valid. If the token is
intended to be a variable name, it should be prefixed with the @ symbol.

 The fix is simple: put double quotation marks around the date part. A properly formatted DatePart()
expression should look like this:

DATEPART(“dd”, GETDATE())

 Note that this expression would return the value of the day of the month, for example, 31 if the date was
January 31, 2008. A common mistake is to expect this to be the day of the week. You can accomplish that
task by changing the date part in the expression like this:

DATEPART(“dw”, GETDATE())

 These are just minor adjustments to the SSIS expression language, but can create some frustration.
Another example can be found during attempts to reference the date values in an expression. If you ’ re
used to MS Access date literals, you may be tempted to attempt something like this:

“SELECT * FROM myTable WHERE myDate > = “ + #01/31/2008# (DOESN’T WORK IN SSIS)

❑

❑

c06.indd 225c06.indd 225 8/28/08 12:08:57 PM8/28/08 12:08:57 PM

Chapter 6: Using Expressions and Variables

226

 This won ’ t work in SSIS. The # signs are used for a different purpose. If the string is going to be
interpreted by SQL Server, just use the single quote around the date like this:

“SELECT * FROM MYTABLE WHERE MYDATE > = ‘” + “01/31/2008” + “’”

 If the string is just going to be printed, there is no need for the single quotes. Alternatively, to plug in a
date value from a variable, the expression would look like this:

“SELECT * FROM MYTABLE WHERE MYDATE > = ‘” +
(DT_WSTR, 255)@[System::ContainerStartTime] + “’”

 Notice that the value of the date variable must be cast to match the default Unicode data type for all
expression strings of DT_WSTR . The issue of simply casting a date to a string is the fact that you get all the
date, and that doesn ’ t translate into what you may want to use as a query parameter. This is clearer if the
preceding expression is resolved:

SELECT * FROM MYTABLE WHERE MYDATE > = ‘02/22/2008 2:28:40 PM’

 If the attempt is truly to only see results after 2:28:40 PM, then this query will run as expected. If items
from earlier in the day are also expected, then you need to do some work to parse out the values from the
variable value. If the intent is just to return rows for the date that the package is running, it is much
easier to create the expression like this (with your proper date style of course):

“SELECT * FROM MYTABLE WHERE MYDATE > = CONVERT(nvarchar(10), getdate(), 101)”

 This method allows SQL Server to do the work of substituting the current date from the server into the
query predicate. However, if you need to parse a string from a date value in an expression, take apart
one of the following formulas in this section to save you a bit of time:

 Description Expression

 Convert file name with
embedded date into the date
time type format MM/dd/
yyyy HH:mm:ss.

File name format:
 yyyyMMddHHmmss

 SUBSTRING(@[User::FileName],5,2) + “ / ” +

SUBSTRING(@[User::FileName],7,2) + “ / ” +

SUBSTRING(@[User::FileName],1,4) + “ “ +

SUBSTRING(@[User::FileName],9,2) + “ : ” +

 SUBSTRING(@[User::FileName],11,2) + “ : ” +

SUBSTRING(@[User::FileName],13,2)

 Convert a date time variable to
a file name format of:
 yyyyMMddHHmmss

 (DT_WSTR,4)YEAR(GETDATE()) + RIGHT(“ 0 ” +

(DT_WSTR,2)MONTH(GETDATE()), 2) + RIGHT(“ 0 ” +

(DT_WSTR,2)DAY(GETDATE()), 2) + RIGHT(“ 0 ” +

(DT_WSTR,2)DATEPART(“ hh ” , GETDATE()), 2) + RIGHT(“ 0 ” +

(DT_WSTR,2)DATEPART(“ mi ” , GETDATE()), 2) + RIGHT(“ 0 ” +

(DT_WSTR,2)DATEPART(“ ss ” , GETDATE()), 2)

c06.indd 226c06.indd 226 8/28/08 12:08:57 PM8/28/08 12:08:57 PM

Chapter 6: Using Expressions and Variables

227

 In this section, we have covered most of the major syntactical issues with the expression language. The
issues that have caused SSIS programmers the most trouble should not be a problem for you. Now let ’ s
create some expressions and walk through inserting them into SSIS packages to put them to work.

 Using Expressions in SSIS Packages
 Creating an expression requires understanding the syntax of the SSIS expression language. As discussed
in the previous section, this expression language is part C#, part Visual Basic script, and sometimes some
flavor of TSQL mixed in. Once you can code in the expression language, you are ready to put the
expressions to work. Here we ’ ll show you how expressions can be used in SSIS package development,
with some typical examples that you can use in your package development tasks. The following
packages can be downloaded in their entirety by going to www.wrox.com .

 Using Variables as Expressions
 Earlier in this chapter, we discussed using expressions in variables. A good example of using this in a
practical way is to handle the task of processing files in a directory. The task should be familiar to all.
A directory must be polled for files of a specific extension. If a file is found, it is processed, and then
copied into a final, archival storage directory. An easy way to do this is to hardcode the source and
destination paths along with the file extension into the Foreach Loop and File System Tasks. However, if
you need to use a failover server, you ’ ll have to go through the package and change all these settings
manually. It is much easier to use variables that allow these properties to be set, and then use expressions
to create the destination directory and file names. When the server changes, then only the user variables
need to change to adjust to the change. The basic steps for such an SSIS package can be gleaned from
Figure 6 - 11 .

Retrieve file name from source directory

Create new destination file name using expression variable

Move source file from source directory to destination directory

 Figure 6 - 11

c06.indd 227c06.indd 227 8/28/08 12:08:57 PM8/28/08 12:08:57 PM

Chapter 6: Using Expressions and Variables

228

 One of the things to notice in the list of variable definitions is the Namespace column. One downside to
the Variables window is that you can ’ t tell whether a variable is an expression variable or a variable that
can be manipulated as a setting variable. The Namespace column provides a nice way to separate
variables. In this case the namespace UserExp indicates that the variable is a user expression - based
variable. The namespace UserVar indicates that the variable is defined by the user.

 For this package the Foreach Loop Container Collection tab is set by an expression to retrieve the folder
(or directory) from the variable BankFileSourcePath . This variable is statically defined either from
configuration processes or manually by an administrator. This tells the Foreach Loop where to start
looking for files. To enumerate files of a specific extension, an expression sets the Files (or FileSpec)
property to the value of the variable BankFileExtension , which is also a static variable. Nothing real
complicated here except that the properties of the Foreach Loop are set by expressions instead of hard -
 coded. The container looks like Figure 6 - 12 .

 Figure 6 - 12

 Notice that here the Foreach task is retrieving the filename only. This value is stored in the variable
 BankFileName . This is not shown in Figure 6 - 12 , but would be shown in the Variable Mappings tab.
With the raw filename, no extension, and no path, some variables set up as expressions can be used to
create a destination file that is named using the current date. First, you need a destination location. The
source folder is known, so use this folder as a starting point to create a subfolder called “ archive ” by
creating a variable named BankFileDestinationFolder that has the property
 EvaluateAsExpression set to True and defined by this expression:

@[UserVar::BankFileSourcePath] + “\\archive”

c06.indd 228c06.indd 228 8/28/08 12:08:58 PM8/28/08 12:08:58 PM

Chapter 6: Using Expressions and Variables

229

 You need the escape sequence to properly build a string path. Now build a variable named
 BankFileDestinationFile that will use this BankFileDestinationFolder value along with a
date - based expression to put together a unique destination filename. The expression would look
like this:

@[UserExp::BankFileDestinationFolder] + “\\” + (DT_WSTR,4)YEAR(GETDATE())
+ RIGHT(“0” + (DT_WSTR,2)MONTH(GETDATE()), 2)
+ RIGHT(“0” + (DT_WSTR,2)DAY(GETDATE()), 2)
+ RIGHT(“0” + (DT_WSTR,2)DATEPART(“hh”, GETDATE()), 2)
+ RIGHT(“0” + (DT_WSTR,2)DATEPART(“mi”, GETDATE()), 2)
+ RIGHT(“0” + (DT_WSTR,2)DATEPART(“ss”, GETDATE()), 2)
 + @[UserVar::BankFileExtension]

 When evaluated, this results in a destination filename that looks like c:\BankFileSource\Archive\
20080101154006.txt when the bank file destination folder is c:\BankFileSource\Archive . By
using variables that evaluate to the value of an expression, combined with information set statically from
administrator and environmental variables like the current date and time, you can create packages with
dynamic capabilities.

 Another best practice is to use expression - based variables to define common logic that you ’ ll use
throughout your SSIS package. If in the preceding example, you wanted to use this date - based string in
other places within your package, define the date portion of that expression in a separate variable called
 DateTimeExpression . Then the expression for the BankFileDestinationFolder variable could be
simplified to look like this.

@[UserExp::BankFileDestinationFolder] + “\\” + @[UserExp::DateTimeExpression]
 + @[UserVar::BankFileExtension]

 The power in separating logic like this is that an expression need not be buried in multiple places within
an SSIS package. This makes maintenance for SSIS packages much easier and more manageable.

 Using Expressions in Properties of Connections
 Another simple example of using expressions is to dynamically change or set properties of an SSIS
component. One of the common uses of this technique is to create a dynamic connection to allow
packages to be altered by external or internal means. In this example, we ’ ll assume an environment
where all logins are duplicated across environments. This means you only need to change the server
name to make connections to other servers. To start, create a variable named
 SourceServerNamedInstance that can be used to store the server name that the package should
connect to for source data. Then drop a connection into the Connection Managers’ section of the SSIS
package, and press F4, or right - click and select Properties to get to the Properties window for the
connection object. The Properties window should like Figure 6 - 13 .

c06.indd 229c06.indd 229 8/28/08 12:08:59 PM8/28/08 12:08:59 PM

Chapter 6: Using Expressions and Variables

230

 The secret here is the Expressions collection property. If you click this property as is shown in
Figure 6 - 13 , an ellipsis will display. Clicking that button will bring up the Property Expressions Editor
shown in Figure 6 - 14 , which will allow you to see the properties that can be set to an expression and
ultimately do so in the expression builder.

 Figure 6 - 14

 Figure 6 - 13

 This example completes the demonstration by setting the property of the ServerName to the expression
that is simply the value of the SourceServerNamedInstance variable. Here we only affected one
property in the connection string, but this is not required. The entire connection string, as you may have
noticed in the Property drop - down, is available to be set by a string - based expression. This same
technique can be used to set any connection property in the Data Flow Components as well to
dynamically alter the flat file and MS Excel - based connections. A common use is to set the connection
source for a Data Flow Component to a variable - based incoming filename. You can see an example of this
type of expression usage in Chapter 23.

c06.indd 230c06.indd 230 8/28/08 12:09:00 PM8/28/08 12:09:00 PM

Chapter 6: Using Expressions and Variables

231

 Using Expressions in Control Flow Tasks
 A common example of expressions being used in Control Flow Tasks is to create SQL statements
dynamically that are run by the Execute SQL Task. The Execute SQL Task has a property called
 SQLStatement that can be set to a file connection, a variable, or direct input. Instead of creating
parameterized SQL statements that are subject to error and OLE provider interpretation, try building
the SQL statement using an expression and putting the whole SQL statement into the SQLStatement
property. We ’ ll do an example like this using a DELETE statement that should run at the start of a
package to delete any data from a staging table that has the same RunJobID (a theoretical identifier for a
unique SSIS data load).

 To start, create one variable for the DELETE statement that doesn ’ t include the dynamic portion of the
SQL statement. A variable named DeleteSQL of type String would be set to a value of the string:

DELETE FROM tblStaging WHERE RunJobId =

 Create another variable named DeleteSQL_RunJobId with the data type of Int32 to hold the value of a
variable RunJobId . This value could be set elsewhere in the SSIS package.

 In the ExecuteSQLTask bring up the editor and make sure that the SQLSourceType is set to
 DirectInput . You could also set this value to use a variable if you built the SQL statement in its entirety
within an expression - based variable. In this example, we ’ ll build the expression in the task component.
To get there, click the Expressions tab of the editor and you ’ ll see the Expressions collections property.
Click the ellipses to access the Property Expressions Editor and build the SQL statement using the two
variables that you defined. Make sure you use the casting operator to build the string like this:

@[UserVar::DeleteSQL] + (DT_WSTR, 8) @[UserVar::DeleteSQL_RunJobId]

 The completed ExecuteSQL Task Property Expressions Editor will look like Figure 6 - 15 .

 Figure 6 - 15

 When the package is run, the expression will combine the values from both the variables and construct
a complete SQL statement that will be inserted into the property SqlStatementSource for the
 ExecuteSQL task. This technique is more modular and works more consistently across the different OLE
DB providers for dynamic query formation and execution than hard - coding the SQL statement. With this

c06.indd 231c06.indd 231 8/28/08 12:09:01 PM8/28/08 12:09:01 PM

Chapter 6: Using Expressions and Variables

232

method it is possible to later define and then reconstruct your core SQL using initialization
configurations. It is also a neat technique to show off how to use expressions and variables.

 Using Expressions in Control Flow Precedence
 Controlling the flow of SSIS packages is one of the key strengths of dynamic package development.
Between each Control Flow Component is a precedence constraint that can have expressions attached
to it for evaluation purposes. You can visually identify the precedence constraint as the blue arrow that
connects two Control Flow Components. During runtime, as one Control Flow Component completes,
the precedence constraint is evaluated to determine if the flow can continue to the next component. One
common scenario is a single package that may have two separate sequence operations that need to occur
based on some external factor. For example, on even days one set of tasks is run, and on odd days another
separate set of tasks is run. A visual example of this type of package logic can be seen in Figure 6 - 16 .

 Figure 6 - 16

 This is an easy task to perform by using an expression in a precedence constraint. To set this up define a
Boolean variable as an expression called GateKeeperSequence . Make sure the variable is in a
namespace UserExp to indicate that this variable is an expression - based variable. Set the expression to
this formula:

DATEPART(“dd”, GetDate()) % 2

 This expression takes the current day of the month and uses the modulus operator to leave the
remainder as a result. Use this value to test in the precedence constraint to determine which sequence to
run in the package. The sequence on even days should be run if the GateKeeperSequence returns 0 as a
result, indicating that the current day of the month is evenly divisible by two. Right - click the precedence
constraint and select edit to get to the editor and set it up to look like Figure 6 - 17 .

c06.indd 232c06.indd 232 8/28/08 12:09:01 PM8/28/08 12:09:01 PM

Chapter 6: Using Expressions and Variables

233

 The expression @[UserExp::GateKeeperSequence]==0 is a Boolean expression that is testing the
results of the first expression to see if the value is equal to zero. The second sequence should only
execute if the current day is an odd day. The second precedence constraint would need an expression
that looks like this:

@[UserExp::GateKeeperSequence]!=0

 By factoring the first expression into a separate expression - based variable, you can reuse the same
expression in both precedence constraints. This improves the readability and maintenance of your SSIS
packages. With this example, you can see how a package can have sections that are conditionally executed.
This same technique can also be employed to run Data Flows or other Control Flow Components
conditionally using Boolean expressions. Refer back to the section on Boolean expressions if you need to
review some other examples.

 Using Expressions in Data Flow
 Although you can set properties on some of the Data Flow Transforms, a typical use of an expression in a
Data Flow Component is to alter a WHERE clause on a source component. In this example, you ’ ll alter the
SQL in a source component using a supplied date as a variable to pull out address information from
the AdventureWorks database. Then you ’ ll use a Data Flow expression to build a derived column to
build a one - column data column that can be used for address labels.

 Figure 6 - 17

c06.indd 233c06.indd 233 8/28/08 12:09:02 PM8/28/08 12:09:02 PM

Chapter 6: Using Expressions and Variables

234

 To start, set up these variables at the Data Flow Scope Level:

 Variable Name Data Type Namespace Description

 BaseSelect String UserVar Contains base Select
statement

 SelectSQL_UserDateParm DateTime UserVar Contains supplied date parm

 SelectSQL String UserExp Derived SQL to execute

 SelectSQL_ExpDateParm String UserExp Safe Date Expression

 Notice that the namespaces for the BaseSelect and SelectSQL_UserDateParm variables are using a
namespace UserVar . Namespaces are provided by the SSIS developer. We use them because it makes it
clear which variables are expression - based and which are not. The UserVar namespace variables contain
values that are provided by a user or external source. Provide these values for the following variables:

 Variable Name Value

 BaseSelect SELECT AddressLine1, AddressLine2,
City, StateProvinceCode, PostalCode

 FROM person.Address adr

 INNER JOIN person.StateProvince stp

 ON adr.StateProvinceId = stp.StateProvinceId

 WHERE adr.ModifiedDate > =

 SelectSQL_UserDateParm 1/12/2000

 Note that you ’ ll need to put the value from the BaseSelect variable into one continuous line to get it all
into the variable. Make sure all of the string gets into the variable value before continuing.

 The remaining variables will need to be set up as expression - based variables. At this point, you should
be proficient at this. Set the EvaluateAsExpression property to True and prepare to add the
expressions to each. Ultimately, you need a SQL string that contains the date from the SelectSQL_
UserDateParm , but using dates in strings by just casting the date to a string can produce potentially
unreliable results — especially if you are given the string in one culture and you are querying data
stored in another collation. This is why the extra expression variable SelectSQL_ExpDateParm exists.
This expression is a safe - date expression and looks like this:

(DT_WSTR, 4) DATEPART(“yyyy”, @[UserVar::SelectSQL_UserDateParm]) + “-” +
(DT_WSTR, 4) DATEPART(“mm”, @[UserVar::SelectSQL_UserDateParm]) + “-” +
(DT_WSTR, 4) DATEPART(“dd”, @[UserVar::SelectSQL_UserDateParm]) + “ “ +
(DT_WSTR, 4) DATEPART(“hh”, @[UserVar::SelectSQL_UserDateParm]) + “:” +
(DT_WSTR, 4) DATEPART(“mi”, @[UserVar::SelectSQL_UserDateParm]) + “:” +
(DT_WSTR, 4) DATEPART(“ss”, @[UserVar::SelectSQL_UserDateParm])

c06.indd 234c06.indd 234 8/28/08 12:09:03 PM8/28/08 12:09:03 PM

Chapter 6: Using Expressions and Variables

235

 The expression parses out all the pieces of the date and creates an ISO - formatted date in a string format
that can now be appended to the base SELECT SQL string. This is done in the last expression - based
variable SelectSQL . The expression looks like this:

@[UserVar::BaseSelect] + “’” + @[UserExp::SelectSQL_ExpDateParm] + “’”

 With all the pieces to create the SQL statement in place, all you need to do is apply the expression in a
data source component. Drop an OLE Source component connected to the AdventureWorks database on
the Data Flow surface, and set the Data Access Mode to retrieve the data as a SQL Command from a
Variable. Set the variable name to the SelectSQL variable. The OLE DB Source Editor should look like
Figure 6 - 18 .

 Figure 6 - 18

 Click the Preview button to look at the data pulled with the current value of the variable SelectSQL_
UserDateParm . Change the value and check to see that the data changes as expected. Now the OLE DB
source will contain the same columns, but the predicate can be easily and safely changed with a date
parameter that is safe across cultures.

 Now the final task is to create a one - column output that combines the address fields. Add a Derived
Column Transform to the Data Flow and add a new column of type WSTR , length of 2000, named
 FullAddress . This column will need an expression that combines the columns of the address to build a
one - column output. Remember that we are dealing with Data Flow data here, so it is possible to realize
a NULL value in the data stream. If you simply concatenate every column and a NULL value exists
anywhere, the entire string will evaluate to NULL . Further, we don ’ t want to have addresses that have
blank lines in the body, so we only want to add a newline character conditionally after addresses that

c06.indd 235c06.indd 235 8/28/08 12:09:03 PM8/28/08 12:09:03 PM

Chapter 6: Using Expressions and Variables

236

aren ’ t NULL . Because the data tables involved can only contain NULL values in the two address fields, the
final expression looks like this:

(ISNULL(AddressLine1) ? “” : AddressLine1 + “\n”) +
(ISNULL(AddressLine2) ? “” : AddressLine2 + “\n”) +
 City + “, “ + StateProvinceCode + “ “ + PostalCode

 The Derived Column Transform should look similar to Figure 6 - 19 .

 Figure 6 - 19

 Running this example will create the one - output column of a combined address field that can be dynamically
configured by a date parameter with a conditional Address2 line, depending upon whether the data exists.
Using expressions to solve problems like this makes SSIS development seem almost too easy.

 Summary
 In this chapter, we started out with the mission of filling a gap in your understanding about expressions.
The concept of expressions was a topic that got lost in the shuffle in the conversion from DTS to SSIS.
Clearly, this feature is powerful; it enables dynamic package development in an efficient way and gets
you out of the code and into getting work done. But expressions can be frustrating if you don ’ t pay
attention to the data types and whether you are working with data in variables or in the Data Flow. This
chapter has been all about getting those “ gotchas ” out front and explained what we and other SSIS
developers have experienced so that you don ’ t have to experience them. Along the way, we consolidated
the common questions, answers, and best practices we ’ ve learned about using expressions and made
them available for you in one chapter.

 In several places, we discussed setting variables programmatically and using scripting tasks and
transforms to further the SSIS dynamic package capabilities. There are still places where expressions
don ’ t fit the bill and scripting tasks can be used to save the day. In the next chapter, you explore the
scripting tasks both in the control and Data Flow roles and expand your SSIS capabilities.

c06.indd 236c06.indd 236 8/28/08 12:09:04 PM8/28/08 12:09:04 PM

 Joining Data

 In the simplest ETL scenarios, you use an SSIS pipeline to extract data from a single source
table and populate the corresponding destination table. In practice, though, you usually won ’ t
see such trivial scenarios: The more common ETL scenarios will require you to access two or more
Data Sources simultaneously and merge their results together into a single destination structure.
For instance, you may have a normalized source system that uses three or more tables to represent
the product catalog, whereas the destination represents the same information using a single
de - normalized table (perhaps as part of a data warehouse schema). In this case you would
need to join the multiple source tables together in order to present a unified structure to the
destination table.

 In the relational world, such requirements are easily met by employing a relational join operation.
However, in the ETL world you may not be so fortunate that the tables to be joined live in the same
physical database, same brand of database, same server, or in the worst cases even same physical
location (all of which typically render the relational join method useless). In fact, one common
scenario is where data from a legacy source system is staged in flat text files, which then need to be
joined to dimensional data residing in a SQL Server data warehouse.

 So the ETL system needs to be able to join data in a similar way to relational systems, but should
not be constrained to having the source data live in the same physical database. SQL Server
Integration Services provides several methods for performing such joins, ranging from support in
native components through to custom methods implemented in TSQL or managed code.

 This chapter explores the various options for performing joins, and contrasts when and which
method you should use for various circumstances. After reading this chapter you should gain
insight into how to optimize the various join operations in your ETL solution, and understand the
design, performance, and resource tradeoffs therein.

c07.indd 237c07.indd 237 8/28/08 12:10:33 PM8/28/08 12:10:33 PM

Chapter 7: Joining Data

238

 The Lookup Component
 The Lookup Component in SQL Server Integration Services allows you to perform the equivalent of
relational inner and outer hash - joins. The main difference is that the operations occur outside the realm
of the database engine. Typically you would use this component within the context of an integration
process, such as the ETL layer that populates a data warehouse from source systems. For example, you
may want to populate a table by joining data from two separate source systems on different database
platforms.

 The component can only join two datasets at a time, so in order to join three or more datasets you would
need to chain multiple Lookup Components together. Compare this to relational join semantics where in
a similar fashion you join two tables at a time, and compose multiple such operations to join three or
more tables.

 The transform is written to behave in a synchronous manner in that it does not block the pipeline while
it is doing its work — at the same time that new rows are entering the Transformation Component, rows
that have already been dealt with are leaving through one of several outputs. However, there is a catch
here; in certain caching modes (discussed later) the component will initially block the package ’ s
execution for a period of time while it charges its internal caches.

 The component provides several modes of operation that allow you to trade off performance and
resource usage. In full - cache mode, one of the tables you are joining is loaded in its entirety into memory,
and then the rows from the other table are flowed through the pipeline one buffer at a time and the
selected join operation is performed. At the other end of the scale, there is no up - front caching done and
each incoming row in the pipeline is compared one at a time to a specified relational table. There are
modes in between these two extents, which we will explore later in this chapter (see the “ Full - Cache
Mode, ” “ Partial - Cache Mode, ” and “ No - Cache Mode ” sections).

 Of course, some rows will join successfully and some rows will not be joined — for example, you may
have a customer who has made no purchases and thus their identifier in the customer table would have
no matches in the sales table. SSIS supports this by having multiple outputs on the Lookup Component;
in the simplest (default/legacy) configuration you would have one output for matched rows and a
separate output for non - matched and error rows. This functionality allows you to build robust (error
tolerant) processes that, for instance, might direct non - matched rows to a compensating area of the ETL
that inserts a default value for the missing attributes (such as Unknown) and then merges the matched
and non - matched streams back together again.

 The Cache Connection Manager (CCM) is a separate component that is essential when creating
advanced lookup operations. The CCM allows you to populate the Lookup cache from an arbitrary
source; for instance, you can load the cache from a relational query, a text file, or a Web service. You can
also use the CCM to persist the Lookup cache across iterations of a looping operation. You can still use
the Lookup Component without explicitly using the CCM, however you would then lose the resource
and performance gains in doing so.

c07.indd 238c07.indd 238 8/28/08 12:10:34 PM8/28/08 12:10:34 PM

Chapter 7: Joining Data

239

 The Merge Join Component
 The Merge Join Component in SQL Server Integration Services allows you to perform an inner or outer
join in a streaming fashion. This component behaves in a synchronous manner (although it ’ s actually
partially blocking, but that is not relevant right now) in that it does not perform the same up - front
caching operations that block the Data Flow. The component accepts two sorted input streams, and
outputs a single stream that combines the chosen columns into a single structure. It is not possible to
configure a separate non - matched output.

 The Merge Join Component is different from the Lookup Component in that it does not support OLE DB
or ADO.NET connections to the reference dataset; both tables to be joined have to be streamed in via an
input pipeline. Furthermore, both datasets have to be sorted and the sorting has to be by the same set of
columns in exactly the same order, which can create some overhead upstream.

 Merge Join typically uses less memory than the Lookup Component, because it only maintains the
required few rows in memory to support joining the two streams. However, it does not support short
circuit execution in that both pipelines need to stream their entire contents before the component
considers its work done. For example, if the first input has five rows, and the second input has one
million rows, and it so happens that the first five rows immediately join successfully, the component will
still stream the other 999,995 rows from the second input even though they cannot possibly be joined
anymore. This makes sense in left - join scenarios; however, the architectural reasons for this being the
case in inner - join scenarios is beyond the scope of this chapter.

 Contrasting to the Relational Join
 Though the methods and syntax you employ in the relational and SSIS worlds may differ, joining
multiple row sets together using congruent keys achieves the same desired result. In the relational
database world the equivalent of a lookup is accomplished by joining two or more tables together using
declarative syntax that executes in a set - based manner. The operation remains close to the data at all
times; there is typically no need to move the data out - of - process with respect to the database engine
(except when joining across databases, though this is usually a non - optimal operation). When joining
tables within the same database, the engine can take advantage of multiple different internal algorithms,
knowledge of table statistics, cardinality, temporary storage, cost - based plans, and the benefit of many
years of ongoing research and code optimization. Operations can still complete in a resource - constrained
environment because the platform has many intrinsic functions and operators that simplify multi - step
operations, such as implicit parallelism, paging, sorting, and hashing.

 In a cost - based optimization database system, the end - user experience is typically transparent; the
declarative SQL syntax (calculus) abstracts the underlying relational machinations (algebra) such that
the user may not in fact know how the problem was solved by the engine (thus; query plans). In other
words, the engine has the ability to transform a problem statement as defined by the user into an internal
form that can be optimized into one of many solution sets — transparently. The end - user experience is
usually synchronous and non - blocking; results are materialized in a streaming manner with the engine
effecting the highest degree of parallelism possible.

 The operation is atomic in that once a join is specified, the operation either completes or fails in
total — there are no sub - steps that can succeed or fail in a way the user would experience independently.
Furthermore, it is not possible to receive two result sets from the query at the same time — for instance,

c07.indd 239c07.indd 239 8/28/08 12:10:34 PM8/28/08 12:10:34 PM

Chapter 7: Joining Data

240

if we specified a left join, then we could not direct the matches to go one direction and the non - matches
somewhere else.

 Advanced algorithms allow efficient caching of multiple joins using the same tables — for instance,
round - robin read - ahead allows separate TSQL statements (using the same base tables) to utilize the same
caches.

 Here ’ s a relational query that joins two tables from the AdventureWorksDW2008 database together.
Notice how we only join two tables at a time, using declarative syntax, with particular attention being
paid to specification of the join columns:

select sc.EnglishProductSubcategoryName, p.EnglishProductName
from dbo.DimProductSubcategory sc
inner join dbo.DimProduct p
on sc.ProductSubcategoryKey = p.ProductSubcategoryKey;

 For reference purposes, Figure 7 - 1 shows the plan that SQL Server chooses to execute this join.

Figure 7-1

 In SSIS the data is usually joined using a Lookup Transform on a buffered basis. The Merge Join
Transform can also be used, though it was designed to solve a different class of patterns. The calculus/
algebra for these components is deterministic; the configuration that the user supplies is directly utilized
by the engine — in other words, there is no opportunity for the platform to make any intelligent choices
based on statistics, cost, cardinality, or count. Furthermore, the data is loaded into out - of - process buffers
(with respect to the database engine) and is then treated on a row - by - row manner; so because this moves
the data away from the source we expect that performance and scale are affected.

 The end - user experience is synchronous, though in the case of some modes of the Lookup
Component the process is blocked while the cache loads in its entirety. Execution is non - atomic in that
one of multiple phases of the process can succeed or fail independently. Furthermore, we can direct
successful matches to flow out the Lookup Component to one consumer, the non - matches to flow to a
separate consumer, and the errors to a third.

 Resource usage and performance compete: In Lookup ’ s full - cache mode — which is typically fastest —
 the cache is acquired, and then remains in memory until the process (package) terminates, and there are
no implicit operators (sorting, hashing, and paging) to balance resource usage. In no - cache or partial -
 cache modes the resource usage is initially lower because the cache is charged on the fly; however,
overall performance might be lower. The operation is explicitly parallel; individual packages scale - out,
if and only if the developer intentionally created multiple pipelines and manually segmented the data.

c07.indd 240c07.indd 240 8/28/08 12:10:34 PM8/28/08 12:10:34 PM

Chapter 7: Joining Data

241

There is no opportunity for the Lookup Component to implicitly perform in an SMP (or scale - out)
manner. The same applies to the Merge Join Component — on suitable hardware it will run on a
separate thread to other components, but it will not utilize multiple threads within itself.

 Figure 7 - 2 shows an SSIS package that uses a Lookup Component to demonstrate the same functionality
as the previous SQL statement. Notice how the Product table is pipelined directly into the Lookup
Component, but the SubCategory table is referenced using properties on the component itself. It is
interesting to compare this package with the query plan generated by SQL Server for the previous SQL
query. Notice how, in this case, SQL Server chose to utilize a hash join operation, which happens to
coincide with the mechanics underlying the Lookup Component when used in full - cache mode. The
explicit design chosen by the developer in SSIS corresponds almost exactly to the plan chosen by SQL
Server to generate the same result set.

Figure 7-2

Figure 7-3

 Figure 7 - 3 shows the same functionality; this time built using a Merge Join Component. Notice how
similar this looks to the SQL Server plan (though in truth the execution semantics are quite different).

c07.indd 241c07.indd 241 8/28/08 12:10:35 PM8/28/08 12:10:35 PM

Chapter 7: Joining Data

242

 New Lookup Features
 In previous versions of the product, the Lookup Component could use only source data for its cache
from specific OLE DB connections, and the cache could be populated by using only a SQL query. The
current version of the Lookup Component allows you to populate the cache using a separate pipeline in
either the same or a different package. You can use source data from just about anywhere.

 Previously you needed to reload the cache every time it was used. For example, if you had two pipelines
in the same package that each required the same reference dataset, each Lookup Component would load
its own copy of the cache separately. Now you can persist the cache to virtual memory or to permanent
file storage. This means that within the same package, multiple Lookup Components can share the same
cache, and the cache does not need to be re - loaded during each iteration of a looping operation. You can
persist the cache to a file and share it with other packages. The cache file format is optimized for speed,
and can be orders of magnitude faster than reloading the reference dataset from the original relational
source.

 The Lookup Component also provides the miss - cache feature. In scenarios where the component is
configured to perform the lookups directly against the database, the miss - cache feature enables you to
optimize the performance by optionally loading into cache the rows without matching entries in the
reference dataset. For example, if the component receives the value 123 in the incoming pipeline, but
there are no matching entries in the reference dataset, the component will not try to find that value in the
reference dataset again. In other words, the component “ remembers ” which values it did not find before.
You can also specify how much memory the miss - cache should use (expressed as a percentage of the
total cache limit, by default 20%). This reduces a redundant and expensive trip to the database. The
miss - cache feature alone can contribute up to a 40% performance improvement in some scenarios.

 In the previous version of the component, you only had two outputs — one for matched rows and
another that combined non - matches and errors. However, the latter output caused much consternation
with SSIS users — it is often the case that a non - match is not an error and is in fact expected, so the new
component has one output for non - matches and a separate output for true errors (such as truncations).
Note that the old combined output is still available as an option for backwards compatibility.

 For troubleshooting any issues you may have with SSIS, you can create a memory dump of the SSIS
solution while it is running. To create a dump on demand, in a command prompt window run
dtutil.exe /dump processid . The processid is the PID of dtexec or dtsdebughost that is executing
the package — you can find the PID by opening up Windows Task Manager. Running this command will
pause the package mid - execution, generate a mini - memory dump, and then resume package execution.

 Building the Basic Package
 To simplify explaining the operation of the Lookup Component in the next few sections, here is a typical
ETL problem that we will use to discuss several solutions using the components configured in various
modes.

 The AdventureWorks2008 database is a typical OLTP store for a bicycle retailer, and
AdventureWorksDW2008 is a database that contains the corresponding de - normalized data warehouse
structures. We will use both these databases as well as some secondary data to represent a real - world
ETL scenario. (If you do not have the databases, download them from www.codeplex.com .)

c07.indd 242c07.indd 242 8/28/08 12:10:35 PM8/28/08 12:10:35 PM

Chapter 7: Joining Data

243

 The core operation we will focus on is to extract fact data from the source system; in this scenario we
will not yet be loading data into the warehouse itself. Obviously you do not want to do one without
the other, but it makes it easier to understand the solution if we tackle a smaller subset of the problem
by itself.

 We will extract sales order (fact) data from AdventureWorks2008, and later on we will load it
into AdventureWorksDW2008, performing multiple joins along the way. The order information in
AdventureWorks2008 is represented by two main tables: SalesOrderHeader and SalesOrderDetail. We
need to join these two tables first.

 The SalesOrderHeader table has many columns that in the real world would be interesting, but for this
exercise let ’ s scope down the columns to just the necessary few. Likewise, the SalesOrderDetail table has
many useful columns but we will use just a few of them. Here are the table structure and first five rows
of data for these two structures:

 SalesOrderID OrderDate CustomerID

 43659 2001 - 07 - 01 676

 43660 2001 - 07 - 01 117

 43661 2001 - 07 - 01 442

 43662 2001 - 07 - 01 227

 43663 2001 - 07 - 01 510

 SalesOrderID SalesOrderDetailID ProductID OrderQty UnitPrice LineTotal

 43659 1 776 1 2024.9940 2024.994000

 43659 2 777 3 2024.9940 6074.982000

 43659 3 778 1 2024.9940 2024.994000

 43659 4 771 1 2039.9940 2039.994000

 43659 5 772 1 2039.9940 2039.994000

 As you can see, we need to join these two tables together because one table contains the order header
information and the other contains the order details. Figure 7 - 4 is a conceptual view of what the join
would look like.

Figure 7-4

c07.indd 243c07.indd 243 8/28/08 12:10:36 PM8/28/08 12:10:36 PM

Chapter 7: Joining Data

244

 However, this does not get us all the way there. The CustomerID column is a surrogate key that is
specific to the source system, and the very definition of surrogate keys dictates that no other system —
 including the data warehouse — should have any knowledge of them. So in order to populate the
warehouse we need to get the original business (natural) key. Thus, we must join the SalesOrderHeader
table (Sales.SalesOrderHeader) to the Customer table (Sales.Customer) in order to find the customer
business key called AccountNumber. So our conceptual join now looks like Figure 7 - 5 .

Figure 7-5

Figure 7-6

 Similarly for Product, we need to add the Product table (Production.Product) to this join in order to
derive the natural key called ProductNumber, as shown in Figure 7 - 6 .

 Creating the Basic Package
 Refer to Figure 7 - 7 . Create a new SSIS package that contains an OLE DB Connection Manager
called AdventureWorks that points to the AdventureWorks2008 database, and a single empty Data
Flow Task.

c07.indd 244c07.indd 244 8/28/08 12:10:36 PM8/28/08 12:10:36 PM

Chapter 7: Joining Data

245

 Using a Relational Join in the Source
 The easiest and most obvious solution in this particular scenario is to use a relational join to extract the
data. In other words, we can build a package that has a single source (let ’ s use an OLE DB Source
Component) and set the query string in the source to utilize relational joins.

 Drop an OLE DB Source Component on the Data Flow design surface, hook it up to the AdventureWorks
Connection Manager, and set its query string as follows:

 select
 --columns from Sales.SalesOrderHeader
 oh.SalesOrderID, oh.OrderDate, oh.CustomerID,
 --columns from Sales.Customer
 c.AccountNumber,
 --columns from Sales.SalesOrderDetail
 od.SalesOrderDetailID, od.ProductID, od.OrderQty, od.UnitPrice, od.LineTotal,
 --columns from Production.Product
 p.ProductNumber
from Sales.SalesOrderHeader as oh
inner join Sales.Customer as c on (oh.CustomerID = c.CustomerID)
left join Sales.SalesOrderDetail as od on (oh.SalesOrderID = od.SalesOrderID)
inner join Production.Product as p on (od.ProductID = p.ProductID);

Figure 7-7

c07.indd 245c07.indd 245 8/28/08 12:10:36 PM8/28/08 12:10:36 PM

Chapter 7: Joining Data

246

 Note that you can either type this query in by hand, or use the Build Query button in the user interface
of the OLE DB Source Component to construct it visually. Click the Preview button and make sure that it
executes correctly (see Figure 7 - 8).

Figure 7-8

 For seasoned SQL developers the query should be fairly intuitive — the only thing worth calling out
is that we used a left join between the order header and order details tables because it is conceivable
that an order header could exist without any corresponding details. If we had used an inner join here,
we would have lost all such rows exhibiting this behavior. On the contrary, we have used inner joins
everywhere else because an order header cannot exist without an associated customer, and a details row
cannot exist without an associated product. In business terms we always have a customer to whom we
will sell zero or (hopefully) more products.

 Close the preview dialog; hit OK on the OLE DB Source Editor UI, and then hook up the Source
Component to a Union All Component as shown in Figure 7 - 9 , which serves as a temporary destination.
Create a Data Viewer Grid on the pipeline in order to watch the data travel through the system. Execute
the package in debug mode and notice how we get our required results in the Data Viewer window.

c07.indd 246c07.indd 246 8/28/08 12:10:37 PM8/28/08 12:10:37 PM

Chapter 7: Joining Data

247

 The Union All Component has nothing to do with this specific solution; it serves simply as a clever trick
to get a temporary trash destination so that we don ’ t have to physically land the data in a database or
file. In a real solution this hack would serve no purpose, and you would need to replace it with a real
destination. Note that you could also use some of the other asynchronous components or the Row Count
Component for the same purpose, though in the latter case you would need to also create a temporary
variable to hold the count value. In some cases the SSIS engine is smart enough to realize that the trash
destination is doing nothing useful and will remove it from the execution image. If this happens you can
use a Flat File Destination to write the data to a temporary file.

Figure 7-9

 Using the Merge Join Component
 Another way we could perform the join is to use Merge Join Components. In this specific scenario this
does not make much sense because the database will likely perform the most optimal joins because all
the data resides in one place. However, we can imagine a system where the four tables we are joining
reside in more than one location; perhaps the sales and customer data is in SQL Server, and the product
data is in a flat file, which is dumped nightly from a mainframe. Let ’ s build a package to emulate such a
scenario:

 1. Start again with the basic package (as shown in Figure 7 - 7) and proceed as follows. Because we
do not have any actual text files as sources, let ’ s create them inside the same package and then
utilize them as need be. Note that a real solution would not require this step; we just need to do
this, so that we can emulate a scenario more complex than our own.

 2. Name the empty Data Flow Task “ DFT Create Text Files. ” Inside this task create a pipeline that
selects the required columns from the Product table in the AdventureWorks2008 database and
writes the data to a text file. Here is the SQL statement you will need:

select ProductID, ProductNumber
from Production.Product;

 3. Configure the Flat File Destination Component to write to a location of your choice on your local
hard drive, and make sure you select the delimited option and specify column headers when
configuring the destination options, as shown in Figure 7 - 10 . Name the flat file Product.txt.

c07.indd 247c07.indd 247 8/28/08 12:10:37 PM8/28/08 12:10:37 PM

Chapter 7: Joining Data

248

 4. Execute the package; you should now have a text file containing the Product data. Now create
a second Data Flow Task and rename it “ DFT Extract Source. ” Hook up the first and second
Data Flow Tasks so that they execute serially as shown in Figure 7 - 11 . Inside the second
(new) Data Flow Task, you ’ ll use the Lookup and Merge Join solutions to gain the same result
as you did previously.

Figure 7-10

Figure 7-11

 When using the Lookup Component, the rule of thumb is that you want to make sure that the largest
table (usually a fact table) gets streamed into the component, and the smallest table (usually a
dimension table) gets cached. The reason for this is that the table that gets cached will block the flow
while it is loaded into memory, and you thus want to make sure it is as small as possible. In our case the
tables are all small, but imagine that the order header and details data is the largest, so we don ’ t want to
incur the overhead of caching it. Thus, you can use a Merge Join Component instead of a Lookup to
achieve the same result, without the overhead of caching a large amount of data.

c07.indd 248c07.indd 248 8/28/08 12:10:37 PM8/28/08 12:10:37 PM

Chapter 7: Joining Data

249

 The simplest solution we have to retrieve the relational data would be to join the order header and order
details tables directly in the Source Component (in a similar manner to that shown earlier). However,
let ’ s rather follow a more complex route in order to illustrate some of the other options we have
available:

 1. Drop an OLE DB Source Component on the design surface of the second Data Flow Task and
name it SRC Order Header. Hook it up to the AdventureWorks Connection Manager and use the
following statement as the query:

select SalesOrderID, OrderDate, CustomerID
from Sales.SalesOrderHeader;

 Of course you could have just chosen the Table or View option in the source UI, or alternatively utilized
a select * query, and perhaps even deselected specific columns in the Columns tab of the UI. How-
ever, these are all bad practices and will usually lead to degraded performance. It is imperative that,
where possible, you specify the exact columns you require in the select clause. Furthermore you should
use a predicate (where clause) to limit the number of rows returned to just the ones you need.

 2. Check that the query executes OK by using the Preview button, then hook up a Sort Component
downstream of the source you have just created. Open the editor for the Sort Component and
choose to sort the data by the SalesOrderID column, as shown in Figure 7 - 12 . The reason we do
this is that we plan to use a Merge Join Component later, and it requires sorted input streams.
(Note that the Lookup Component does not require sorted inputs.)

Figure 7-12

 3. The next step is to retrieve the SalesOrderDetails data. Drop another OLE DB Source on the
design surface, name it SRC Details, and set its query as follows. Notice how in this case you
have included an ORDER BY clause directly in the SQL select statement. This is more efficient
than the way you sorted the order header data, because SQL Server can sort it for you before
passing it out - of - process to SSIS. Once again, we use different methods to illustrate the various
options available:

c07.indd 249c07.indd 249 8/28/08 12:10:38 PM8/28/08 12:10:38 PM

Chapter 7: Joining Data

250

select SalesOrderID, SalesOrderDetailID, ProductID, OrderQty, UnitPrice, LineTotal
from Sales.SalesOrderDetail
order by SalesOrderID, SalesOrderDetailID, ProductID;

 4. Now drop a Merge Join Component on the surface and connect the outputs from the last two
components to it. Specify the input coming from SRC Header (via the Sort Component) to be the
left input, and the input coming from SRC Details to be the right input. You need to do this
because, as discussed previously, we want to use a left join in order to keep rows from the
header that do not have corresponding detail records.

 After connecting both inputs, try to open the editor for the Merge Join Component; you should receive
an error stating that “ The IsSorted property must be set to True on both sources of this transformation. ”
The reason we get this error is because the Merge Join Component requires inputs that are sorted
exactly the same way. However, we did ensure this by using a Sort Component on one stream and an
explicit TSQL ORDER BY clause on the other stream, so what ’ s going on? Well the simple answer is that
the OLE DB Source Component works in a pass - through manner, and so it does not know or care that
the ORDER BY clause was specified in the second SQL query statement. By using the Sort Component we
forced SSIS to perform the sort, and so in that case it is fully aware of the ordering.

 In order to remedy this situation, we have to tell the Source Component that its input data is pre - sorted.
Be very careful when doing this — by specifying the sort order in the following way you are asking the
system to trust that you know what you are talking about and that the data is in fact sorted. If the data is
not sorted, or it is sorted in a different manner to what you specified, then your package can act
unpredictably, which could lead to data integrity issues and loss.

 1. Refer to Figure 7 - 13 . Right - click the SRC Details Component and choose Show Advanced Editor.
Go to the Input and Output Properties tab and click the Root Node for the default output (not the
error output). In the property grid on the right - hand side you should see a property called
IsSorted. Change this to True.

Figure 7-13

c07.indd 250c07.indd 250 8/28/08 12:10:38 PM8/28/08 12:10:38 PM

Chapter 7: Joining Data

251

 2. The preceding step told the component that the data is pre - sorted, but it did not tell it in what
order. So the next step is to select the columns that are being sorted on, and assign them values
as follows: If the column is not sorted, the value should be zero. If the column is sorted in
ascending order, the value should be positive. If the column is sorted in descending order, the
value should be negative. The absolute value of the number should correspond to the column ’ s
position in the order list. For instance, if the query was sorted as follows, “ SalesOrderID
ascending, ProductID descending, ” then we would assign the value 1 to SalesOrderID and the
value - 2 to ProductID, with all other columns being 0.

 3. Expand the Output Columns Node under the same default Output Node, then select the
SalesOrderID column. In the property grid set the SortKeyPosition value to 1, as shown in
Figure 7 - 14 .

Figure 7-14

 4. Close the dialog and try again to open the Merge Join UI; this time you should be successful.
By default the component works in inner join mode, but you can change that very easily by
selecting (in our case) Left Outer Join from the drop - down at the top of the dialog. You can
also choose a Full Outer Join, which would perform a Cartesian join of all the data, though
depending on the size of the source data this will have a high memory overhead. See
Figure 7 - 15 .

 If you had made a mistake earlier while specifying which input was the left and which was
the right, you can click the Swap Inputs button to switch their places. The component will
automatically figure out which columns you are joining on based on their sort orders; if it had
somehow got it wrong, or there were more columns you needed to join on, you can drag a
column from the left to the right in order to specify more join criteria. However, the component
will refuse any column combinations that are not part of the ordering criteria.

c07.indd 251c07.indd 251 8/28/08 12:10:39 PM8/28/08 12:10:39 PM

Chapter 7: Joining Data

252

 5. Finally, drop a Union All Component on the surface and connect the output of the Merge Join
Component to it. Place a Data Viewer Grid on the output path of the Merge Join Component
and execute the package. Have a look at the results in the grid viewer. You should see that the
data has been joined as required.

Figure 7-15

 Merge Join is a useful component to use when memory limits or data sizes restrict you from using a
Lookup Component. However, it requires that both input streams are sorted — which may be
challenging to do with large datasets — and by design it does not provide any way of caching either
dataset. The next section examines the Lookup Component and shows how it can help us solve join
problems in a different way.

 Using the Lookup Component
 The Lookup Component solves join issues in a different manner than the Merge Join Component. The
Lookup Component typically caches one of the datasets in memory, and then compares each row
arriving from the other dataset in its input pipeline against the cache. The caching mechanism is highly
configurable, providing a variety of different options in order to balance the performance and resource
utilization of the process.

 Full - Cache Mode
 The first caching mode we will examine is full - cache mode, whereby the Lookup Component stores
all the rows resulting from a specified query in memory. The benefit of this mode is that Lookups against
the in - memory cache are very fast — often an order of magnitude or more, relative to a database lookup.

 Continuing with the example package we built in the previous section (Merge Join), we will extend the
existing package in order to join the other tables we require. You have got the related values from the

c07.indd 252c07.indd 252 8/28/08 12:10:39 PM8/28/08 12:10:39 PM

Chapter 7: Joining Data

253

order header and order detail tables but you still need to map the natural keys from the Product and
Customer tables. You could use Merge Join Components again, but let ’ s investigate how the Lookup
Component can help us here:

 1. Open the package you created in the previous step. Remove the Union All Component. Drop a
Lookup Component on the surface, name it LKP Customer, and connect the output of the Merge
Join Component to it. Open the editor of the Lookup Component.

 2. Select Full-Cache Mode, specifying an OLE DB Connection Manager. There is also an option to
specify a Cache Connection Manager (CCM) but we won ’ t use this just yet — see later on in this
chapter for details on how to use the CCM. (After you have learned about the CCM, later on you
can come back and try to use it here instead of the OLE DB Connection Manager.)

 3. Click the Connection tab and select the AdventureWorks connection, and then use the following
SQL query:

select CustomerID, AccountNumber
from Sales.Customer;

 4. Preview the results to make sure everything is set up OK, then click the Columns tab. Drag the
CustomerID column from the left - hand table over to the CustomerID column on the right; this
should create a linkage between these two columns, which tells the component that this column
is used to perform the join. Click the checkbox next to the AccountNumber column on the right,
which tells the component that you want to bring back the AccountNumber values from
the Customer table for each row it compares. Note that it is not necessary to retrieve the
CustomerID values from the right - hand side because we already have them from the input
columns. The editor should now look like Figure 7 - 16 .

Figure 7-16

c07.indd 253c07.indd 253 8/28/08 12:10:40 PM8/28/08 12:10:40 PM

Chapter 7: Joining Data

254

 5. Click OK on the dialog, hook up a “ trash ” Union All Component (as shown in Figure 7 - 9 ; choose
Lookup Match Output on the dialog that gets raised when you do this). Create a Data Viewer
Grid on the match output path of the Lookup Component and execute the package (you could
also attach a data viewer on the no - match output and error output if needed). You should see
results similar to Figure 7 - 17 . Notice how we have all the columns from the order and details
data, as well as the selected column from the Customer.

Figure 7-17

 Because the Customer table is so small and the package runs so fast, you may not have noticed what
happened here. As part of the pre - execution phase of the component, the Lookup Component went and
fetched all the rows from the Customer table using the query we specified (because the Lookup was
configured to execute in Full-Cache mode). In this case there are only twenty thousand or so rows, so this
happens very quickly. Imagine that there were many more rows, perhaps two million. In this case you
would likely see a delay between executing the package and seeing any data actually travelling down
the second pipeline.

 Figure 7 - 18 is a decision tree that demonstrates how the full - cache mode operates at runtime. Note
that the Lookup Component can be configured to send found and not - found rows to the same output,
but the illustration assumes they are going to different outputs. In either case, the basic algorithm is
the same.

c07.indd 254c07.indd 254 8/28/08 12:10:40 PM8/28/08 12:10:40 PM

Chapter 7: Joining Data

255

 Have a look at the Progress tab on the SSIS design surface (Figure 7 - 19) and see how long the data took
to be loaded into the in - memory cache. In larger datasets this number will be much larger and could
even take longer than the execution of the primary functionality!

Found Output

Not Found Output

Load Primary Cache
from Database

Lookup Key in
Primary Cache

Found?
No

Yes

Figure 7-18

Figure 7-19

 If during development and testing you want to emulate a long - running query, use the TSQL waitfor
statement in the query in the following manner. Remember to remove the Data Viewer first though,
because it will block synchronous execution of the pipeline.

waitfor delay ‘ 00:00:05 9’ ; - - Wait 5 seconds before returning any rows
select CustomerID, AccountNumber
from Sales.Customer;

 After fetching all the rows from the specified source, the Lookup Component caches them in memory in
a special hash structure. The package then continues execution; as each input row enters the Lookup
Component, the specified key values are compared to the in - memory hash values, and, if a match is
found, the specified return values are added to the output stream.

 No - Cache Mode
 So what happens if the reference table (the Customer table in this case) is too large to cache all at once in
the system ’ s memory? In that case we have several options available; we can choose to cache nothing, or
we can choose to cache only some of the data. Let ’ s explore the first option: no - cache mode.

c07.indd 255c07.indd 255 8/28/08 12:10:40 PM8/28/08 12:10:40 PM

Chapter 7: Joining Data

256

 In no - cache mode the Lookup Component is configured almost exactly the same; the main difference is
that at execution time the reference table is not loaded into the hash structure. Instead, as each input row
flows through the Lookup Component, the component sends a request to the reference table in the
database server to ask for a match. As you would expect, this can have a high performance overhead on
the system, so use this mode with care.

 Depending on the size of the reference data, this mode is usually the slowest, though it scales to the
largest number of reference rows. It is also useful for systems where the reference data is highly volatile,
where any form of caching would render the results stale and erroneous.

 Figure 7 - 20 illustrates the decision tree that the component uses during runtime. Once again, the
diagram assumes that separate outputs are configured for found and not - found rows, though
the algorithm would be the same if all rows were sent to a single output.

Found Output

Not Found Output

Start (Runtime)

Found?Lookup Key
in Database

No

Yes

Figure 7-20

 Here are the steps to build a package that uses no - cache mode:

 1. Instead of building a brand new package to try out the no - cache mode, use the package you
built in the previous section (“ Full-Cache Mode ”). Open the editor for the Lookup Component
and on the first tab (General), choose the No-Cache option. In this mode you also have the
ability to customize (optimize) the query that SSIS will submit to the relational engine. To do
this, click the Advanced tab and check the Modify the SQL Statement checkbox. In this case the
auto - generated statement is close enough to optimal, so we won ’ t touch it. (If you have any
problems reconfiguring the Lookup component, then delete the component, drop a new Lookup
on the design surface, and reconnect and configure it from scratch.)

 2. Execute the package and you should see that it takes slightly longer to execute than before, but
the results should be the same.

 The tradeoff you make between the caching modes is mostly to do with performance versus resource
utilization. Full - cache mode can potentially use a lot of memory to hold the reference rows in memory,
but it is usually the fastest because lookup operations do not require a trip to the database. No - cache
mode, on the other hand, requires next to no memory, but is slower because it requires a database call for
every lookup. This is not a bad thing; your reference table may be volatile (the data may be changing
often) and so you may want to use no - cache mode to make sure you always have the latest version of
each row.

c07.indd 256c07.indd 256 8/28/08 12:10:41 PM8/28/08 12:10:41 PM

Chapter 7: Joining Data

257

 Next we will look at partial - cache mode, which offers you the benefits of both full - cache and no - cache
modes.

 Partial - Cache Mode
 The partial - cache mode gives you a middle ground between the no - cache and full - cache options. In this
mode the component only caches the most - recently used data within the memory boundaries specified.
As soon as the cache grows too big, the least - used cache data is thrown away.

 When the package starts then, much like the no - cache mode, no data is preloaded into the Lookup cache.
As each input row enters the component, it uses the specified key(s) to attempt to find a matching record
in the reference table using the specified query. If a match is found, both the key and lookup values are
added to the local cache on a just-in-time basis. If that same key enters the Lookup Component again, it
can retrieve the matching value from the local cache instead of the reference table, thereby saving the
expense and time incurred of re - querying the database.

 For example, in our scenario the input stream may contain a CustomerID of 123. The first time the
component sees this value, it goes to the database and tries to find it using the specified query. If it finds
the value, it retrieves the AccountNumber and then adds the CustomerID/AccountNumber combination
to its local cache. If Customer 123 comes through again later, the component will retrieve the
AccountNumber directly from the local cache instead of going to the database.

 If, however, the key is not found in the local cache, the component will check the database to see if it
exists there. Note that the key may not be in the local cache for several reasons; maybe it is the first time
it was seen, maybe it was previously in the local cache but was evicted due to memory pressure, or
finally, it could have been seen before but was also not found in the database.

 For example, if CustomerID 456 enters the component, it will check the local cache for the value and,
assuming it is not found, it will then check the database. Assuming it finds it in the database, it will add
456 to its local cache. The next time CustomerID 456 enters the component, it can retrieve the value
directly from its local cache without going to the database. However, it could also be the case that
memory pressure caused this key/value to be dropped from the local cache, in which case the
component will incur another database call.

 If CustomerID 789 is not found in the local cache, and it is also not subsequently found in the
reference table, the component will treat the row as a non - match, and will send it down the output
you have chosen for non - matched rows (typically the no - match or error output). Every time that
CustomerID 789 enters the component it will go through these same set of operations. If you have a
high degree of expected misses in your Lookup scenario, this latter behavior — though proper and
expected — can be a cause of long execution times because database calls are expensive relative to a
local cache check.

 The partial - cache mode provides another caching feature called the miss cache. If you use the partial -
 cache and miss - cache options together, you can get further performance gains. You can request that the
component remembers values that it did not previously find in the reference table and thus will not

c07.indd 257c07.indd 257 8/28/08 12:10:41 PM8/28/08 12:10:41 PM

Chapter 7: Joining Data

258

incur the expense of looking for them again. This feature goes a long way to solving the performance
issues discussed in the previous paragraph, because ideally every key is looked for once — and only
once — in the reference table. The component remembers keys it did not find before and does not
attempt to find them again.

 To configure this mode, follow these steps (refer to Figure 7 - 21):

 1. Open the Lookup editor, and in the General tab select the Partial Cache option. In the Advanced
tab specify the upper memory boundaries for the cache and edit the SQL statement as necessary.
Note that both 32 - bit and 64 - bit boundaries are available because the package may be built and
tested on a 32 - bit platform but deployed to a 64 - bit platform, which has more memory.
Providing both options makes it simple to configure the component ’ s behavior on the different
platforms.

 2. If you want to use the miss - cache feature, configure what percentage of the total cache memory
you want to use for this secondary cache (say, 25%).

Figure 7-21

 Figure 7 - 22 is a decision tree that demonstrates how the Lookup Component operates at runtime when
using the partial - cache and miss - cache options. Note that some of the steps are conceptual, and in reality,
are implemented using a more optimal design. As per the decision trees shown for the other modes, this
illustration assumes separate outputs are used for the found and not - found rows.

c07.indd 258c07.indd 258 8/28/08 12:10:42 PM8/28/08 12:10:42 PM

Chapter 7: Joining Data

259

 Multiple Outputs
 You now have the Lookup Component working, and you have investigated different ways of optimizing
its performance while using fewer or more resources. But you may not have seen how to utilize some of
the other features in the component, such as the different outputs that are available.

 Continue using the same package you built in the previous sections:

 1. Reset the Lookup Component so that it works in full - cache mode. It so happens that our data is
clean and thus every row finds a match, but we can emulate rows not being found by playing
quick and dirty with the Lookup query string. This is a useful trick to use at design time in order
to test the robustness and behavior of your Lookup Components. Change the query statement in
the Lookup Component as follows:

select CustomerID, AccountNumber
from Sales.Customer
where CustomerID % 7 < > 0; --Remove 1/7 of the rows

Lookup Key
in Database

Found Output

Start (Runtime)

Add Key to
Miss Cache

Add Key/Value to
Hit Cache

Lookup Key in
Hit Cache

Lookup Key in
Miss Cache

Using Partial-
Cache mode?

Use Miss
Cache?

Found?

Found?Found?

Not Found Output

No

No

No

No

No

Yes

Yes

Yes

Yes
Yes

Figure 7-22

c07.indd 259c07.indd 259 8/28/08 12:10:42 PM8/28/08 12:10:42 PM

Chapter 7: Joining Data

260

 2. Run the package again, and this time you should see that it fails to execute fully because the
cache contains 1/7 th fewer rows than before, so some of the incoming keys will not find a
match, as shown in Figure 7 - 23 . Because the default error behavior of the component is to fail
on any non - match or error condition such as truncation, the Lookup halts as expected.

Figure 7-23

 Try some of the other output options. Open the Lookup editor and on the drop - down listbox in
the General tab choose how you want the Lookup Component to behave when it does not man-
age to find a matching join entry:

❑ Fail Component should already be selected. This is the default behavior, which will cause
the component to raise an exception and halt execution if a non - matching row is found or a
row causes an error such as a data truncation.

❑ Ignore Failure sends any non - matched rows as well as rows that cause errors down
the same output as the matched rows, but the lookup values (in this case AccountNumber)
will be set to null. You should be able to see this in the Data Viewer Grid; several of the
AccountNumbers will have null values.

❑ Redirect Rows to Error Output is provided for backwards compatibility with SQL Server
2005 and causes the component to send both non - matched and error - causing rows down
the same error (red) output.

❑ Redirect Rows to No Match Output causes errors to flow down the error (red) output, and
no - match rows to flow down the no - match output.

 3. Choose Ignore Failure and execute the package. The results should look like Figure 7 - 24 . You
can see that the number of incoming rows on the Lookup Component matches the number of
rows coming out of its match output, even though 1/7 th of the rows were not actually matched.
This is because the rows failed to find a match, but because you configured the Ignore Failure
option, the component did not stop execution.

c07.indd 260c07.indd 260 8/28/08 12:10:42 PM8/28/08 12:10:42 PM

Chapter 7: Joining Data

261

 4. Open up the Lookup Component and this time select “ Redirect rows to error output. ” In order
to make this option work you will need a second trash destination on the error output of the
Lookup Component as shown in Figure 7 - 25 . When you execute the package using this mode,
the found rows will be sent down the match output, and unlike the previous modes, not - found
rows will not be ignored or cause the component to fail but will instead be sent down the error
output.

Figure 7-24

Figure 7-25

 5. Finally, test the “ Redirect rows to no match output ” mode. You will need a total of three trash
destinations for this to work as shown in Figure 7 - 26 .

c07.indd 261c07.indd 261 8/28/08 12:10:43 PM8/28/08 12:10:43 PM

Chapter 7: Joining Data

262

 In all cases, add Data Viewer Grids to all the outputs, execute the package, and have a look at the
results. The outputs should not contain any errors such as truncations, though there should be many
non - matched rows.

 So how exactly are these outputs useful; what can we do with them to make our packages more robust?
In most cases the answer is that the errors or non - matched rows can be piped off to a different area of the
package where the values can be logged or fixed as per the business requirements. For example, one
common solution is for all missing rows to be tagged with an Unknown member value. In our scenario
all non - matched rows might have their AccountNumber set to 0000. These fixed values are then joined
back into the main Data Flow and treated the same from there on as the rows that did find a match. Let ’ s
configure our package to do this:

 1. Refer to Figure 7 - 27 . Open the Lookup editor and on the General tab choose to “ Redirect rows to
no match output ” option. Click the Error Output tab and configure the AccountNumber column
to have the value Fail Component under the Truncation column. This combination of settings
means that we want a no - match output, but we don ’ t want an error output; instead we will just
fail if we get any errors. In the real world you may want to have an error output that you can
use to log values to an error table, but for our scenario let ’ s keep it a little simpler.

Figure 7-27

Figure 7-26

c07.indd 262c07.indd 262 8/28/08 12:10:43 PM8/28/08 12:10:43 PM

Chapter 7: Joining Data

263

 2. Drop a Derived Column Component on the design surface and connect the no - match
output to it. Open up the Derived Column editor and add a new column in the grid called
AccountNumber that uses the following expression (see Chapter 6 for more details):

 (DT_STR,10,1252)”0000”

 The Derived Column Component dialog editor should now look something like Figure 7 - 28 .

 Close the Derived Column editor, and drop a Union All Component on the surface. Connect both the
matched output from the Lookup Component and the default output from the Derived Column into
the Union All Component. Connect the Union All Component to your trash destination and then
execute the package, as usual utilizing a Data Viewer Grid on the final output. The package and results
should look something like Figure 7 - 29 .

 The output should show AccountNumbers for most of the values, with 0000 being emitted for those keys
that are not present in the reference query (in our case because we artificially removed them).

Figure 7-28

Figure 7-29

c07.indd 263c07.indd 263 8/28/08 12:10:43 PM8/28/08 12:10:43 PM

Chapter 7: Joining Data

264

 Expressionable Properties
 If you ever build packages where the reference table you require is not known at design - time, this
feature will be useful for you. Instead of using a static query in the Lookup Component, you can use an
expression, which can dynamically construct the query string, or it could load the query string using
SSIS configurations.

 Figure 7 - 30 shows an example of using an expression within a Lookup Component. Expressions on Data
Flow Components can be accessed from the property page of the Data Flow Task itself. See Chapter 6 for
more details.

Figure 7-30

 Cascaded Lookup Operations
 Sometimes a single lookup operation may require several Lookup Components to get the job done.
This may sound counterintuitive at first, but by using multiple Lookup Components, you can achieve a
higher degree of performance without incurring the associated memory costs and processing times.

 Imagine you have a large list of products that ideally you would like to load into one Lookup. You
consider using full - cache mode; however, due to the sheer number of rows, you either run out of memory
when trying to load the cache, or the cache loading phase takes so long that it becomes impractical (for
instance, the package takes 15 minutes to execute, but 6 minutes of that time was spent just loading the
Lookup cache). So you consider no - cache but the expense of all those database calls makes the solution
too slow. Finally you consider partial - cache, but once again the expense of the initial database calls
(before the internal cache is populated with enough data to be useful) is too high.

 The solution to this problem is based on a critical assumption; the assumption being that there is a
subset of reference rows (in this case product rows) that are statistically likely to be found in most, if not
all data loads. For instance, if the business is a consumer goods chain, then there are likely to be a high
proportion of sales transactions for people who buy milk. Similarly, there will be many transactions
for sales of bread, cheese, beer, and baby diapers. On the contrary, there will be a relatively low number
of sales for expensive wines. Some of these effects may be seasonal — more suntan lotion sold in
summer, and more heaters sold in winter. This same assumption applies to other dimensions besides
product — for instance, a company specializing in direct sales may know historically which customers

c07.indd 264c07.indd 264 8/28/08 12:10:44 PM8/28/08 12:10:44 PM

Chapter 7: Joining Data

265

(or customer segments or loyalty members) have responded to specific campaigns. A bank might know
which accounts (or account types) have the most activity at specific times of the month.

 This statistical property does not hold true for all datasets, but if it does, then you may derive great
benefit from this pattern. If it doesn ’ t you may still find this section useful in order to help you think
about the different ways of approaching a problem and solving it with SSIS.

 So how do you use this knowledge to build your solution? Using the consumer goods example, if you
know that it is the middle of winter and you are not going to be selling much suntan lotion, then why
load the suntan products in the Lookup Component? Rather, load just the high - frequency items like
milk, bread, and cheese. Because you know you will see those items often, you want to put them in a
Lookup Component configured in full - cache mode. If your product table has, say, 1 million items, then
you could load the top 20% of them (in terms of frequency/popularity) into this first Lookup. That way
you don ’ t spend too much time loading the cache (because it is only 200,000 rows and not 1,000,000), and
by the same reasoning, you don ’ t use as much memory.

 Of course in any statistical approach there will always be outliers — for instance, in the previous
example suntan lotion will still be sold in winter to people going on holiday to sunnier places. So if any
lookups fail on the first full - cache lookup, you need a second Lookup that operates in partial - cache
mode to pick up the strays. The second Lookup would be configured in partial - cache mode (as detailed
in the partial cache section earlier in this chapter), which means it would make database calls in the
event that the item was not found in its dynamically growing internal cache. The first Lookup ’ s not -
 found output would be connected to the second Lookup ’ s input, and both of the Lookups would have
their found outputs combined using a Union All Transform in order to send all the matches downstream.
Figure 7 - 31 shows what such a package might look like.

Figure 7-31

c07.indd 265c07.indd 265 8/28/08 12:10:45 PM8/28/08 12:10:45 PM

Chapter 7: Joining Data

266

 The benefit of this approach is that at the expense of a little more development time you now have a
system that performs efficiently for the most common lookups, and fails over to a slower mode for those
items that are not so common. That means that the lookup operation will be extremely efficient for most
of your data, which typically results in an overall decrease in processing time.

 In other words, you have used the Pareto principle (80/20 rule) to improve the solution. The first
(full - cache) lookup stores 20% of the reference (in this case product) rows and hopefully succeeds in
answering 80% of the lookup requests. For the 20% of lookups that fail, they are redirected to — and
serviced by — the partial - cache lookup, which operates against the other 80% of data. Because you can
constrain the size of the partial cache, you can ensure you don ’ t run into any memory limitations — at the
extreme you could even use a no - cache Lookup instead of, or in addition to, the partial - cache Lookup.

 The final piece to this puzzle is how you identify up - front which items occur the most frequently in your
domain. If the business does not already keep track of this information, you can derive it by collecting
statistics within your packages and saving the results to a temporary location. For instance, each time
you load your sales data, you could aggregate the number of sales for each item and write the results to
a new table you have created for that purpose. The next time you load the product Lookup Component,
you join the full product table to the statistics table and only return rows where the aggregate count is
above a certain threshold. You can also use the Data Mining functionality in SQL Server to derive this
information, though the details of that are beyond the scope of this chapter.

 Cache Connection Manager and Transform
 The Cache Connection Manager (CCM) and Cache Transform allow you to load the Lookup cache from
any source. The Cache Connection Manager is the more critical of the two — it holds a reference to the
internal memory cache and can both read and write the cache to a disk - based file. In fact the Lookup
Component internally uses the CCM as its caching mechanism.

 Like other Connection Managers in SSIS, the CCM is instantiated in the Connection Managers pane of
the package design surface. You can also create new CCMs from the Cache Transform editor and Lookup
Transform editor. At design time the CCM contains no data, so at runtime you need to populate it. You
can do this in one of two ways:

 1. You can create a separate Data Flow Task to extract data from any source and load the data into
a Cache Transform as shown in Figure 7 - 32 . You then configure the Cache Transform to write
the data to the CCM. Optionally, you can configure the same CCM to write the data to a cache
file (usually with the extension .caw) on disk. When you execute the package the Source
Component will send the rows down the pipeline into the input of the Cache Transform. The
Cache Transform will call the CCM and the CCM will load the data into a local memory cache. If
configured, the CCM will also save the cache to disk so you can use it again later. This method
gives you the ability to create persisted caches that you can share with other users, solutions,
and packages.

 2. Alternatively, you can open up the CCM editor and directly specify the filename of an existing
cache file (.caw file). This option requires that you (or someone else) already created a cache file
for you to reuse. At execution time the CCM loads the cache directly from disk and populates its
internal memory structures.

c07.indd 266c07.indd 266 8/28/08 12:10:45 PM8/28/08 12:10:45 PM

Chapter 7: Joining Data

267

 When you configure a CCM, it allows you to specify which columns of the input dataset will be used as
index fields, and which columns will be used as reference fields. This is a necessary step — the CCM
needs to know up - front which columns you will be joining on, so that it can create internal index
structures to optimize the process. See Figure 7 - 33 .

Figure 7-32

Figure 7-33

 Whichever way you created the CCM, when you execute the package, the CCM will contain an
in - memory representation of the data you specified. That means that the cache is now immediately
available for use by the Lookup Component. Note that the Lookup Component is the only component
that uses the caching aspects of the CCM; however, the Raw File Source can also read .caw files, which
can be useful for debugging.

 If you are using the Lookup Component in full - cache mode, you can load the cache using the CCM
(instead of specifying a SQL query as described earlier in this chapter). To use the CCM option, open up
the Lookup Component and select Full Cache and Cache Connection Manager in the general pane of the

c07.indd 267c07.indd 267 8/28/08 12:10:45 PM8/28/08 12:10:45 PM

Chapter 7: Joining Data

268

editor as shown in Figure 7 - 34 . Then you can either select an existing CCM, or you can create a new one.
You can now continue configuring the Lookup Component in the same way you would if you had
used a SQL query. The only difference is that in the Columns tab, you can only join on columns that you
had earlier specified as index columns in the CCM editor.

Figure 7-34

 There are several benefits that the CCM gives you. First of all you can reuse caches that you had
previously saved to file (in the same or a different package). For instance, you can load a CCM using the
customer table and then save the cache to a .caw file on disk. Every other package that needs to do a
lookup against customers can then use a Lookup Component configured in full - cache/CCM mode, with
the CCM pointing at the .caw file you created.

 Second, reading data from a .caw file is generally faster than reading from OLE DB, so your packages
should run faster. Of course, the .caw file is an offline copy of your source data, so it could get stale
and so should be reloaded every so often. Note that you can use an expression for the CCM filename,
which means that you can dynamically load specific files at runtime.

 Third, the CCM allows you to reuse caches across loop iterations. If you use a Lookup Component in
full - cache/OLE DB mode within an SSIS Loop Container, the cache will be reloaded on every iteration of
the loop. This may be your intended design, but if not, then it is difficult to mitigate the performance
overhead. However, if you used a Lookup configured in full - cache/CCM mode, the CCM would be
persistent across loop iterations and once again, your overall package performance should improve.

 Summary
 This chapter explored the different ways of joining data. Relational databases are highly efficient at
joining data within their own stores; however, you may not be fortunate enough to have all your data
living in the same database. SSIS allows you to perform these joins outside the database, though there
are many different options for doing so, each with different performance and resource - usage
characteristics.

c07.indd 268c07.indd 268 8/28/08 12:10:46 PM8/28/08 12:10:46 PM

Chapter 7: Joining Data

269

 The Merge Join Component can join large volumes of data without much memory impact; however, it
has certain requirements, such as sorted input columns that may be difficult to meet. The Lookup
Component is very flexible and supports multiple different modes of operation. The Cache Connection
Manager adds more flexibility to the Lookup by allowing caches to be explicitly shared across packages
and maintained across loop iterations. In large - scale deployments there are many different patterns that
can be used to optimize performance, one of them being cascaded Lookups.

 As with all SSIS solutions, there are no hard and fast rules that apply to all situations, so don ’ t be afraid
to experiment. If you run into any performance issues when trying to join data, try out a few of the other
options presented in this chapter, and hopefully you will find one that makes a difference.

c07.indd 269c07.indd 269 8/28/08 12:10:46 PM8/28/08 12:10:46 PM

 Creating an End - to - End
Package

 Now that you ’ ve learned about all the basic tasks and transforms in SSIS, you can jump into some
practical applications for SSIS. You ’ ll first start with a normal transformation of data from a series
of flat files into SQL Server. Next you ’ ll add some complexity to a process by archiving the files
automatically. The last example will show you how to make a package that handles basic errors
and makes the package more dynamic. As you run through the tutorials, remember to save your
package and to a lesser degree your project on a regular basis often to avoid any loss of work.

 Basic Transformation Tutorial
 As you can imagine, the primary reason that people use SSIS is to read the data from a source and
write it to a destination after it ’ s potentially transformed. This tutorial walks you through a
common scenario where you want to copy data from a Flat File Source to a SQL Server table
without massaging the data. Don ’ t worry; things will get much more complex later in your next
package, and the next package will build on this example.

 Start the tutorial by going online to the website for this book and downloading the sample extract
that contains zip code information about cities. The zip code extract was retrieved from public
record data from the 1990 census and has been filtered down to just Florida cities to save on your
download time. You ’ ll use this in the next tutorial as well, so it ’ s very important not to skip
this first tutorial. You can download the sample extract file called ZipCodeExtract.csv from this
book ’ s web page at www.wrox.com . Place the file into a directory called C:\Projects .

 Open Business Information Development Studio (BIDS) and select File New Project. Then
select Integration Services Project as your project type. Type ProSSISChapter8 as the project name,
and accept the rest of the defaults (as shown in Figure 8 - 1). You can place the project anywhere on
your computer and the default location will be under the My Documents\Visual Studio 2008\
Projects folder.

c08.indd 271c08.indd 271 8/28/08 12:11:26 PM8/28/08 12:11:26 PM

Chapter 8: Creating an End - to - End Package

272

 Figure 8 - 1

 The project will be created, and you ’ ll see a default Package.dtsx package file in the Solution Explorer.
Right - click the Package.dtsx file in the Solution Explorer and select Rename. Rename the file
 ZipLoad.dtsx . When you ’ re asked if you ’ d like to rename the package object as well, click Yes. If the
package isn ’ t opened yet, double - click it to open it in the Package Designer.

 Creating Connections
 Now that you have the package ready to begin, you need to create a shared connection that can be used
across multiple packages. In the Solution Explorer, right - click Data Sources and select New Data Source.
This opens the Data Source Wizard. Select the “ Create a Data Source based on an existing or new
connection ” radio box and click New, which opens the window to create a new Connection Manager.

 There are many ways you could have created the connection. For example, you could have created it as
you ’ re creating each source and destination. Once you ’ re more experienced with the tool, you ’ ll find
what works best for you.

 Your first Connection Manager for this example will be to SQL Server, so select Native OLE DB\
SQL Native Client 10.0. For the Server Name option, type the name of your SQL Server and enter the
authentication mode that is necessary for you to read and write to the database as shown in Figure 8 - 2 .
Lastly, select the AdventureWorks2008 database and click OK. If you don ’ t have the
AdventureWorks2008 database, you can pick any other user database on the server. You can optionally
test the connection. You will then have a Data Source in the Data Source box that should be selected.
Click Next and name the Data Source AdventureWorks2008.

c08.indd 272c08.indd 272 8/28/08 12:11:27 PM8/28/08 12:11:27 PM

Chapter 8: Creating an End - to - End Package

273

 You ’ ll use other connections as well, but for those, you ’ ll create connections that will be local to the
package only and not shared. With the ZipLoad package open, right - click in the Connection Managers
box below and select New Connection from Data Source. You should see the AdventureWorks2008 Data
Source you created earlier. Select that Data Source and click OK. Once the Connection Manager is
created, right - click it and rename it AdventureWorks2008 if it ’ s not already named that. This is, of
course, optional and just keeps us all on the same page.

Figure 8-2

 Next, create a Flat File connection and point it to the ZipCode.txt file in your C:\Projects directory.
Right - click in the Connection Manager area of Package Designer, and select New Flat File Connection.
Name the connection ZipCode Extract, and type any description you like. Point the File Name option to
 C:\Projects\ZipCodeExtract.csv or browse to the correct location by clicking Browse. If you can ’ t
find the file, ensure that the CSV filter is selected and that you ’ re not just looking for *.txt files, which
is the default.

 You need to set the Format drop - down box to Delimited with < none > set for the Text Qualifier option,
which are both the default options. The Text Qualifier option allows you to specify that character data is
wrapped in quotes or some type of qualifier. This helps you when you have a file that is delimited by
commas, and you also have commas inside some of the text data that you do not wish to separate by.
Setting a Text Qualifier will ignore those commas inside the text data. Lastly, check the “ Column names
in the first data row ” option. This states that your first row contains the column names for the file.

 You can go to the Columns page to view a preview of the first 101 rows and set the row and column
delimiters. The defaults are generally fine for this screen. The Row Delimiter option should be set to
{CR}{LF}, which means that a carriage return and line feed separates each row. The Column Delimiter
option should have carried over from the first page and will again be set to “ Comma {,} ” . In some
extracts that you may receive, the header record may be different from the data records, and the
configurations won ’ t be exactly the same as in the example.

c08.indd 273c08.indd 273 8/28/08 12:11:27 PM8/28/08 12:11:27 PM

Chapter 8: Creating an End - to - End Package

274

 The Advanced page is where you can specify the data types for each of the three columns. The default
for this type of data is a 50 - character string, which is excessive in this case. Click Suggest Types to comb
through the data and find the best data type fit for the data. This will open the Suggest Column Types
dialog box, where you should accept the default options and click OK.

 You can now see that the data types in the Advanced page have changed for each column. One column in
particular was incorrectly changed. When combing through the first 100 records, the Suggest Column
Types dialog box selected a “ four - byte signed integer [DT_I4] ” for the zip code column but your suggest
button may select a smaller data type based on the data. While this would work for the data extract you
have, it won ’ t work once you get to some states that have zip codes that begin with a zero in the northeast
United States. Change this column to a string by selecting string [DT_STR] from the DataType drop - down
box, and change the length of the column to 5 by changing the OutputColumnWidth option (shown in
Figure 8 - 3). The last configuration change is to change the TextQualified option to False and click OK.

Figure 8-3

 Creating the Tasks
 With the first few connections created, you can go ahead and create your first task. In this tutorial, you ’ ll
have only a single task, which will be the Data Flow Task. In the Toolbox, drag the Data Flow Task over
to the design pane in the Control Flow tab. Next, right - click the task and select Rename to rename the
task “ Load ZipCode Info. ”

c08.indd 274c08.indd 274 8/28/08 12:11:28 PM8/28/08 12:11:28 PM

Chapter 8: Creating an End - to - End Package

275

 Creating the Data Flow
 Now comes the more detailed portion of almost all of your packages and where you will generally
spend 70 percent of your time as an SSIS developer. Double - click the Data Flow Task to drill into the
Data Flow. This will automatically take you to the Data Flow tab. You ’ ll see that “ Load ZipCode Info ”
was transposed to the Data Flow Task drop - down box. If you had more than this one Data Flow Task,
then more would appear as options in the drop - down box.

 Drag and drop a Flat File Source onto the Data Flow design pane, and then rename it “ Florida ZipCode
File ” in the Properties window. All the rename instructions in these tutorials are optional, but they will
keep you on the same page and make your operational people happier because they ’ ll understand
what ’ s failing. Open the “ Florida ZipCode File ” Source and point it to the Connection Manager called
ZipCode Extract. It should automatically be pointing to the flat file Connection Manager, since there ’ s
only a single one to point to. Go to the Columns page and take notice of the columns that you ’ ll be
outputting to the path. You ’ ve now configured the source, and you can click OK.

 Next, drag and drop an OLE DB Destination onto the design pane and rename it AdventureWorks2008.
Select the “ Florida ZipCode File ” Source, then connect the path (green arrow) from the “ Florida ZipCode
File ” Source to the AdventureWorks2008. Double - click the destination and select AdventureWorks2008
from the Connection Manager drop - down box. For the “ Name of the Table or View ” option, click the
New button next to the drop - down box. This is how you can create a table inside BIDS without having to
go back to SQL Server Management Studio. The default DDL for creating the table will use the
destination ’ s name (AdventureWorks2008), and the data types may not be exactly what you ’ d like. This
DDL will create the necessary table and can be changed, as shown here:

CREATE TABLE [AdventureWorks2008] (
 [StateFIPCode] smallint,
 [ZipCode] varchar(5),
 [StateAbbr] varchar(2),
 [City] varchar(16),
 [Longitude] real,
 [Latitude] real,
 [Population] int,
 [AllocationPercentage] real
)

 Suppose this won ’ t do for your picky DBA, who is concerned about performance. In this case, you
should rename the table ZipCode (taking out the brackets) and change each column ’ s data type to a
more suitable size and type as shown with the ZipCode and StateAbbr columns:

CREATE TABLE [ZipCode] (
 [StateFIPCode] smallint,
 [ZipCode] char(5),
 [StateAbbr] char(2),
 [City] varchar(16),
 [Longitude] real,
 [Latitude] real,
 [Population] int,
 [AllocationPercentage] real
)

c08.indd 275c08.indd 275 8/28/08 12:11:28 PM8/28/08 12:11:28 PM

Chapter 8: Creating an End - to - End Package

276

 Once you have completed changing the DDL, click OK and the table name will be transposed into the
Table drop - down box. Finally, go to the Mapping page to ensure that the inputs are mapped to the
outputs correctly. SSIS attempts to map the columns based on name, and in this case, since you just
created the table with the same column names, it should be a direct match, as shown in Figure 8 - 4 .

 Once you ’ ve confirmed that the mappings look like Figure 8 - 4 , click OK.

 Completing the Package
 With the basic framework of the package now constructed, you need to add one more task into the
Control Flow tab to ensure that you can run this package multiple times. To do this, click the Control
Flow tab and drag an Execute SQL Task over to the design pane. Rename the task “ Purge ZipCode
Table. ” Double - click the task and select AdventureWorks2008 from the Connection drop - down box.
Finally, type the following query for the SQLStatement option (you can also click the ellipsis button and
enter the query):

TRUNCATE TABLE ZipCode

 Click OK to complete the task configuration. Connect the task as a parent to the “ Load ZipCode Info ”
Task. To do this, click the “ Purge ZipCode Table ” Task and drag the green arrow onto the “ Load
ZipCode Info ” Task.

Figure 8-4

c08.indd 276c08.indd 276 8/28/08 12:11:28 PM8/28/08 12:11:28 PM

Chapter 8: Creating an End - to - End Package

277

 Saving the Package
 Your first package is now complete. Go ahead and save the package by clicking the Save icon in the top
menu or by selecting File Save Selected Items. It ’ s important to note here that by clicking Save, you ’ re
saving the .DTSX file to the project, but you have not saved it to the server yet. To do that, you ’ ll have to
deploy the solution or package. We ’ ll cover that in the last section of this chapter. SSIS also does not
version control your packages independently. To version control your packages, you ’ ll need to integrate
a solution like Visual Source Safe into SSIS, as shown in Chapter 15 .

 Executing the Package
 With the package complete, you can attempt to execute it. Do this by selecting the green arrow in the
upper menu. You can also right - click the ZipCode.dtsx package file in the Solution Explorer and select
Execute Package. Get in the habit of executing your packages this way instead of clicking the green Go
button. The reason for this will be apparent in Chapter 22 when we build deployment utilities. The
package will take a few moments to validate, and then it will execute.

 You can see the progress under the Progress tab or in the Output window. In the Control Flow tab,
you ’ ll see the two tasks go from yellow to green (hopefully). If both turn green, then the package
execution was successful. If your package failed, you can look in the Output window to see why. The
Output window should be open by default, but in case it ’ s not, you can open it by clicking View Other
Windows Output. You can also see a graphical version of the Output window in the Progress tab
(it can also be called the Execution Results tab if your package is stopped).

 You can go to the Data Flow tab to see how many records were copied over. You can see the Data Flow
tab in Figure 8 - 5 . Notice the number of records displayed in the path as SSIS moves from transform to
transform.

Figure 8-5

c08.indd 277c08.indd 277 8/28/08 12:11:29 PM8/28/08 12:11:29 PM

Chapter 8: Creating an End - to - End Package

278

 By default, when you execute a package, you ’ ll be placed in debug mode. Changes you make in this
mode will not be made available until you run the package again. You will also not be able to add new
tasks or enter some editors. To break out of this mode, click the square Stop icon or click Debug Stop
Debugging.

 Typical Mainframe ETL with Data Scrubbing
 With the basic ETL out of the way, you will now jump into a more complex SSIS package that attempts to
scrub data. You can start this scenario by downloading the 010305c.dat public data file from the
website for this book into a directory called C:\Projects . This file contains public record data from the
Department of State of Florida.

 In this scenario, you run a credit card company that ’ s interested in marketing to newly formed domestic
corporations in Florida. You want to prepare a data extract each day for the marketing department to
perform a mail merge and perform a bulk mailing. Yes, your company is an old - fashioned, snail - mail
spammer. Luckily the Department of State for Florida has an interesting extract you can use to empower
your marketing department.

 The business goals of this package are as follows:

 Create a package that finds the files in the C:\Projects directory and loads the file into your
relational database.

 Archive the file after you load it to prevent it from being loaded twice.

 The package must self - heal. If a column is missing data, the data should be added automatically.

 If the package encounters an error in its attempt to self - heal, output the row to an error queue.

 You must audit the fact you loaded the file and how many rows you loaded.

 Start a new package in your existing ProSSISChapter8 BIDS project from the first tutorial. Right - click the
project in the Solution Explorer and select Add New Item. From the New Item dialog box, choose
 “ New SSIS Package. ” This will create Package1.dtsx , or some numeric variation on that name. Rename
the file CorporationLoad.dtsx , and the package object should also be renamed. Double - click the
package to open it.

 Just like the last package you created, right - click in the Connection Managers area and select New
Connection from the Data Source. Then select the AdventureWorks2008 shared data connection. You
now have two packages using the same shared connection. If you were to change the password in the
shared connection, it would change the password for both packages next time you owned them.

 Next, create a new Flat File Connection Manager just as you did in the last tutorial. When the
configuration screen opens, call the connection “ Corporation Extract ” in the General page. Type any
description you ’ d like. For this Connection Manager, you ’ re going to configure the file slightly

❑

❑

❑

❑

❑

c08.indd 278c08.indd 278 8/28/08 12:11:29 PM8/28/08 12:11:29 PM

Chapter 8: Creating an End - to - End Package

279

differently. Click Browse and point to the C:\Projects\010305c.dat file (keep in mind that the
default file filter is *.txt so you may have to type *.* in order to see the file). You should also change the
Text Qualifier option to a single double - quote (“). Check the “ Column names in the first data row ”
option. The final configuration should resemble Figure 8 - 6 . Go to the Columns page to confirm that the
column delimiter is Comma Delimited.

Figure 8-6

 Next, go to the Advanced tab. By default, each of the columns are set to a 50 - character [DT_STR] column.
This will cause issues though with this file, because there are several columns that contain more than
100 characters of data and would cause you to receive a truncation error. Finally, you ’ ll want to change
the AddressLine1 and AddressLine2 columns to String [DT_STR] that is 150 characters wide, as shown
in Figure 8 - 7 . After you ’ ve properly set these two columns, click OK to save the Connection Manager.

c08.indd 279c08.indd 279 8/28/08 12:11:29 PM8/28/08 12:11:29 PM

Chapter 8: Creating an End - to - End Package

280

 Creating the Data Flow
 With the mundane work of creating the connections now out of the way, you can go ahead and create the
fun transformation. As you did in the last package, you must first create a Data Flow Task by dragging it
from the Toolbox. Name this task “ Load Corporate Data. ” Double - click the task to go to the Data Flow tab.

 Drag and drop a Flat File Source onto the design pane and rename it “ Uncleansed Corporate Data. ”
Double - click the source and select Corporation Extract as your Connection Manager that you ’ ll be using.
Click OK to close the screen. You ’ ll add the destination and transformation in a moment after the
scenario is expanded a bit.

 Handling Dirty Data
 Before you go deeper into this scenario, you should take a time - out to look more closely at this data. As
you were creating the connection, a very observant person (I did not notice this until it was too late) may
have noticed that some of the important data that you ’ ll need is missing. For example, the city and state
are missing from some of the records.

 To fix this for the marketing department, you ’ ll use some of the transforms that were discussed in the
last few chapters to send the good records down one path and the bad records down a different path.
You will then attempt to cleanse the bad records and then send those back through the main path. There
may be some records you can ’ t cleanse (such as corporations with foreign postal codes) that you ’ ll just
have to write to an error log and deal with at a later date.

Figure 8-7

c08.indd 280c08.indd 280 8/28/08 12:11:30 PM8/28/08 12:11:30 PM

Chapter 8: Creating an End - to - End Package

281

 First, standardize the postal code to a five - digit format. Currently, some have five digits and some have
the full 10 - digit zip code with a dash (five digits, a dash, and four more digits). Some are nine - digit zip
codes without the dash. To standardize the zip code, you use the Derived Column transform. Drag the
transform over from the Toolbox and rename it “ Standardize Zip Code. ”

 Connect the source to the transformation and double - click the transform to configure it. Expand the
Columns tree in the upper - left corner, find [ZipCode], and drag it onto Expression column in the grid
below. This will pre - fill some of the information for you in the derived columns grid area. You now need
to create an expression that will take the various zip code formats in the [ZipCode] output column and
output only the first five characters. One way of doing this is with the SUBSTRING function. If you
choose to solve the business problem with that method, the code would look like this:

SUBSTRING([ZipCode],1,5)

 This code should be typed into the Expression column in the grid. Next, select that the derived column
will replace the existing ZipCode output by selecting that option from the Derived Column drop - down
box. You can see what the options should resemble in Figure 8 - 8 . Once you ’ ve completed the
transformation, click OK.

Figure 8-8

 The Conditional Split Transformation
 Now that you ’ ve standardized the data slightly, drag and drop the Conditional Split Transformation
onto the design pane and connect the green arrow from the Derived Column Transform called
 “ Standardize Zip Code ” to the Conditional Split. Rename the transform “ Find Bad Records. ” The
Conditional Split Transformation will enable you to push certain bad records into a data - cleansing
process.

 To cleanse the data that has no city or state, you ’ ll write a condition that says that any row that is missing
a city or state will be moved to a cleansing path in the Data Flow. Double - click the Conditional Split
Transform after you have connected it from the Derived Column Transform to edit the transformation.

c08.indd 281c08.indd 281 8/28/08 12:11:30 PM8/28/08 12:11:30 PM

Chapter 8: Creating an End - to - End Package

282

Create a condition called “ Missing State or City ” by typing its name in the Output Name column. You
will now need to write an expression that looks for empty records. One method of doing this is to use the
 LTRIM function. The two vertical bars (|) in the following code are the same as a logical OR in your code.
Two & operators would represent a logical AND condition. You can read much more about the expression
language in Chapter 6 . The following code will check for a blank Column 6 or Column 7:

LTRIM([State]) == “” || LTRIM([City]) == “”

 The last thing you ’ ll need to do is give a name to the default output if the coded condition is not met.
Call that output “ Good Data, ” as shown in Figure 8 - 9 . The default output is the name of the output that
will contain the data that did not meet your conditions. Click OK to close the editor.

Figure 8-9

 If you have multiple cases, always place conditions that you feel will capture most of the records at the
top of the list because the list is read top to bottom and you don ’ t want to evaluate records more times
than is needed.

 The Lookup Transformation
 Next, drag and drop the Lookup Transformation onto the design pane. When you connect to it from
the Conditional Split Transformation, you ’ ll see the Input Output Selection dialog box (shown in
Figure 8 - 10). Select “ Missing State or City ” and click OK. This will send any bad records to the Lookup
Transformation from the Conditional Split. Rename the Lookup Transformation “ Fix Bad Records. ”

c08.indd 282c08.indd 282 8/28/08 12:11:30 PM8/28/08 12:11:30 PM

Chapter 8: Creating an End - to - End Package

283

 The Lookup Transformation allows you to map a city and state to the rows that are missing that
information by looking the record up against the ZipCode table you loaded earlier. Open up the
transformation editor for the Lookup Transform, and in the General page, ensure that the Full Cache
property is set, and that you have the OLE DB Connection Manager property set for the Connection
Type. Change the “ No Matching Entries ” drop - down box to “ Redirect rows to no match output ” as
shown in Figure 8 - 11 .

Figure 8-10

Figure 8-11

 In the Connection page, select AdventureWorks2008 as the Connection Manager that contains your
Lookup table. Select ZipCode from the Use Table or View drop - down box. Next, go to the Columns page
and drag ZipCode from the left Available Input Columns to the right ZipCode column in the Available
Lookup Columns table. This will create an arrow between the two tables as shown in Figure 8 - 12 . Then,
check the StateAbbr and City columns that you wish to output. This will transfer their information to the

c08.indd 283c08.indd 283 8/28/08 12:11:31 PM8/28/08 12:11:31 PM

Chapter 8: Creating an End - to - End Package

284

bottom grid. Change the Add as New Column option to Replace for the given column name as well.
Select that you wish for these columns to replace the existing City and State. The final configuration
should look like Figure 8 - 12 . Click OK to exit the transform editor. There are many more options here,
but you should stick with the basics for the time being. With the configuration you just did, the
potentially blank or bad city and state columns will be populated from the ZipCode table.

Figure 8-12

 The Union All Transformation
Now that your dirty data is cleansed, go ahead and send the sanitized data back into the main data path
by using a Union All Transformation. Drag and drop the Union All Transform onto the design pane and
connect the “ Fix Bad Records ” Lookup Transform and the “ Find Bad Records ” Conditional Split
Transform onto the Union All Transform. When you drag the green line from the Lookup Transform,
you ’ ll be prompted to define which output you want to send to the Union All Transform. Select the
Lookup Match Output. There is nothing more to configure with the Union All Transformation.

 Finalizing
 The last step in the Data Flow is to send the data to an OLE DB Destination. Drag the OLE DB
Destination to the design pane and rename it “ Mail Merge Table. ” Connect the Union All Transform to
the destination. Double - click the destination and select AdventureWorks2008 from the Connection
Manager drop - down box. For the Use a Table or View option, select the New button next to the drop -
 down box. The default DDL for creating the table will use the destination ’ s name (AdventureWorks2008),
and the data types may not be exactly what you ’ d like, as shown here:

CREATE TABLE [Mail Merge Table] (
 [CorporateNumber] varchar(50),
 [CorporationName] varchar(50),
 [CorporateStatus] varchar(50),
 [FilingType] varchar(50),

c08.indd 284c08.indd 284 8/28/08 12:11:31 PM8/28/08 12:11:31 PM

Chapter 8: Creating an End - to - End Package

285

 [AddressLine1] varchar(150),
 [AddressLine2] varchar(150),
 [City] varchar(50),
 [State] varchar(50),
 [ZipCode] varchar(50),
 [Country] varchar(50),
 [FilingDate] varchar(50)
)

 Go ahead and change the schema to something a bit more useful. Change the table name and each
column to a more logical name like the following. By making these changes the destination may show
warnings about truncation after you click OK. These warnings can be ignored for the purpose of this
example.

CREATE TABLE MarketingCorporation(
 CorporateNumber varchar(12),
 CorporationName varchar(48),
 FilingStatus char(1),
 FilingType char(4),
 AddressLine1 varchar(150),
 AddressLine2 varchar(50),
 City varchar(28),
 State char(2),
 ZipCode varchar(10),
 Country char(2),
 FilingDate varchar(10) NULL
)

 You may have to map some of the columns this time because the column names are different. Go to the
Mappings page and map each column to its new name. Click OK to close the editor.

 Handling More Bad Data
 The unpolished package is essentially complete, but it has one fatal flaw that you ’ re about to discover.
Go ahead and execute the package. If you do this, you can see (shown in Figure 8 - 13), for example, that
in the 010305c.dat file, four records were sent to be cleansed by the Lookup Transformation. Of those,
only two had the potential to be cleansed. The other two records were for companies outside the country
and could not be located in the Lookup Transform that contained only Florida zip codes. These two
records were essentially lost because we specified in the Lookup Transform to redirect the rows that did
not match to a “ no match output ” (shown in Figure 8 - 11) but we have not set up a destination for the “ no
match output ” to go. You may remember that the business requirement was to only send marketing a list
of domestic addresses for their mail merge product. They didn ’ t care about the international addresses
because you didn ’ t have a business presence in those countries.

c08.indd 285c08.indd 285 8/28/08 12:11:32 PM8/28/08 12:11:32 PM

Chapter 8: Creating an End - to - End Package

286

Figure 8-13

Figure 8-14

 In our example, you want to send those two rows to an error queue for further investigation by a
business analyst, and to be cleaned out manually. To do this properly, you ’ ll audit each record that fails
the match and create an ErrorQueue table on the SQL Server. Drag over the Audit Transformation from
your Toolbox. Rename the Audit Transformation “ Add Auditing Info ” and connect the remaining green
arrow coming out of the “ Fix Bad Records ” Transform to the Audit Transform.

 With the Lookup problems now being handled, double - click the Audit Transform to configure that
transformation. Go ahead and add two additional columns to the output. Select Task Name and Package
Name from the drop - down boxes in the Audit Type column. This will transpose a default Output
Column Name. Take out the spaces in each output column name, as shown in Figure 8 - 14 , to make it
easier to query later. You ’ ll want to output this auditing information because you may have multiple
packages and tasks loading data into the corporation table, and you ’ ll want to track which package
actually originated the error. Click OK to close.

c08.indd 286c08.indd 286 8/28/08 12:11:32 PM8/28/08 12:11:32 PM

Chapter 8: Creating an End - to - End Package

287

 The last thing you need to do to polish up the package is to send the bad rows to the SQL Server
ErrorQueue table. Drag another OLE DB Destination over to the design pane and connect the Audit
Transformation to it. Rename the destination “ Error Queue. ” Double - click the destination and select
AdventureWorks2008 as the Connection Manager, and click New to add the ErrorQueue table. Name the
table “ ErrorQueue ” and follow a similar schema to the one shown here:

CREATE TABLE [ErrorQueue] (
 [CorporateNumber] varchar(50),
 [CorporationName] varchar(50),
 [CorporateStatus] varchar(50),
 [FilingType] varchar(50),
 [AddressLine1] varchar(150),
 [AddressLine2] varchar(150),
 [City] varchar(50),
 [StateAbbr] varchar(50),
 [ZipCode] varchar(50),
 [Country] varchar(50),
 [FilingDate] varchar(50),
 [TaskName] nvarchar(19),
 [PackageName] nvarchar(15)
)

 In error queue tables like the one just illustrated, be very generous when defining the schema. In other
words, you don ’ t want to create another transformation error trying to write into the error queue table.
Instead, you may want to define everything as a varchar column and give more space than is actually
needed.

 You may have to map some of the columns this time due to the column names being different. Go to the
Mappings page and map each column to its new name. Click OK to close the editor.

 You are now ready to re - execute the package. This time, in my data file, four records needed to be fixed,
and two of those were sent to the error queue. The final package would look something like the one
shown in Figure 8 - 15 when executed.

Figure 8-15

c08.indd 287c08.indd 287 8/28/08 12:11:32 PM8/28/08 12:11:32 PM

Chapter 8: Creating an End - to - End Package

288

 Looping and the Dynamic Task
 You ’ ve come a long way in this chapter to creating a self - healing package, but it ’ s not terribly reusable
yet. Your next task in the business requirements is to configure the package so that it reads a directory for
any .DAT file and performs the previous tasks to that collection of files. To simulate this example, go
ahead and copy the rest of the *.DAT files from the Wrox website from the file FloridaDOS.zip and
unzip them into C:\Projects .

 Looping
 Your first task is to loop through any set of .DAT files in the C:\Projects folder and load them
into your database just as you did with the single file. To meet this business requirement, you ’ ll need to
use the Foreach Loop Container. Go to the Control Flow tab in the same package that you ’ ve been
working in, and drag the container onto the design pane. Then, drag the “ Load Corporate Data ” Data
Flow Task onto the container. Rename the container “ Loop Through Files. ”

 Double - click the container to configure it. Go to the Collection page and select Foreach File Enumerator
from the Enumerator drop - down box. Next, specify that the folder will be C:\Projects and that the
files will have the *.DAT extension, as shown in Figure 8 - 16 .

Figure 8-16

c08.indd 288c08.indd 288 8/28/08 12:11:33 PM8/28/08 12:11:33 PM

Chapter 8: Creating an End - to - End Package

289

 You need to now map the variables to the results of the Foreach File Enumeration. Go to the Variable
Mappings page inside the Foreach Loop Editor and select < New Variable . . . > from the Variable column
drop - down box. This will open the Add Variable dialog box. For the container, you ’ ll remain at the
package level. You could assign the scope of the variable to the container, but you should keep things
simple for this example. Name the variable “ ExtractFileName ” in the Name option and click OK, leaving
the rest of the options at their default settings.

 You will then see the User::ExtractFileName variable in the Variable column and the number 0 in the Index
option. Since the Foreach File Enumerator option has only one column, you ’ ll only see an index of 0 for
this column. If you used a different enumerator option, you would have the ability to enter a number for
each column that was returned from the enumerator. Click OK to leave the Foreach Loop editor.

 Making the Package Dynamic
 Now with the loop created, you need to set the filename in the Corporation Extract Connection Manager
to be equal to the filename that the enumerator retrieves dynamically. To meet this business requirement,
right - click the Corporation Extract Connection Manager and select Properties (note that you ’ re clicking
on Properties, not on Edit as you ’ ve done in the past). In the Properties pane for this Connection
Manager, click the ellipsis button next to the Expressions option.

 By clicking the ellipsis button, you open the Property Expressions Editor. Select ConnectionString from
the Property drop - down box, as shown in Figure 8 - 17 . You can either type in @[User::ExtractFileName]
in the Expression column, or click the ellipsis button, and then drag and drop the variable into the
expression window. By typing @[User::ExtractFileName] , you are setting the filename in the Connection
Manager to be equal to the current value of the ExtractFileName variable that you set in the Foreach
Loop earlier. Click OK to exit the Property Expression Editor. You ’ ll now see in the Property window
that there is a single expression by clicking the plus sign.

Figure 8-17

c08.indd 289c08.indd 289 8/28/08 12:11:33 PM8/28/08 12:11:33 PM

Chapter 8: Creating an End - to - End Package

290

 As it stands right now, each time the loop finds a .DAT file in the C:\Projects directory, it will set the
 ExtractFileName variable to that path and filename. Then, the Connection Manager will use that
variable as its filename and run the Data Flow Task one time for each file it finds. You now have a
reusable package that can be run against any file in the format you designated earlier.

 The only missing technical solution to complete is the archiving of the files after you load them. Before
you begin solving that problem, manually create an archive directory under C:\Projects called
C:\Projects\Archive . Right - click in the Connection Manager window and select New File
Connection. Select Existing Folder for the Usage Type, and point the file to the C:\Projects\Archive
directory. Click OK and rename the newly created Connection Manager “ archive. ”

 Next, drag a File System Task into the “ Loop Through Files ” Container and connect the container to the
 “ Load Corporate Data ” Data Flow Task with an On Success constraint (the green arrow should be
attached to the File System Task). Rename that task “ Archive File. ”

 Double - click the “ Archive File ” File System Task to open the editor (shown in Figure 8 - 18). Set the
Operation drop - down box to Move File. Next, specify that the Destination Connection not be a variable
and that it be set to the archive Connection Manager that you just created. Also select True for the
OverwriteDestination option, which will overwrite the file if it already is in the archive folder.
The SourceConnection drop - down box should be set to the “ Corporation Extract ” Connection Manager
that you created a long time ago. Essentially, what you ’ re configuring is that the file that was pulled
earlier from the loop will be moved to whatever directory and filename is in the Archive File Connection
Manager. Click OK to close the editor.

Figure 8-18

c08.indd 290c08.indd 290 8/28/08 12:11:34 PM8/28/08 12:11:34 PM

Chapter 8: Creating an End - to - End Package

291

 Your complete package should now be ready to execute. Go ahead and save the package first before you
execute it. If you successfully implemented the solution, your Control Flow should look something like
Figure 8 - 19 when executed. When you execute the package, you ’ ll see the Control Flow items flash green
once for each .DAT file in the directory. For the package to run again, you must copy the files back into
the working directory out of the archive folder.

Figure 8-19

 Summary
 This chapter focused on driving home the basic SSIS transforms, tasks, and containers. You performed a
basic ETL procedure, and then expanded the ETL to self - heal when bad data arrived from your data
supplier. You then set the package to loop through a directory, find each .DAT file, and load it into the
database. The finale was archiving the file automatically after it was loaded. With this type of package
now complete, you could throw any .DAT file that matched the format you configured, and it will load
with reasonable certainty. In the upcoming chapter, you ’ ll dive into Script Task and Component
extensively.

c08.indd 291c08.indd 291 8/28/08 12:11:34 PM8/28/08 12:11:34 PM

 Scripting in SSIS

 With the introduction of C#, and the embedding of the new Visual Studio Tools for Applications
into SSIS, you can ’ t think of using the Script Task and Script Component as scripting anymore;
now it ’ s all - out programming. In the early days of DTS - based SQL Server ETL processing, the
ActiveX Script Task allowed you to embed programmatic logic and became the Swiss - Army knife
of package development. Typically, you ’ d code logic into these Script Tasks to control the
execution and logic flow within a package or to perform some specialized business validation.

 Scripting in SSIS has completely evolved from these simple ActiveX roots. You ’ ve still got a
Swiss - Army knife hidden in here, but there is a separation of functionality from previous uses of
ActiveX scripting into three new concepts: the Scripting Task, the Scripting Component, and
Expressions. Expressions are completely new to SSIS and replace the old methodology of
manipulating variables or properties within the package model. The other two Scripting
Components provide access into a new scripting development environment using Microsoft Visual
Studio Tools for Applications (VSTA). This change finally allows SSIS developers to script logic
into packages using Visual Basic 2008 or Visual C# 2008 .NET code.

 In this chapter, you learn all about these new scripting options and learn how to exploit them in
your package development tasks to control execution flow, perform custom transformations,
manage variables, and provide runtime feedback.

 Scripting?
 If you think of scripting as having to compile at runtime and unstructured or unmanaged coding
languages, then this is not scripting. If you think scripting means small bits of code in specialized
places to execute specific tasks, then yes, it ’ s scripting. The current scripting abilities have come
a long way from their predecessors in DTS, and even the earlier versions of SSIS. Whether you ’ re a
grizzled veteran of DTS, or if SSIS is your first exposure to SQL Server ETL development, it is
helpful to understand the historical landscape of the Scripting Components, and why there is now
a separation by functional usage. We ’ ll examine this and open up the new scripting IDE

c09.indd 293c09.indd 293 8/28/08 12:15:55 PM8/28/08 12:15:55 PM

Chapter 9: Scripting in SSIS

294

environment to walk though the mechanics of applying programmatic logic into these components —
 including how to add your own classes and compiled assemblies.

 The ActiveX Task in the past was useful no doubt, but it was primitive. The task allowed coding in
only the two ActiveX - based scripting languages, VB and J script, with no IntelliSense help. However, if
you look around at historical DTS package development (or if you ’ ve had to convert any to SSIS) you ’ ll
find some significant creative work going on in these tasks. Digging into what developers were doing,
the functional activities can be broken up into these categories:

 Retrieving or setting the value of package variables

 Retrieving or setting properties within the package

 Applying business logic to validate or format data streams

 Controlling workflow in a package

 Performing miscellaneous tasks not supported by existing package components

 Retrieving and setting the value of variables and package properties was so prevalent in DTS that the
SSIS team decided to create a completely different feature to allow this to be less of a programmatic task.
The expressions editor, in SSIS, allows package components to be easily altered by setting component
properties to an expression, or variable that represents an expression. This concept is a maturation and
replacement of the Dynamic Property Component that was a part of DTS development. See Chapter 6
for information on how to use expressions and variables; they are out of scope for this chapter.

 The Data Pump Task in DTS was limited. Delimited data or supported sources could be mapped, but
outside of these narrow constraints, you were on your own. Because of this, you can find DTS packages
that performed all the ETL steps written purely in ActiveX script. In ActiveX Script Tasks, you could
connect to Data Sources via ADO, parse and manipulate the data, and push it into destination sources. In
SSIS, this need was replaced and expanded with the Data Flow Container that allows this type of activity
to be visually represented. However, to perform the ad - hoc data messaging functionality, scripting is still
needed, so the Script Component was added. The primary role of the Scripting Component is to extend
the Data Flow capabilities and allow programmatic data manipulation within the context of the data
stream. However, it can do more as you ’ ll learn later.

 To continue to enable the numerous miscellaneous tasks that are needed in ETL development, the
ActiveX Script Task has been replaced with the Script Task, which can be used only in the Control Flow
design surface. In this task, all the various things that you could do with the ActiveX Task can be
replicated, but within the managed code framework of .NET.

 Today, you ’ ll also still find the ActiveX Script Task in the BIDS environment. However, this is only to
support backward compatibility and even then for only some of the more simple uses. You can get some
of the functionality that used to work in DTS, but not everything converts over. For one, setting package
properties, which was prevalent in DTS development, is no longer allowed in SSIS. If you are currently
using this task, we recommend you get it into one of these new Scripting Components as soon as
possible, since no one knows how long the ActiveX Task will be supported.

 The initial versions of SSIS Script Components stopped half - way down a path of complete replacement
of the older Visual Basic for Applications (VBA) implementation that had previously been used for
scripting to a .NET environment. One downside for many was that only the VB language was supported.

❑

❑

❑

❑

❑

c09.indd 294c09.indd 294 8/28/08 12:15:56 PM8/28/08 12:15:56 PM

Chapter 9: Scripting in SSIS

295

The latest versions of these Script Components host the new Visual Studio Tools for Applications (VSTA)
environment, which is the replacement for the Visual Basic for Applications (VBA) implementation.
VSTA is essentially a scaled - down version of Visual Studio that can be added to an application that
allows coding extensions using managed code and .NET languages. Even though SSIS packages are built
inside of VS, when you are in the context of a Script Task or Component, you are actually coding in the
VSTA environment that is, in fact a mini - project within the package. The new VSTA IDE provides
IntelliSense, full edit - and - continue capabilities, as well as the ability to code in either VB or C#. The IDE
is available when you edit script and looks like Visual Studio. You can now even access some of the .NET
assemblies and even use web references. Earlier versions of SSIS required the creation of a proxy class to
use a Web service.

 Getting Star ted in SSIS Scripting
 The new Script Task and Script Component, combined with the addition of VSTA to the BIDS
environment, has really opened up the possibilities when it comes to script - based ETL development in
SSIS. However, you may find it confusing at first to know when to use which component and what
things can be done in each. Although two have the word “ script ” in the names, they have different
usages, and even coding tasks such as variable retrieval are different in each. You need to know when to
use which component and how to do similar tasks in each. First, to keep them all straight, here ’ s a matrix
to explain when to use each component:

 Component When to Use

 ActiveX Script Task Use only if you are in the middle of converting a DTS package to SSIS. This
component should not be used in new development.

 Script Task Use this task when you need to program logic that either controls package
execution or performs a task of retrieving or setting variables within a
package during runtime.

 Script Component Use this component when pumping data using the Data Flow Task. Here
you can apply programmatic logic to massage data in the pipeline.

 Expressions Use expressions to set task and component properties or variables during
runtime. See Chapter 6 for more detail.

 To get a good look at the scripting model, we ’ ll walk through a TextBox “ Hello World ” coding project in
SSIS. Although this is not a typical example of ETL programming, we ’ ll use this as a start to
understanding the scripting paradigm in SSIS with a basic Script Task. Then we ’ ll look at specific
applications of each Scripting Component.

c09.indd 295c09.indd 295 8/28/08 12:15:57 PM8/28/08 12:15:57 PM

Chapter 9: Scripting in SSIS

296

 Selecting the Scripting Language
 One of the new capabilities of SSIS using the VSTA environment is the addition of the C# scripting
language to the existing VB coding option. To see where you can make this choice, drop a Script Task
onto the Control Flow design surface. Right - click the Script Task and click Edit from the drop - down
menu. The first thing you ’ ll notice is the availability of the Microsoft Visual C# option in the
ScriptLanguage property of the task available in both the Script Task and Component. Figure 9 - 1 shows
these options in the Script Task Editor.

 Figure 9 - 1

 Once you click the Edit Script button, you ’ ll be locked into the script language that you chose and won ’ t
be able to change it without deleting and recreating the Script Task. This is because each Script
Component contains its own internal Visual Studio project in VB or C#. You can create separate Script
Tasks where each one uses a different language within a package. However, having Script Tasks in both
languages is not recommended because this makes maintenance of the package a more complex issue.
The developer maintaining the package would have to be competent in both languages.

c09.indd 296c09.indd 296 8/28/08 12:15:57 PM8/28/08 12:15:57 PM

Chapter 9: Scripting in SSIS

297

Figure 9-2

 Using the VSTA Scripting IDE
 To add programmatic code to a Script Task or Component, access its editor by right - clicking the
component and selecting the Edit option from the drop - down menu. While the Script Task and Script
Component editors look completely different, they both have a common way to access the development
IDE for scripting. In Figure 9 - 2 , notice the same Edit Script button that is in both editors.

 The button labeled Edit Script provides access into the scripting IDE. Once in the IDE, notice that it really
looks and feels just like Visual Studio. Figure 9 - 3 shows an example of how this IDE looks after opening
up the Script Task Component for the C# scripting language.

 The previous Visual Studio 2005 VBA implementation of the scripting IDE presented the coding IDE
like the Macro VBA environment in Excel. If you are still using this older environment, the same look
can be achieved by navigating to the View menu option and selecting the Project Explorer and Property
windows. Arrange them on the right side of the IDE to make the 2005 BIDS scripting IDE look almost
like the new Visual Studio work environment.

c09.indd 297c09.indd 297 8/28/08 12:15:57 PM8/28/08 12:15:57 PM

Chapter 9: Scripting in SSIS

298

Figure 9-3

 The code window on the left side of the IDE contains the code for the item selected in the Project
Explorer on the top - right window. The Project Explorer shows the structure for the project that is being
used within the Scripting Task. A complete .NET project is created for each Script Task or Component,
and is temporarily written to a project file on the local drive where it can be altered in the Visual Studio
IDE. This persistence of the project is the reason that once you pick a scripting language, and generate
code in the project within, you ’ ll be locked into that language for that Scripting Component. Notice in
Figure 9 - 3 that a project has been created with the namespace of ST_d3ff3cb0abd74a759o62ed451f92ef34.
The path to this temporary project can also be seen under the property Full Path for the ScriptMain
class shown in Figure 9 - 2 . However, you can ’ t open up this project directly, nor need you worry about
the project during deployment. These project files are extracted from stored DTS Package metadata
similar to the way the SQL CLR objects are stored as metadata in SQL Server. With the project created
and opened, it is ready for coding.

 Example: Hello World
 In the IDE, the Script Task only contains a class named ScriptMain . If you open a Script Component,
you ’ ll see more classes to support the component and the data buffer. We ’ ll discuss what these additional
classes do a little later in the chapter during the examination of the Script Component. Both components

c09.indd 298c09.indd 298 8/28/08 12:15:58 PM8/28/08 12:15:58 PM

Chapter 9: Scripting in SSIS

299

use a public class named ScriptMain , but the filename you see in the Project Explorer will be either
 ScriptMain or Main to host a public entry - point function. The function name is different for the Script
Task than the Script Component because the interfaces and purposes are different. In the entry - point
functions, Main() for the Script Task, you ’ ll either put all the code you want to execute, or you can call
into separately defined functions or classes either in or out of process. However, if you want to change
the entry - point function for some reason in the Script Task only, type the name of the entry - point
function in the property called EntryPoint on the Script page of the editor. (Alternatively, you could
change the name of the entry point at runtime using an expression.)

 In the VSTA co - generated class ScriptMain , you ’ ll also see a set of assembly references already added
to your project and namespaces set up in the class. Depending upon whether you chose VB or C# as
your scripting language, you ’ ll see either:

C#
Using System
Using System.Data
Using Microsoft.SqlServer.Dts.Runtime.VSTAProxy;
Using System.Windows.Forms;

Or:

VB
Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Runtime.VSTAProxy

 These assemblies are needed to provide base functionality as a jump start to your coding. The remainder
of the class includes VSTA co - generated methods for startup and shutdown operations, and finally the
entry - point Main() function shown here in both languages:

C#
public void Main()
{
 // TODO: Add your code here
 Dts.TaskResult = (int)ScriptResults.Success
}

VB
Public Sub Main()
 ‘
 ‘ Add your code here
 ‘
 Dts.TaskResult = ScriptResults.Success
End Sub

 This Main() function is a good example of one of the differences between the Script Task and the Script
Component. A Script Task must return a result to notify the runtime of whether the script completed
successfully or not. This result is that the Dts.TaskResult property is being set to indicate to the
package that the task completed successfully. The Script Component does not have to do this, since it
runs in the context of a data pump with many rows. There are other differences pertaining to each
component that we ’ ll discuss separately later in the chapter.

c09.indd 299c09.indd 299 8/28/08 12:15:58 PM8/28/08 12:15:58 PM

Chapter 9: Scripting in SSIS

300

 To get a message box to pop up with the phrase “ Hello, World! ” you need access to a class called
 MessageBox in a namespace called System.Windows.Forms . This namespace can either be called
directly by the complete name, or the namespace can be added after the Microsoft.SqlServer.Dts
.Runtime namespace to shorten the coding required in the class. Both of these methods are shown in the
following code to insert the MessageBox code into the Main() function:

C#
using System.Windows.Forms
. . .
MessageBox.Show(“Hello World!”);
Or
System.Windows.Forms.MessageBox.Show(“Hello World!”);

VB
Imports System.Windows.Forms
. . .
MessageBox.Show(“Hello World!”)
Or
System.Windows.Forms.MessageBox.Show(“Hello World!”)

 After you have added this code, get in the habit now of building the project when you are finished with
the coding. The Build option is directly on the menu when you are coding. Previous versions of SSIS
gave you the opportunity to run in precompile or compiled modes. SSIS now will automatically compile
your code prior to executing the package in the runtime. Compiling gives you an opportunity to see
what the errors are before the package finds them. Once the build is successful, close the IDE, the editor,
and right - click and execute the Script Task. A pop - up message box should appear with the words “ Hello
World! ” like Figure 9 - 4 .

Figure 9-4

 Adding Code and Classes
 Using modal message boxes is obviously not the type of typical coding we want to do in production SSIS
package development. Message boxes are synchronous and block until a click event is received, so they
can stop a production job dead in its tracks. However, this is a basic technique to demonstrate the
capabilities in the new scripting environments before getting into some of the details of passing values in
and out using variables. We also don ’ t want to always put the main blocks of code in the Main()
function. With just a little more work, we can get some code reuse from previously written code using
some cut - and - paste development techniques. At the very least, code can be structured in a less -
 procedural way. Consider a common task of generating a unique filename to give an archived file.

c09.indd 300c09.indd 300 8/28/08 12:15:58 PM8/28/08 12:15:58 PM

Chapter 9: Scripting in SSIS

301

Typically, the filename might be generated by appending a prefix and an extension to something variable
like a datetime value.

 These functions can be added within the ScriptMain class bodies to look like this:

C#
Public partial class ScriptMain
{
 . . .
 public void Main()
 {
 System.Windows.Forms.MessageBox.Show(GetFileName(“bankfile”, “txt”));
 Dts.TaskResult = (int)ScriptResults.Success;
 }

 public string GetFileName(string Prefix, string Extension)
 {
 return Prefix + DateTime.Now.ToString(“yyyyMMddhhmmss”) +
 “.” + Extension;
 }
}

VB
Partial Class ScriptMain
 . . .
 Public Sub Main()
 System.Windows.Forms.MessageBox.Show(GetFileName(“bankfile”, “txt”))
 Dts.TaskResult = ScriptResults.Success
 End Sub

 Public Function GetFileName(ByVal Prefix As String, _
 ByVal Extension As String) As String
 GetFileName = Prefix + DateTime.Now.ToString(“yyyyMMddhhmmss”) + _
 “.” + Extension
 End Function
End Class

 Instead of all the code residing in the Main() function, we can separate and organize SSIS scripting
using structured programming techniques. In this example, the GetFileName function builds the
filename and then returns the value in the message box, as shown in Figure 9 - 5 .

Figure 9-5

c09.indd 301c09.indd 301 8/28/08 12:15:59 PM8/28/08 12:15:59 PM

Chapter 9: Scripting in SSIS

302

 But copying code and pasting it into multiple Script Components is pretty cheesy. If you have
preexisting compiled code, shouldn ’ t you be able to reuse this code without finding the original source
for the copy - and - paste operation? You can, with some qualification.

 Using Managed Assemblies
 The capability to reuse code written in other languages is the hallmark of COM and its successor, .NET.
While you can only write SSIS scripts using Visual Basic.NET and C#, you can reuse assemblies that are part
of the .NET core assemblies or any assembly created using a .NET - compliant language, including C#, J#, and
even Delphi, but there are some qualifications. These are rather important so we ’ ll state them like this:

 For a managed assembly to be used in an Integration Service, you must install the assembly in
the Global Assembly Cache (GAC).

 Additionally, all dependent or referenced assemblies must also be registered in the GAC. This
implies that the assembly must be strongly named.

 For development purposes only, VSTA can use managed assemblies anywhere on the local
machine.

 If you think about this it makes sense, but within SSIS, it might seem confusing at first. On one hand, a
sub - project is created for the Script Component, but it is absorbed into the metadata of the package. In
this case, you don ’ t have to worry about deployment of individual script projects. However, when you
use an external assembly, it does not get absorbed into the package metadata and here you do have to
worry about deployment of the assembly. So where do you deploy the assembly you want to use? Since
DTS packages can be deployed within SQL Server, the most universal place to find the assembly would
be in the GAC.

 If you are using any of the standard .NET assemblies, they are already loaded and stored in the GAC and
the .NET Framework folders. As long as you are using the same framework for your development and
production locations, using standard .NET assemblies requires no additional work. To use a standard
.NET assembly in your script, you must reference it. To add a reference to a scripting project, you must
be in the VSTA environment for editing your script code — not the SSIS package itself. Right - click the
References Node in the Project Explorer, or go to the Project menu and select the Add Reference option.
The standard .NET Add Reference window will appear as shown in Figure 9 - 6 .

❑

❑

❑

Figure 9-6

c09.indd 302c09.indd 302 8/28/08 12:15:59 PM8/28/08 12:15:59 PM

Chapter 9: Scripting in SSIS

303

 Select the assemblies from the list that you wish to reference and click the OK button to add the
references to your project. Now you can use any objects located in the referenced assemblies by either
directly referencing the full assembly or by adding the namespaces to your ScriptMain classes for
shorter references. References can also be removed by right - clicking the reference in the References Node
of the Project Explorer. (The References Node is hidden in the VB project. Click the menu option
Project Show All Files to make this node visible.) Expand the References Node to see all the references
in your project. Right - click a reference and select the Remove option to remove it from the project.

 Example: Using Custom .NET Assemblies
 Although using standard .NET assemblies is interesting, being able to use already compiled .NET
assemblies really opens up the capabilities of your SSIS development. Using code already developed and
compiled means not having to copy - and - paste into each Script Task or Component and allows you to
reuse code already developed and tested. To show an example of how this works, you ’ ll create an external
custom .NET library that can validate a postal code and see how to integrate this simple validator into a
Script Task. (To do this, you ’ ll need the standard class library templates that are part of Visual Studio.
If you only installed BIDS, these templates are not installed by default.) You can also download the
precompiled versions of these classes as well as any code from this chapter at www.wrox.com .

 To start, open up a standard class library project in the language of your choice, and create a standard
utility class in the project that looks something like this:

C#
using System;
using System.Text.RegularExpressions;
namespace ssistestlib
{
 public static class DataUtilities
 {
 public static bool isValidUSPostalCode(string PostalCode)
 {
 return Regex.IsMatch(PostalCode, “^[0-9]{5}(-[0-9]{4})?$”);
 }
 }
}
VB
Imports System.Text.RegularExpressions

Public Class DataUtilities
 Public Shared Function isValidUSPostalCode
 (ByVal PostalCode As String) As Boolean
 isValidUSPostalCode = Regex.IsMatch(PostalCode,
 “^[0-9]{5}(-[0-9]{4})?$”)
 End Function
End Class

 Since you are creating projects for both languages, the projects (and assemblies) are named
 SSISUtilityLib_VB and SSISUtilityLib_Csharp . Notice the use of static or shared methods. This is
not required, but is useful because you are simulating the development of what could later be a utility
library loaded with many stateless data validation functions. A static or shared method allows the utility
functions to be called without instantiating the class for each evaluation.

c09.indd 303c09.indd 303 8/28/08 12:15:59 PM8/28/08 12:15:59 PM

Chapter 9: Scripting in SSIS

304

 Now sign the assembly by right - clicking the project to access the Properties menu option. In the Signing
tab, there is an option to select Sign the assembly, as shown in Figure 9 - 7 . Click New on the drop - down
and name the assembly to get a strong name key added to the assembly.

Figure 9-7

 In this example, the VB version of the SSISUtilityLib project is being signed. Now, the assembly can
be compiled by clicking the Build option in the Visual Studio menu and the in - process DLL will be built
with a strong name to allow it to be registered in the GAC.

 On the target development machine, go to the command - line prompt from the Visual Studio Tools menu
to register your assembly with a command like this:

C:\Program Files\Microsoft Visual Studio 9.0\VC > gacutil /I
c:\ssis\scripts\SSISUtilityLib_VB\SSISUtilityLib_VB\bin\debug\
SSISUtilityLib_VB.dll

 Note that you may have to run the command line as administrator or have the User Access Control
feature of Vista turned off to register the assembly.

 If you are running on a production machine, you ’ ll also need to copy the assembly into the appropriate
.NET Framework directory so that you can use the assembly in the Visual Studio IDE. Use the
Microsoft .NET Framework 2.0 Configuration wizard task to Manage the Assembly Cache. Select Add an
Assembly to the Assembly Cache to copy an assembly file into the global cache.

c09.indd 304c09.indd 304 8/28/08 12:16:00 PM8/28/08 12:16:00 PM

Chapter 9: Scripting in SSIS

305

 To use the compiled assembly in an SSIS package, open a new SSIS package and add a new Script Task
onto the Control Flow surface. Select the scripting language you wish and click Edit Script. You ’ ll need to
right - click the Project Explorer Node for references and find the reference for SSISUtilityLib_VB.dll
or SSISUtilityLib_CSharp.dll depending upon which one you built. (Remember that you may have
to use the menu option Project Show All Files in the VB projects to see the References Node.) If you ’ ve
registered the assembly in the GAC, you ’ ll be able to find it in the .NET tab. If you are in a development
environment, you can simply browse to the .dll to select.

 Add the namespace into the ScriptMain class. Then add these namespaces to the ScriptMain class:

C#
using SSISUtilityLib_CSharp;

VB
Imports SSISUtilityLib_VB
Imports System.Windows.Forms

 Note that the SSIS C# Script Task in the sample packages that you ’ ll see if you download the chapter
materials from www.wrox.com use the C# version of the utility library. However, this is not required. The
compiled .NET class libraries may be intermixed within the SSIS Script Task or Components regardless
of the scripting language you choose. All that is left is to code a call to the utility function into the
 Main() function like this:

C#
public void Main()
{
 string postalCode = “12345-1111”;
 string msg = string.Format(
 “Validating PostalCode {0}\nResult..{1}”, postalCode,
 DataUtilities.isValidUSPostalCode(postalCode));
 MessageBox.Show(msg);
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim postalCode As String = “12345-1111”
 Dim msg As String = String.Format(“Validating PostalCode {0}” +
 vbCrLf + “Result..{1}”, postalCode,
 DataUtilities.isValidUSPostalCode(postalCode))
 MessageBox.Show(msg)
 Dts.TaskResult = ScriptResults.Success
End Sub

 Compile the Script Task and execute it. The result should be a message box displaying a string to validate
the postal code 12345 - 1111. The postal code format is validated by the DataUtility function
 IsValidUSPostalCode . There was no need to copy the function in the script project. The logic of
validating the format of a U.S. Postal code is stored in the shared DataUtility function and can easily be
used in both Script Tasks and Components with minimal coding and maximum consistency. The only
downside to this is that there is now an external dependency in the SSIS package upon this assembly. If
the assembly changes version numbers, you ’ ll need to open and recompile all the script projects for each
SSIS package using this. Otherwise, you could get an error if you aren ’ t following backward compatibility

c09.indd 305c09.indd 305 8/28/08 12:16:00 PM8/28/08 12:16:00 PM

Chapter 9: Scripting in SSIS

306

guidelines to ensure that existing interfaces are not broken. If you have a set of well - tested business
functions that rarely change, using external assemblies may be a good idea for your SSIS development.

 Using the Script Task
 Now that you ’ ve gotten a good overview of the scripting environment in SSIS, it ’ s time to dig into one of
the Scripting Components and give it a spin. We used the Script Task heavily to demonstrate how the
SSIS scripting environment works with Visual Studio and during the execution of a package. Generally,
anything that you can script in the .NET managed environment that should run once per package or
code loop belongs in the Script Task. Script Tasks are extremely useful and end up being the general -
 purpose utility component similar to the role ActiveX Tasks performed for DTS package development.

 Configuring the Script Task Editor
 Earlier we looked at the Script Task Editor to point out that there are now two selections available for
the scripting language. Let ’ s look at that editor again and go over the other details. Drop a Script Task
on the Control Flow surface and display the editor you see in Figure 9 - 8 .

Figure 9-8

 Here are the four properties on the Script tab that you can use to configure the Script Task:

 ScriptLanguage: This property defines the .NET language that will be used for the script. As
demonstrated earlier, VB and C# are now both supported.

 EntryPoint: This is the name of the class that must contain a public Main() method that will be
called inside your script to begin execution.

❑

❑

c09.indd 306c09.indd 306 8/28/08 12:16:00 PM8/28/08 12:16:00 PM

Chapter 9: Scripting in SSIS

307

 ReadOnlyVariables: This property enumerates a case - sensitive, comma - separated list of SSIS
variables that you will allow explicit rights to be read by the Script Task.

 ReadWriteVariables: This property enumerates a case - sensitive, comma - separated list of SSIS
variables that you are allowing to be read from and written to by the Script Task.

 Missing from the first release of SSIS is a property that allowed the option to precompile script code into
binary code before execution. In the latest version of SSIS, all scripts are precompiled by default. This is
part of the performance improvements made to reduce the overhead of loading the language engine
when running a package.

 The second tab, labeled General, contains the properties for the task name and description. The latest
version of SSIS moves this tab down since it is not accessed as frequently as the Script tab.

 The final page available on the left of this dialog is the Expression tab. The Expression tab provides
access to the properties that can be set using an expression or expression - based variable. See Chapter 6
for how to use expressions and variables. Practically, changing the ScriptLanguage at runtime is not
really possible, nor desired. The most common property manipulated by an expression is the Disable
property that is used to bypass the task.

 Once the script language is set and the script accessed, a project file with a class named ScriptMain and
a default entry point named Main() is created. An example of the Main() function is provided here
without the supporting class:

 C#
 public void Main()
 {
 // TODO: Add your code here
 Dts.TaskResult = (int)ScriptResults.Success;
 }

 VB
 Public Sub Main()
 Dts.TaskResult = ScriptResults.Failure
 End Try

 The code provided automatically includes the statement to set the TaskResult of the Dts object to the
enumerated value for Success. The Script Task itself is a task in the collection of tasks for the package.
Setting the TaskResult property of the task sets the return value for the Script Task and tells the
package whether the end result was a success or failure.

 By now, you ’ ve probably noticed all the references to DTS. What is this object and what can you do with
it? We ’ ll answer this question in the next section, as you peel back the details on the DTS object.

 The Script Task Dts Object
 The Dts object is actually a property on your package that is an instance of the Microsoft.SqlServer
.Dts.Tasks.ScriptTask.ScriptObjectModel . The Dts object provides a window into the package
in which your script executes. While you can ’ t change properties of the DTS as it executes, the Dts object

❑

❑

c09.indd 307c09.indd 307 8/28/08 12:16:01 PM8/28/08 12:16:01 PM

Chapter 9: Scripting in SSIS

308

has seven properties and one method that allow you to interact with the package. The following is an
explanation of these members:

 Connections : A collection of Connection Managers defined in the package. You can use these
connections in your script to retrieve any extra data you may need.

 Events : A collection of events that are defined for the package. You can use this interface to fire
off these predefined events and any custom events.

 ExecutionValue : A read - write property that allows you to specify additional information
about your task ’ s execution using a user - defined object. This can be any information you want.

 TaskResult : This property allows you to return the Success or Failure status of your Script Task
to the package. This is the main way of communicating processing status or Controlling Flow in
your package. This property must be set before exiting your script.

 Transaction: Obtains the transaction associated with the container in which your script is
running.

 VariableDispenser: Gets the VariableDispenser object that you can use to retrieve
variables when using the Script Task .

 Variables : A collection of all the variables that are available to any script. This is used by
default in the Script Component.

 Log: This method allows you to write to any log providers that have been enabled.

 DTS developers are sometimes locked into the fact that the Script Task can no longer alter an executing
package, but in truth, between the additions of the expressions and the Dts object, you can do almost
everything you could want to with the executing package. The method is just different. In the next few
sections, we ’ ll go through some of the more common things that the Active Script Task can be employed
to accomplish.

 Accessing Variables in the Script Task
 Variables and expressions are an important feature of the SSIS roadmap. We aren ’ t talking about
scripting variables, but rather package variables that serve as intermediate communication mediums
between your Script Task and the rest of your package. As discussed in Chapter 6 , variables are used to
drive the runtime changes within a package by allowing properties to infer their values at runtime from
variables, which can be static or defined through the expression language.

 The common method of using variables is to send them into a Script Task as decision-making elements
or to drive downstream decisions by setting the value of the variable in the script based on some
business rules. The VariableDispenser object provides methods for locking variables for read - only or
read - write access and then retrieving them. Initially this was the standard way of accessing variables in
scripts. The reason for the explicit locking mechanism is to allow control in the Script Task to keep two
processes from competing for accessing and changing a variable.

 To retrieve a variable using the VariableDispenser object, you would have to deal with the
implementation details of locking semantics, and write code like the following:

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 308c09.indd 308 8/28/08 12:16:01 PM8/28/08 12:16:01 PM

Chapter 9: Scripting in SSIS

309

C#
Variables vars = null;
String myval = null;
Dts.VariableDispenser.LockForRead(“User::SomeStringVariable”)
Dts.VariableDispenser.GetVariables(ref vars)
Myval = vars[0].Value;
vars.Unlock(); //Needed to unlock the variables
System.Windows.Forms.MessageBox.Show(myval);

VB
Dim vars As Variables
Dim myval As String
Dts.VariableDispenser.LockForRead(“User::SomeStringVariable”)
Dts.VariableDispenser.GetVariables(vars)
myval = vars(0).Value
vars.Unlock() ‘Needed to unlock the variables
MsgBox(myval)

 The downside to this method is that it was easy to forget to unlock the variables in an efficient way and
as a result, a variable could be locked and rendered unavailable downstream in the package.

 However, this type of control is not always required. Sometimes you simply want the variables that you
are using in a Script Task to be locked when you are reading and writing, and not have to worry about
the locking implementation details. Luckily, a much easier abstraction was created to add a Variables
collection on the Dts object, and the ReadOnlyVariables and ReadWriteVariables properties for the
Script Task were introduced. The only constraint is that you have to define upfront which variables
going into the Script Task can be read and not written to, and which ones can be read and writable.

 The ReadOnlyVariables and ReadWriteVariables properties tell the Script Task which variables to
lock and how. The Variables collection in the Dts object then gets populated with these variables. The
code to retrieve a variable then becomes much simpler, and the complexities of locking are abstracted, so
you only have to worry about one line of code to read a variable:

C#
Dts.Variables[“User::SomeStringVariable”].Value;
or
Dts.Variables[0].Value;

VB
Dts.Variables(“User::SomeStringVariable”).Value
Or
Dts.Variables(0).Value

 Using the ordinal position of the variable in the Variables collection is the safest method if you are
unsure of how to name the variable in your script. Just remember that the variables are ordered from the
editor left to right, starting in the ReadOnlyVariables and then down to the ReadWriteVariables ,
also moving left to right. Now, if you choose to use the named variable, you are safer to use the fully
qualified variable name like User::SomeStringVariable . Attempting to read a variable from the
 Variables collection that hasn ’ t been specified in one of the variable properties of the task will throw an
exception. Likewise, attempting to write to a variable not included in the ReadWriteVariables

c09.indd 309c09.indd 309 8/28/08 12:16:01 PM8/28/08 12:16:01 PM

Chapter 9: Scripting in SSIS

310

property also throws an exception. The biggest frustration for new SSIS developers writing VB script is
dealing with this error message:

Error: 0xc0914054 at VB Script Task: Failed to lock variable
“SomestringVariable” for read access with error 0xc0910001 “The variable
cannot be found. This occurs when an attempt is made to retrieve a variable
from the Variables collection on a container during execution of the package,
and the variable is not there. The variable name may have changed or the
variable is not being created.”

 The resolution is simple. Either the variable name listed in the Script Task Editor or the variable name
in the script doesn ’ t match, so one must be changed to match the other. It is more confusing for the VB
developers because this language is not case - sensitive. However, the SSIS variables are case - sensitive,
even within the VB script.

 Although Visual Basic.NET is not case - sensitive, SSIS variables are.

 Another issue that happens occasionally is that more than one variable with the same name can be
created with different scopes. When this happens, you have to make sure you explicitly refer to the
variable by the fully qualified variable name. One of the latest helpful features of SSIS is a pop - up UI
that allows the selection of the variables. Figure 9 - 9 is an example of this UI that allows the selection of
user - defined variables.

Figure 9-9

 The best part is that the Script Task property for the ReadOnlyVariables or ReadWriteVariables is
auto - filled with the fully qualified names: User::DecisionVar1 and User::DecisionVar2 . This
reduces most of the common issues with passing variables into the Script Task. All this information will
now come in handy as we run through an example using the Script Task and variables to control SSIS
package flow.

c09.indd 310c09.indd 310 8/28/08 12:16:02 PM8/28/08 12:16:02 PM

Chapter 9: Scripting in SSIS

311

 Example: Using Script Task Variables to Control Package Flow
 In this example, we ’ ll set up a Script Task that uses two variables to determine which one of two
branches of Control Flow logic should be taken when the package executes. First, create a new SSIS
package and set up these three variables:

 Variable Type Value

 DecisionIntVar Int32 32

 DecisionStrVar String txt

 HappyPathEnum Int32 0

 Then drop three Script Tasks on the Control Flow design surface so that the package looks like Figure 9 - 10 .

Figure 9-10

 What we want to do is feed the two variables (DecisionIntVar and DecisionStrVar) that represent
the number of rows determined to be in a file and the file extension into the Script Task through these
variables. Assume that these values have been set by yet another process. Logic in the Script Task will
determine whether the package should execute the CRD File Path Script Task or the TXT File Script Task.
The control of the package is handled by the other external variable named HappyPathEnum . If the value
of this variable is equal to 1, then the TXT File Script Task will be executed. If the value of the variable is
equal to 2, then the CRD File Path Script Task will be executed. Open up the main Script Task Editor to
set up the properties. It should look like Figure 9 - 11 .

c09.indd 311c09.indd 311 8/28/08 12:16:02 PM8/28/08 12:16:02 PM

Chapter 9: Scripting in SSIS

312

Figure 9-11

 Set the Script Language and then use the ellipsis button to bring up the variable selection UI that we
discussed and demonstrated in Figure 9 - 9 . Select the variables for the ReadOnlyVariables and
ReadWriteVariables separately if you are using the variable selection UI. You can also type these
variables in, but remember that the variable names are case - sensitive. It is noteworthy to stop and point
out the ordinal positions of these variables for this example. You can see the ordinal positions
superimposed onto the editor in Figure 9 - 12 .

10

2

Figure 9-12

 We ’ ll keep this script simple for demonstration purposes. The most important parts are the retrieving and
setting of the variables. This code uses the named references for the variables but the code lines like this:

C#
int rowCnt = (int)Dts.Variables[“User::DecisionIntVar”].Value;

VB
Dim rowCnt As Integer = Dts.Variables(“User::DecisionIntVar”).Value

c09.indd 312c09.indd 312 8/28/08 12:16:02 PM8/28/08 12:16:02 PM

Chapter 9: Scripting in SSIS

313

Could easily be replaced with ordinal - based references like this:

C#
int rowCnt = (int)Dts.Variables[0].Value;

VB
Dim rowCnt As Integer = Dts.Variables(0).Value

 The setting of variables uses the same syntax but reverses the assignment. The code that should be
pasted into the Main() function of the ScriptMain class will evaluate the two variables and set the
 HappyPathEnum variable:

 C#
 //Retrieving the value of Variables
 int rowCnt = (int)Dts.Variables[“User::DecisionIntVar”].Value;
 string fileExt = (string)Dts.Variables[“User::DecisionStrVar”].Value;

 if (fileExt.Equals(“txt”) & & rowCnt > 0)
 {
 Dts.Variables[“User::HappyPathEnum”].Value = 1;
 }
 else if (fileExt.Equals(“crd”) & & rowCnt > 0)
 {
 Dts.Variables[“User::HappyPathEnum”].Value = 2;
 }
 Dts.TaskResult = (int)ScriptResults.Success;

 VB
 ‘Retrieving the value of Variables
 Dim rowCnt As Integer = Dts.Variables(“User::DecisionIntVar”).Value
 Dim fileExt As String = Dts.Variables(“User::DecisionStrVar”).Value

 If (fileExt.Equals(“txt”) And rowCnt > 0) Then
 Dts.Variables(2).Value = 1
 Dts.Variables(“User::HappyPathEnum”).Value = 1
 ElseIf (fileExt.Equals(“crd”) And rowCnt > 0) Then
 Dts.Variables(2).Value = 2
 Dts.Variables(“User::HappyPathEnum”).Value = 2
 End If
 Dts.TaskResult = ScriptResults.Success

 To alter the flow of the package, set the two precedence constraints in the package hierarchy to be based
on a successful completion of the previous Script Task and an Expression that tests the expected values
of the HappyPathEnum variable. This precedence defines that the Control Flow should only go in a
direction if the value of an expression tests true. Set the precedence between each Script Task to one of
these expressions:

@HappyPathEnum == 1
Or
@HappyPathEnum == 2

c09.indd 313c09.indd 313 8/28/08 12:16:03 PM8/28/08 12:16:03 PM

Chapter 9: Scripting in SSIS

314

 A sample of the precedence between the Script Task and the TXT File Script Task should look like
Figure 9 - 13 .

Figure 9-13

 Now, to give the package something to do, simply retrieve the value of the set variable in each child
Script Task to provide visual proof that the HappyPathEnum variable was properly set. Add this code
into the Main() function of each child Script Task (make sure you set the message to display TXT or
CRD for each associated Script Task):

 C#
 int ival = (int)Dts.Variables[0].Value;
 string msg = string.Format(“TXT File Found\nHappyPathEnum Value = {0}”,
 Dts.Variables[0].Value.ToString());

 System.Windows.Forms.MessageBox.Show(msg);
 Dts.TaskResult = (int)ScriptResults.Success;

 VB
 Dim ival As Integer = Dts.Variables(0).Value
 Dim msg As String = _
 String.Format(“TXT File Found” + vbCrLf + “HappyPathEnum Value = {0}”,
 Dts.Variables(0).Value.ToString())

 System.Windows.Forms.MessageBox.Show(msg)
 Dts.TaskResult = ScriptResults.Success

 To see how this works, set the value of the User::DecisionIntVar variable to a positive integer
number value, and the User::DecisionStrVar variable to either txt or crd , and watch the package
switch from one Control Flow to the other. If you provide a value other than txt or crd (even “ txt ”
with quotes will cause this), the package will not run either leg, which is as designed. This is a simple
example that you can refer back to as your packages get more complicated, and you are referring to or

c09.indd 314c09.indd 314 8/28/08 12:16:03 PM8/28/08 12:16:03 PM

Chapter 9: Scripting in SSIS

315

updating variables within the Script Tasks. Later, we ’ ll look at the Script Component that accesses
variables in a slightly different way.

 Connecting to Data Sources in a Script Task
 A common use of an ActiveX Script Task in DTS packages was to grab a connection to various Data
Sources for decision - making data from Excel files, INI files, flat files, or even databases like Oracle or
Access. This capability provided ways to get to other Data Sources for configuring the packages, or to
retrieve or output data for things we didn ’ t have a direct connection object to use. In SSIS, with the
Scripting Task, you can still make connections using any of the .NET libraries directly, or you can use
connections that are defined in a package. Connections in SSIS are abstractions for connection strings that
can be copied, passed around, and configured more easily than the ADO, script - based version in DTS.

 The Connections collection hangs off of the DTS object in the Script Task. To retrieve a connection you
call the AcquireConnection method on a specific named (or ordinal position) connection in the
collection. The only thing you really should know ahead of time is what type of connection you are
going to be retrieving, because you ’ ll need to cast the returned connection to the proper connection type.
In .NET, connections are not generic like the ADO model. Examples of concrete connections are
 SqlConnection , OleDb.Connection , OdbcConnection , and the OracleConnection Managers that
connect using SqlClient, OLE DB, ODBC, and even Oracle data access libraries respectively. There are
some things you can do to query the Connection Manager to determine what is in the connection string
or if it supports transactions, but you shouldn ’ t expect to use one connection in SSIS for everything,
especially with the added Connection Managers for FTP, HTTP, and WMI.

 Assuming that you ’ re up to speed on the different types of connections covered earlier in this book, let ’ s
look at how you can use them in everyday SSIS package tasks.

 Example: Retrieving Data into Variables from a Database
 Although SSIS provides configurable abilities to set package - level values, there are use - cases that require
you to retrieve actionable values from a database that can be used for package Control Flow or other
functional purposes. One example would be some variable aspect of the application that may change,
like an email address for events to use for notification. In this example, you ’ ll retrieve a log file path for a
package at runtime using a connection within a Script Task. The database that contains the settings for
the log file path stores this data using the package ID. You ’ ll first need a table in the
AdventureWorks2008 database called SSIS_SETTING . Create the table with three fields, PACKAGE_ID ,
 SETTING , and VALUE , or use this script:

CREATE TABLE [dbo].[SSIS_SETTING](
 [PACKAGE_ID] [uniqueidentifier] NOT NULL,
 [SETTING] [nvarchar](2080) NOT NULL,
 [VALUE] [nvarchar](2080) NOT NULL
) ON [PRIMARY]
GO
INSERT INTO SSIS_SETTING
SELECT ‘{INSERT YOUR PACKAGE ID HERE}’, ‘LOGFILEPATH’, ‘c:\myLogFile.txt’

 Then create an SSIS package with one ADO.NET Connection Manager to the AdventureWorks database
called local.aw and add a package - level variable named LOGFILEPATH of type String . Add a Script
Task to the project and send in two variables: the ReadOnly System::PackageID and a ReadWrite

c09.indd 315c09.indd 315 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Chapter 9: Scripting in SSIS

316

variable User::LOGFILEPATH . Click the Edit Script button to open the Script project and add the
namespace to System.Data.SqlClient in the top of the class. Then add the following code to the
 Main() method:

C#
public void Main()
{
 string myPackageId = Dts.Variables[“System::PackageID”].Value.ToString();
 string myValue = string.Empty;
 string cmdString = “SELECT VALUE FROM SSIS_SETTING “ +
 “WHERE PACKAGE_ID= @PACKAGEID And SETTING= @SETTINGID”;

 try
 {
 SqlConnection mySqlConn =
 (SqlConnection)Dts.Connections[0].AcquireConnection(null);
 mySqlConn = new SqlConnection(mySqlConn.ConnectionString);
 mySqlConn.Open();
 SqlCommand cmd = new SqlCommand();
 cmd.CommandText = cmdString;
 SqlParameter parm = new SqlParameter(“@PACKAGEID”,
 SqlDbType.UniqueIdentifier);
 parm.Value = new Guid(myPackageId);
 cmd.Parameters.Add(parm);
 parm = new SqlParameter(“@SETTINGID”, SqlDbType.NVarChar);
 parm.Value = “LOGFILEPATH”;
 cmd.Parameters.Add(parm);
 cmd.Connection = mySqlConn;
 cmd.CommandText = cmdString;
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 myValue = reader[“value”].ToString();
 }

 Dts.Variables[“User::LOGFILEPATH”].Value = myValue;

 reader.Close();
 mySqlConn.Close();
 mySqlConn.Dispose();
 }
 catch
 {
 Dts.TaskResult = (int)ScriptResults.Failure;
 throw;
 }

 System.Windows.Forms.MessageBox.Show(myValue);
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim myPackageId As String = _

c09.indd 316c09.indd 316 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Chapter 9: Scripting in SSIS

317

 Dts.Variables(“System::PackageID”).Value.ToString()
 Dim myValue As String = String.Empty
 Dim cmdString As String = “SELECT VALUE FROM SSIS_SETTING “ + _
 “WHERE PACKAGE_ID= @PACKAGEID And SETTING= @SETTINGID”
 Try
 Dim mySqlConn As SqlClient.SqlConnection
 mySqlConn = DirectCast(Dts.Connections(0).AcquireConnection(Nothing),
 SqlClient.SqlConnection)
 mySqlConn = New SqlClient.SqlConnection(mySqlConn.ConnectionString)
 mySqlConn.Open()
 Dim cmd = New SqlClient.SqlCommand()
 cmd.CommandText = cmdString
 Dim parm As New SqlClient.SqlParameter(“@PACKAGEID”, _
 SqlDbType.UniqueIdentifier)
 parm.Value = New Guid(myPackageId)
 cmd.Parameters.Add(parm)
 parm = New SqlClient.SqlParameter(“@SETTINGID”, SqlDbType.NVarChar)
 parm.Value = “LOGFILEPATH”
 cmd.Parameters.Add(parm)
 cmd.Connection = mySqlConn
 cmd.CommandText = cmdString
 Dim reader As SqlClient.SqlDataReader = cmd.ExecuteReader()
 Do While (reader.Read())
 myValue = reader(“value”).ToString()
 Loop
 Dts.Variables(“User::LOGFILEPATH”).Value = myValue
 reader.Close()
 mySqlConn.Close()
 mySqlConn.Dispose()
 Catch ex As Exception
 Dts.TaskResult = ScriptResults.Failure
 Throw
 End Try

 System.Windows.Forms.MessageBox.Show(myValue)
 Dts.TaskResult = ScriptResults.Success
End Sub

 In this code, the package ID is passed into the Script Task as a read - only variable and is used to build a
TSQL statement to retrieve the value of the LOGFILEPATH setting from the SSIS_SETTING table. The
 AcquireConnection method creates an instance of a connection to the local AdventureWorks database
managed by the Connection Manager and allows other SqlClient objects to access the Data Source. The
retrieved setting from the SSIS_SETTING table is then stored in the writable variable LOGFILEPATH . This
is a basic example, but you use this exact same technique to retrieve a recordset into an object variable
that can be iterated within your package as well.

 Example: Saving Data to an XML File
 Another common requirement is to generate data of a certain output format. When the output is a
common format like Flat File, Excel, CSV, or other database format, you can simply pump the data
stream into one of the Data Flow Destinations. If you want to save data to an XML file, the structure is
not homogeneous, and not as easy to transform from a column - based data stream into an XML structure
without some logic or structure around it. This is where the Script Task comes in handy.

c09.indd 317c09.indd 317 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Chapter 9: Scripting in SSIS

318

 The easiest way to get data into an XML file is to load and save the contents of a dataset using the
method WriteXML on the dataset. With a new Script Task in a package with an ADO.NET connection
to AdventureWorks2008, add a reference to the System.Xml.dll, then add the namespaces for
System.Data.SqlClient , System.IO , and System.Xml . Then code the following into the Script
Task to open a connection and get all the SSIS_SETTING rows and store as XML.

 See the previous example for the DDL to create this table in the AdventureWorks2008 database.

C#
public void Main()
{
 SqlConnection sqlConn;
 string cmdString = “SELECT * FROM SSIS_SETTING “;
 try
 {
 sqlConn =
(SqlConnection)(Dts.Connections[“local.aw”]).AcquireConnection(Dts.Transaction
);
 sqlConn = new SqlConnection(sqlConn.ConnectionString);
 sqlConn.Open();
 SqlCommand cmd = new SqlCommand(cmdString, sqlConn);
 SqlDataAdapter da = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet();
 da.Fill(ds);
 ds.WriteXml(new
System.IO.StreamWriter(“C:\\SSIS\\scripts\\ScriptDataIntoXMLFile\\
myPackageSettings.xml”));
 sqlConn.Close();
 }
 catch
 {
 Dts.TaskResult = (int)ScriptResults.Failure;
 throw;
 }
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim sqlConn As New SqlConnection
 Dim cmdString As String = “SELECT * FROM SSIS_SETTING “
 Try
 sqlConn =
DirectCast(Dts.Connections(“local.aw”).AcquireConnection(Dts.Transaction),
SqlConnection)
 sqlConn = New SqlConnection(sqlConn.ConnectionString)
 sqlConn.Open()
 Dim cmd = New SqlCommand(cmdString, sqlConn)
 Dim da = New SqlDataAdapter(cmd)
 Dim ds = New DataSet
 da.Fill(ds)
 ds.WriteXml(New
StreamWriter(“C:\\SSIS\\scripts\\ScriptDataIntoXMLFile\\myPackageSettings.xml”
))

c09.indd 318c09.indd 318 8/28/08 12:16:04 PM8/28/08 12:16:04 PM

Chapter 9: Scripting in SSIS

319

 sqlConn.Close()
 Catch
 Dts.TaskResult = ScriptResults.Failure
 Throw
 End Try
 Dts.TaskResult = ScriptResults.Success
End Sub

 The results are in XML, and there is not much to this file, except that it is in XML format.

 < NewDataSet >
 < Table >
 < PACKAGE_ID > a5cf0c2f-8d85-42eb-91b9-cbd1fd47e5b1 < /PACKAGE_ID >
 < SETTING > LOGFILEPATH < /SETTING >
 < VALUE > C:\SSIS\scripts\ScriptDataIntoVariable\myLogFile.txt < /VALUE >
 < /Table >
 < /NewDataSet >

 If you need more control of the data you are exporting, or you need to serialize data, you ’ ll need to use
the Script Task in a different way. See the next example for some tips on how to do this.

 Example: Serializing Data to XML
 In the last example, you looked at simply dumping a recordset into an XML format by loading data into
a dataset and using the WriteToXML method to dump the XML out to a file stream. If you need more
control over the format or the data is hierarchical, using .NET XML object - based serialization can be
helpful. Imagine implementations that pull data from flat - file mainframe dumps and fill fully
hierarchical object models. Alternatively, imagine serializing data into an object structure to pop an entry
into an MSMQ application queue. This is easy to do using some of the same concepts. Create another
package with a connection to the AdventureWorks2008 database; add a Script Task with a reference to
the System.Data.SqlClient namespace. Use the data from the previous example and create a class
structure within your ScriptMain to hold the values for each row of settings that looks like this:

C#
[Serializable()]
public class SSISSetting
{
 public string PackageId { get; set; }
 public string Setting { get; set; }
 public string Value { get; set; }
}

VB
 < Serializable() > Public Class SSISSetting
 Private m_PackageId As String
 Private m_Setting As String
 Private m_Value As String

 Public Property PackageId() As String
 Get
 PackageId = m_PackageId
 End Get

c09.indd 319c09.indd 319 8/28/08 12:16:05 PM8/28/08 12:16:05 PM

Chapter 9: Scripting in SSIS

320

 Set(ByVal Value As String)
 m_PackageId = Value
 End Set
 End Property
 Public Property Setting() As String
 Get
 PackageId = m_Setting
 End Get
 Set(ByVal Value As String)
 m_Setting = Value
 End Set
 End Property
 Public Property Value() As String
 Get
 Value = m_Value
 End Get
 Set(ByVal Value As String)
 m_Value = Value
 End Set
 End Property
End Class

 This class will be used to fill based on the dataset like we had in the last example. It is still a flat model,
but more complex class structures would have collections within the class. An example would be a
student object with a collection of classes, or an invoice with a collection of line items. To persist this type
of data you ’ ll need to traverse multiple paths to fill the model. Once the model is filled, the rest is easy.
First, add the namespaces System.Xml.Serialization , System.Collections.Generic , System.IO ,
and System.Data.SqlClient into your Script Task project. Then a simple example with the SSIS_
SETTING table would look like this:

C#
public void Main()
{
 SqlConnection sqlConn;
 string cmdString = “SELECT * FROM SSIS_SETTING “;

 try
 {
 sqlConn =
(SqlConnection)(Dts
.Connections[“local.aw”]).AcquireConnection(Dts.Transaction);
 sqlConn = new SqlConnection(sqlConn.ConnectionString);
 sqlConn.Open();
 SqlCommand cmd = new SqlCommand(cmdString, sqlConn);
 SqlDataReader dR = cmd.ExecuteReader();
 List < SSISSetting > arrayListSettings = new List < SSISSetting > ();

 while (dR.Read())
 {
 SSISSetting oSet = new SSISSetting();
 oSet.PackageId = dR[“PACKAGE_ID”].ToString();

c09.indd 320c09.indd 320 8/28/08 12:16:05 PM8/28/08 12:16:05 PM

Chapter 9: Scripting in SSIS

321

 oSet.Setting = dR[“SETTING”].ToString();
 oSet.Value = dR[“VALUE”].ToString();
 arrayListSettings.Add(oSet);
 }

 StreamWriter outfile = new
StreamWriter(“C:\\SSIS\\scripts\\ScriptDataintoSerializableObject\\myObjectXml
Settings.xml”);

 XmlSerializer ser = new XmlSerializer(typeof(List < SSISSetting >));
 ser.Serialize(outfile, arrayListSettings);
 outfile.Close();
 outfile.Dispose();
 sqlConn.Close();
 }
 catch
 {
 Dts.TaskResult = (int)ScriptResults.Failure;
 throw;
 }
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Dim sqlConn As SqlConnection
 Dim cmdString As String = “SELECT * FROM SSIS_SETTING “

 Try
 sqlConn =
DirectCast(Dts.Connections(“local.aw”).AcquireConnection(Dts.Transaction),
 SqlConnection)
 sqlConn = New SqlConnection(sqlConn.ConnectionString)
 sqlConn.Open()
 Dim cmd As SqlCommand = New SqlCommand(cmdString, sqlConn)
 Dim dR As SqlDataReader = cmd.ExecuteReader()
 Dim arrayListSettings As New List(Of SSISSetting)
 Do While (dR.Read())
 Dim oSet As New SSISSetting()

 oSet.PackageId = dR(“PACKAGE_ID”).ToString()
 oSet.Setting = dR(“PACKAGE_ID”).ToString()
 oSet.Value = dR(“PACKAGE_ID”).ToString()
 arrayListSettings.Add(oSet)
 Loop

 Dim outfile As New
StreamWriter(“C:\\SSIS\\scripts\\ScriptDataintoSerializableObject\\myObjectXml
Settings.xml”)
 Dim ser As New XmlSerializer(GetType(List(Of SSISSetting)))

 ser.Serialize(outfile, arrayListSettings)
 outfile.Close()
 outfile.Dispose()

c09.indd 321c09.indd 321 8/28/08 12:16:05 PM8/28/08 12:16:05 PM

Chapter 9: Scripting in SSIS

322

 sqlConn.Close()
 Catch
 Dts.TaskResult = ScriptResults.Failure
 Throw
 End Try

 Dts.TaskResult = ScriptResults.Success
End Sub

 The StreamWriter here just gets an IO stream from the file system to use for data output. The
 XmlSerializer does the heavy lifting and converts the data from the object format into an XML format.
The only trick here is to understand how to deal with the Generic List or the collection of all the
 SSISSetting objects. This is handled by using the override where you can add the specific types to the
serializer along with the List . The resulting XML payload will now look like this:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < ArrayOfSSISSetting xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < SSISSetting >
 < PackageId > 34050406-2e0f-423a-8af3-1ec95399a6c2 < /PackageId >
 < Setting > 34050406-2e0f-423a-8af3-1ec95399a6c2 < /Setting >
 < Value > 34050406-2e0f-423a-8af3-1ec95399a6c2 < /Value >
 < /SSISSetting >
 < /ArrayOfSSISSetting >

 Although the XML content looks a little bit different than dumping the content of the recordset directly
to XML as we did in the earlier example, it is optimized for object serialization. This is the type of content
that you could push into application queues or share with external applications.

 Raising an Event in a Script Task
 All existing SSIS Tasks and Components raise events that can be captured and displayed by the
Execution Results tab by default. Optionally these events can also be captured and logged into SSIS
logging or event handlers. Event handlers are Control Flows that you set up and define to respond to
specific events. They are literally Control Flow workflows within a package and give you the advantage
of customizing the diagnostic information that the packages can provide at runtime.

 If you have done any Windows GUI programming, you will be familiar with events. An event is simply a
message sent from some object saying that something just happened or is about to happen. To raise or
 fire an event with a Script Task, you use the Events property of the Dts object. The Events property on
the Dts object is really an instance of the IDTSComponentEvents interface. This interface specifies seven
methods for firing events:

 FireBreakpointHit: This method supports the SQL Server infrastructure and is not intended
to be used directly in code.

 FireError: Fires an event when an error occurs.

 FireInformation: Fires an event with information. You can fire this event when you want
some set of information to be logged, possibly for auditing later.

❑

❑

❑

c09.indd 322c09.indd 322 8/28/08 12:16:06 PM8/28/08 12:16:06 PM

Chapter 9: Scripting in SSIS

323

 FireProgress: Fires an event when a certain progress level has been met.

 FireQueryCancel: Fires an event to determine if package execution should stop.

 FireWarning: Fires an event that is less serious than an error, but more than just information.

 FireCustomEvent: Fires a custom defined event.

 In SSIS, any events you fire will be written to all enabled log handlers that are set to log that event.
Logging allows you to see what happened with your script when you ’ re not there to watch it run. This is
useful for troubleshooting and auditing purposes, as you ’ ll see in the following example.

 Example: Raise Some Events
 The default event handler at design time is the Execution Results tab at the top of your package in the
BIDS design environment. The simplest way to use the events is to fire off some sample events and see
them in this Execution Results tab. To do this create a new package with a Script Task and add the
System variable System::TaskName as a Read - Only variable. Then add the following code to the
 Main() function:

C#
public void Main()
{
 string taskName =
 Dts.Variables[“System::TaskName”].Value.ToString();
 bool retVal = false;

 Dts.Events.FireInformation(0, taskName,
 String.Format(“Starting Loop Operation at {0} “,
 DateTime.Now.ToString(“MM/dd/yyyy hh:mm:ss”)), “”, 0,
 ref retVal);

 for(int i=0; i < = 10; i++)
 {
 Dts.Events.FireProgress(String.Format(“Loop in iteration {0}”, i),
 i * 10, 0, 10, taskName, ref retVal);
 }

 Dts.Events.FireInformation(0, taskName,
 String.Format(“Completion Loop Operation at {0} “,
 DateTime.Now.ToString(“mm/dd/yyyy hh:mm:ss”)), “”, 0,
 ref retVal);

 Dts.Events.FireWarning(1, taskName,
 “This is a warning we want to pay attention to...”,
 “”, 0);
 Dts.Events.FireWarning(2, taskName,
 “This is a warning for debugging only...”,

❑

❑

❑

❑

c09.indd 323c09.indd 323 8/28/08 12:16:06 PM8/28/08 12:16:06 PM

Chapter 9: Scripting in SSIS

324

 “”, 0);

 Dts.Events.FireError(0, taskName,
 “If we had an error it would be here”, “”, 0);
}

 VB
Public Sub Main()
 Dim i As Integer = 0
 Dim taskName As String =
 Dts.Variables(“System::TaskName”).Value.ToString()
 Dim retVal As Boolean = False

 Dts.Events.FireInformation(0, taskName, _
 String.Format(“Starting Loop Operation at {0} “, _
 DateTime.Now.ToString(“MM/dd/yyyy hh:mm:ss”)), “”, 0, _
 True)

 For i = 0 To 10
 Dts.Events.FireProgress(_
 String.Format(“Loop in iteration {0}”, i), _
 i * 10, 0, 10, taskName, True)
 Next

 Dts.Events.FireInformation(0, taskName, _
 String.Format(“Completion Loop Operation at {0} “, _
 DateTime.Now.ToString(“mm/dd/yyyy hh:mm:ss”)), “”, 0, False)

 Dts.Events.FireWarning(1, taskName, _
 “This is a warning we want to pay attention to...”, _
 “”, 0)
 Dts.Events.FireWarning(2, taskName, _
 “This is a warning for debugging only...”, _
 “”, 0)

 Dts.Events.FireError(0, taskName, _
 “If we had an error it would be here”, “”, 0)
End Sub

 This code will perform a simple loop operation and demonstrate firing the information, progress,
warning, and error events. If you run the package, you ’ ll be able to view the information embedded in
these fire event statements in the Execution Results tab in Figure 9 - 14 . Note that raising the error event
results in the Script Task failure. You may comment out the FireError event to see the task complete
successfully.

c09.indd 324c09.indd 324 8/28/08 12:16:06 PM8/28/08 12:16:06 PM

Chapter 9: Scripting in SSIS

325

Figure 9-14

 All the statements prefixed with the string [Script Task] were generated using these events fired
from the Script Task. We ’ ll leave it with you to comment out the Dts.Events.FireError method calls
to demonstrate to yourself that the task can complete successfully for warnings and informational
events. Note that with the firing of an error you can also force the task to generate a custom error with an
error code and description. In fact, each of the events has a placeholder as the first parameter to store a
custom information code. Continue to the next example to see how you can create an error handler to
respond to the warning events that are fired from this Script Task.

 Example: Respond to an Event
 If you have already created a package for the Raise Some Events example, navigate to the Event
Handlers tab. Event handlers are separate Control Flows that can be executed in response to an event. In
the Raise Some Events example, you generated two Warning events. One had an information code of one
(1) and the other had the value of two (2). You are going to add an event handler to respond to those
warning events and add some logic to respond to the event if the information code is equal to one (1).
Select the executable of Script Task and select the event handler of OnWarning . Then click the hot link
that states:

Click here to create an ‘OnWarning’ event handler for executable ‘Script Task’

 This will create a Control Flow surface where you can drop SSIS Control Tasks onto the surface that will
execute if an OnWarning event is thrown from the Script Task you added to the package earlier. Drop a
new Script Task into the Event Handler Control Flow surface and name it OnWarning Script Task. Your
designer should look like Figure 9 - 15 .

c09.indd 325c09.indd 325 8/28/08 12:16:07 PM8/28/08 12:16:07 PM

Chapter 9: Scripting in SSIS

326

Figure 9-15

 To retrieve the information code sent in the Dts.Events.FireWarning method call, add two system -
 level variables System::ErrorCode,System::ErrorDescription to the Read - Only Variables
collection of the OnWarning Script Task. These variables will contain the values of the
 InformationCode and Description parameters in the Dts.Events() methods. You can then retrieve
and evaluate these values when an event is raised by adding the following code:

C#
 long lWarningCode = long.Parse(Dts.Variables[0].Value.ToString());
 String sMsg = string.Empty;
 if(lWarningCode == 1)
 {
 sMsg = String.Format(
 “Would do something with this warning:\n{0}: {1}”,
 lWarningCode.ToString(), Dts.Variables(1).ToString());
 System.Windows.Forms.MessageBox.Show(sMsg);
 }
 Dts.TaskResult = (int)ScriptResults.Success;

VB
 Dim lWarningCode As Long = _
 Long.Parse(Dts.Variables(0).Value.ToString())
 Dim sMsg As String
 If lWarningCode = 1 Then
 sMsg = String.Format(“Would do something with this warning: “ _
 + vbCrLf + “{0}: {1}”, _
 lWarningCode.ToString(), Dts.Variables(1).ToString())
 System.Windows.Forms.MessageBox.Show(sMsg)
 End If
 Dts.TaskResult = ScriptResults.Success

c09.indd 326c09.indd 326 8/28/08 12:16:07 PM8/28/08 12:16:07 PM

Chapter 9: Scripting in SSIS

327

 The code checks the value of the first parameter, which is the value of the System::ErrorCode and the
value raised in the Dts.Events.FireWarning method. If the value is equivalent to one (1), an action is
taken to show a message box. This action could just as well be logging an entry to a database, or sending
an email. If you rerun the package now, you ’ ll see that the first FireWarning event will be handled in
your event handler and generate a message box warning. The second FireWarning event will also be
captured by the event handler, but no response is made. You can see the event handler counter in the
Progress or Execution Results tab is incremented to two (2). Raising events in the Script Tasks are great
ways to get good diagnostic information without resorting to MessageBoxes in your packages. See
Chapter 17 for much more detail about this type of development in SSIS.

 Example: Logging Event Information
 Scripts can also be used to log custom event information. To configure the previous example events
SSIS package to log event information, go to SSIS Logging in the Business Intelligence Designer
Studio. The Configure SSIS Logs dialog will appear. Select “ SSIS log provider for XML files ” in the
Provider Type drop - down and click Add. Click the column named Configuration and then select < New
Connection > from the list to create an XML File Editor. For Usage type, select Create File and specify a
path to a filename similar to c:\ssis\scripts\raisingevents\myLogFile.xml . (This would be
something you ’ d use an expression or package configuration to set during runtime.) Click OK to close
the File Connection Manager Editor dialog box. Your screen should look something like Figure 9 - 16 .

Figure 9-16

 Now click the Package Node to start selecting what tasks in the package should log to the new provider,
and check the box next to the provider name so that the log will be used. In the Details tab, select the
 OnWarning events specifically to log. You can choose to log any of the available event types to the
providers by also selecting them in the Details tab. Now your provider configuration should look like
Figure 9 - 17 .

c09.indd 327c09.indd 327 8/28/08 12:16:09 PM8/28/08 12:16:09 PM

Chapter 9: Scripting in SSIS

328

Figure 9-17

 You can also go to the Advanced tab for each selected event to control exactly what properties of the
event get logged as well. If you run the package again, the file specified in the logging provider will be
created with content similar to the following:

 < record >
 < event > OnWarning < /event >
 < message > This is a warning we want to pay attention to... < /message >
 < computer > MYCOMPUTER < /computer >
 < operator > MYCOMPUTER\ADMIN < /operator >
 < source > Package < /source >
 < sourceid > {D86FF397-6C9B-4AD9-BACF-B4D41AC89ECB} < /sourceid >
 < executionid > {8B6F6392-1818-4EE5-87BF-EDCB5DC37ACB} < /executionid >
 < starttime > 1/22/2008 9:30:08 PM < /starttime >
 < endtime > 1/22/2008 9:30:08 PM < /endtime >
 < datacode > 2 < /datacode >
 < databytes > 0x < /databytes >
 < /record >

 You ’ ll have other events in the file, such as Package Start and Package End, but the preceding code
snippet focuses on the event that your code fired. This record contains the basic information on the event
including the message, event execution time, and the computer and user that raised the event.

 Using the Script Task to raise an event is just one way to get more diagnostic information into your SSIS
log files. Read on to get a brief look at generating simple log entries.

c09.indd 328c09.indd 328 8/28/08 12:16:09 PM8/28/08 12:16:09 PM

Chapter 9: Scripting in SSIS

329

 Writing a Log Entry in a Script Task
 Within a Script Task, the Log method of the Dts object writes a message to all enabled log providers.
The Log method is simple and has but three arguments:

 messageText: The message to log

 dataCode: A field for logging a message code

 dataBytes: A field for logging binary data

 The Log method is similar to the FireInformation method of the Events property, but it is easier to
use and more efficient — you also do not need to create a specialized event handler to respond to the
method call. All you need to do is set up a log provider within the package. In the previous section, you
learned about how to add a log provider to a package. The following code logs a simple message with
some binary data to all available log providers. This is quite useful for troubleshooting and auditing
purposes. You can write out information at important steps in your script and even print out variable
values to help you track down a problem.

 Example: Script a Log Entry
 You can see an example of how to script a log entry by adding a few lines of code to the package in the
previous examples that you used to raise events. First add these lines to the appropriate Script Task that
matches the language you chose in the previous example:

C#
Byte[] myByteArray[] = new byte[0];
Dts.Log(“Called procedure: usp_Upsert with return code 4”, 0, myByteArray);

VB
Dim myByteArray(0) As Byte
Dts.Log(“Called procedure: usp_Upsert with return code 4”, 0, myByteArray)

 Then, select the events for the ScriptTaskLogEntry event in the Details tab of the logging configuration.
This tells the SSIS package logger to expect to log any custom logging instructions like you just
coded. Then run the package. You ’ ll see a set of additional logging instructions that look like this:

 < record >
 < event > User:ScriptTaskLogEntry < /event >
 < message > Called Procedure: usp_Upsert with return code 4 < /message >
 < computer > MYCOMPUTER < /computer >
 < operator > MYCOMPUTER\ADMIN < /operator >
 < source > Raise Events C# Script Task < /source >
 < sourceid > {CE53C1BB-7757-47FF-B173-E6088DA0A2A3} < /sourceid >
 < executionid > {B7828A35-C236-451E-99DE-F679CF808D91} < /executionid >
 < starttime > 4/27/2008 2:54:04 PM < /starttime >
 < endtime > 4/27/2008 2:54:04 PM < /endtime >
 < datacode > 0 < /datacode >
 < databytes > 0x < /databytes >
 < /record >

 As you can see, the Script Task is highly flexible with the introduction of the .NET - based VSTA
capabilities. As far as controlling package flow or one - off activities, the Script Task has clearly taken over

❑

❑

❑

c09.indd 329c09.indd 329 8/28/08 12:16:09 PM8/28/08 12:16:09 PM

Chapter 9: Scripting in SSIS

330

the role of the DTS ActiveX Script Component. However, the Script Task doesn ’ t do all things well. If you
want to apply programmatic logic to data in the data pump portion or Data Flow in an SSIS package,
then you need to continue and add to your knowledge of scripting in SSIS and the Script Component.

 Using the Script Component
 The Script Component provides another area where programming logic can be applied in an SSIS
package. This component can only be used in the Data Flow portion of an SSIS package and allows
programmatic tasks to occur in the data stream. Anything you can do in .NET at a stream level can be
done in this task. Connect to an HTTP Source to create a stream, parse through an existing stream, or
send a stream to a custom destination. This component exists to provide, consume, or transform data
using .NET code. To differentiate the different uses of the Script Component, when you create one you
have to choose one of the following three types:

 Source Type Component: The role of this Script Component is to provide data to your Data
Flow Task. You can define outputs and their types and use script code to populate them. An
example would be reading in a complex file format, possibly XML or something that requires
custom coding to read, like HTTP or RSS Sources.

 Destination Type Component: This type of Script Component consumes data much like an
Excel or Flat File Destination. This component is the end of the line for the data in your data
pump or stream. Here you ’ ll typically put the data into a dataset variable to pass back to the
Control Flow for further processing or send the stream to custom output destinations not
supported in SSIS by a control. Examples of these output destinations can be Web service calls,
custom XML formats, and multi - record formats for mainframe systems. You can even
programmatically connect and send a stream to a printer object.

 Transformation Type Component: This type of Script Component can perform custom
transformations on data. It consumes input columns and produces output columns. You would
use the component when one of the built - in transformations just isn ’ t flexible enough.

 In this section, you ’ ll get up to speed on all the specifics of the Script Component, starting first with an
explanation of the differences between the Script Task and Component and then looking at the coding
differences in the two models. In the end, you ’ ll get an example of each implementation type of the
Script Component to put all of this information to use.

 Differences from a Script Task
 You might ask, “ Why are there two controls for the Script Task and Script Component? ” Well,
underneath the SSIS architecture there are really two different implementations of how the VSTA
environment is used for performance. The Script Task is only going to be called once within a Control
Flow, unless it is in a looping control. The Script Component has to be higher octane because it is going
to be called per row of data in the data stream. You are also in the context of being able to access the data
buffers directly, so there is a slight overhead in learning the differences between these two tasks.

 When you are working with these two controls, the bottom line for you is that there are slightly different
ways of doing the same types of things in each. This section of the chapter cycles back through some of the
things you did with the Script Task and points out the differences. First, let ’ s look at the differences in
configuring the editor, then what changes when performing programmatic tasks such as accessing variables,
using connections, raising events, and logging. Finally, we ’ ll look at an example from an overall perspective.

❑

❑

❑

c09.indd 330c09.indd 330 8/28/08 12:16:10 PM8/28/08 12:16:10 PM

Chapter 9: Scripting in SSIS

331

 Configuring the Script Component Editor
 You ’ ll notice the differences starting with the task editor. Adding a Script Component to the Data Flow
designer brings up the editor shown in Figure 9 - 18 , requesting the component type.

 You must first add a Data Flow Task to a package to be able to add the Script Component.

Figure 9-18

 Selecting one of these choices changes the way the editor displays to configure the control. Essentially,
you are choosing whether the control has input buffers, output buffers, or both. Figure 9 - 19 shows an
example of the transformation Script Control that has both buffers.

Figure 9-19

c09.indd 331c09.indd 331 8/28/08 12:16:10 PM8/28/08 12:16:10 PM

Chapter 9: Scripting in SSIS

332

 In the source version of the Script Component, the input buffers would not be available; the opposite is
true of the destination version. You are responsible for defining these buffers by providing the set of
typed columns for either the input or outputs. If the data is being fed into the component, the editor can
reflect on the stream and set these up for you. Otherwise, you ’ ll have to define them yourself. You can do
this programmatically in the code, or ahead of time using the editor. Just select the input or output
columns collection on the UI, and click the Add Column button to add a column as shown in Figure 9 - 20 .

Figure 9-20

 A helpful tip is to select the Output Columns Node on the tree view, so that the new column gets added
to the bottom of the collection. Once you add a column, you can ’ t move it up or down. Once you add the
column, you ’ ll need to set the Data Type, Length, Precision, and Scale. For details about the SSIS data
types, see Chapter 6 .

 When you access the scripting environment, you ’ ll notice some additional differences between the Script
Component and the Script Task. Namely, that there are some new classes added to the Project Explorer,
as seen in Figure 9 - 21 .

c09.indd 332c09.indd 332 8/28/08 12:16:10 PM8/28/08 12:16:10 PM

Chapter 9: Scripting in SSIS

333

 The class that is used to host custom code is named differently from the Script Task. The class name
changed from ScriptMain to simply being called main . Internally there are also some changes. The
main change is that there is not only one entry point method like there was in the Script Task.
The methods you ’ ll see in the main class depend upon the Script Component type. At least three of the
following methods are typically coded and can be used as entry points in the Script Component:

 PreExecute is used for preprocessing tasks like creating expensive connections or file streams.

 PostExecute is used for cleanup tasks or setting variables at the completion of each
processed row.

 CreateNewOutputRows is the method to manage the output buffers.

 Input0 _ProcessInputRow is the method to manage anything coming from the input buffers.

 The remaining classes are generated automatically based on your input and output columns when you
enter into the script environment, so don ’ t make any changes to these, or they will be overwritten when
you reenter the script environment.

 One inconsistency that can occur within the Script Component Editor and the generation of the
 BufferWrapper class is that you can name columns in the editor that use keywords or are otherwise
invalid when the BufferWrapper class is generated. An example would be an output column named
 125K_AMOUNT . If you create such a column, you ’ ll get an error in the BufferWrapper class stating:

Invalid Token 125 in class, struct, or interface member declaration

 Don ’ t be tempted to change the property in the buffer class to something like _125K_AMOUNT , because
this property will be rebuilt the next time you edit the script. Change the name of the output column
to _125K_AMOUNT , and the buffer class will change automatically. The biggest difference that you need to
pay attention to with the Script Component is that if you make any changes to this editor, you ’ ll need
to open up the Script environment so that all these base classes can be generated.

 Last, but not least, you ’ ll notice a Connections Managers tab that was not available in the Script Task
Editor. This allows you to name specifically the connections that you want to be able to access within the
Script Component. Although it is not required that you name these connections up front, it is extremely
helpful if you do. You ’ ll see why later, when you connect to a Data Source. Figure 9 - 22 shows an example
of an Oracle connection added to a Script Component.

❑

❑

❑

❑

Figure 9-21

c09.indd 333c09.indd 333 8/28/08 12:16:11 PM8/28/08 12:16:11 PM

Chapter 9: Scripting in SSIS

334

 Now that you understand the differences in the Script Task and Component from a setup perspective,
we ’ ll look at how the coding is a little different. We ’ ll start first with how you ’ ll need to access package
variables.

 Accessing Variables in a Script Component
 The same concepts behind accessing variables apply to the Script Component. You can either send the
variables in to the control by adding them to the ReadOnlyVariables or ReadWriteVariables
properties of the editor. You can also choose not to specify them up front and just use the variable
dispenser within your Script Task to access, lock, and manipulate variables within the Script Component.
We ’ d recommend that you use the properties in the editor for this component. The reason why is that the
variables provided in the editor are added to the auto - generated base class variables collection as
strongly typed variables. In this control, adding variables to the editor not only removes the need to lock
and unlock the variables, but you get the added benefit of not having to remember the variable name
within the component. Here ’ s an example of setting the variable VALIDATION_ERRORS within a Script
Component:

C#
this.Variables.VALIDATION_ERRORS = 1;
VB
me.Variables.VALIDATION_ERRORS = 1

 As you can see this is much easier to use because the variable names are available in IntelliSense, and
this is more maintainable because of the checking at compile time. However, if you have instances where
you don ’ t want to have to add a variable to each Script Component task, you can still use the variable
dispenser in this component. It is located on the base class and can be accessed using the base class and

Figure 9-22

c09.indd 334c09.indd 334 8/28/08 12:16:11 PM8/28/08 12:16:11 PM

Chapter 9: Scripting in SSIS

335

not the DTS object. Other than these changes, the variable examples in the Script Task section of this
chapter are still applicable. The remaining tasks of connecting to Data Sources, raising events, and
logging will follow similar patterns. The methods of performing the tasks are more strongly named and
this makes sense because we don ’ t need any late - binding (or runtime type checking) within a high -
 performing Data Stream Task.

 Connecting to Data Sources in a Script Component
 Typically, you ’ ll see connections being used in Source types of the Script Component, because in these
types of Data Flow Tasks, the mission is to create data stream. The origination of that data is usually
another external source. If you had a defined SSIS Source Component, it would be used and you
wouldn ’ t need the Script Component to connect to it.

 In the latest version of SSIS, the coding has been greatly simplified. You can instantiate a specific
Connection Manager and simply assign it the reference to a connection in the component ’ s collection.
Using the connections collection in the Script Component is very similar to the variables collection. The
collection of strongly typed Connection Managers is created every time the script editor is opened.
Again, this is helpful because you don ’ t have to remember the names, and you get compile - time
verification and checking. If you have a package with an OLE DB Connection Manager named
 myOracleServer and add it to the Script Component with the name OracleConnection , you ’ ll have
access to the connection using this code:

C#
ConnectionManagerOleDb oracleConnection =
 (ConnectionManagerOleDb)base.Connections.OracleConnection;

VB
Dim oracleConn as ConnectionManagerOleDb
oracleConn = Connections.OracleConnection

 Raising Events
 For the Script Task, we ’ ve already looked at the ability of SSIS to raise events and demonstrated with
examples, scripting capabilities that manage how the package can respond to these events. These same
capabilities exist in the Script Components, although you do need to consider that Script Components
run in a data pipeline or stream, so the potential for repeated calls is highly likely. You should fire events
sparingly within a Script Component that is generating or processing data in the pipeline to reduce
overhead and increase performance. The methods are essentially the same, but without the static DTS
object. Here is the code to raise an informational event in a Script Component:

C#
Boolean myBool=false;
this.ComponentMetaData.FireInformation(0, “myScriptComponent”,
 “Removed non-ASCII Character”, “”, 0, ref myBool);
VB
Dim myBool As Boolean
Me.ComponentMetaData.FireInformation(0, “myScriptComponent”, _
 “Removed non-ASCII Character”, “”, 0, myBool)

c09.indd 335c09.indd 335 8/28/08 12:16:11 PM8/28/08 12:16:11 PM

Chapter 9: Scripting in SSIS

336

 Either version of code will generate an event in the Progress Tab that looks like this:

[myScriptComponent] Information: Removed non-ASCII Character

 Raising an event is preferred to logging because of the ability to develop a separate workflow for
handling the event, but there are some instances when logging may be preferred. We ’ ll look into logging
for the Script Component in the next section.

 Logging
 Like the Script Task, the logging in the Script Component writes a message to all enabled log providers.
It has the same interface as the Script Task, but it is exposed on the base class. Remember that Script
Components run in a data pipeline or stream, so the potential for repeated calls is highly likely. Follow
the same rules as with raising events and log sparingly within a Script Component that is generating or
processing data in the pipeline to reduce overhead and increase performance. If you need to log a
message within a Data Flow, you can improve performance by logging only in the PostExecute
method, so that the results are only logged once.

 Example: Script a Log Entry
 This example shows how to log one informational entry to the log file providers at the end of a
Data Flow Task. To use this code create a package with a Data Flow Task and add a Script
Component as a source with one output column named NewOutputColumn. Create these integer
variables as private variables to the main.cs class: validationBadChars , validationLength , and
 validationInvalidFormat . Then add this code to the CreateNewOutputRows() method in the
 main.cs class:

C#
 int validationLengthErrors = 0;
 int validationCharErrors = 0;
 int validationFormatErrors = 0;

 //..in the CreateNewOutputRows() Method
 string validationMsg =
 string.Format(“Validation Errors:\nBad Chars {0}\nInvalid Length “ +
 “{1}\nInvalid Format {2}”,
 validationCharErrors, validationLengthErrors,
 validationFormatErrors);
 this.Log(validationMsg, 0, new byte[0]);

 //This is how to add rows to the outputrows Output0Buffer collection.
 Output0Buffer.AddRow();
 Output0Buffer.AddNewOutputColumn = 1;

VB
 Dim validationLengthErrors As Integer = 0
 Dim validationCharErrors As Integer = 0
 Dim validationFormatErrors As Integer = 0

 ‘..in the CreateNewOutputRows() Method
 Dim validationMsg As String
 validationMsg = String.Format(“Validation Errors:” + _

c09.indd 336c09.indd 336 8/28/08 12:16:12 PM8/28/08 12:16:12 PM

Chapter 9: Scripting in SSIS

337

 vbCrLf + “Bad Chars {0}” + _
 vbCrLf + “Invalid Length {1}” + _
 vbCrLf + “Invalid Format {2}”, _
 validationCharErrors, validationLengthErrors, _
 validationFormatErrors)
 Dim myByteArray(0) As Byte
 Me.Log(validationMsg, 0, myByteArray)
 Output0Buffer.AddRow()
 Output0Buffer.AddNewOutputColumn = 1

 For this sample to produce a log entry, remember you will have to set up a logging provider using menu
option SSIS Logging. Make sure you specifically select the Data Flow Task in which the Script
Component is hosted within SSIS and the logging events specifically for the Script Component. Running
the package will produce logging similar to this:

User:ScriptComponentLogEntry,MYPC,MYPC\ADMIN,”CSharp Basic Logging Script
Component” (1),{00000001-0000-0000-0000-000000000000},{3651D743-D7F6-43F8-
8DE2-F7B40423CC28},4/27/2008 10:38:56 PM,4/27/2008 10:38:56 PM,0,0x,
Validation Errors:
Bad Chars 0
Invalid Length 0
Invalid Format 0
OnPipelinePostPrimeOutput, MYPC,MYPC\ADMIN,Data Flow Task,{D2118DFD-DAEE-470B-
9AC3-9B01DFAA993E},{3651D743-D7F6-43F8-8DE2-F7B40423CC28},4/27/2008 10:38:55
PM,4/27/2008 10:38:55 PM,0,0x,A component has returned from its PrimeOutput
call. : 1 : CSharp Basic Logging Script Component

 Example: Data Validation
 The Script Component takes a little longer runway to get up to speed on how to use it and to get a
handle on how it is different from the Script Task. Now it ’ s time to take a look at a more comprehensive
example and get the bigger picture of how this component can be used in your everyday package
development.

 A typical use of the Script Component is to validate data within a Data Flow. In this example, the data is
contact information from a custom application that did not validate data entry, so assume the data
quality is poor. However, the destination database has a strict set of requirements for the data. Your task
is to validate the contact data from the Flat File Source and separate valid from invalid records into two
streams: the good stream and the error stream. The good records can continue to another Data Flow; the
questionable records will be sent to an error table for manual cleansing.

 Create the contacts table with the following script:

CREATE TABLE [dbo].[Contacts](
 [ContactID] [int] IDENTITY(1,1) NOT NULL,
 [FirstName] [varchar](50) NOT NULL,
 [LastName] [varchar](50) NOT NULL,
 [City] [varchar](25) NOT NULL,
 [State] [varchar](15) NOT NULL,
 [Zip] [char](11) NULL
) ON [PRIMARY]

c09.indd 337c09.indd 337 8/28/08 12:16:12 PM8/28/08 12:16:12 PM

Chapter 9: Scripting in SSIS

338

 The error queue table is virtually identical except that here there are no strict requirements and we ’ ve
added a column to capture the rejection reason. All data fields are nullable and set to the maximum
known size:

CREATE TABLE dbo.ContactsErrorQueue
(
 ContactErrorID int NOT NULL IDENTITY (1, 1),
 FirstName varchar(50) NULL,
 LastName varchar(50) NULL,
 City varchar(50) NULL,
 State varchar(50) NULL,
 Zip varchar(50) NULL,
 RejectReason varchar(50) NULL
) ON [PRIMARY]

 Finally, the incoming data format is fixed - width and is defined as follows:

 Field Starting Position New Field Name

 First Name 1 FirstName

 Last Name 11 LastName

 City 26 City

 State 44 State

 Zip 52 Zip

 The data file provided as a test sample looks like this:

Jason Gerard Jacksonville FL 32276-1911
Joseph McClung JACKSONVILLE FLORIDA 322763939
Andrei Ranga Jax fl 32276
Chad Crisostomo Orlando FL 32746
Andrew Ranger Jax fl

 Create a sample of this data file or download a copy from www.wrox.com . Create a new package and add
a Data Flow Task. Click on the Data Flow design surface and add a Connection Manager to the
Connection Managers tab. Name the Connection Manager “ Contacts Mainframe Extract, ” browse to the
data file, and set the file format to Ragged Right. Flat files with spaces at the end of the specifications are
typically difficult to process in some ETL platforms. The Ragged Right option in SSIS provides a way to
handle these easily without having to run the file through a Script Task to put a character into a
consistent spot, or having the origination system reformat their extract files. Use the Columns tab to
visually define the columns. Flip to the Advanced tab to define each of the column names, types, and
widths to match the copy book data definition and the new database field name. (You may need to delete
an unused column if this is added by the designer.) The designer at this point looks like Figure 9 - 23 .

c09.indd 338c09.indd 338 8/28/08 12:16:12 PM8/28/08 12:16:12 PM

Chapter 9: Scripting in SSIS

339

 This data is all string - based, so we are hiding a complexity here. Typically, there is some data that you
may want to define with strong types. Make the decision about whether you want to do that here in the
Connection Manager, or later using a derived column depending upon how confident you are in the
source of the data. If the Data Source is completely unreliable, import data using Unicode strings and use
your Data Flow Tasks to validate the data. Then move good data into a strong data type using the
Derived Column Transform.

 On the Data Flow surface, drag a Flat File Source to the Data Flow editor pane. Edit the Flat File Source
and set the Connection Manager to the Contract Mainframe Extract Connection Manager. This sets up the
origination of the data to stream into the Data Flow Task. Check the box labeled “ Retain null values from
the source as null values in the Data Flow. ” This new feature allows the consistent testing of null values
later. This hiding of null values was one of the problems with earlier versions of SSIS. Now, add a Script
Component to the Data Flow. When you drop the Script Component, you will be prompted to pick the
type of component to create. Select Transformation and click OK. Connect the output of the Flat File
Source to the Script Component to pipe the data into this component where we can program some
validation on the data.

 Open up the Script Component and set the ScriptLanguage to the language of your choice. On the Input
Columns tab, you will notice that Input Name is a drop - down with the name Input 0. It is possible to
have more than one source pointed to this Script Component. If you had this situation, this drop - down
would allow you to individually configure the inputs and select the columns from each input. For this
example, select all the input columns. Set the Usage Type for the State and Zip columns to ReadWrite.
The reason will be clear later.

Figure 9-23

c09.indd 339c09.indd 339 8/28/08 12:16:13 PM8/28/08 12:16:13 PM

Chapter 9: Scripting in SSIS

340

 Select the Inputs and Outputs tab to see the collection of inputs and outputs and the input columns
defined previously. Here you can create additional input and output buffers and columns within each.
Expand all the nodes and add these two output columns:

 Column Name Type Size

 Good Flag DT_BOOL N/A

 RejectReason DT_STR 50

You ’ ll use the flag to separate the data from the data stream. The reject reason will be useful to the
person who ’ ll have to perform any manual work on the data later. The designer with all nodes expanded
should look like Figure 9 - 24 .

Figure 9-24

 Back on the Script tab, click the Edit Script button to enter the VSTA scripting IDE. In the main
class, the rules for validation need to be programmatically applied to each data row. In the Input0_
ProcessInputRow method that was co - generated by SSIS using the Script Component designer, add
the rules for data validation, which are:

c09.indd 340c09.indd 340 8/28/08 12:16:13 PM8/28/08 12:16:13 PM

Chapter 9: Scripting in SSIS

341

 All fields are required except for the zip code.

 The zip code must be in the format ##### - #### or ##### and a numeric digit from 0 through 9. If
the zip code is valid for the first five characters, but the whole string is not, strip the trailing
records and use the first five.

 The state must be two uppercase characters.

 Here ’ s the overall plan: The contents of the file will be sent into the Script Component. This is where
programmatic control will be applied to each row processed. The incoming row has three data fields that
need to be validated to determine that all necessary data is present. The State and Zip columns need to
be validated additionally by rule and even to be cleaned up if possible. The need to fix the data in the
stream is why the Zip and State column usage types had to be set to ReadWrite in the designer earlier.

 To aid in accomplishing these rules, the data will be validated using regular expressions. Regular
expressions are a powerful utility that should be in every developer ’ s tool belt. They allow you to
perform powerful string matching and replacement routines. You can find an excellent tutorial on
regular expressions at http://www.regular - expressions.info . The regular expressions for
matching the data are here:

 Regular Expression Validation Description

 ̂ \d{5}([\ -]\d{4})?$ Matches a five - digit or nine - digit zip code with dash

 \b([A - Z]{2})\b Ensures that the state is only two capital characters

 To use the regular expression library, add the .NET System.Text.RegularExpressions namespace to
the top of the main class. For performance reasons, create the instances of the RegEx class to validate the
 ZipCode and the State in the PreExecute() method of the Script Component. This method and the
private instances of the Regex classes should look like this:

C#
 private Regex zipRegex;
 private Regex stateRegex;
 public override void PreExecute()
 {
 base.PreExecute();
 zipRegex = new Regex(“^\\d{5}([\\-]\\d{4})?$”, RegexOptions.None);
 stateRegex = new Regex(“\\b([A-Z]{2})\\b”, RegexOptions.None);
 }

VB
 Private zipRegex As Regex
 Private stateRegex As Regex

 Public Overrides Sub PreExecute()
 MyBase.PreExecute()
 zipRegex = New Regex(“^\d{5}([\-]\d{4})?$”, RegexOptions.None)
 stateRegex = New Regex(“\b([A-Z]{2})\b”, RegexOptions.None)
 End Sub

❑

❑

❑

c09.indd 341c09.indd 341 8/28/08 12:16:13 PM8/28/08 12:16:13 PM

Chapter 9: Scripting in SSIS

342

 To break up the tasks, create two new private functions to validate the ZipCode and State . Using byRef
arguments for the reason and the ZipCode enables the data to be cleaned and the encapsulated logic to
return both a true/false as well as the reason. The ZipCode validation functions should look like this:

C#
private bool ZipIsValid(ref string zip, ref string reason)
 {
 zip = zip.Trim();
 if (zipRegex.IsMatch(zip))
 {
 return true;
 }
 else
 {
 if (zip.Length > 5)
 {
 zip = zip.Substring(0, 5);
 if (zipRegex.IsMatch(zip))
 {
 return true;
 }
 else
 {
 reason = “Zip larger than 5 Chars, “ +
 “Retested at 5 Chars and Failed”;
 return false;
 }
 }
 else
 {
 reason = “Zip Failed Initial Format Rule”;
 return false;
 }
 }
 }

VB
 Private Function ZipIsValid(ByRef zip As String, _
 ByRef reason As String) As Boolean
 zip = zip.Trim()
 If (zipRegex.IsMatch(zip)) Then
 Return True
 Else
 If (zip.Length > 5) Then
 zip = zip.Substring(0, 5)
 If (zipRegex.IsMatch(zip)) Then
 Return True
 Else
 reason = “Zip larger than 5 Chars, “ + _
 “Retested at 5 Chars and Failed”
 Return False
 End If
 Else

c09.indd 342c09.indd 342 8/28/08 12:16:14 PM8/28/08 12:16:14 PM

Chapter 9: Scripting in SSIS

343

 reason = “Zip Failed Initial Format Rule”
 Return False
 End If
 End If
 End Function

 The state validation functions look like this:

C#
 private bool StateIsValid(ref string state, ref string reason)
 {
 state = state.Trim().ToUpper();
 if (stateRegex.IsMatch(state))
 {
 return true;
 }
 else
 {
 reason = “Failed State Validation”;
 return false;
 }
 }

VB
 Private Function StateIsValid(ByRef state As String, _
 ByRef reason As String) As Boolean
 state = state.Trim().ToUpper()
 If (stateRegex.IsMatch(state)) Then
 Return True
 Else
 reason = “Failed State Validation”
 Return False
 End If
 End Function

 Now, to put it all together add the driver method Input0_ProcessInputRow() that is fired upon each
row of the flat file:

C#
 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {
 Row.GoodFlag = false;
 string myZip = string.Empty;
 string myState = string.Empty;
 string reason = string.Empty;

 if (!Row.FirstName_IsNull & & !Row.LastName_IsNull & &
 !Row.City_IsNull & & !Row.State_IsNull & & !Row.Zip_IsNull)
 {
 myZip = Row.Zip;
 myState = Row.State;
 if (ZipIsValid(ref myZip, ref reason) & &
 StateIsValid(ref myState, ref reason))

c09.indd 343c09.indd 343 8/28/08 12:16:14 PM8/28/08 12:16:14 PM

Chapter 9: Scripting in SSIS

344

 {
 Row.Zip = myZip;
 Row.State = myState;
 Row.GoodFlag = true;
 }
 else
 {
 Row.RejectReason = reason;
 }
 }
 else
 {
 Row.RejectReason = “All Required Fields not completed”;
 }
 }

VB
 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 Dim myZip As String = String.Empty
 Dim myState As String = String.Empty
 Dim reason As String = String.Empty

 If (Row.FirstName_IsNull = False And _
 Row.LastName_IsNull = False And _
 Row.City_IsNull = False And _
 Row.State_IsNull = False And _
 Row.Zip_IsNull = False) Then
 myZip = Row.Zip
 myState = Row.State
 If (ZipIsValid(myZip, reason) And _
 StateIsValid(myState, reason)) Then
 Row.Zip = myZip
 Row.State = myState
 Row.GoodFlag = True
 Else
 Row.RejectReason = reason
 End If
 Else
 Row.RejectReason = “All Required Fields not completed”
 End If
 End Sub

 Notice that all fields are checked for null values using a property on the Row class that is the field name
and an additional tag _IsNull . This is a property code generated by SSIS when you set up the input and
output columns on the Script Component. Properties like Zip_IsNull explicitly allow the checking of a
null value without encountering a Null Exception. This is handy as the property returns true if the
particular column is NULL.

 Next, if the Zip column is not NULL, its value is matched against the regular expression to see if it ’ s in
the correct format. If it is, the value is assigned back to the Zip column as a cleaned data element. If the
value of the Zip column doesn ’ t match the regular expression, the script checks to see if it is at least five

c09.indd 344c09.indd 344 8/28/08 12:16:14 PM8/28/08 12:16:14 PM

Chapter 9: Scripting in SSIS

345

characters long. If true, then the first five characters are retested for a valid ZipCode pattern. Non -
 matching values result in a GoodFlag in the output columns being set to False .

 The state is trimmed of any leading or trailing white space, and then converted to uppercase and
matched against the regular expression. The expression simply checks to see if it ’ s two uppercase letters
between A and Z. If it is, the GoodFlag is set to True and the state value is updated; otherwise, the
GoodFlag is set to False .

 To send the data to the appropriate table based on the GoodFlag, you must use the Conditional
Split Task. Add this task to the Data Flow designer and connect the output of the Script Component Task
to the Conditional Split Transformation. Edit the Conditional Split Transformation, and add an output
named Good with the condition GoodFlag == FALSE and another output named Bad with the condition
 GoodFlag == TRUE . This separates the data rows coming out of the Script Component Task into two
separate streams. Another way to do this is only define one stream and let the default stream be the
other condition, but it seems more explicit to create streams for both conditions. The Conditional Split
Transform Editor should look like Figure 9 - 25 .

Figure 9-25

 Add an OLE Connection Manager that uses the database you created for the Contacts and
ContactsErrorQueue tables. Add two SQL Server Destinations to the Data Flow designer. One, named
Good Destination, should point to the Contacts table; the other, to the ContactsErrorQueue table. Drag
the Good output of the Conditional Split Task to the Good Destination. Set the output stream named

c09.indd 345c09.indd 345 8/28/08 12:16:15 PM8/28/08 12:16:15 PM

Chapter 9: Scripting in SSIS

346

Good to the destination. Then open the Mappings tab in the destination to map the input stream to the
columns in the Contacts table. Repeat this for the other Bad output of the Conditional Split Task to the
Bad Destination.

 Your final Data Flow should look something like Figure 9 - 26 . If you run this package with the
 Contacts.dat file described at the top of the use - case, three contacts will validate, and two will fail
with these rejection reasons:

Failed State Validation
Joseph McClung JACKSONVILLE FLORIDA 322763939

Zip Failed Initial Format Rule
Andrew Ranger Jax fl

Figure 9-26

 At this point, you ’ ve gotten a good overview of how scripting works in SSIS and the difference between
the Script Task and the Scripting Component, but as with any programming environment, you need to
know how to troubleshoot and debug your code to get all of this to work. We ’ ll look at some of the
common coding tasks in the next section that you ’ ll need to allow for more advanced SSIS scripting
development.

c09.indd 346c09.indd 346 8/28/08 12:16:16 PM8/28/08 12:16:16 PM

Chapter 9: Scripting in SSIS

347

 Essential Coding, Debugging, and
Troubleshooting Techniques

 We have been all over the new VSTA development environment and have introduced you to the addition
of C# that moves SSIS development into the managed code arena. Now, we need to circle up and dig into
some of the techniques of hardening our code for unexpected issues that occur during runtime and look
at some of the techniques of troubleshooting SSIS packages. There are some differences between the
Script Task and the Script Component for some of these techniques that we ’ ll highlight here, now that
you are familiar with both.

 Structured Exception Handling
 Structured Exception Handling (SEH) allows you to catch specific errors as they occur and perform any
appropriate action needed. In many cases, you just want to log the error and stop execution, but there
are some instances where you may want to try a different plan of action, depending on the error.

 Here is an example of exception handling in SSIS scripting code in both languages:

C#
public void Main()
{
 try
 {
 string fileText = string.Empty;
 fileText = System.IO.File.ReadAllText(“c:\\data.csv”);
 }
 catch (System.IO.FileNotFoundException ex)
 {
 //Log Error Here
 //MessageBox here for demo purposes only
 System.Windows.Forms.MessageBox.Show(ex.ToString());
 Dts.TaskResult = (int)ScriptResults.Failure;
 }
 Dts.TaskResult = (int)ScriptResults.Success;
}

VB
Public Sub Main()
 Try
 Dim fileText As String
 fileText = FileIO.FileSystem.ReadAllText(“C:\data.csv”)
 Catch ex As System.IO.FileNotFoundException
 ‘Log Error Here
 ‘MessageBox here for demo purposes only
 System.Windows.Forms.MessageBox.Show(ex.ToString())
 Dts.TaskResult = ScriptResults.Failure
 Return
 End Try
 Dts.TaskResult = ScriptResults.Success
End Sub

c09.indd 347c09.indd 347 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Chapter 9: Scripting in SSIS

348

 This trivial example attempts to read the contents of the file at C:\data.csv into a string variable. This
code makes some assumptions that might not be true. An obvious assumption is that the file exists. That
is why this code was placed in a Try block. It is trying to perform an action that has the potential for
failure. If the file isn ’ t there, a System.IO.FileNotFoundException is thrown. A Try block marks a
section of code that contains function calls with potentially known exceptions. In this case, the
 FileSystem ReadAllText function has the potential to throw a concrete exception.

 The Catch block is the error handler for this specific exception. You would probably want to add some
code to log the error inside the Catch block. For now, we ’ ve sent the exception to the message box as a
string so that it can be viewed. See later in the chapter under each Script object type for the method to
perform logging of this type. This code obviously originates from a Scripting Task since it returns a result.
The result is set to Failure , and the script is exited with the Return statement if the exception occurs.
If the file is found, no exception is thrown, and the next line of code is executed. In this case, it would go
to the line that sets the TaskResult to the value of the Success enum, right after the End Try statement.

 If an exception is not caught, the exception propagates up the call stack until an appropriate handler is
found. If none is found, the exception stops execution. You can have as many Catch blocks associated
with a Try block as you wish. When an exception is raised, the Catch blocks are walked from top to
bottom until an appropriate one is found that fits the context of the exception. Only the first block that
matches will be executed. Execution does not fall through to the next block, so it ’ s important to place the
most specific Catch block first and descend to the least specific. A Catch block specified with no filter
will catch all exceptions. Typically, the coarsest Catch block is listed last. The previous code was written
to anticipate the error of a file not being found, so not only does the developer have an opportunity to
add some recovery code, but the framework assumes that you ’ ll handle the details of the error itself. If the
same code only contained a generic Catch statement, the error would simply be written to the package
output. To see what this looks like replace the Catch statement in the preceding code snippet with these:

C#
Catch()

VB
Catch

 Then the error would simply be written to the package output like this:

SSIS package “Package.dtsx” starting.
Error: 0x1 at VB Script Task: System.Reflection.TargetInvocationException,
mscorlib
System.IO.FileNotFoundException, mscorlib

System.Reflection.TargetInvocationException: Exception has been thrown by the
target of an invocation. --- > System.IO.FileNotFoundException: Could not find
file ‘C:\data.csv’.
File name: ‘C:\data.csv’
 at System.IO.__Error.WinIOError(Int32 errorCode, String maybeFullPath)
 at System.IO.FileStream.Init(String path, FileMode mode, FileAccess access,
Int32 rights, Boolean useRights, FileShare share, Int32 bufferSize,
FileOptions options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean
bFromProxy)
 …
Task failed: VB Script Task
SSIS package “Package.dtsx” finished: Success.

c09.indd 348c09.indd 348 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Chapter 9: Scripting in SSIS

349

 The full stack is cut off for brevity and to point out that the task status shows that it failed.

 Another feature of SEH is the Finally block. The Finally block exists inside a Try block and executes
after any code in the Try block and any Catch blocks that were entered. Code in the Finally block is
always executed, regardless of what happens in the Try block and in any Catch blocks. You would put
code to dispose of any resources, such as open files or database connections, in the Finally block.
Following is an example of using the Finally block to free up a connection resource:

C#
public void OpenConnection(string myConStr)
{
 SqlConnection con = new SqlConnection(myConStr);
 try
 {
 con.Open();
 //do stuff with con
 }
 catch (SqlException ex)
 {
 //log error here
 }
 finally
 {
 if (con != null)
 {
 con.Dispose();
 }
 }
}

VB
Public Sub OpenConnection(myConStr as String)
 Dim con As SqlConnection = New SqlConnection(myConStr)
 Try
 con.Open()
 ‘do stuff with con
 Catch ex As SqlException
 ‘Log Error Here
 Dts.TaskResult = Dts.Results.Failure
 Return
 Finally
 If Not con Is Nothing Then con.Dispose()
 End Try
End Sub

 In this example, the Finally block is hit regardless of whether the connection is open or not. A logical
 If statement checks to see if the connection is open and closes it to conserve resources. Typically you
want to follow this pattern if you are doing anything resource intensive like using the System.IO or
 System.Data assemblies.

 For a full explanation of the Try/Catch/Finally structure in Visual Basic.NET, see the language reference
in MSDN or Books Online.

c09.indd 349c09.indd 349 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Chapter 9: Scripting in SSIS

350

 Script Debugging and Troubleshooting
 Debugging is an important new feature of scripting in SSIS. You can still use the technique of popping
up a message box function to see the value of variables, but there are more sophisticated techniques that
will help you pinpoint the problem. Using the Visual Studio for Applications environment, you now
have the ability to set breakpoints, examine variables, and even evaluate expressions interactively.

 Breakpoints
 Breakpoints allow you to flag a line of code where execution pauses while debugging. Breakpoints are
invaluable in determining what ’ s going on inside your code. They allow you to step into your code and
see what happens as it executes. Unfortunately, breakpoints only work inside of Script Tasks.

 You can set a breakpoint in several ways. One way is to click in the gray margin at the left of the text
editor at the line where you wish to stop execution. Another way is to move the cursor to the line you
wish to break on and hit F9. Yet another way is to select Debug Toggle Breakpoint.

 To continue execution from a breakpoint, press F10 to step to the next line or F5 to run all the way
through to the next breakpoint.

 When you have a breakpoint set on a line, the line gets a red highlight like the one shown in Figure 9 - 27 .

Figure 9-27

 When a Script Task has a breakpoint set somewhere in the code, it will have a red dot on it similar to the
one in Figure 9 - 28 .

Figure 9-28

 Row Count and Data Viewers
 Previously, you looked at using the Visual Studio for Applications environment to debug a Script Task
using breakpoints and other tools. Unfortunately, you do not have the ability to debug the Script
Component using this environment. Any breakpoints that you set will be ignored. Instead, you must
resort to inspecting the data stream using the Row Count Component or a Data Viewer.

 The Row Count Component is very straightforward; it simply states how many rows passed through
it. The Data Viewer is a much better way to debug your component, however. To add a Data Viewer,
select the connector arrow, leaving the component that you want to see data for. In the previous example,
this would be the connector from the Script Component to the Conditional Split Task. Right - click this
connection and select Data Viewers. The Data Flow Path Editor will pop up. Click Add to add the Data
Viewer. On the Configure Data Viewer screen, select Grid as the type. Click the Grid tab and make sure
all the columns you wish to see are in the Displayed Columns list. Close out this window and the
Data Path Flow Editor window by clicking OK. Figure 9 - 29 shows the Data Path Flow Editor with a Data
Viewer configured on Output 0.

c09.indd 350c09.indd 350 8/28/08 12:16:18 PM8/28/08 12:16:18 PM

Chapter 9: Scripting in SSIS

351

 Now when you run this package again, you will get a Data Viewer window after the Script Component
has executed. This view will show the data output by the Script Component. Figure 9 - 30 shows an
example. Click the Play button to continue package execution, or simply close the window.

Figure 9-29

Figure 9-30

 While using the Data Viewer certainly helps with debugging, it is no replacement for being able to step
into the code. An alternative is to use the FireInformation event on the ComponentMetaData class in
the Script Component. It is like the message box, but without the modal effect.

 Autos, Locals, and Watches
 The Visual Studio environment provides you with some powerful views into what is happening with the
execution of your code. These views consist of three windows known as the Autos window, Locals
window, and Watch window. These windows share a similar layout and display the value of expressions
and variables, though each has a distinct method determining what data to display.

c09.indd 351c09.indd 351 8/28/08 12:16:19 PM8/28/08 12:16:19 PM

Chapter 9: Scripting in SSIS

352

 The Locals window displays variables that are local to the current statement, as well as three statements
behind and in front of the current statement. For a running example, the Locals window would appear,
as in Figure 9 - 31 .

Figure 9-31

 Watches are another very important feature of debugging. Watches allow you to specify a variable to
watch. You can set up a watch to break execution when a variable ’ s value changes or some other
condition is met. This will allow you to see exactly when something is happening, such as a variable that
has an unexpected value.

 To add a watch, select the variable you want to watch inside the script, right - click it, and select Add
Watch. This will add an entry to the Watch window.

 You can also use the Quick Watch window, accessible from the Debug menu, or through the Ctrl+Alt+Q
key combination. The Quick Watch window is shown in Figure 9 - 32 in the middle of a breakpoint, and
you can see the value of ival as it is being assigned the variable value of 2.

Figure 9-32

c09.indd 352c09.indd 352 8/28/08 12:16:19 PM8/28/08 12:16:19 PM

Chapter 9: Scripting in SSIS

353

 This window allows you to evaluate an expression at runtime and see the result in the window. You can
then click the Add Watch button to move it to the Watch window.

 The Immediate Window
 The Immediate window allows you to evaluate expressions, execute procedures, and print out variable
values. It is really a mode of the Command window, which allows you to issue commands to the IDE.
Unfortunately, this too is only useful when you are within a breakpoint and this can only be done within
a Script Task.

 If you can ’ t find the Immediate window, but see the Command window, just type the command immed
and press Enter.

 The Immediate window is very useful while testing. You can see the outcome of several different
scenarios. Suppose you have an object obj of type MyType . MyType declares a method called
 DoMyStuff() that takes a single integer as an argument. Using the Immediate window, you could pass
different values into the DoMyStuff() method and see the results. To evaluate an expression in the
Immediate window and see its results, you must start the command with a question mark (?):

?obj.DoMyStuff(2)
“Hello”

 Commands are terminated by pressing the Enter key. The results of the execution are printed on the next
line. In this case, calling DoMyStuff() with a value of 2 returns the string “ Hello. ”

 You can also use the Immediate window to change the value of variables. If you have a variable defined
in your script and you want to change its value, perhaps for negative error testing, you can use this
window, as shown in Figure 9 - 33 .

Figure 9-33

 In this case, the value of the variable greeting is printed out on the line directly below the expression.
After the value is printed, it is changed to “ Goodbye Cruel World. ” The value is then queried again, and
the new value is printed. If you are in a Script Task and need to get additional information, this is a
useful way to do it.

 Summary
 In this chapter, you learned about the available scripting options in SSIS from the beginning with DTS
and the use of ActiveX scripts to the new versions of SSIS that support managed code development and
a robust IDE development environment. You used the new Visual Studio Tools for Applications IDE to

c09.indd 353c09.indd 353 8/28/08 12:16:20 PM8/28/08 12:16:20 PM

Chapter 9: Scripting in SSIS

354

develop some basic Script Tasks. Then, to see how all this fits together in SSIS, we dove right in to using
the Script Tasks to retrieve data into variables, save data into external XML files, and used some .NET
serialization techniques that can allow custom serialization into MSMQ queues or Web services. To
understand how to leverage existing code libraries, you even created a utility class, registered it into the
GAC, and accessed it in an SSIS script to validate data.

 SSIS scripting is powerful, but it has been difficult for some to differentiate between when to use a Script
Task and when a Script Component is appropriate. You have been all over both of these in detail in this
chapter and can now use these with confidence in your daily development.

 Experiment with the scripting features of SSIS using the examples in this chapter, and you will find all
kinds of uses for them. Don ’ t forget to review the chapter on expressions to learn about the capabilities of
controlling properties within the SSIS model at runtime. Now we are going to take what we ’ ve learned so
far about the SSIS toolset capability from Control Flow and Data Flow Tasks, to Expressions and Scripting
Tasks and Components and put them to work. Read on to the next chapter for a breakdown on the
techniques you need to do a typical job of loading a data warehouse using SSIS services.

c09.indd 354c09.indd 354 8/28/08 12:16:20 PM8/28/08 12:16:20 PM

 Loading a Data Warehouse

 Among the various applications of SQL Server Integration Services (SSIS), the most common is
loading a data warehouse. SSIS provides the ETL features and functionality to efficiently handle
many of the tasks required when dealing with transactional source data that will be extracted and
loaded into a data mart, data warehouse, or even an operational data store (ODS), including the
capabilities to then process data from the relational data warehouse into the SQL Server Analysis
Services (SSAS) cubes.

 Soup to nuts, SSIS provides the core foundation of data processing from your source, to staging, to
your data mart, and onto your cubes (and beyond!). Figure 10 - 1 highlights a common architecture
of a business intelligence (BI) solution.

ERP

Staging
or ODS

Cubes

Data Mart/
Data Warehouse

Execs, Analysts,
Management, Engineers

HR/
CRM

Other

Presentation D
ata

D
ata Extraction and Transform

ation

K
PIs, S

corecards,
S

trategy M
aps

Param
eterized and

S
tatic R

eporting
Analytic Tools

Source Data Data Processing and Storage Presentation

SSIS ETL Area

Provides analytic
performance,

drill-down, advanced
calculations, KPIs

Analysis and report
organization and

linking, user portal
customization

Corporate goals
mapped to

performance
metrics

Pre-defined
operational and
management

reports

Data summaries with
drill-down, trending,
root cause analysis,
data research and

decomposition

Allows history
tracking and source

data association

Provides core
reporting structure,

data conformity,
and integration

Portal

Figure 10-1

c10.indd 355c10.indd 355 8/28/08 12:20:57 PM8/28/08 12:20:57 PM

Chapter 10: Loading a Data Warehouse

356

 The presentation layer on the right side of Figure 10 - 1 shows the main purpose of the BI solution, which
is to provide business users (from the top to the bottom of an organization) meaningful data that they
can take actionable steps from. Underlying the presentation data are the back - end structures and
processes that make it possible for data to become meaningful and visible to the right people.

 ETL is a large part of this back - end process because its responsibility is to move and restructure
the data between the data tiers of the BI architecture. This involves many steps, as you will see, from
data profiling, to data extraction, dimension table loading, fact table processing, and SSAS processing.
This chapter will set you on course to architecting and designing an ETL process for data warehouse and
business intelligence ETL.

 In fact, SSIS contains several tasks and transformations out - of - the - box to get you well on your
way to a stable and straightforward ETL process. Some of these components include the Data Profiling
Task, the Slowly Changing Dimension Transformation, and the Analysis Services Execute DDL Task. The
tutorials in this chapter all coordinate together to demonstrate the processing required for the Sales
Quota Fact table and SSAS measure group, which includes the ETL required for the Employee
dimension.

 Data Profiling
 In the end, data warehousing and BI is about reporting and analytics, and the first key to reaching that
objective is understanding the source data, because that has immeasurable impact on how you design
the structures and build the ETL.

 Data profiling is the process of analyzing the source data to better understand what condition the data
is in, in terms of cleanliness, patterns, number of nulls, and so on. In fact, you probably have done
data profiling before with scripts and spreadsheets, but perhaps you didn ’ t realize that it was called data
profiling.

 SSIS 2008 includes a new Control Flow Task called the Data Profiling Task. This task is reviewed in
Chapter 3 but let ’ s drill into some more details on how to leverage it for data warehouse ETL.

 Initial Execution of the Data Profiling Task
 It is important to know that the Data Profiling Task is not like the other tasks in SSIS because it is not
intended to be run over and over again through a scheduled operation. Think about SSIS being the
wrapper for this tool. You use the SSIS framework to configure and run the Data Profiling Task, and then
you observe the results through the separate data profile viewer. The output of the Data Profiling Task
will be used to help you in your development and design of the ETL and dimensional structures in your
solution. Periodically, you may want to re - run the Data Profile Task to see how the data has changed, but
the package you develop will not include the task in the overall recurring ETL process.

c10.indd 356c10.indd 356 8/28/08 12:20:59 PM8/28/08 12:20:59 PM

Chapter 10: Loading a Data Warehouse

357

 Let ’ s begin!

 1. Start out by opening BIDS and creating a new SSIS project called Data Warehouse ETL. You will
use this project throughout this chapter.

 2. In the Solution Explorer, Rename package.dtsx as Profile_Employee_Data.dtsx .

 3. The Data Profiling Task requires an ADO.NET connection to the source database (as opposed to
an OLE DB connection). Therefore, create a new ADO.NET connection in the Connection
Managers window by right - clicking and choosing New ADO.NET Connection, and then click
the New button on the ADO.NET Connection Managers’ window.

 4. Create a connection to your local machine or where the AdventureWorks2008 sample database
is installed, as shown in Figure 10 - 2 .

Figure 10-2

 5. Save the connection information and return to the SSIS package designer.

 6. Drag a Data Profiling Task from the Toolbox onto the Control Flow and double - click the new
task to open up the Data Profiling Task Editor.

c10.indd 357c10.indd 357 8/28/08 12:21:00 PM8/28/08 12:21:00 PM

Chapter 10: Loading a Data Warehouse

358

 7. The Data Profiling Task includes a wizard that will create your profiling scenario quickly,
therefore click the Quick Profile Button on the General tab.

 8. In the Single Table Quick Table Form, choose the AdventureWorks2008 connection, and in the
Table Or View drop - down, select the [Sales].[vSalesPerson] view from the list. Enable all the
checkboxes in the Compute list and change the Functional Dependency Profile to use 2 columns
as determinant columns as shown in Figure 10 - 3 .

 9. Select OK to save the changes, which will populate the Requests list in the Data Profiling Task
Editor as shown in Figure 10 - 4 . Chapter 3 describes each of these different request types, and
you will see the purpose and output of a few of these when we run the viewer.

Figure 10-3

c10.indd 358c10.indd 358 8/28/08 12:21:00 PM8/28/08 12:21:00 PM

Chapter 10: Loading a Data Warehouse

359

Figure 10-4

 10. Return to the General tab of the editor and in the Destination property box, choose New File
Connection. This is where you will define the XML file where the profile output is stored (the
results of the Data Profiling Task when it is run).

 11. In the File Connection Manager Editor, change the Usage type drop - down to “ Create file ” and
enter C:\Employee_Profile.xml in the File text box. Select OK to save your changes to the
connection and OK to save your changes in the Data Profiling Task Editor.

 12. Now, it is time to execute this simple package. Run the package in BIDS, which will initiate
several queries against the source table or view (in this case, a view). Since this view only
returns a few rows, the Data Profiling Task will execute rather quickly, but with large tables, this
may take several minutes (or longer if your table has millions of rows and you are performing
several profiling tests at once).

 The results of the profile are stored in the Employee_Profile.xml file, which we will now review with
the Data Profile Viewer tool.

 Reviewing the Results of the Data Profiling Task
 Despite what some business users expect, data cannot be magically generated, no matter how creative
you are with data cleansing. For example, if you are requested to build a Sales target analysis that uses
employee data, and are asked to build into the analysis a Sales Territory Group, but the source column
only has 50% of the data even populated for this, the business user needs to rethink the value of the data

c10.indd 359c10.indd 359 8/28/08 12:21:00 PM8/28/08 12:21:00 PM

Chapter 10: Loading a Data Warehouse

360

or fix the source. This is a simple example for the purpose of the tutorials in this chapter, but consider a
more complicated example or a larger table.

 The point is that data comes in all different qualities. Some data is simply missing, other data has typos,
sometimes a column has so many different discrete values that it is hard to analyze, and so on. The
purpose of doing data profiling is to understand the source for two reasons. First, it allows you to review
the data with the business user, which can affect change, and second, it provides you the insight you
need when developing your ETL operations.

 Now that you have run the Data Profiling Task, your next objective is to evaluate the results.

 1. Observing the output requires using the Data Profile Viewer. This utility is found in the
Integration Services sub-directory for Microsoft SQL Server 2008 (Start Button All Programs).

 2. Open the Employee_Profile.xml file created earlier by clicking the Open button and
navigating to the C:\ drive (or the location where the file was saved), highlighting the file, and
clicking Open again.

 3. In the Profiles navigation tree drill, first click on the table icon on the top left to put the tree
viewer into “ Column View. ” Second, drill down into the details by expanding the Data Sources,
server (local), Databases, AdventureWorks2008, Tables, [Sales].[vSalesPerson], and Columns
objects as shown in Figure 10 - 5 .

Figure 10-5

c10.indd 360c10.indd 360 8/28/08 12:21:01 PM8/28/08 12:21:01 PM

Chapter 10: Loading a Data Warehouse

361

 4. The first profiling output to observe is the Candidate Key Profile, so click this item under the
Columns list, which will open the results in the viewer on the right. You will see that the Data
Profiling Task has identified seven columns that are unique across the entire table (with 100%
uniqueness) as shown in Figure 10 - 6 .

Figure 10-6

 Given the small size of this table, all of these columns are unique, but with larger tables, you will
see fewer columns and less than 100% uniqueness, with the ability to see the exceptions or Key
Violations. What column looks to be the right candidate key for this table? Wait until the next
section and you will see how these results affect your ETL.

5. Next, click the Functional Dependency Profile object on the left and observe the results. This
shows the relationship between values in multiple columns. There are two columns shown, a
Determinant Column(s) and Dependant Column. The question is, for every unique value (or
combination) in the Determinant Column, is there only one unique value in the Dependant
Column. Observe the output. What is the relationship between these combinations of columns:
TerritoryGroup and TerritoryName, StateProvinceName and CountryRegionName. Wait until
the next section and you will see how these results affect your ETL.

c10.indd 361c10.indd 361 8/28/08 12:21:01 PM8/28/08 12:21:01 PM

Chapter 10: Loading a Data Warehouse

362

 The column length distribution shows the number of rows by length, with the data browser on
the bottom right of Figure 10 - 7 showing the actual. What are the maximum and minimum
lengths of values for the column?

 7. Under TerritoryName in the profile browser, select the Column Null Ratio Profile and then
double - click the row in the profile viewer on the right to view the detail rows, as shown in
Figure 10 - 8 .

Figure 10-7

 6. Next, in the profile tree, expand the TerritoryName column and highlight the Column Length
Distribution, and then in the distribution profile on the right, double - click the length
distribution of 6, as shown in Figure 10 - 7 .

c10.indd 362c10.indd 362 8/28/08 12:21:03 PM8/28/08 12:21:03 PM

Chapter 10: Loading a Data Warehouse

363

 The Column Null Ratio shows what percentage of rows in the entire table have NULL values.
This is valuable for ETL considerations because it spells out when NULL handling is required
for the ETL process, which is one of the most common transformation processes.

 8. Next, select the Column Value Distribution Profile on the left under the Territory Name and
observe the output in the results viewer. How many unique values are there in the entire table?
How many values are only used one time in the table?

 9. In the left navigation pane, expand the Phone column and then click the Column Pattern Profile.
Double - click the first pattern number 1 in the list on the right as shown in Figure 10 - 9 .

Figure 10-8

c10.indd 363c10.indd 363 8/28/08 12:21:04 PM8/28/08 12:21:04 PM

Chapter 10: Loading a Data Warehouse

364

 The Column Pattern Profile uses the regular expression syntax to display what pattern or range
of patterns that the data in the column contain. Notice that for the Phone Number column, two
patterns emerge. The first is for phone numbers that are in the syntax ### - 555 - ####, which is
translated to \d\d\d - 555 - \d\d\d\d in regular expression syntax. The other pattern begins
with 1 \(11\) 500 555- and ends with four variable numbers.

 10. The final data profiling type to review is the Column Statistics Profile. This is only applicable to
data types related to numbers (integer, float, decimal, numeric) and dates (dates only allow
minimum and maximum calculations). In the Profiles tree view on the left of the Data Profile
Viewer, expand the SalesYTD column and then click the Column Statistics Profile. Four results
are calculated across the spread of values in the numeric column:

 a. Minimum: The lowest number value in the set of column values

 b. Maximum: The highest number value in the set of column values

 c. Mean: The average of values value in the set of column values

 d. Standard Deviation: The average variance between the values and the mean

 The Column Statistics Profile is very valuable for fact table source evaluation, since the measures in a
fact table are almost always numeric based, with a few exceptions.

 Overall, the output of the Data Profiling Task has helped to identify the quality and range of values in
the source. This naturally leads into using the output results to formulate the ETL design.

Figure 10-9

c10.indd 364c10.indd 364 8/28/08 12:21:04 PM8/28/08 12:21:04 PM

Chapter 10: Loading a Data Warehouse

365

 Turning Data Profile Results into Actionable ETL Steps
 The typical first step in evaluating source data is to check the existence of source key columns and referential
completeness between source tables or files. Two of the data profiling outputs can help in this effort:

 The Candidate Key Profile will provide the columns (or combination of columns) with the
highest uniqueness. It is crucial to identify a candidate key (or composite key) that is 100%
unique, because when you load your dimension and fact tables, you need to know how to
identify a new or existing source record. In the preceding example, shown in Figure 10 - 6 ,
several columns meet the criteria. The natural selection from this list is the SalesPersonID
column.

 The Column NULL Ratio is another important output of the Data Profiling Task. This can
be used to verify that foreign keys in the source table have completeness, especially if the
primary key to foreign key relationships will be used to relate a dimension table to a fact or a
dimension table and another dimension table. Of course this isn ’ t verifying that the primary to
foreign key values line up, but this will give you an initial understanding of referential data
completeness.

 As just mentioned, the Column NULL Ratio can be used for an initial review of foreign keys in source
tables or files. The Column NULL Ratio is an excellent output, because it can be used for almost every
destination column type, such as dimension attributes, keys, and measures. Any time you have a column
that has NULLs, you will most likely have to deal with the NULLs and replace them with unknowns or
perform some data cleansing to handle them.

 In the example shown in Figure 10 - 8 , the Territory Name has approximately a 17% NULL ratio. In your
dimension model destination, this is a problem, because the Employee dimension has a foreign surrogate
key to the Sales Territory dimension. Since there isn ’ t completeness in the Sales Territory, you don ’ t have
a reference to the dimension. This is an actionable item that you will need to address in the dimension
ETL section later.

 Another useful output of the Data Profiling Task is the column length and statistics presented. Data type
optimization is important to define; when you have a large inefficient source column where most of the
space is not used [such as a char(1000)] you will want to scale back the data type to a reasonable
length. Use the Column Length Distribution as shown in Figure 10 - 7 .

 The Column Statistics can be helpful in defining the data type of your measures. Optimization of data
types in fact tables is more important than dimensions, so consider the source column ’ s max and min to
determine what data type to use for your measure. The wider a fact table is, the slower it will perform
because fewer rows will fit in the server ’ s memory for query execution, and the more disk space it will
take up on the server.

 Once you have evaluated your source data, the next step is to develop your data extraction, the
E of ETL.

❑

❑

c10.indd 365c10.indd 365 8/28/08 12:21:05 PM8/28/08 12:21:05 PM

Chapter 10: Loading a Data Warehouse

366

 Data Extraction
 Data extraction applies to many types of ETL, beyond just data warehouse and BI data processing. In
fact, several chapters in this book deal with data extraction for various needs, such as incremental
extraction, change data capture, and dealing with various sources. Refer to the following chapters to
plan out your SSIS data extraction:

 Chapter 5 takes an initial look at the Source adapters in the Data Flow that will be used for your
extraction.

 Chapter 11 deals with using the SQL Server relational engine for performing change data
capture.

 Chapter 12 is a look at heterogeneous, or non - SQL Server sources for data extraction.

 The balance of this chapter deals with the core of data warehouse ETL, which is dimension and fact table
loading, SSAS object processing, and ETL coordination.

 Dimension Table Loading
 Dimension transformation and loading is about tracking the current and sometime history of associated
attributes in a dimension table. Figure 10 - 10 shows the dimensions related to the Sales Quota Fact table
in the AdventureWorksDW2008 database. The objective of this section is to process data from the source
tables into the dimension tables.

❑

❑

❑

Figure 10-10

c10.indd 366c10.indd 366 8/28/08 12:21:05 PM8/28/08 12:21:05 PM

Chapter 10: Loading a Data Warehouse

367

 In this example, you will notice that each dimension (DimEmployee, DimSalesTerritory, and DimTime)
has a surrogate key named Dimension Key, as well as a candidate key named Dimension AlternateKey. The
surrogate key is the most important concept in data warehousing because it allows the tracking of
change history and optimizes the structures for performance. See The Data Warehouse Toolkit , by Ralph
Kimball and Margy Ross (Wiley, 2002) for a detailed review of the use and purpose of surrogate keys.
Surrogate keys are often auto - incrementing identity columns that are contained in the source table.

 Dimension ETL has several objectives, each of which are reviewed in the tutorial steps to load the
DimSalesTerritory and DimEmployee tables, including:

 Identifying the source keys that uniquely identify a source record and that will map to the
alternate key

 Performing any Data Transformations to align the source data to the dimension structures

 Handling the different change types for each source column and adding or updating dimension
records

 SSIS includes a built - in transformation called the Slowly Changing Dimension (SCD) Transformation to
assist in the process. This is not the only transformation that you can use to load a dimension table, but
you will use it in these tutorial steps to accomplish dimension loading. The SCD also has some
drawbacks, which are reviewed at the end of this section.

 Loading a Simple Dimension Table
 Many dimension tables are like the Sales Territory dimension in that they only contain a few columns,
and history tracking is not required for any of the attributes. In this example, the DimSalesTerritory is
sourced from the [Sales].[SalesTerritory] table, and any source changes to any of the three columns will
be updated in the dimension table. These columns are referred to as changing dimension attributes,
because the values can change.

 1. To begin creating the ETL for the DimSalesTerritory table, return to your SSIS project created in
the first tutorial and create a new package named ETL_DimSalesTerritory.dtsx.

 2. Since you will be extracting data from the AdventureWorks2008 database and loading data
into the AdventureWorksDW2008 databases, create two OLE DB connections in your package to
these databases named AdventureWorks2008 and AdventureWorksDW2008, respectively. Refer
to Chapter 2 for help on defining the connections.

 3. Drag a new Data Flow Task from the Toolbox onto the Control Flow and navigate to the Data
Flow designer.

 4. Drag an OLE DB Source adapter into the Data Flow and double - click the new source to open the
editor. Configure the OLE DB Connection Manager drop - down to use the AdventureWorks2008
database and leave the data access mode selection as “ Table or view. ” In the “ Name of the table
or the view ” drop - down, choose the [Sales].[SalesTerritory] as shown in Figure 10 - 11 .

❑

❑

❑

c10.indd 367c10.indd 367 8/28/08 12:21:05 PM8/28/08 12:21:05 PM

Chapter 10: Loading a Data Warehouse

368

 5. On the Columns property page, change the Output Column value for the TerritoryID column to
SalesTerritoryAlternateKey, change the Name column to SalesTerritoryRegion, and change the
Output Column for the Group column to SalesTerritoryGroup. Also, uncheck all the columns
under SalesTerritoryGroup because they are not needed for the DimSalesTerritory table, as
shown in Figure 10 - 12 .

Figure 10-11

c10.indd 368c10.indd 368 8/28/08 12:21:06 PM8/28/08 12:21:06 PM

Chapter 10: Loading a Data Warehouse

369

 6. Select OK to save your changes and then drag a Lookup Transformation onto the Data Flow and
connect the green data path from the OLE DB Source onto the Lookup.

 7. Edit the Lookup Transformation and on the General property page, leave the Cache mode set at
Full cache, and leave the Connection type as “ OLE DB Connection Manager ” as shown in
Figure 10 - 13 .

Figure 10-12

c10.indd 369c10.indd 369 8/28/08 12:21:06 PM8/28/08 12:21:06 PM

Chapter 10: Loading a Data Warehouse

370

 8. On the Connection property page, set the OLE DB Connection Manager drop - down to the
AdventureWorks2008 connection. Change the “ Use a table or a view ” drop - down to
[Person].[CountryRegion].

 9. On the Columns property page, drag the CountryRegionCode from the available Input Columns
list to the matching column in the Available Lookup Columns list, then select the checkbox next
to the Name column in the same column list. Rename the Output Alias of the Name column to
SalesTerritoryCountry as shown in Figure 10 - 14 .

Figure 10-13

c10.indd 370c10.indd 370 8/28/08 12:21:06 PM8/28/08 12:21:06 PM

Chapter 10: Loading a Data Warehouse

371

 10. Select OK in the Lookup Transformation Editor to save your changes.

 At this point in the process, you have performed some simple initial steps to align the source data up
with the destination dimension table. The next steps are the core of the dimension processing and use the
SCD Transformation.

 11. Next, drag a Slowly Changing Dimension Transformation from the Toolbox onto the Data Flow
and connect the green data path output from the Lookup onto the Slowly Changing Dimension
Component. When you drop the path onto the SCD, you will be prompted to select the output
of the Lookup. Choose the Lookup Match Output from the drop - down and then click OK.

 12. To invoke the SCD wizard, double - click the transformation, which will open up a splash screen
for the wizard. Proceed to the second screen by clicking Next.

 13. The first input of the wizard is to identify the dimension table that the source data relates to.
Therefore choose the AdventureWorksDW2008 as the Connection Manager and then choose
[dbo].[DimSalesTerritory] as the table or view, which will automatically display the dimension
table ’ s columns in the list as shown in Figure 10 - 15 . For the SalesTerritoryAlternateKey, change
the Key Type to Business key.

Figure 10-14

c10.indd 371c10.indd 371 8/28/08 12:21:06 PM8/28/08 12:21:06 PM

Chapter 10: Loading a Data Warehouse

372

 a. The first purpose of the screen in Figure 10 - 15 is to identify the candidate key (or business
key) from the dimension table and what it matches with from the input. This will be used
to identify row matches between the source and destination.

 b. The second purpose is to match columns from the source to attributes in the dimension
table, which will be used on the next screen of the wizard to identify the change tracking
type. Notice that the columns are automatically matched between the source input and the
destination dimension because they have the same name and data type. On other scenar-
ios, you may have to manually perform the match.

 14. On the next screen of the SCD wizard, you will need to identify what type of change each
matching column is identified as. It has already been mentioned that all the columns are
changing attributes for the DimSalesTerritory dimension; therefore, select all the columns and
choose the “ Changing attribute ” Change Type from the drop - down lists, as shown in
Figure 10 - 16.

Figure 10-15

c10.indd 372c10.indd 372 8/28/08 12:21:07 PM8/28/08 12:21:07 PM

Chapter 10: Loading a Data Warehouse

373

 Three options exist for the Change Types: Changing attribute, Historical attribute, and Fixed attribute.
As has already been mentioned, a Changing attribute is updated if the source value changes. For the
Historical attribute, when a change happens, a new record is generated and the old record preserves the
history of the change. More on this will be reviewed when we walk through the DimEmployee dimension
ETL. Finally, a Fixed attribute is when no changes should happen, and the ETL should either ignore the
change or break.

 15. The next screen titled Fixed and Changing Attribute Options prompts you to choose which
records you want to update when a source value changes. The “ Fixed attributes ” option is
grayed out because no Fixed attributes were selected on the prior screen. Under the “ Changing
attributes ” option, you can choose to update the changing attribute column for all the records
that match the same candidate key, or you can choose to just update the most recent one. It
doesn ’ t matter in this case, because there will only be one record per candidate key value,
because there are no historical attributes that would cause a new record. Leave this box
unchecked and proceed to the next screen.

 16. The Inferred Dimension Members screen is about handling placeholder records that were added
during the fact table load, because a dimension member didn ’ t exist when the fact load was run.
Inferred members will be reviewed in the DimEmployee dimension ETL, but the screen is
shown in Figure 10 - 17 .

Figure 10-16

c10.indd 373c10.indd 373 8/28/08 12:21:07 PM8/28/08 12:21:07 PM

Chapter 10: Loading a Data Warehouse

374

 17. Given the simplicity of the Sales Territory dimension, this concludes the wizard, and on the last
screen you merely confirm the settings that you had configured. Select Finish to complete the
wizard.

 The net result of the SCD wizard is that it will automatically generate for you several downstream
transformations, pre - configured to handle the change types based on the candidate keys you selected.
Figure 10 - 18 shows the completed Data Flow with the SCD Transformation.

Figure 10-17

Figure 10-18

c10.indd 374c10.indd 374 8/28/08 12:21:07 PM8/28/08 12:21:07 PM

Chapter 10: Loading a Data Warehouse

375

 Since this dimension is simple, there are only two outputs. One output is called New Output, which will
insert new dimension records if the candidate key identified from the source does not have a match in
the dimension. The second output, called Changing Attribute Updates Output, is for when you have a
match across the candidate keys and one of the changing attributes does not match between the source
input and the dimension table. This OLE DB command uses an UPDATE statement to perform the
operation.

 Loading a Complex Dimension Table
 Dimension ETL often requires complicated logic that makes the dimension project tasks take the longest
for design, development, and testing. This is due to change requirements for various attributes within a
dimension such as tracking history, updating inferred member records, and so on. Furthermore, with
larger or more complicated dimensions, the data preparation tasks often require more logic and
transformations before the history is even handled in the dimension table itself.

 Preparing the Data
 To exemplify a more complicated dimension ETL process, you will now create a package for the
DimEmployee table. This package will deal with some missing data as already identified in your data
profiling research earlier.

 1. In the SSIS project, create a new package called ETL_DimEmployee.dtsx and add two OLE DB
Connection Managers for AdventureWorks2008 and AdventureWorksDW2008, as you did in the
DimSalesTerritory package.

 2. Create a Data Flow Task and add an OLE DB Source adapter to the Data Flow.

 3. Configure the OLE DB Source adapter to connect to the AdventureWorks2008 connection and
change the data access mode to SQL command. Finally enter the following SQL code in the
SQL command text window. These changes are shown in Figure 10 - 19 .

SELECT
 e.NationalIDNumber as EmployeeNationalIDAlternateKey
, manager.NationalIDNumber as ParentEmployeeNationalIDAlternateKey
, s.FirstName, s.LastName, s.MiddleName, e.JobTitle as Title
, e.HireDate, e.BirthDate, e.LoginID, s.EmailAddress
, s.PhoneNumber as Phone, e.MaritalStatus, e.SalariedFlag
, e.Gender, e.VacationHours, e.SickLeaveHours, e.CurrentFlag
, s.CountryRegionName as SalesTerritoryCountry
, s.TerritoryGroup as SalesTerritoryGroup
, s.TerritoryName as SalesTerritoryRegion
, s.StateProvinceName
FROM [Sales].[vSalesPerson] s
 INNER JOIN [HumanResources].[Employee] e
 ON e.[BusinessEntityID] = s.[BusinessEntityID]
 LEFT OUTER JOIN HumanResources.Employee manager
 ON (e.OrganizationNode.GetAncestor(1)) = manager.[OrganizationNode]

c10.indd 375c10.indd 375 8/28/08 12:21:07 PM8/28/08 12:21:07 PM

Chapter 10: Loading a Data Warehouse

376

 4. Select OK to save the changes to the OLE DB Source adapter.

 5. Next, drag a Lookup Transformation to the Data Flow and connect the green data path output
from the OLE DB source to the Lookup. Name the Lookup Sales Territory.

 6. Double - click the Lookup Transformation to bring up the Lookup editor. On the General page,
change the drop - down named “ Specify how to handle rows with no matching entries ” to
 “ Redirect rows to no match output. ” Leave the Cache mode as Full cache and Connection type
as OLE DB Connection Manager.

 7. On the Connection property page, change the OLE DB connection to AdventureWorksDW2008
and then select [dbo].[DimSalesTerritory] in the drop - down below called “ Use a table or a view. ”

 8. On the Columns property page, join the SalesTerritoryCountry, SalesTerritoryGroup, and
SalesTerritoryRegion columns between the input columns and lookup columns as shown in
Figure 10 - 20 . In addition, select the checkbox next to SalesTerritoryKey in the lookup columns to
return this column to the Data Flow.

Figure 10-19

c10.indd 376c10.indd 376 8/28/08 12:21:08 PM8/28/08 12:21:08 PM

Chapter 10: Loading a Data Warehouse

377

 At this point, recall from your data profiling that some of the sales territory columns in the
source have NULL values. Also recall that TerritoryGroup and TerritoryName have a functional
relationship of one - to - many. In fact, assume that you have conferred with the business, and they
confirmed that you can look at the StateProvinceName and CountryRegionName, and if another
salesperson has the same combination of values, you can use their SalesTerritory information.

 9. To handle the missing SalesTerritories with the preceding requirements, add a second Lookup
Transformation to the Data Flow, and name it Get Missing Territories. Then connect the green
path output of the Sales Territory Lookup to this new lookup. You will be prompted to choose
the Output; select Lookup No Match Output from the drop - down list as shown in Figure 10 - 21 .

Figure 10-20

Figure 10-21

c10.indd 377c10.indd 377 8/28/08 12:21:08 PM8/28/08 12:21:08 PM

Chapter 10: Loading a Data Warehouse

378

 10. Edit the new lookup and configure the OLE DB Source adapter to connect to the
AdventureWorks2008 connection. Then change the data access mode to SQL command. Enter
the following SQL code in the SQL command text window:

SELECT DISTINCT
CountryRegionName as SalesTerritoryCountry
, TerritoryGroup as SalesTerritoryGroup
, TerritoryName as SalesTerritoryRegion
, StateProvinceName
FROM [Sales].[vSalesPerson]
WHERE TerritoryName IS NOT NULL

 11. On the Columns property page, join the SalesTerritoryCountry and StateProvinceName between
the input and lookup columns list and then check the checkboxes next to SalesTerritoryGroup
and SalesTerritoryRegion on the lookup list. Append the word New to the OutputAlias, as
shown in Figure 10 - 22 .

Figure 10-22

c10.indd 378c10.indd 378 8/28/08 12:21:08 PM8/28/08 12:21:08 PM

Chapter 10: Loading a Data Warehouse

379

 12. Next, you will re - create the SalesTerritory Lookup from the prior steps to get the
SalesTerritoryKey for the records that originally had missing data.

 13. Add a new Lookup to the Data Flow named Reacquire SalesTerritory and connect the output of
the Get Missing Territories Lookup (use the Lookup Match Output when prompted). Edit the
Lookup and on the General tab, leave the Cache mode as Full cache and Connection type as
OLE DB Connection Manager.

 14. On the Connections page, specify the AdventureWorksDW2008 Connection Manager and
change the “ Use a table or a view ” to [dbo].[DimSalesTerritory].

 15. On the Columns property page (shown in Figure 10 - 23), match the columns between the input
and lookup table, making sure that you use the “ New ” Region and Group column. Match across
SalesTerritoryCountry, SalesTerritoryGroupNew, and SalesTerritoryRegionNew. Also return
the SalesTerritory Key and name its Output Alias as SalesTerritoryKeyNew.

Figure 10-23

c10.indd 379c10.indd 379 8/28/08 12:21:09 PM8/28/08 12:21:09 PM

Chapter 10: Loading a Data Warehouse

380

 16. Select OK to save your Lookup changes and then drag a Union All Transformation onto the Data
Flow. Connect two inputs into the Union All Transformation:

 a. The Lookup Match Output from the original Sales Territory Lookup

 b. The Lookup Match Output from the Reacquire SalesTerritory (from steps 13–15 above)

 17. Edit the Union All Transformation, and locate the SalesTerritoryKey column. Change
the < ignore > value in the drop - down for the input coming from second lookup to use the
SalesTerritoryNew column. This is shown in Figure 10 - 24 .

Figure 10-24

 18. Select OK to save your changes to the Union All. At this point, your Data Flow will look similar
to the one pictured in Figure 10 - 25 .

c10.indd 380c10.indd 380 8/28/08 12:21:09 PM8/28/08 12:21:09 PM

Chapter 10: Loading a Data Warehouse

381

 These steps are an example of how to handle one data preparation task. When you go to prepare data for
your dimension, chances are you will need to perform several steps to get it ready for the dimension
data changes.

 You can use many of the other SSIS transformations for this purpose, described in the rest of the book.
A couple of examples include using the Derived Column to convert NULLs to Unknowns and the Fuzzy
Lookup and Grouping to cleanse dirty data.

 Handling Complicated Dimension Changes
with the SCD Transformation

 Now, you are ready to use the SCD wizard again; only for the DimEmployee table, you will need to
handle different change types and inferred members.

 1. Continue with the Data Flow development and add a Slowly Changing Dimension
Transformation to the Data Flow and connect the data path output of the Union All to the SCD
Transformation. Then double - click the SCD Transformation to launch the SCD wizard.

 2. On the Select a Dimension Table and Keys page, choose the AdventureWorksDW2008
Connection Manager and the [dbo].[DimEmployee] table.

 a. In this example, not all the columns have been extracted from the source, and other desti-
nation columns are related to the dimension change management; therefore, not all the
c olumns will automatically be matched between the input columns and the dimension
columns.

 b. Find the EmployeeNationalIDAlternateKey and change the Key Type to Business Key.

 c. Select Next.

Figure 10-25

c10.indd 381c10.indd 381 8/28/08 12:21:09 PM8/28/08 12:21:09 PM

Chapter 10: Loading a Data Warehouse

382

 3. Next, on the Slowly Changing Dimension Columns page, make the following Change Type
designations as shown in Figure 10 - 26 :

 a. Fixed Attributes: BirthDate, HireDate

 b. Changing Attributes: CurrentFlag, EmailAddress, FirstName, Gender, LastName, Logi-
nID, MaritalStatus, MiddleName, Phone, SickLeaveHours, Title, VacationHours

 c. Historical Attributes: ParentEmployeeNationalIDAlternateKey, SalariedFlag,
SalesTerritoryKey

 4. On the Fixed and Changing Attribute Options page, uncheck the checkbox under the Fixed
attributes label. The result of this is that when a value changes for a column identified as a
fixed attribute, the change will be ignored, and the old value in the dimension will not be
updated. If you had checked this box, the package would fail.

 5. On the same page, check the box for Changing attributes. As described earlier, this will ensure
that all the records (current and historical) will get updated when a change happens to a
changing attribute.

Figure 10-26

c10.indd 382c10.indd 382 8/28/08 12:21:09 PM8/28/08 12:21:09 PM

Chapter 10: Loading a Data Warehouse

383

Figure 10-27

 6. Shown in Figure 10 - 27 , you will now be prompted to configure the Historical Attribute Options.
The SCD Transformation needs to know how to identify the current record when a single
business key has multiple values (recall, when a historical attribute changes, a new copy of the
record is created). Two options are available: The first is where a single column is used to
identify the record. The better choice is a start and end date. The DimEmployee table has a
StartDate and EndDate column; therefore, use the second configuration option button and set
the “ Start date column ” to StartDate, and the “ End date column ” to EndDate. Finally, set the
 “ Variable to set date values ” drop - down to System::StartTime.

 7. Assume for this example that you may have missing dimension records when processing the
fact table, and when this happens, a new inferred member is added to the dimension. Therefore,
on the Inferred Dimension Members page, leave the “ Enable inferred member support ”
checked. The SCD Transformation needs to know when a dimension member is an inferred
member. The best choice is to have a column that identified the record as inferred; however, the
DimEmployee table does not have a column for this purpose. Therefore leave the “ All columns
with a change type are null ” option selected as shown in Figure 10 - 28 .

c10.indd 383c10.indd 383 8/28/08 12:21:10 PM8/28/08 12:21:10 PM

Chapter 10: Loading a Data Warehouse

384

 8. This concludes the wizard settings. Click the Finish button so that the SCD can build the
downstream transformations needed based on the configurations. Your Data Flow will now look
similar to the one shown in Figure 10 - 29 .

Figure 10-28

Figure 10-29

 As you can see, when dealing with historical attribute changes and inferred members, the output of
the SCD Transformation is more complicated with updates, unions, and derived calculations. One of the
positive values of the SCD wizard is the rapid development of dimension ETL. Handling changing
attributes, new members, historical attributes, inferred members, and fixed attributes is a complicated
objective that usually takes hours to code, but with the SCD wizard, you can accomplish this in minutes.

c10.indd 384c10.indd 384 8/28/08 12:21:10 PM8/28/08 12:21:10 PM

Chapter 10: Loading a Data Warehouse

385

 Before looking at some drawbacks and alternatives to the SCD, here are the outputs and how they work,
moving from left to right in Figure 10 - 29 :

 Changing Attribute Updates Output : The changing attribute output records are records where
at least one of the attributes that was identified as a changing attribute goes through a change.
This update statement is handled by an OLE DB Command Transformation with the code
shown here:

UPDATE [dbo].[DimEmployee]
SET [CurrentFlag] = ?,[EmailAddress] = ?,[FirstName] = ?,[Gender] = ?,[LastName] =
?,[LoginID] = ?,[MaritalStatus] = ?,[MiddleName] = ?,[Phone] = ?,[SickLeaveHours] =
?,[Title] = ?,[VacationHours] = ?
WHERE [EmployeeNationalIDAlternateKey] = ?

 The question marks (?) in the code are mapped to input columns sent down from the SCD. Note
that the last question mark is mapped to the business key, which will ensure all the records are
updated. If you had unchecked the changing attribute checkbox in Step 4 of the preceding list,
then the current identifier would have been included and only the latest record would have
changed.

 New Output : New output records are simply new members that are added to the dimension. If
the business key doesn ’ t exist in the dimension table, then the SCD will send the row out this
output. Eventually these rows are inserted with the Insert Destination shown in Figure 10 - 29
(which is an OLE DB Destination). The Derived Column 1 Transformation shown in Figure 10 - 30
 is to add the new StartDate of the record, which is required for the metadata management.

❑

❑

Figure 10-30

c10.indd 385c10.indd 385 8/28/08 12:21:10 PM8/28/08 12:21:10 PM

Chapter 10: Loading a Data Warehouse

386

 This dimension has a unique situation, because it has both a StartDate column as well as a Status
column. The values for the Status column are Current and < NULL > , therefore you should add a
second Derived Column to this transformation called Status and force a “ Current ” value in it.
You will also need to include it in the destination mapping.

 Historical Attribute Inserts Output : The historical output is for any attributes that you marked
as historical and underwent a change. Therefore you need to add a new row to the dimension
table. Handling historical changes requires two general steps:

❑ Updating the old record with the EndDate (and NULL Status). This is done through a
Derived Column Transformation that defines the EndDate as the System::StartTime
variable and an OLE DB command that runs an update statement with the following code:

UPDATE [dbo].[DimEmployee]
SET [EndDate] = ?
, [Status] = NULL
WHERE [EmployeeNationalIDAlternateKey] = ?
AND [EndDate] IS NULL

 This update statement was altered to add setting the Status column to NULL because of
the requirement mentioned in the new output. Also, note that the [EndDate] IS NULL is
included in the WHERE clause because this identifies that the record is the latest record.

❑ Inserting the new version of the dimension record. This is handled by a Union All Trans-
formation to the new outputs. Since both require inserts, this can be handled in one desti-
nation. Also note that the Derived Column shown earlier in Figure 10 - 30 is applicable to
the historical output.

 Inferred Member Updates Output: Handling inferred members is done through two parts of
the ETL. During the fact load when the dimension member is missing, an inferred member is
inserted. Second, during the dimension load, if one of the missing inferred members shows up
in the dimension source, then the attributes need to get updated in the dimension table. The
following update statement is used in the OLE DB Command 1 Transformation:

UPDATE [dbo].[DimEmployee]
SET [BirthDate] = ?,[CurrentFlag] = ?,[EmailAddress] = ?,[FirstName] =
?,[Gender] = ?,[HireDate] = ?,[LastName] = ?,[LoginID] =
?,[MaritalStatus] = ?,[MiddleName] =
?,[ParentEmployeeNationalIDAlternateKey] = ?,[Phone] = ?,[SalariedFlag] =
?,[SalesTerritoryKey] = ?,[SickLeaveHours] = ?, [Title] =
?,[VacationHours] = ?
WHERE [EmployeeNationalIDAlternateKey] = ?

 What is the difference between this update statement and the update statement used for the
changing attribute output? The difference is that this one includes updates of the changing
attributes, the historical attributes, and the fixed attributes. In other words, because you are
 updating this as an inferred member, all the attributes are updated, not just the changing
attributes.

 Fixed Attribute Output (not used by default): The fixed attribute output is not used by default
by the SCD wizard, however, it is an additional output that can be used in your Data Flow. For
example, you may want to audit the records where a fixed attribute has changed. To use it, you
can simply take the green output path from the SCD Transformation and drag it to a Destination

❑

❑

❑

c10.indd 386c10.indd 386 8/28/08 12:21:10 PM8/28/08 12:21:10 PM

Chapter 10: Loading a Data Warehouse

387

adapter where your fixed attribute records are stored for review. You will need to choose the
Fixed Attribute Output when prompted by adding the new path.

 Unchanged Output (not used by default) : Another output not used by the SCD by default is the
Unchanged Output. As your dimensions are being processed, chances are that most of your
dimension records do not undergo any changes. Therefore, the records do not need to be sent
out for any of the prior outputs. However, you may wish to audit the number of records that are
unchanged. You can do this by adding a Row Count Transformation and then dragging a new
green data path from the SCD onto the Row Count Transformation and choosing the Unchanged
Output when prompted by adding the new path.

 Considerations and Alternates to the SCD Transformation
 As you can see, the SCD boasts powerful rapid development and is a great tool for most of your
dimension ETL needs. It also helps to simplify and standardize your dimension ETL processing.
However, the SCD is not always the right SSIS choice to handling your dimension ETL.

 Some of the drawbacks include:

 For each row in the input, a new lookup is sent to the relational engine to see if changes have
happened. In other words, the dimension table is not cached in memory. That is expensive! If
you have tens of thousands of dimension source records or more, this can be a limiting feature
of the SCD.

 For each row in the source that needs to be updated, a new update statement is sent to the
dimension table (and updates are used by the changing output, historical output, and inferred
member output). If you have a lot of updates happening every time your dimension package
runs, this will cause your package to run slow.

 The Insert Destination is not set to fast - load. This is because deadlocks can occur between the
updates and the inserts. When the insert runs, each row is added one at a time, which can be
very expensive.

 The SCD works well for historical, changing, and fixed dimension attributes, and as you saw,
changes can be made to the downstream transformations. However, if you open up the SCD
wizard again and make a change to any part of the wizard, you will automatically lose your
changes.

 Consider some of these approaches to optimize your SCD package:

 Create an index on your dimension table for the business key, followed by the current row
identifier (like the EndDate). If a clustered index does not already exist, create this index as a
clustered index, because this will prevent a query plan lookup from getting the underlying row.
This will help the lookup that happens in the SCD as well as all of the updates.

 The row - by - row updates can be changed to set - based updates. To do this, you will need to
change the OLE DB command to a Destination adapter to stage the records to a temporary table,
then in the Control Flow, add an Execute SQL Task to perform the set - based update.

 If you remove all the OLE DB command transformations, then you can also change the
Insert Destination to use fast load and essentially bulk insert the data, rather than performing
row - at - a - time inserts.

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 387c10.indd 387 8/28/08 12:21:11 PM8/28/08 12:21:11 PM

Chapter 10: Loading a Data Warehouse

388

 Overall, these alterations may provide you enough performance improvements that you can continue to
use the SCD Transformation effectively; however, if you still need an alternate approach, try building the
same SCD process through the use of other built - in SSIS transformations such as these:

 The Lookup Transformation and the Merger Join Transformation can be used to cache the
dimension table data. This will greatly improve performance because then only a single select
statement will run against the dimension table, rather than potentially thousands.

 The Derived Column Transformation and the Script Component can be used to evaluate which
columns have changed, and then the rows can be sent out to multiple outputs. Essentially this
would mimic the change evaluation engine inside of the SCD.

 After the data is cached and evaluated, you can use the same SCD output structure to handle the
changes and inserts, with the consideration to use set - based updates.

 Fact Table Loading
 Fact table loading is often simpler than dimension ETL, because a fact table usually just involves
inserts and, occasionally, updates. When dealing with large volumes, you may need to handle
partition inserts and deal with updates in a different way.

 In general, fact table loading involves a few common tasks:

 Preparing your source data to be at the same grain as your fact table, including having the
dimension business keys and measures in the source data

 Acquiring the dimension surrogate keys for any related dimension

 Identifying new records for the fact table (and potentially updates)

 The Sales Quota fact table is relatively straightforward and will give you a good start to developing your
fact table ETL.

 1. In your SSIS project for this chapter, create a new package and rename it
ETL_FactSalesQuota.dtsx .

 2. Just like the other packages you developed in this chapter, add two OLE DB Connection
Managers to the AdventureWorks2008 and the AdventureWorksDW2008 databases.

 3. Create a new Data Flow Task and add an OLE DB Source adapter. Name it Sales Quota Source.
Configure the OLE DB Source adapter to connect to the AdventureWorks2008 Connection
Manager, and change the data access mode to SQL Command as shown in Figure 10 - 31 . Add the
following code to the SQL command text window:

SELECT QuotaDate, SalesQuota, NationalIDNumber as EmployeeNationalIDAlternateKey
 FROM Sales.SalesPersonQuotaHistory
 INNER JOIN HumanResources.Employee
 ON SalesPersonQuotaHistory.BusinessEntityID = Employee.BusinessEntityID

❑

❑

❑

❑

❑

❑

c10.indd 388c10.indd 388 8/28/08 12:21:11 PM8/28/08 12:21:11 PM

Chapter 10: Loading a Data Warehouse

389

 4. Next, your objective is to acquire the surrogate keys from the dimension tables. You will use a
Lookup Transformation for this purpose. Drag a Lookup Transformation onto the Data Flow
and connect the green data path output of the OLE DB Source adapter onto the Lookup
Transformation. Rename the Lookup as Employee Key.

 5. Double - click the Employee Key Transformation to bring up the Lookup Editor. On the General
property page, leave the Cache mode set to Full cache and the Connection type set as OLE DB
Connection Manager.

 6. On the Connection property page, change the OLE DB Connection Manager drop - down to
AdventureWorksDW2008 and enter the following code as shown in Figure 10 - 32 :

SELECT EmployeeKey, EmployeeNationalIDAlternateKey
FROM DimEmployee
WHERE EndDate IS NULL

Figure 10-31

c10.indd 389c10.indd 389 8/28/08 12:21:11 PM8/28/08 12:21:11 PM

Chapter 10: Loading a Data Warehouse

390

 Including the EndDate IS NULL filter will ensure that the most current dimension record surro-
gate key is acquired in the Lookup.

 7. Change to the Columns property page, and map the EmployeeNationalIDAlternateKey from the
input columns to the lookup columns. Then select the checkbox next to the EmployeeKey of the
Lookup, as shown in Figure 10 - 33 .

Figure 10-32

c10.indd 390c10.indd 390 8/28/08 12:21:11 PM8/28/08 12:21:11 PM

Chapter 10: Loading a Data Warehouse

391

Figure 10-33

 8. Select OK to save your changes to the Lookup Transformation.

 9. For the DateKey, a Lookup is not needed because the DateKey is a smart key, meaning that the
key is based on the date itself in YYYYMMDD format. Therefore you will use a Derived column
to calculate the Date Key for the fact table. Add a Derived Column Transformation to the
Data Flow and connect the green data path output of the Employee Lookup to the Derived
Column Transformation. When prompted, choose the Lookup Match Output from the Lookup
Transformation. Name the Derived Column as Date Keys.

 10. Double - click the Derived Column Transformation and add these three new Derived Column
columns with their associated expressions as shown in Figure 10 - 34 :

❑ DateKey: YEAR([QuotaDate])*10000 + MONTH([QuotaDate])*100 +
DAY([QuotaDate])

❑ CalendarYear: (DT_I2) YEAR([QuotaDate])

❑ CalendarQuarter: (DT_UI1) DATEPART(“ q ” ,[QuotaDate])

c10.indd 391c10.indd 391 8/28/08 12:21:12 PM8/28/08 12:21:12 PM

Chapter 10: Loading a Data Warehouse

392

 At this point in your Data Flow, you will have the data ready for the fact table. If your data has
already been incrementally extracted, so that you are only getting new rows, you can use an
OLE DB Destination to insert it right into the fact table. Assume for this tutorial that you need to
identify which records are new and which records are updates, and handle them appropriately.
Follow these steps to accomplish fact updates and inserts.

 A Merge Join will be used to match source input records to the actual fact table records, but be-
fore you add the Merge Join, you will need to add a Sort to the source records (a requirement of
the Merge Join) and also extract the fact data into the Data Flow.

 11. Add a Sort Transformation to the Data Flow and connect the green data path output from the
Derived Column Transformation onto the Sort Transformation. Double - click the Sort
Transformation to bring up the Sort Transformation Editor and sort the input data by the
following columns: EmployeeKey, CalendarYear, CalendarQuarter, as shown in Figure 10 - 35 .
The CalendarYear and CalendarQuarter are important columns for this fact table because they
identify the level of detail that the fact table is associated with the date dimension. This is called
the date grain .

Figure 10-34

c10.indd 392c10.indd 392 8/28/08 12:21:12 PM8/28/08 12:21:12 PM

Chapter 10: Loading a Data Warehouse

393

 Figure 10 - 36 shows what your Data Flow should look like at this point.

Figure 10-35

Figure 10-36

c10.indd 393c10.indd 393 8/28/08 12:21:12 PM8/28/08 12:21:12 PM

Chapter 10: Loading a Data Warehouse

394

 12. Next, add a new OLE DB Source adapter to the Data Flow and name it Sales Quota Fact.
Configure the OLE DB Source to use the AdventureWorksDW2008 Connection Manager and use
the following SQL command:

SELECT EmployeeKey, CalendarYear
, CalendarQuarter, SalesAmountQuota
FROM dbo.FactSalesQuota
ORDER BY 1,2,3

 13. Because we are using an ORDER BY statement in the query (sorting by the first 3 columns in
order), we need to configure the OLE DB Source adapter to know that the data is entering the
Data Flow sorted. First, select OK to save the changes to the OLE DB Source, and then right - click
the Sales Quota Fact adapter and choose Show Advanced Editor.

 14. On the Input and Output Properties tab, click the OLE DB Source Output object in the left
window and in the right window, change the IsSorted property to True as shown in
Figure 10 - 37 .

Figure 10-37

c10.indd 394c10.indd 394 8/28/08 12:21:12 PM8/28/08 12:21:12 PM

Chapter 10: Loading a Data Warehouse

395

 15. Next, expand the OLE DB Source Output on the left and then expand the Output Columns
folder. Make the following changes to the Output Column properties:

 a. Select the EmployeeKey column and change its SortKeyPosition to 1 as shown in
Figure 10 - 38 .

 b. Select the CalendarYear column and change its SortKeyPosition to 2.

 c. Select the CalendarQuarter column and change its SortKeyPosition to 3.

Figure 10-38

 d. Select OK to save the changes to the advanced properties.

 16. Next, add a Merge Join Transformation to the Data Flow. First, connect the green data path
output from the Sort Transformation onto the Merge Join. When prompted, choose the input
option named Merge Join Left Input. Then connect the green data path output from the Sales
Quota Fact Source onto the Merge Join.

c10.indd 395c10.indd 395 8/28/08 12:21:13 PM8/28/08 12:21:13 PM

Chapter 10: Loading a Data Warehouse

396

 17. Double - click the Merge Join Transformation to open its editor. You will see that the
EmployeeKey, CalendarYear, and CalendarQuarter columns are already joined between inputs.
Make the following changes as shown in Figure 10 - 39 :

 a. Change the Join type drop - down to a Left outer join.

 b. Check the SalesQuota, EmployeeKey, DateKey, CalendarYear, and CalendarQuarter
columns from the Sort input list.

 c. Check the SalesAmountQuota from the Sales Quota Fact column list and then change the
Output Alias for this column to be SalesAmountQuota_Fact.

Figure 10-39

 18. Select OK to save your Merge Join configuration.

 19. Your next objective is to identify which records are new quotas and which are changed sales
quotas. A conditional split will be used to accomplish this task; therefore, drag a Conditional
Split Transformation onto the Data Flow and connect the green data path output from the Merge
Join Transformation onto the Conditional Split. Rename the Conditional Split as Identify Inserts
and Updates.

c10.indd 396c10.indd 396 8/28/08 12:21:13 PM8/28/08 12:21:13 PM

Chapter 10: Loading a Data Warehouse

397

 20. Double - click the Conditional Split to open the editor and make the following changes as shown
in Figure 10 - 40 :

 a. Add a new condition named New Fact Records with the following condition:
 ISNULL([SalesAmountQuota_Fact]) . If the measure from the fact is null, it indicates
that the fact record does not exist for the employee and date combination.

 b. Add a second condition named Fact Updates with the following condition:
[SalesQuota] != [SalesAmountQuota_Fact]

 c. Change the default output name to No Changes.

Figure 10-40

 21. Select OK to save the changes to the Conditional Split.

 22. Add an OLE DB Destination adapter to the Data Flow named Fact Inserts. Drag the green data
path output from the Conditional Split Transformation onto the OLE DB Destination. When
prompted to choose an output from the Conditional Split, choose the New Fact Records output.

 23. Double - click the Fact Inserts Destination and change the OLE DB Connection Manager to
AdventureWorksDW2008. In the “ Name of the table or the view ” drop - down, choose the
[dbo].[FactSalesQuota] table.

c10.indd 397c10.indd 397 8/28/08 12:21:13 PM8/28/08 12:21:13 PM

Chapter 10: Loading a Data Warehouse

398

 24. Switch to the Mappings property page and match up the SalesQuota column from the input
column list to the SalesAmountQuota in the available destinations column list, as shown in
Figure 10 - 41 . The other columns (EmployeeKey, DateKey, CalendarYear, and CalendarQuarter)
should already match. Select OK to save your changes to the OLE DB Destination.

Figure 10-41

 25. Next, you will need to handle the fact table updates. Drag an OLE DB Command
Transformation to the Data Flow and rename it Fact Updates. Drag the green data path output
from the Conditional Split onto the Fact Updates Transformation, and when prompted, choose
the Fact Update output from the Conditional Split.

 26. Double - click the OLE DB Command Transformation and change the Connection Manager
drop - down to AdventureWorksDW2008. On the Component Properties tab, add the following
code to the SQLCommand property (make sure you click the ellipsis button to open up an editor
window):

UPDATE dbo.FactSalesQuota
SET SalesAmountQuota = ?
WHERE EmployeeKey = ?
AND CalendarYear = ?
AND CalendarQuarter = ?

c10.indd 398c10.indd 398 8/28/08 12:21:13 PM8/28/08 12:21:13 PM

Chapter 10: Loading a Data Warehouse

399

 27. Switch to the Column Mappings tab and map the SalesQuota to Param_0, Employee_Key to
Param_1, CalendarYear to Param_2, and CalendarQuarter to Param_3 as shown in Figure 10 - 42 .

Figure 10-42

 28. Select OK to save your changes to the OLE DB Command update. Your fact table ETL for the
FactSalesQuota is complete, and should look similar to Figure 10 - 43 .

Figure 10-43

c10.indd 399c10.indd 399 8/28/08 12:21:14 PM8/28/08 12:21:14 PM

Chapter 10: Loading a Data Warehouse

400

 Here are some final considerations for fact table ETL:

 A Merge Join was used in this case to help identify which records were updates or inserts, based
on matching the source to the fact table. Refer to the Chapter 7 to see other alternatives to
associating the source to fact table.

 For the inserts and updates, you may want to leverage the relational engine to handle either the
insert or update at the same time. With SQL Server 2008, a MERGE statement now exists that will
perform either an insert or update depending on whether the record exists. See Chapter 11 on
how to use this feature.

 Another alternative to the OLE DB Command fact table updates is to use a set - based update.
The OLE DB command works well and is easy for small data volumes; however, your situation
may not allow row - at - a - time updates. Consider staging the updates to a table and then
performing a set - based update (through a multi - row SQL UPDATE statement) by joining the
staging table to the fact table and updating the sales quota that way.

 Inserts are another area of improvement considerations. Fact tables often have millions of rows
in them, and therefore you should look at how to optimize the inserts. Consider dropping the
indexes, loading the fact table, and then re - creating the indexes. This is often a lot faster. See
Chapter 14 for ideas on how to tune the inserts.

 If you have partitions in place, you can insert the data right into the partitioned fact table,
however, when you are dealing with high volumes, the overhead that the relational engine has to
undergo may inhibit performance. You should consider in these situations to switch the current
partition out in order to load it separately, then you can switch it back into the partitioned table.

 Inferred members are another challenge for fact table ETL. How do you handle a missing dimension
key? One approach includes scanning the fact table source for missing keys and adding the inferred
member dimension records before the fact table ETL runs. An alternative is to redirect the missing row
when the lookup doesn ’ t have a match, then add the dimension key during the ETL, followed by
bringing back the row into the ETL through a Union All. One final approach is to handle the inferred
members after the fact table ETL finishes. You would need to stage the records that have missing keys,
add the inferred members, and then re - process the staged records into the fact table.

 As you can see, fact tables have some unique challenges, but overall can be handled effectively with
SSIS. Now that you have loaded both your dimensions and fact tables, the next step is to then process
your SSAS cubes, if SSAS is part of your data warehouse or business intelligence project.

 SSAS Processing
 Processing SSAS objects in SSIS can be as easy as using the Analysis Services Processing Task. However,
if your SSAS cubes require adding or processing specific partitions or changing names of cubes or
servers, then you will need to consider other approaches. In fact, many, if not most solutions require
using other processing methods.

❑

❑

❑

❑

❑

c10.indd 400c10.indd 400 8/28/08 12:21:14 PM8/28/08 12:21:14 PM

Chapter 10: Loading a Data Warehouse

401

 The primary ways to process SSAS dimensions and cubes through SSIS include:

 The Analysis Services Processing Task: which can be defined with a unique list of dimensions
and partitions to process. However, this task does not allow modifications of the objects through
expressions or configurations.

 The Analysis Services Execute DDL Task: which can process dimensions and partitions
through XMLA scripts. The advantage of this task is the ability to make the script dynamic by
changing the script contents before it is executed.

 The Script Task: which can use the API for SSAS, which is called AMO (or Analysis Management
Objects). With AMO, you can create objects, copy objects, process objects, and so on.

 The Execute Process Task: which can run ascmd.exe , which is the SSAS command - line tool
that can run XMLA, MDX, and DMX queries. The advantage of the ascmd.exe tool is the ability
to pass in parameters to a script that is run.

 To demonstrate the use of some of these approaches, this next tutorial will use the Analysis Services
Processing Task to process the dimensions related to the sales quotas and then the Analysis
Services Execute DDL Task to handle the processing of the partitions.

 Before beginning these steps, create a new partition in SSAS for the Sales Targets Measure called
Sales_Quotas_2008. This is for demonstration purposes. An XMLA script has been created and included
in the downloadable content at www.wrox.com for this chapter called Sales_Quotas_2008.xmla .

 1. In your SSIS project for this chapter, create a new package and rename it to
SSAS_SalesTargets.dtsx .

 2. Right - click in the Connection Managers window and choose New Analysis Services Connection.
Then in the Add Analysis Services Connection Manager window, click the Edit button to bring
up the connection properties, as shown in Figure 10 - 44 .

 a. Specify your server in the “ Server or file name ” text box (such as localhost if you are
running SSAS on the same machine)

 b. Change the “ Log on to the server ” option to Use Windows NT Integrated Security.

 c. In the Initial catalog drop - down box, choose the Adventure Works SSAS database which
by default is named the Adventure Works DW 2008 database. You may need to install the
sample SSAS solution, which is available from www.codeplex.com .

❑

❑

❑

❑

c10.indd 401c10.indd 401 8/28/08 12:21:14 PM8/28/08 12:21:14 PM

Chapter 10: Loading a Data Warehouse

402

 d. Select OK to save your changes to the Connection Manager, and then OK in the Add
Analysis Services Connection Manager window.

 e. Finally, rename the connection that is in the SSIS Connection Managers window to
AdventureWorksAS.

 3. To create the dimension processing, drag an Analysis Services Processing Task from the Toolbox
onto the Control Flow and rename the task as Process Dimensions.

 4. Double - click the Process Dimensions Task to bring up the editor and navigate to the Processing
Settings property page.

 a. Confirm that the Analysis Services Connection Manager drop - down is set to
AdventureWorksAS.

 b. Click the Add button to open up the Add Analysis Services Object window. As shown in
Figure 10 - 45 , check the Date, Employee, and Sales Territory dimensions, and then click OK
to save your changes.

 c. For each dimension, change the Process Options drop - down to say Process Default,
which will either perform a dimension update or, if the dimension has never been
 processed, it will fully process the dimension.

 d. Click the Change Settings button and in the Change Settings editor, click the Parallel
selection option under the Processing Order properties. Click OK to save your settings.
Your SSAS processing task should look like Figure 10 - 46 .

 e. Select OK to save your changes to the Analysis Services Processing Task.

Figure 10-44

c10.indd 402c10.indd 402 8/28/08 12:21:15 PM8/28/08 12:21:15 PM

Chapter 10: Loading a Data Warehouse

403

Figure 10-45

Figure 10-46

c10.indd 403c10.indd 403 8/28/08 12:21:15 PM8/28/08 12:21:15 PM

Chapter 10: Loading a Data Warehouse

404

 5. Before continuing, you will create an SSIS package variable that will designate the XMLA
partition for processing. Name the SSIS variable as Sales_Quota_Partition and define the
variable as a String data type with “ Fact Sales Quota ” entered as the value.

 6. Next, drag an Analysis Services Execute DDL Task onto the Data Flow and drag the green
precedence constraint from the SSAS Processing Task onto the SSAS Execute DDL Task. Rename
the Execute DDL Task as Process Partition.

 a. Edit the Process Partition Task and navigate to the DDL property page.

 b. Change the Connection property to AdventureWorksAS and leave the SourceType as
Direct Input, as shown in Figure 10 - 47 .

Figure 10-47

 c. Change to the Expressions property page of the editor and click in the Expressions
property in the right window. Click in the ellipsis on the right side of the text box, which
will open up the Property Expressions Editor. Choose the Source property in the
drop - down box as shown in Figure 10 - 48 .

c10.indd 404c10.indd 404 8/28/08 12:21:15 PM8/28/08 12:21:15 PM

Chapter 10: Loading a Data Warehouse

405

Figure 10-48

 d. Next, you will add the XMLA code that will execute when the package is run. The
expressions will dynamically update the code when this task executes. Click the ellipsis on
the right side of the Source property as shown in Figure 10 - 48 to open the Expression
Builder.

 e. Enter the following code in the Expression text box, which is also shown in Figure 10 - 49 :

“ < Batch xmlns=\”http://schemas.microsoft.com/analysisservices/2003/engine\” >
 < Parallel >
 < Process xmlns:xsd=\”http://www.w3.org/2001/XMLSchema\”
xmlns:xsi=\”http://www.w3.org/2001/XMLSchema-instance\”
xmlns:ddl2=\”http://schemas.microsoft.com/analysisservices/2003/engine/2\”
xmlns:ddl2_2=\”http://schemas.microsoft.com/analysisservices/2003/engine/2/2\”
xmlns:ddl100_100=\”http://schemas.microsoft.com/analysisservices/2008/engine/100/10
0\” >
 < Object >
 < DatabaseID > Adventure Works DW < /DatabaseID >
 < CubeID > Adventure Works DW < /CubeID >
 < MeasureGroupID > Fact Sales Quota < /MeasureGroupID >
 < PartitionID > ”
+ @[User::Sales_Quota_Partition]
+ “ < /PartitionID >
 < /Object >
 < Type > ProcessFull < /Type >
 < WriteBackTableCreation > UseExisting < /WriteBackTableCreation >
 < /Process >
 < /Parallel >
 < /Batch > ”

c10.indd 405c10.indd 405 8/28/08 12:21:15 PM8/28/08 12:21:15 PM

Chapter 10: Loading a Data Warehouse

406

 f. This code generates the XMLA, and includes the Sales_Quota_Partition variable. The good
news is that you don ’ t need to know XMLA; you can use SSMS to generate it for you.

 To automatically generate the XMLA code that will process a Sales Quota partition, open
up SSMS and connect to SSAS. Expand the Databases folder, then the Adventure Works
SSAS database, then the Cubes folder; then expand the Adventure Works cube, and finally
expand the Sales Targets measure group. Right - click the Sales Quota partition and choose
Process as shown in Figure 10 - 50 .

Figure 10-49

c10.indd 406c10.indd 406 8/28/08 12:21:16 PM8/28/08 12:21:16 PM

Chapter 10: Loading a Data Warehouse

407

Figure 10-50

Figure 10-51

 The processing tool in SSMS looks very similar to the SSAS processing task in SSIS shown
previously in Figure 10 - 46 , except that the SSMS processing tool has a Script button near
the title bar. Click the Script button.

 The XML code generated by SSMS is the basis for the SSIS expression just used. The
differences include: double quotes surrounding the code, all the double quotes in the code
have a backslash “ \ ” in front of them (this is needed by the expression language, since a
double quote is reserved), and the < PartitionID > tag ’ s value is replaced by the Sales_
Quota_Partition value.

 g. Click OK in the open windows to save your changes.

 7. Finally, the Process Partition Task will show an error because there is no code entered into the
DDL property. The code is generated at runtime through the expression. To disable this error,
highlight the task and pull open the property window in BIDS. Change the DelayValidation
property to True and the error will disappear.

 8. The SSIS package that you have just developed should look similar to Figure 10 - 51 .

c10.indd 407c10.indd 407 8/28/08 12:21:16 PM8/28/08 12:21:16 PM

Chapter 10: Loading a Data Warehouse

408

 If you were to fully work out the development of this package, you would likely have a couple more tasks
involved in the process. First, the current partition is entered in the variable, but what you haven ’ t done
yet is put the code in place to update this variable when the package is run. This would be the first task
and could either be an Execute SQL Task to pull the value for the current partition from a configuration
table or the system date into the variable, or you could use a Script Task to populate the variable.

 Second, if you have a larger solution with many partitions that are at the weekly or monthly grain, you
would need a task that created a new partition, as needed, before the partition was run. This could either
be an Execute DDL Task similar to the one you just created for the processing task, or you could use a
Script Task and leveraged AMO to create or copy an existing partition to a new partition.

 As you can see, processing SSAS objects in SSIS can require a few simple steps, or it may require several
more complex steps depending on the processing needs of your SSAS solution.

 Master ETL Package
 Putting it all together is perhaps the easiest part of the ETL process because it simply involves using SSIS
to coordinate the execution of the packages in the order that they require.

 The best practice to do this is to use a master package that executes the child packages leveraging the
Execute Package Task. The determination of precedence is a matter of understanding the overall ETL as
well as the primary to foreign key relationships in the tables.

 The steps to use the Execute Package Task vary, depending on whether you will be referencing packages
stored in the file system, or whether you ’ ve deployed your packages to a server.

 For packages that are stored in SQL Server, follow these steps after you have created a new package in
your SSIS project:

 1. First, in the Connection Managers window, create a new OLE DB connection to the MSDB
database on the server where you deployed your packages. Name the connection MSDB
Package Store so that its purpose is clear.

 2. Drag an Execute Package Task from the Toolbox onto the Control Flow.

 3. Double - click the Execute Package Task to bring up the task editor.

 4. Navigate to the Package property page and confirm that the Location property is set to SQL
Server. For the Connection property, choose the MSDB Package Store created in the first step.

 5. For the PackageName property, click the ellipsis on the right side of the properties checkbox. In
the Select Package window, choose the ETL package that you deployed to the SSIS service. Select
OK to save your changes, and return to the Execute Package Task Editor, as shown in
Figure 10 - 52 .

c10.indd 408c10.indd 408 8/28/08 12:21:16 PM8/28/08 12:21:16 PM

Chapter 10: Loading a Data Warehouse

409
Figure 10-53

Figure 10-52

 6. Select OK to save your changes to complete the configuration of one of the Execute Package
Tasks in the master ETL package.

 When you use packages stored in SQL Server, they will all share the same connection, but the
PackageName property will be a reference to the package within the MSDB database. For packages that
are stored in the file system, each package referenced by an Execute Package Task will have a separate
connection. Follow these steps to configure the Execute Package Task if you will store your packages in
the file system:

 1. Drag an Execute Package Task from the Toolbox into the Control Flow.

 2. Double - click the Execute Package Task to open the task editor.

 3. On the Package property page, change the Location property to File System and then in the
Connection drop - down, choose < New connection > from the list. Browse to the package you
are configuring to execute as shown in Figure 10 - 53 , and then click OK to save your package
connection.

c10.indd 409c10.indd 409 8/28/08 12:21:17 PM8/28/08 12:21:17 PM

Chapter 10: Loading a Data Warehouse

410

 4. Your Execute Package Task will look like the one pictured in Figure 10 - 54 . Also notice that a new
connection has been created in the Connection Managers window referencing your package. For
each new package you reference in the file system, a new connection will appear.

Figure 10-55

 Typically, a data warehouse ETL first involves executing a staging process. Second, the ETL packages for
the dimension tables are executed, followed by the fact table ETL and concluding with the cube
processing. The master package for the examples in this chapter is shown in Figure 10 - 55 .

Figure 10-54

c10.indd 410c10.indd 410 8/28/08 12:21:17 PM8/28/08 12:21:17 PM

Chapter 10: Loading a Data Warehouse

411

 The related packages are grouped with Sequence Containers to help visualize the processing order.
In this case, the Dim Sales Territory package needs to be run before the Dim Employee package because
of the foreign key reference in the DimEmployee table. Larger solutions will have multiple dimension
and fact packages.

 When you deploy your master packages between servers, your Execute Package Task connections (either
the MSDB connection or each package connection) can just be a part of your connection configurations.
Therefore when your master package is deployed, the references can be updated through SSIS
configurations.

 Summary
 Moving from start to finish in a data warehouse ETL effort requires a lot of planning and research. Your
research should include both data profiling as well as interviews with the business users to understand
how they will be using the dimension attributes, so that you can identify the different attribute change
types.

 The development of your dimension and fact packages will require some thoughtful considerations on
how to most efficiently perform inserts and updates, especially considering data changes and missing
members. And finally, don ’ t leave your SSAS processing packages to the last minute . You may be
surprised at the time it may take to develop a flexible package that can dynamically handle selective
partition processing and creation.

 In the next chapter, you will consider when and how to use the SQL Server relational engine during your
ETL SSIS development.

c10.indd 411c10.indd 411 8/28/08 12:21:17 PM8/28/08 12:21:17 PM

 Using the Relational
Engine

 There ’ s an old adage that says when you ’ re holding a hammer, everything else looks like a nail.
When you use SSIS to build a solution, make sure that you are using the right tool for every
problem you tackle. SSIS will be excellent for some jobs, and SQL Server will shine at other tasks.
When used in concert, the combination of the two can be powerful.

 This chapter discusses other features in the SQL Server arsenal that can help you build robust
and high - performance ETL solutions. The SQL Server relational engine has many features that
were designed with data loading in mind, and as such the engine and SSIS form a perfect marriage
to extract, load, and transform your data. In SQL Server 2008 some of the new relational features
were built in direct consultation with the SSIS team.

 This chapter assumes you are using SQL Server 2008 as the source system, though many of
the same principles will apply to earlier versions of SQL Server and to other relational database
systems too. You should also have the SQL Server 2008 versions of AdventureWorks and
AdventureWorksDW installed; these are available from www.codeplex.com .

 The easiest way to look at how the relational engine can help you design ETL solutions is to
segment the topic into the three basic stages of ETL: extraction, transformation, and loading.
Because the domain of transformation is mostly within SSIS itself, there is not much to say there
about the relational engine, so the scope of interest will be narrowed down to extraction and
loading.

c11.indd 413c11.indd 413 8/28/08 12:23:42 PM8/28/08 12:23:42 PM

Chapter 11: Using the Relational Engine

414

 Data Extraction
 Even if a data warehouse solution starts off simple — using one or two sources — it can rapidly become
more complex once the users start realizing the value of the solution and request data from additional
business applications to be included in the process. More data increases the complexity of the solution,
but it also increases the execution time of the ETL. Storage is certainly cheap today, but the size and
amount of data is growing exponentially. If you have a fixed batch window of time in which you can
load the data, it is essential to minimize the expense of all the operations. This section looks at ways of
lowering the cost of extraction, and how you can use those methods within SSIS.

 SELECT * Is Bad
 The SSIS OLE DB Source and ADO.NET Source adapters allow you to select a table name that you want
to load, which makes for a simple development experience, but terrible runtime performance. What
happens at runtime is that the component issues a SELECT * FROM < table > command to SQL Server,
which obediently returns every single column and row from the table.

 This is a problem for several reasons:

 CPU and I/O Cost: You typically only need a subset of the columns from the source table, and
every extra column you ask for incurs processing overhead in all the subsystems it has to travel
through in order to get to the destination. If the database is on a different server, then the layers
include NTFS (the file system), the SQL Server storage engine, the query processor, TDS (tabular
data stream, SQL Server ’ s data protocol), TCP/IP, OLE DB, the SSIS Source adapter, and finally
the SSIS pipeline (and there are probably a few other layers we skipped). So even if you are only
extracting one redundant integer column of data from the source, once you multiply that cost by
the number of rows and processing overhead it quickly adds up. Saving just 5% on processing
time can still help you reach your batch window target.

 Robustness: If the source table has 10 columns today and your package requests all the data in a
 SELECT * manner, then if tomorrow the DBA adds another column to the source table, your
package could break. Suddenly the package gets an extra column that it doesn ’ t know what to
do with, and things could go awry.

 Intentional design: For maintenance, security, and self - documentation reasons the required
columns should be explicitly specified.

 DBA 101: If you are still not convinced, find any seasoned DBA, and they are likely to launch
into a tirade of why SELECT * is the root of all evil.

❑

❑

❑

❑

c11.indd 414c11.indd 414 8/28/08 12:23:43 PM8/28/08 12:23:43 PM

Chapter 11: Using the Relational Engine

415

 As Figure 11 - 1 shows, the Source adapters also give you the option of using checkboxes to select or
deselect the columns that you require, but the problem with this approach is that the filtering occurs
client - side. In other words, all the columns are brought across (incurring all that I/O overhead), and then
the deselected columns are thrown away once they get to SSIS.

 Figure 11 - 1

 So what is the preferred way to extract data using these adapters? The simple answer is to forget that the
table option exists, and instead only use the query option. Also forget that the column checkboxes exist.
For rapid development and prototyping these options are useful, but for deployed solutions you should
type in a query. SSIS makes it simple to do this by providing a query builder in both the OLE DB and
ADO.NET Source adapters, which allows you to construct a query in a visual manner, as shown in
Figure 11 - 2 .

c11.indd 415c11.indd 415 8/28/08 12:23:44 PM8/28/08 12:23:44 PM

Chapter 11: Using the Relational Engine

416

 WHERE Is Your Friend
 As an ancillary to the previous tenet, the WHERE clause (also called the query predicate) is one of the most
useful tools you can use to increase performance. Once again, the table option in the Source adapters
does not allow you to narrow down the set of columns, but specifically to this section it also does not
allow you to limit the number of rows. If all you really need are the rows from the source system that are
tagged with yesterday ’ s date, then why stream every single other row over the wire just to throw them
away once they get to SSIS? Instead, use a query with a WHERE clause to limit the number of rows being
returned. Once again, the less data you request, the less processing and I/O is required, and thus the
faster your solution will be.

--BAD programming practice (returns 11 columns, 121,000 rows)
SELECT * FROM Sales.SalesOrderDetail;

--BETTER programming practice (returns 6 columns, 121,000 rows)
SELECT SalesOrderID, SalesOrderDetailID, OrderQty,
 ProductID, UnitPrice, UnitPriceDiscount
FROM Sales.SalesOrderDetail;

 Figure 11 - 2

c11.indd 416c11.indd 416 8/28/08 12:23:44 PM8/28/08 12:23:44 PM

Chapter 11: Using the Relational Engine

417

--BEST programming practice (returns 6 columns, 357 rows)
SELECT SalesOrderID, SalesOrderDetailID, OrderQty,
 ProductID, UnitPrice, UnitPriceDiscount
FROM Sales.SalesOrderDetail
WHERE ModifiedDate = ‘2001-07-01’;

 In case it is not clear, Figure 11 - 3 shows how you would use this SELECT statement (and the other queries
discussed next) in the context of SSIS. Drop an OLE DB or ADO.NET Source adapter onto the package
design surface, point it at the source database (which is AdventureWorks2008 in this case), select the
 “ query ” option, and plug in the preceding query.

 Figure 11 - 3

 Transform during Extract
 The basic message here is to do some of your transformations while you are extracting. This is not a
viable approach for every single transformation you intend doing — especially if your ETL solution is
used for compliance reasons, and you want to specifically log any errors in the data — but it does make
sense for primitive operations, such as trimming whitespace, converting magic numbers to NULLs,
sharpening data types, and even something as simple as providing a friendlier column name.

 A “ magic number ” is a value used to represent the “ unknown ” or NULL value in some systems. This is
generally considered bad database design practice; however, it is necessary in some systems that do not
have the concept of a NULL state. For instance, you may be using a source database where the data
steward could not assign the value “ Unknown ” or NULL to (say) a date column, so instead the
operators plugged in “ 1999/12/31, ” not expecting that one day the “ magic number ” would suddenly
gain meaning!

c11.indd 417c11.indd 417 8/28/08 12:23:44 PM8/28/08 12:23:44 PM

Chapter 11: Using the Relational Engine

418

 The practice of converting data values to the smallest type that can adequately represent them is called
 “ data sharpening. ” In one of the following examples you convert a DECIMAL(37,0) value to BIT
because the column only ever contains the values 0 or 1, because it is more efficient to store and process
the data in its smallest (sharpest) representation.

 Many data issues can be cleaned up as you ’ re extracting the data, before it even gets to SSIS. This does
not mean you physically fix the data in the source system (though that would be an ideal solution); it just
means that you write a query smart enough to fix some basic problems and project the clean view to the
data consumer. Why pull dirty data from SQL Server if you know you are immediately going to fix it up
in SSIS; rather, fix it up “ on-the-fly ” so SSIS gets it clean in the first place.

 By following this advice you can offload the simple clean - up work to the SQL Server database engine,
and because it is very efficient at doing such a task, this can improve your ETL performance as well as
lowering the package complexity. A drawback of this approach is that data quality issues in your source
systems are further hidden from the business, and hidden things tend to not get fixed!

 To demonstrate this concept, imagine you are pulling data from the following source schema. Don ’ t
regard the problems demonstrated in this example as simply being illustrative; the issues reflect some
real - world issues that the authors have seen.

 Column Name Data Type Examples Notes

 CUSTOMER_ID Decimal(8,0) 1, 2, 3 The values in this column are
integers (4 bytes), but the source
is declared as a decimal, which
takes 5 bytes of storage per value.

 CUSTOMER_NAME Varchar(100) “ Northwind
Traders__ ” , “ _XXX ” ,
 “ _Adventure Works ” ,
 “ _ ” , “ Acme Apples ” ,
 “ ___ ” , “ ”

 The problem with this column is
that where the customer name
has not been provided, a blank
string “ ” or “ XXX ” is used
instead of NULL. There are also
many leading and trailing blanks
in the values (represented by
 “ _ ” in the examples)

 ACTIVE_IND Decimal(38,0) 1, 0, 1, 1, 0 Whether by intention or mistake,
this simple True/False value is
represented by a 17 - byte decimal!

 LOAD_DATE DateTime “ 2000/1/1 ” ,
 “ 1972/05/27 ” ,
 “ 9999/12/31 ”

 The only problem in this column
is that unknown dates are
represented using a magic
number; in this case “ 9999 - 12 -
 31 ” . In some systems dates are
represented using text fields,
which means that the dates can
be invalid or ambiguous.

c11.indd 418c11.indd 418 8/28/08 12:23:45 PM8/28/08 12:23:45 PM

Chapter 11: Using the Relational Engine

419

 If you retrieve the native data into SSIS from the source just described, it will obediently generate the
corresponding pipeline structures to represent this data, including the multi - byte decimal ACTIVE_IND
column that will only ever contain the values 1 or 0. Depending on the number of rows in the source,
there is a large processing and storage overhead in allowing this default behavior. All the data issues
described previously will be brought through to SSIS, and you will have to fix them there. Of course, that
may be your intent but you could make your life easier by dealing with them as early as possible.

 Here is the default query that you might design:

--Old query
SELECT
 CUSTOMER_ID, CUSTOMER_NAME, ACTIVE_IND
FROM
 dbo.Customers;

 Here is how you can improve the robustness, performance, and intention of the query. In the spirit of the
 “ right tool for the right job ” you clean the data right inside the query so that SSIS gets it in a cleaner
state. Once again, you can use this query in an SSIS Source Component instead of using the table method
or plugging in a default SELECT * query.

--New query:
SELECT
 --Convert to INT and alias using a friendlier name
 CONVERT(INT, CUSTOMER_ID) AS CustomerID
 --Trim whitespace, convert empty strings to NULL and alias
 ,NULLIF(LTRIM(RTRIM(CUSTOMER_NAME)), ‘’) AS CustomerName
 --Convert to BIT and alias
 ,CONVERT(BIT, ACTIVE_IND) AS IsActive
 ,CASE
 --Convert magic dates to NULL
 WHEN LOAD_DATE = ‘9999-12-31’ THEN NULL
 --Convert date to smart surrogate integer of form YYYYMMDD
 ELSE CONVERT(INT, (CONVERT(NVARCHAR(8), LOAD_DATE, 112)))
 END AS LoadDateID --Alias using friendly name
FROM
 dbo.Customers
WHERE --Of course, we should always use a WHERE clause
 LOAD_DATE = GETDATE();

 Let ’ s look at what you have done here:

 First of all you have sharpened the CUSTOMER_ID column from a 5 - byte decimal to a 4 - byte
integer. You did not do this conversion in the source database itself; you just converted its
external projection. You also gave the column a friendlier name that your ETL developers many
find easier to read and remember.

 Next you trimmed all the leading and trailing whitespace from the CUSTOMER_NAME
column. If the column value was originally an empty string (or if after trimming it ended up
being an empty string), then you convert it to NULL. Once again you give it a friendlier alias.

❑

❑

c11.indd 419c11.indd 419 8/28/08 12:23:45 PM8/28/08 12:23:45 PM

Chapter 11: Using the Relational Engine

420

 You sharpened the ACTIVE_IND column to a Boolean (BIT) column and give it a name that is
simpler to understand — it may not be obvious that _IND means Indicator.

 The LOAD_DATE conversion takes some explaining:

❑ First you want to convert all magic numbers to a true NULL representation. You could do
this using the NULLIF() function in SQL Server, but it is better in this case to use a CASE
statement so that the code is easier to understand. Be careful that you do not blindly
 convert all magic numbers — for instance in scientific applications, the date “ 9999 - 12 - 31 ”
might actually have meaning.

❑ Next you converted any real (non - magic) dates to an integer representation of the form
YYYYMMDD. In standard data warehouse practice it is often the case that a date column is
converted to an integer representation for use as a “ smart ” surrogate key. Such practice
is covered in many standard data warehouse design books, so we will not expound on the
subject here. (Truth be told, you would probably not follow such practice in a dimension
such as DimCustomer, so this example is simply a convenient vehicle to illustrate the
point.)

 Finally, you added a WHERE clause in order to limit the number of rows.

 So what benefit did you gain? Well because you did this conversion in the source extraction query, SSIS
will receive the data in a cleaner state than it was originally. Of course there are bound to be other data
quality issues that SSIS will need to deal with, but at least you can get the trivial ones out of the way
while improving basic performance at the same time. As far as SSIS is concerned, when it sets up the
pipeline column structure, it will use the names and types represented by the query. For instance, it will
believe the IsActive column is (and always has been) a BIT — it doesn ’ t waste any time or space by
treating it as a 17 - byte DECIMAL. When you execute the package, the data will be transformed inside
the SQL engine and SSIS will consume it in the normal manner (albeit more efficiently because it ’ s
cleaner and sharper).

 You also gave the columns friendlier names that your ETL developers may find more intuitive. This adds
nothing to the performance, but it costs little and makes your packages easier to understand and
maintain.

 Many ANDs Make Light Work
 OK, that is a bad pun. But it ’ s also relevant. What this tenet says is that you should let the SQL engine
combine different datasets for you where it makes sense. In technical terms, this means do any relevant
 JOINs , UNIONS , sub - queries, and so on directly in the extraction query.

 That does not mean you should use relational semantics to join rows from the source system to the
destination system or across heterogeneous systems (even though that might be possible) because that
will lead to tightly coupled and fragile ETL design. Instead, this means that if you have two or more
tables in the same source database that you are intending to join using SSIS, then JOIN or UNION those
tables together as part of the SELECT clause.

❑

❑

❑

c11.indd 420c11.indd 420 8/28/08 12:23:45 PM8/28/08 12:23:45 PM

Chapter 11: Using the Relational Engine

421

 For example, you may want to extract data from two tables — SalesQ1 and SalesQ2 — in the same
database. You could use two separate SSIS Source adapters, extract each table separately, then combine
the two data streams in SSIS using a Union All Component. But a simpler way would be to use a single
Source adapter that uses a relational UNION ALL operator to combine the two tables directly:

--Extraction query using UNION ALL
SELECT --Get data from Sales Q1
 SalesOrderID,
 SubTotal
FROM
 Sales.SalesQ1

UNION ALL --Combine Sales Q1 and Sales Q2

SELECT --Get data from Sales Q2
 SalesOrderID,
 SubTotal
FROM
 Sales.SalesQ2

 Here is another example. In this case, you need information from both the Product and the Subcategory
table. Instead of retrieving both tables separately into SSIS and joining them there, you issued a single
query to SQL and asked it to JOIN the two tables for you. See Chapter 7 for more information.

--Extraction query using a JOIN
SELECT
 p.ProductID,
 p.[Name] AS ProductName,
 p.Color AS ProductColor,
 sc.ProductSubcategoryID,
 sc.[Name] AS SubcategoryName
FROM
 Production.Product AS p
INNER JOIN --JOIN
 Production.ProductSubcategory AS sc
ON p.ProductSubcategoryID = sc.ProductSubcategoryID;

 SORT in the Database
 SQL Server has intimate knowledge of the data stored in its tables, and as such it is highly efficient at
operations such as sorting — especially because it has indexes to help it do the job. While SSIS allows
you to sort data in the pipeline, you will find that for large datasets SQL Server is more proficient. As an
example, you may need to retrieve data from a table, then immediately sort it so that a Merge Join
Transformation can use it (the Merge Join Component requires pre - sorted inputs). You could sort the

c11.indd 421c11.indd 421 8/28/08 12:23:46 PM8/28/08 12:23:46 PM

Chapter 11: Using the Relational Engine

422

data in SSIS by using the Sort Transformation, but depending on your package design you may also be
able to sort the data directly during extraction in the SELECT clause. Here is an example:

--Extraction query using a JOIN and a ORDER BY
SELECT
 p.ProductID,
 p.[Name] AS ProductName,
 p.Color AS ProductColor,
 sc.ProductSubcategoryID,
 sc.[Name] AS SubcategoryName
FROM
 Production.Product AS p
INNER JOIN --JOIN
 Production.ProductSubcategory AS sc
ON p.ProductSubcategoryID = sc.ProductSubcategoryID
ORDER BY --SORT
 p.ProductID,
 sc.ProductSubcategoryID;

 In this case, you are asking SQL Server to pre - sort the data, so that it arrives in SSIS already sorted.
Because SQL Server is more efficient at sorting large datasets than SSIS, this may give you a good
performance boost. See Chapter 7 for more information on why this is useful.

 Note that the SSIS OLE DB and ADO.NET Source adapters submit queries to SQL Server in a
pass - through manner — meaning that they do not parse the query in any useful way themselves. The
ramification is that the Source adapters may not know that the data is coming back sorted. To work
around this problem you need to tell the Source adapters that the data is ordered. Right - click the Source
adapter and choose Show Advanced Editor. Go to the Input and Output Properties tab and click the root
node for the default output (not the error output). In the property grid on the right - hand side you
should see a property called IsSorted. Change this to True.

 Setting the IsSorted property to true just tells the component that the data is pre - sorted, but it does not
tell it in what order. So the next step is to select the columns that are being sorted on, and assign them
values as follows: If the column is not sorted, the value should be zero. If the column is sorted in
ascending order, the value should be positive. If the column is sorted in descending order, the value
should be negative. The absolute value of the number should correspond to the column ’ s position in
the order list. For instance, if the query was sorted with ColumnA ascending, ColumnB descending, then
you would assign the value 1 to ColumnA and the value - 2 to ColumnB, with all other columns being
set to 0. Be very careful when doing this — by specifying the sort order, you are by contract telling the
system to trust that you know what you are talking about, and that the data is in fact sorted. If the data
is not sorted, or it is sorted in a different manner to that you specified, then your package can act
unpredictably, which could lead to data and integrity losses.

 In Figure 11 - 4 , the data is sorted by the SalesOrderID field. Expand the Output Columns Node
under the default output node, and then select the SalesOrderID column. In the property grid set the
SortKeyPosition value to 1. Now the Source adapter is aware that the query is returning a sorted
dataset, and furthermore it knows exactly which columns are used for the sorting.

c11.indd 422c11.indd 422 8/28/08 12:23:46 PM8/28/08 12:23:46 PM

Chapter 11: Using the Relational Engine

423

 Modularize
 If you find you have common queries that you keep using, then try and encapsulate those queries in the
source system. This statement is based on ideal situations; in the real world you may not be allowed to
touch the source system, but if you can, then here is the benefit. All you are doing is creating views,
procedures, and functions that read the data — you are not writing any data changes into the source.
Once the (perhaps complex) queries are encapsulated in the source, your queries can be used in multiple
packages by multiple ETL developers. Here is an example:

USE SourceSystemDatabase;
GO

CREATE PROCEDURE dbo.up_DimCustomerExtract(@date DATETIME)
-- Test harness (also the query statement you’d use in the SSIS source adapter):
-- EXEC dbo.up_DimCustomerExtract ‘2004-12-20’;
AS BEGIN
 SET NOCOUNT ON;

 SELECT
 --Convert to INT and alias using a friendlier name

 Figure 11 - 4

c11.indd 423c11.indd 423 8/28/08 12:23:46 PM8/28/08 12:23:46 PM

Chapter 11: Using the Relational Engine

424

 CONVERT(INT, CUSTOMER_ID) AS CustomerID
 --Trim whitespace, convert empty strings to NULL and alias
 ,NULLIF(LTRIM(RTRIM(CUSTOMER_NAME)), ‘’) AS CustomerName
 --Convert to BIT and use friendly alias
 ,CONVERT(BIT, ACTIVE_IND) AS IsActive
 ,CASE
 --Convert magic dates to NULL
 WHEN LOAD_DATE = ‘9999-12-31’ THEN NULL
 --Convert date to smart surrogate INT of form YYYYMMDD
 ELSE CONVERT(INT, (CONVERT(NVARCHAR(8), LOAD_DATE, 112)))
 END AS LoadDateID --Alias using friendly name
 FROM
 dbo.Customers
 WHERE --Filter rows using input parameter
 LOAD_DATE = @date;

 SET NOCOUNT OFF;
END; --proc
GO

 To use this stored procedure from SSIS, you would simply call it from within an OLE DB or ADO.NET
Source adapter. The example shows a static value for the data parameter, but in your solution you would
use a variable or expression instead, so that you could call the procedure using different date values. See
Chapter 6 for more details.

EXEC dbo.up_DimCustomerExtract ‘2004-12-20’;

 Here are some notes on the benefits you have gained here:

 In this case you have encapsulated the query in a stored procedure, though you could have
encased it in a user - defined function or view just as easily. A side benefit is that this complex
query definition is not hidden away in the depths of the SSIS package — you can easily access it
using SQL Server.

 The benefit of a function or procedure is that you can simply pass a parameter to the module (in
this case @date) in order to filter the data (study the WHERE clause in the preceding code). Note,
however, that SSIS Source adapters have difficulty parsing parameters in functions, so you may
need to use a procedure instead (which SSIS has no problems with), or you can build a dynamic
query in SSIS to call the function (see Chapter 6 for more information).

 If the logic of this query changes — perhaps you need to filter in a different way, or maybe you
need to point the query at an alternative set of tables — then you can simply change the
definition in one place, and all the callers of the function will get the benefit. However, there is a
risk here too — if you change the query by (say) removing a column, then the packages
consuming the function might break, because they are suddenly missing a column they
previously expected. Make sure any such query updates go through a formal change
management process in order to mitigate this risk.

❑

❑

❑

c11.indd 424c11.indd 424 8/28/08 12:23:46 PM8/28/08 12:23:46 PM

Chapter 11: Using the Relational Engine

425

 SQL Server Does Text Files Too
 It is a common pattern for source systems to export nightly batches of data into text files, and for the ETL
solution to pick up those batches and process them. This is typically done using a Flat File Source
adapter in SSIS, and in general you will find SSIS is the best tool for the job. However, in some cases you
may want to treat the text file as a relational source and sort it, join it, or perform calculations on it in the
manner described in the previous tenets. Because the text file lives on disk, and it is a file not a database,
this is not possible — or is it?

 SQL Server includes a table - valued function called OPENROWSET that is an ad hoc method of connecting
and accessing remote data using OLE DB from within the SQL engine. In this context, you can use it to
access text data, using the OPENROWSET(BULK …) variation of the function.

 Note that the use of the OPENROWSET and OPENQUERY statements has security ramifications, so they
should be used with care in a controlled environment. If you want to test this functionality, you may
need to enable the functions in the SQL Server Surface Area Configuration Tool. Alternatively, use the
TSQL configuration function as shown in the following code. Remember to turn this functionality off
again after testing it (unless you have adequately mitigated any security risks). See Books Online for
more information.

sp_configure ‘show advanced options’, 1; --Show advanced configuration options
--Switch on OPENROWSET functionality
GO
RECONFIGURE;
GO

sp_configure ‘Ad Hoc Distributed Queries’, 1; --Switch on specific functionality
GO
RECONFIGURE;
GO

sp_configure ‘show advanced options’, 0; --Remember to hide advanced options
GO
RECONFIGURE;
GO

 The SQL Server documentation has loads of information on how to use these two functions, but here is
a basic example to demonstrate the concepts. First create a text file with the following data in it. Use a
comma to separate each column value. Save the text file using the name BulkImport.txt in a folder
of your choice.

1,AdventureWorks
2,Acme Apples Inc
3,Northwind Traders

 Next create a format file that will help SQL Server understand how your custom flat file is laid out. You
can create the format file manually or you can get SQL Server to generate it for you: Create a table in the
database where you want to use the format file (you can delete the table later; it is just a shortcut to build
the format file). Execute the following statement in SQL Server Management Studio — for this example
we are using the AdventureWorks2008 database to create the table, but you can use any database
because you will delete the table afterwards. The table schema should match the layout of the file.

c11.indd 425c11.indd 425 8/28/08 12:23:47 PM8/28/08 12:23:47 PM

Chapter 11: Using the Relational Engine

426

--Create temporary table to define the flat file schema
USE AdventureWorks2008
GO

CREATE TABLE BulkImport(ID INT, CustomerName NVARCHAR(50));

 Next open up a command prompt, navigate to the folder where you saved the BulkImport.txt file and
type the following command, replacing “ AdventureWorks2008 ” with the database where you created
the BulkImport table:

bcp AdventureWorks2008..BulkImport format nul -c -t, -x -f BulkImport.fmt -T

 If you look in the folder where you created the data file, you should now have another file called
 BulkImport.fmt . This is an XML file that describes the column schema of your flat file — well actually
it describes the column schema of the table you created, but hopefully you created the table schema to
match the file. Here is what the format file should look like:

 < ?xml version=”1.0”? >
 < BCPFORMAT xmlns=”http://schemas.microsoft.com/sqlserver/2004/bulkload/format”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >
 < RECORD >
 < FIELD ID=”1” xsi:type=”CharTerm” TERMINATOR=”,” MAX_LENGTH=”12”/ >
 < FIELD ID=”2” xsi:type=”CharTerm” TERMINATOR=”\r\n” MAX_LENGTH=”100”
 COLLATION=”SQL_Latin1_General_CP1_CI_AS”/ >
 < /RECORD >
 < ROW >
 < COLUMN SOURCE=”1” NAME=”ID” xsi:type=”SQLINT”/ >
 < COLUMN SOURCE=”2” NAME=”CustomerName” xsi:type=”SQLNVARCHAR”/ >
 < /ROW >
 < /BCPFORMAT >

 Remember to delete the temporary table (BulkImport) you created because you don ’ t need it anymore. If
you have done everything right, you should now be able to use the text file in the context of a relational
query. Type the following query into SQL Server Management Studio, replacing the file paths with the
exact folder path and names of the two files you created:

--Select data from a text file as if it was a table
SELECT
 T.* --SELECT * used for illustration purposes only
FROM OPENROWSET(--This is the magic function
 BULK ‘D:\Data\BulkImport.txt’, --Path to data file
 FORMATFILE = ‘D:\Data\BulkImport.fmt’ --Path to format file
) AS T; --Command requires a table alias

 When you execute this command you should get back rows in the same format as if they had come from
a relational table. To prove that SQL Server is treating this result set in the same manner it would treat
any relational data, try using the results in the context of more complex operations such as sorting:

--Selecting from a text file and sorting the results
SELECT
 T.OrgID, --Not using SELECT * anymore
 T.OrgName
FROM OPENROWSET(
 BULK ‘D:\Data\BulkImport.txt’,

c11.indd 426c11.indd 426 8/28/08 12:23:47 PM8/28/08 12:23:47 PM

Chapter 11: Using the Relational Engine

427

 FORMATFILE = ‘D:\Data\BulkImport.fmt’
) AS T(OrgID, OrgName) --For fun, give the columns different aliases
ORDER BY T.OrgName DESC; --Sort the results in descending order

 New in SQL Server 2008 is the ability to declare if and how the text file is pre - sorted. If the system that
produced the text file did so in a sorted manner, then you can inform SQL Server of that fact. Note that
this is a contract by you, the developer, to SQL Server. SQL Server will use something called a streaming
assertion when reading the text file to double - check your claims, but there are cases where this can really
help with performance. Later on you will see how this ordering contract helps with the MERGE operator,
but here ’ s a simple example to demonstrate the savings.

 Run the following query; note how you are asking for the data to be sorted by OrgID this time. Also note
that you have asked SQL Server to show you the query plan that it uses to run the query:

SET STATISTICS PROFILE ON; --Show query plan

SELECT
 T.OrgID,
 T.OrgName
FROM OPENROWSET(
 BULK ‘D:\Data\BulkImport.txt’,
 FORMATFILE = ‘D:\Data\BulkImport.fmt’
) AS T(OrgID, OrgName)
ORDER BY T.OrgID ASC; --Sort the results by OrgID

 Have a look at the query plan that SQL Server generates. The query plan shows the internal operations
SQL Server has to perform to generate the results. Of particular interest note the second operation, which
is a SORT :

SELECT < ...snipped... >
 |--Sort(ORDER BY:([BULK].[OrgID] ASC))
 |--Remote Scan(OBJECT:(STREAM))

 This is obvious and expected; you asked SQL Server to sort the data and it does as requested. Well here ’ s
the trick — in this case the text file happened to be pre - sorted by OrgID anyway, so the sort you
requested was actually redundant. (Have a look at the text data file; the ID values increase monotonically
from 1 to 3.)

 Let ’ s prove that fact. Type the same query into SQL again, but this time use the OPENROWSET(... ORDER)
clause:

SET STATISTICS PROFILE ON; --Show query plan

SELECT
 T.OrgID,
 T.OrgName
FROM OPENROWSET(
 BULK ‘D:\Data\BulkImport.txt’,
 FORMATFILE = ‘D:\Data\BulkImport.fmt’,
 ORDER (OrgID ASC) --Declare the text file is already sorted by OrgID
) AS T(OrgID, OrgName)
ORDER BY T.OrgID ASC; --Sort the results by OrgID

c11.indd 427c11.indd 427 8/28/08 12:23:47 PM8/28/08 12:23:47 PM

Chapter 11: Using the Relational Engine

428

 Once again you have asked for the data to be sorted, but you have also contractually declared that the
source file is already pre - sorted. Have a look at the new query plan. Here ’ s the interesting result; even
though you asked SQL Server to sort the result in the final ORDER BY clause, it didn ’ t bother doing so
because you told it (and it confirmed) that the file was already ordered as such:

SELECT < ...snipped... >
 |--Assert < ...snipped... >
 |--Sequence Project(< ...snipped... >)
 |--Segment
 |--Remote Scan(OBJECT:(STREAM))

 As you can see, there is no SORT operation in the plan. There are other operators, but they are just
assertions that are very cheap and are checking the contract you specified is true. For instance, if a row
arrived that was not ordered in the fashion you declared, the statement would fail. The streaming
assertion check is cheaper than a redundant sort operation, and it ’ s good logic to have in place in case
you got the ordering wrong, or the source system one day starts outputting data in a different order than
you expected.

 So after all that, why is this useful to SSIS? Here are a few examples:

 You may intend loading a text file in SSIS and then immediately joining it to a relational table.
Now you could do all that within one SELECT statement, using a single OLE DB or ADO.NET
Source Component.

 Some of the SSIS Components expect sorted inputs (for instance the Merge Join Component).
Assuming the source is a text file, instead of sorting the data in SSIS you can sort it in SQL
Server. If the text file happens to be pre - sorted you can declare it as such and save even more
time and expense.

 The Lookup Component in SQL Server 2005 could only populate its cache from relational tables.
Now you can populate it with data from text files too. In SQL Server 2008 the Lookup
Component can populate data from almost anywhere (see Chapter 7), but this still may prove a
useful technique in some scenarios.

 Be careful when using this technique. If the source data file changes in structure (for instance, a column
is dropped), and you don ’ t keep the format file in sync, then the query will fail. If the format file gets
deleted or corrupted, the query will also fail. However, if you can protect against these kinds of issues,
this technique can be a boon to your development efforts.

 Use Set - Based Logic
 The premise here is simple; avoid any use of cursors like the plague. Cursors are nearly always
avoidable, and they should only be used as a final resort. Try out the following features and see if they
can help you build efficient TSQL operations:

 Common Table Expressions allow you to modularize sub - sections of your queries, and also
support recursive constructs so you can, for instance, retrieve a self - linked (parent - child)
organizational hierarchy using a single SQL statement.

 Table valued parameters allow you to pass arrays into stored procedures as variables. This means
that you can program your stored procedure logic using the equivalent of dynamic arrays.

❑

❑

❑

❑

❑

c11.indd 428c11.indd 428 8/28/08 12:23:48 PM8/28/08 12:23:48 PM

Chapter 11: Using the Relational Engine

429

 UNION is now joined by its close cousins, INTERSECT and EXCEPT , which complete the primitive
set of operations you need to perform set arithmetic. UNION joins two rowsets together,
 INTERSECT finds their common members, and EXCEPT finds the members that are present in
one rowset but not the other.

 Here is an example where you can bring all these ideas together. The example scenario is that you have
two tables of data, both representing customers. The challenge is to group the data into three subsets:
one set containing the customers that exist in the first table only, the second set containing customers
that exist in the second table only, and the third set containing the customers that exist in both the tables.
The specific example illustrates the power and elegance of common table expressions (CTEs) and the set -
 arithmetic statements. If you remember Venn diagrams from school, then what we are trying to achieve
is the relational equivalent of the diagram shown in Figure 11 - 5 .

❑

Customers
in table 1

only

Customers
in both
tables

Customers
in table 2

only

 Figure 11 - 5

 Following is a single statement that will partition the data as required. This statement is not meant to
convey good programming practice, because it is not the most optimal or concise query you could write
to derive these results. It is simply meant to demonstrate the manner in which these constructs can be
used. By studying the verbose form you may appreciate the elegance, composability, and self -
 documenting nature of the syntax.

 For convenience you will use related tables from AdventureWorks2008 and AdventureWorksDW2008.
Note how you use multiple CTE structures to generate intermediate results (though the query optimizer
is smart enough to not execute the statements separately). Also notice the use of UNION , EXCEPT , and
 INTERSECT to derive specific results:

WITH SourceRows AS (--CTE containing all source rows
 SELECT BusinessEntityID AS ContactID
 FROM AdventureWorks2008.Person.Person
),
DestinationRows(ContactID) AS (--CTE containing all destination rows
 SELECT CONVERT(INT, RIGHT(CustomerAlternateKey, 8))
 FROM AdventureWorksDW2008.dbo.DimCustomer
),
RowsInSourceOnly AS (--CTE: rows where ContactID is in source only
 SELECT ContactID FROM SourceRows --select from previous CTE
 EXCEPT --EXCEPT means ‘subtract’
 SELECT ContactID FROM DestinationRows --select from previous CTE
),
RowsInSourceAndDestination AS(--CTE: ContactID in both source & destination
 SELECT ContactID FROM SourceRows
 INTERSECT --INTERSECT means ‘find the overlap’

c11.indd 429c11.indd 429 8/28/08 12:23:48 PM8/28/08 12:23:48 PM

Chapter 11: Using the Relational Engine

430

 SELECT ContactID FROM DestinationRows
),
RowsInDestinationOnly AS (--CTE: ContactID in destination only
 SELECT ContactID FROM DestinationRows
 EXCEPT --Simply doing the EXCEPT the other way around
 SELECT ContactID FROM SourceRows
),
RowLocation(ContactID, Location) AS (--Final CTE
 SELECT ContactID, ‘Source Only’ FROM RowsInSourceOnly
 UNION ALL --UNION means ‘add’
 SELECT ContactID, ‘Both’ FROM RowsInSourceAndDestination
 UNION ALL
 SELECT ContactID, ‘Destination Only’ FROM RowsInDestinationOnly
)
SELECT * FROM RowLocation --Generate final result
ORDER BY ContactID;

 Here is a sample of the results:

ContactID Location
----------- ----------------
10998 Source Only
10999 Source Only
11000 Both
. . .
19977 Both
19978 Destination Only
19979 Destination Only

 SQL Server provides many powerful tools to use in your data extraction arsenal. Learn about them and
then start using the SQL engine and SSIS in concert to deliver optimal extraction routines. The list
presented previously is not exhaustive; there are many other similar techniques you can use to improve
the value of the solutions you deliver.

 SQL Server 2008 Change Data Capture
 Even though this topic is still concerned with extraction, it is important enough that it deserves a section
of its own. Note that Change Data Capture (CDC) is covered extensively in Books Online (by the actual
developer of CDC), and demonstrated in more detail in the related www.codeplex.com samples.

 If you are running nightly batches for your ETL, you want to make sure you are only processing the
most recent data — for instance, just the data from the preceding day ’ s operations. You do not want to
go back and process every transaction from the last five years during each night ’ s batch. However, that ’ s
the ideal world, and sometimes the source system is not able to tell you which rows belong to the time
window you need.

 This problem space is typically called Change Data Capture, or CDC. The term refers to the fact that you
want to capture just the changed data from the source system within a specified window of time.

c11.indd 430c11.indd 430 8/28/08 12:23:49 PM8/28/08 12:23:49 PM

Chapter 11: Using the Relational Engine

431

The changes may include inserts, updates, and deletes, and the required window of time may vary
anything from “ give me the changes from the last few minutes ” all the way through to “ give me all the
changes for the last day/week/and so on. ” The key requisite to CDC solutions is that they need to
identify the rows that were affected since a specific, granular point in time.

 There are some common techniques to handle this problem, such as:

 Adding new date/time columns to the source system. This is usually not feasible, either because
it is a legacy system and no one knows how to add new functionality, or it is possible but the
risk and change management cost is too high, or simply because the DBA or data steward won ’ t
let you! On some systems, such as ERP applications, this change is impossible due to the sheer
number and size of tables and the prohibitive cost thereof.

 Adding triggers to the source system. Such triggers may watch for any data changes and then
write an audit record to a separate logging table that the ETL then uses as a source. Though this
is less invasive than the previous method, the same challenges apply. An issue here is that every
database operation now incurs more I/O cost — when a row is inserted or updated the original
table is updated, and then the new log table is updated too in a synchronous manner. This can
lead to decreased performance in the application.

 Complex queries. It is academically possible to write long complex queries that compare every
source row/column to every destination column; but practically speaking this is usually not an
alternative because the development and performance costs are too high.

 Dump and reload. Sometimes there is no way around the problem, and you are forced to delete
and recopy the complete set of data every night. For small datasets, this may not be a problem,
but once you start getting into the terabyte range you are in trouble. This is the worst possible
situation and one of the biggest drivers for non - intrusive low - impact CDC solutions.

 Third - party solutions. There are software vendors that specialize in CDC solutions for many
different databases and applications. This is a good option to look into, because the vendors
have the experience and expertise to build robust and high - performance tools.

 There are other solutions besides the ones mentioned, such as using queues and application
events, but some of these are non - generic and tightly coupled.

 Last, but not least — and the subject of this section in the chapter — is new functionality in
SQL Server 2008 called Change Data Capture, which provides CDC right out-of-the-box. This
technology is delivered by the SQL Replication team, but was designed in concert with the SSIS
team. Note that there is another new similarly named technology in SQL Server 2008 called
Change Tracking, which is a synchronous technique that could also be used in some CDC
scenarios.

 Benefits of SQL Server 2008 CDC
 Here are some of the benefits that SQL Server 2008 CDC (hereafter referred to as CDC) provides you:

 Low impact: You do not need to change your source schema tables in order to support CDC.
Other techniques for change data capture, such as triggers and replication, require that you add
new columns (such as timestamps and GUIDs) to the tables you are interested in tracking. With
CDC, you can be up and running immediately without changing the schema. Obviously your
source system needs to be hosted on SQL Server 2008 in order to take advantage of the CDC
functionality.

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 431c11.indd 431 8/28/08 12:23:49 PM8/28/08 12:23:49 PM

Chapter 11: Using the Relational Engine

432

 Low overhead: The CDC process is a job that runs asynchronously in the background, and reads
the changes off the SQL Server transaction log. What this means in plain English is that unlike
triggers, any updates to the source data do not incur a synchronous write to a logging table.
Rather, the writes are delayed until the server is idle, or the writes can be delayed until a time
that you specify (for instance 2 A.M. every morning).

 Granular configuration: The CDC process allows you to configure the feature on a per - table
basis, which means it is not an all - or - nothing proposition. You can try it out on one table, and
once you iron out any issues, you can slowly start using it on more tables.

 High fidelity capture: The technology flags which rows were inserted, updated, and deleted.
It can also tell you exactly which columns changed during updates. Other auditing details such
as the event timestamp, as well as the specific transaction ID are also provided.

 High fidelity requests: The CDC infrastructure allows you to make very granular requests to
the CDC store, so that you can find out exactly when certain operations occurred. For instance,
you can ask for changes within any batch window ranging from a few minutes (near real time)
through to hours, days, weeks, or more. You can ask for the final aggregated image of the rows,
and you can ask for the intermediate changes too.

 Ease of use: The APIs that you use to request the data are based on the same SQL semantics you
are already used to — SELECT statements, user - defined functions, and stored procedures.

 Resilient to change: The replication team built the technology with change management in
mind, meaning that if you set up CDC to work on a certain table, and someone adds or deletes a
column in that table, the process is robust enough in most cases to continue running while you
make the appropriate fixes. This means that you don ’ t lose data (and you don ’ t lose sleep!).

 Transactional consistency: The operations enable you to request changes in a transactionally
consistent manner. For instance, if two tables in the source were updated within the context of
the same source transaction, you have the means to establish that fact and retrieve the related
changes together.

 The purpose of this section is not to delve into every last detail of CDC; rather the goal is to explore how
to use CDC in the context of SSIS and ETL in general. For more in - depth details on the technology and
considerations around planning, security, operations, and administration, please see Books Online and
other resources on www.microsoft.com/sql . There are also samples on www.codeplex.com that use
SQL and SSIS together to deliver a CDC solution.

 Preparation
 There are a few steps you need to take to get CDC working. Once again, CDC is intended for sources
that reside on a SQL Server 2008 database. If your data resides on an earlier version of SQL Server or
another vendor ’ s solution, unless you migrate the data, this solution is probably not for you. However,
you may still want to test the waters and see what benefits you can gain from the functionality — in
which case find yourself a test server and follow these same steps.

 CDC is also only available on certain editions of SQL Server, namely SQL Server 2008 Enterprise,
Developer, and Evaluation editions.

 First, the DBA or a member of the SQL sysadmin fixed server role needs to enable CDC on the SQL
Server 2008 database. This is a very important point; there should be a clear separation of roles and
duties, and open dialog between the DBA and the ETL developer. The ETL developer may be tempted to

❑

❑

❑

❑

❑

❑

❑

c11.indd 432c11.indd 432 8/28/08 12:23:49 PM8/28/08 12:23:49 PM

Chapter 11: Using the Relational Engine

433

turn CDC on for every single table, but that is a bad idea. Although CDC has low overhead, it does not
have zero overhead. The DBA, on the other hand, may be protective of their data store and not want
anyone to touch it.

 Whether the DBA and the ETL developer are different individuals or the same person, the respective
parties should consider the pros and cons of the solution from all angles. Books Online has more details
on these considerations, so once again let ’ s forge ahead with the understanding that much of this may be
prototypical.

 The rest of this topic will assume that you are using AdventureWorks2008 on a SQL Server 2008
installation. Here is how to enable the functionality at a database level:

USE AdventureWorks2008;
GO

--Enable CDC on the database
EXEC sys.sp_cdc_enable_db;
GO

--Check CDC is enabled on the database
SELECT name, is_cdc_enabled
FROM sys.databases WHERE database_id = DB_ID();

 When you flip this switch at the database level, SQL Server sets up some of the required infrastructure
that you will need later. For instance, it creates a database schema called cdc as well as the appropriate
security, functions, and procedures.

 The next step is to ensure that SQL Server Agent is running on the same server you just enabled CDC on.
Agent allows you to schedule when the CDC process will crawl the database logs and write entries to
the capture instance tables (also known as shadow tables; we will use the two terms interchangeably).
If these terms make no sense to you right now, don ’ t worry; they will later. The important thing to do at
this point is to use SQL Server 2008 Configuration Manager to ensure that Agent is running. Once again,
because this chapter is not focused on the deep technical details of CDC itself, but rather on how to use
its functionality within the context of ETL, you will need to visit Books Online if you are not sure how to
get Agent running.

 Next, you can enable CDC functionality on the tables of your choice. Run the following command in
order to enable CDC on the HumanResources.Employee table:

USE AdventureWorks2008;
GO

--Enable CDC on a specific table
EXECUTE sys.sp_cdc_enable_table
 @source_schema = N’HumanResources’
 ,@source_name = N’Employee’
 ,@role_name = N’cdc_Admin’
 ,@capture_instance = N’HumanResources_Employee’
 ,@supports_net_changes = 1;

c11.indd 433c11.indd 433 8/28/08 12:23:50 PM8/28/08 12:23:50 PM

Chapter 11: Using the Relational Engine

434

 The supports_net_changes option allows you to retrieve only the final image of a row, even if it was
updated multiple times within the time window you specified. If there were no problems then you
should see the following message displayed in the output of the query editor:

Job ‘cdc.AdventureWorks2008_capture’ started successfully.
Job ‘cdc.AdventureWorks2008_cleanup’ started successfully.

 If you want to verify that CDC is enabled for any particular table, you can issue a command of the
following form:

--Check CDC is enabled on the table
SELECT [name], is_tracked_by_cdc FROM sys.tables
WHERE [object_id] = OBJECT_ID(N’HumanResources.Employee’);

--Alternatively, use the built-in CDC help procedure
EXECUTE sys.sp_cdc_help_change_data_capture
 @source_schema = N’HumanResources’,
 @source_name = N’Employee’;
GO

 Well done. If all has gone well, the CDC process is now alive and well and watching the source table for
any changes.

 You used the default configuration for setting up CDC on a table, but there are optional parameters that
allow you much more power. For instance, you can configure exactly which columns should and
shouldn ’ t be tracked, the filegroup where the shadow table should live, and enable other modes.
For now, simple is good, so the next step is to have a look at what SQL Server has done for you.

 Capture Instance Tables
 Capture Instance tables are also known as shadow tables and change tables; these are the tables that SQL
Server creates behind the scenes to help the magic of CDC happen. Here is how the CDC process works:

 1. The end user makes a data change in the source system table you are tracking. SQL Server
writes the changes to the database log, and it then writes the changes to the database. Note that
SQL Server always does the log - write (and always has) regardless of whether or not CDC is
enabled — in other words the database log is not a new feature of CDC, but CDC makes good
use of it.

 2. There is a process that runs on server idle time, or on a scheduled interval (controlled by SQL
Server Agent) that reads the changes back out of the log and writes them to a separate change
tracking (shadow) table with a special schema. In other words, the user wrote the change to the
database; the change was implicitly written to the SQL log; the CDC process read it back out
the log and wrote it to a separate table. Why not write it to the second table in the first place?
The reason is that synchronous writes are impactful to the source system; the user may
experience slow application performance if their update caused two separate writes to two
separate tables. By using an asynchronous log reader, the DBA can amortize the writes to the
shadow table over a longer period. Of course, you may decide to schedule the Agent job to run
on a highly frequent basis, in which case the experience may be almost synchronous, but that is
an ETL implementation decision. Normally the log reader will run during idle time or when the
users are not using the system, so there is little to no application performance overhead.

c11.indd 434c11.indd 434 8/28/08 12:23:50 PM8/28/08 12:23:50 PM

Chapter 11: Using the Relational Engine

435

 3. The ETL process then reads the data out of the change table and uses it to populate the
destination. We will get to this section later; for now let ’ s continue to study the SQL change tables.

 Note that there is a default schedule that prunes the data in the change tables to keep the contents down
to three days worth of data, in order to prevent the amount of CDC data from becoming unwieldy. You
should change this default configuration to suit your specific needs.

 When you enabled CDC on the HumanResources.Employee table, SQL used a default naming
convention to create a shadow table in the same database called cdc.HumanResources_Employee_CT.
The table has the same schema as the source table, but it also has several extra metadata columns that
CDC needs to do its magic. Issue the following command to see what the shadow table looks like. There
should be no rows in the table right now, so you will get back an empty result set.

SELECT * FROM cdc.HumanResources_Employee_CT;

 Here is a brief overview of the main metadata columns. The __$start_lsn and __$seqval columns identify
the original transaction and order that the operations occurred in. These are important values — the API
(which we will look at later) operates purely in terms of the LSNs (commit log sequence numbers). But
you can easily map date/time values to and from LSNs to make things simpler.

 The __$operation column shows the source operation that caused the change (1 � delete, 2 � insert,
3 � update (before image), 4 � update (after image), and 5 � merge).

 The __$update_mask column contains a bit mask to tell you which specific columns changed during an
update. It tells you what columns changed on a row - by - row basis; however, the mask is just a bitmap, so
you need to map the ordinal position of each bit to the column name that it represents. CDC provides
functions such as sys.fn_cdc_has_column_changed to help you make sense of these masks.

 OK, now for the exciting part. Make a data change in the source table and then have a look at the
shadow table again to see what happened. To keep it simple, update one specific field on the source table
using the following command. Remember that the process runs asynchronously, so you may have to
wait a few seconds before the changes appear in the shadow table. So after running the following
statement, wait a few seconds and then run the preceding SELECT statement again.

--Make an update to the source table
UPDATE HumanResources.Employee
 SET HireDate = DATEADD(day, 1, HireDate)
WHERE BusinessEntityID IN (1, 2, 3);

 Instead of waiting for the asynchronous log reader process to occur, you can also force the process to
happen on demand by issuing the command:

--Force CDC log crawl
EXEC sys.sp_cdc_start_job;

 The shadow table should contain two rows for every source row you updated. Why two rows, when you
only performed one update per row? The reason is that for updates, the change table contains the before
and after images of the affected rows. Now try inserting or deleting a row in the source and have a look
at what rows get added to the shadow table.

c11.indd 435c11.indd 435 8/28/08 12:23:50 PM8/28/08 12:23:50 PM

Chapter 11: Using the Relational Engine

436

 The CDC API
 The previous section was just academic background on what is happening; you don ’ t actually need
all this knowledge in order to apply the solution to the problem at hand. CDC provides a set of functions
and procedures that abstract away the details of the technology and make it very simple to use. When
you enabled CDC on the table, SQL automatically generated several function wrappers for you so
that you can query the shadow table with ease. Here is an example:

USE AdventureWorks2008;
GO

--Let’s check for all changes since the same time yesterday
DECLARE @begin_time AS DATETIME = GETDATE() - 1;
--Let’s check for changes up to right now
DECLARE @end_time AS DATETIME = GETDATE();

--Map the time intervals to a CDC query range (using LSNs)
DECLARE @from_lsn AS BINARY(10)
 = sys.fn_cdc_map_time_to_lsn(‘smallest greater than or equal’, @begin_time);
DECLARE @to_lsn AS BINARY(10)
 = sys.fn_cdc_map_time_to_lsn(‘largest less than or equal’, @end_time);

--Validate @from_lsn using the minimum LSN available in the capture instance
DECLARE @min_lsn AS BINARY(10)
 = sys.fn_cdc_get_min_lsn(‘HumanResources_Employee’);
IF @from_lsn < @min_lsn SET @from_lsn = @min_lsn;

--Return the NET changes that occurred within the specified time
SELECT * FROM
 cdc.fn_cdc_get_net_changes_HumanResources_Employee(@from_lsn, @to_lsn,
 N’all with mask’);

 The CDC functions only understand LSNs. So the first thing you do is to map the date/time values to
LSN numbers, being careful to check the minimum and maximum extents. You then call a wrapper
function for the table called cdc.fn_cdc_get_net_changes_ < table name > () , which returns the rows
that have changed. You specify all with mask , which means that the __$update_mask column is
populated to tell you which columns changed. If you don ’ t need the mask, just specify all , because
calculating the mask is expensive. The all and all with mask options both populate the __$operation
column accordingly.

 If you had used the parameter value all with merge , the same results would come back, but the
__$operation flag would only contain either 1 (delete) or 5 (merge). This is useful if you only need to
know whether the row was deleted or changed, but do not care what the specific change was. This
option is computationally cheaper for SQL to execute. If you use the TSQL MERGE operator (discussed
later in this chapter) in combination with CDC, then this option makes the most sense, because you can
leave it up to MERGE to figure out whether to insert, update, or delete the destination row.

 The function you used in this example returns the net changes for the table — meaning that if any
specific row had multiple updates applied against it in the source system, the result you would get back
would be the net combined result of those changes. For instance, if someone inserted a row and then
later on (within the same batch window) updated that same row twice, the function would return a row
marked as Inserted (__$operation �2), but the data columns would reflect the latest values after the

c11.indd 436c11.indd 436 8/28/08 12:23:50 PM8/28/08 12:23:50 PM

Chapter 11: Using the Relational Engine

437

second update. Net changes are most likely what you will use for loading your warehouse, because they
give you the final image of the row at the end of the specified window, and do not encumber you with
any interim values the row might have had. For some near - real - time scenarios, and applications such as
auditing and compliance tracking, you may require the interim values too.

 Instead of asking for only the net changes to the source table, you can also ask for the granular (interim)
changes. To do this you use another function that DC automatically generated for you, in this case called
 cdc.fn_cdc_get_all_changes_ < table name > () . Here is an example of using the update mask and
the all - changes mode together:

USE AdventureWorks2008;
GO

--First update another column besides the HireDate so we can
--test the difference in behavior
UPDATE HumanResources.Employee
 SET VacationHours = VacationHours + 1
WHERE BusinessEntityID IN (3, 4, 5);

WAITFOR DELAY ‘00:00:10’; --Wait 10s to let the log reader catch up

--Map times to LSNs as we did previously
DECLARE @begin_time AS DATETIME = GETDATE() - 1;
DECLARE @end_time AS DATETIME = GETDATE();
DECLARE @from_lsn AS BINARY(10)
 = sys.fn_cdc_map_time_to_lsn(‘smallest greater than or equal’, @begin_time);
DECLARE @to_lsn AS BINARY(10)
 = sys.fn_cdc_map_time_to_lsn(‘largest less than or equal’, @end_time);
DECLARE @min_lsn AS BINARY(10)
 = sys.fn_cdc_get_min_lsn(‘HumanResources_Employee’);
IF @from_lsn < @min_lsn SET @from_lsn = @min_lsn;

--Get the ordinal position(s) of the column(s) we want to track
DECLARE @hiredate_ord INT
 = sys.fn_cdc_get_column_ordinal(N’HumanResources_Employee’, N’HireDate’);
DECLARE @vac_hr_ord INT
 = sys.fn_cdc_get_column_ordinal(N’HumanResources_Employee’, N’VacationHours’);

--Return ALL the changes and a flag to tell us if the HireDate changed
SELECT
 BusinessEntityID,
 --Boolean value to indicate whether hire date was changed
 sys.fn_cdc_is_bit_set(@hiredate_ord, __$update_mask) AS [HireDateChg],
 --Boolean value to indicate whether vacation hours was changed in the source
 sys.fn_cdc_is_bit_set(@vac_hr_ord, __$update_mask) AS [VacHoursChg]
FROM
 cdc.fn_cdc_get_all_changes_HumanResources_Employee(@from_lsn, @to_lsn, N’all’);

 This call should return every row from the shadow table without aggregating them into a net - changes
view. This is useful if your destination system needs to track everything that happened to a source table,
including interim values. It includes two BIT fields that indicate whether specific columns were changed.

c11.indd 437c11.indd 437 8/28/08 12:23:51 PM8/28/08 12:23:51 PM

Chapter 11: Using the Relational Engine

438

 If you want to disable CDC on a table, use a command of the following form. Be careful though; this
command will drop the shadow table and any data it contains.

EXECUTE sys.sp_cdc_disable_table
 @source_schema = N’HumanResources’,
 @source_name = N’Employee’,
 @capture_instance = N’HumanResources_Employee’;

 Using CDC from within SSIS
 Knowing the row operation and which columns changed on a row - by - row basis helps you build robust
and efficient ETL solutions. Your SSIS packages can use the CDC output to make informed decisions on
which rows are new and thus need to be inserted, which rows are updated and thus need to be updated
in the destination, and which rows need to be deleted (less common in data warehouses).

 After setting up the infrastructure described in the previous sections, you can use the same function calls
directly from within the SSIS Source adapters. Alternatively you can wrap the logic up in a stored
procedure that you can call from SSIS. Here is a basic implementation of a stored procedure to
demonstrate the concept:

USE AdventureWorks2008;
GO

CREATE PROCEDURE dbo.CDC_GetHREmployee(@begin_time DATETIME, @end_time DATETIME)
AS BEGIN
 SET NOCOUNT ON;

 --Map the time intervals to a CDC query range (using LSNs)
 DECLARE @from_lsn AS BINARY(10)
 = sys.fn_cdc_map_time_to_lsn(‘smallest greater than or equal’, @begin_time);
 DECLARE @to_lsn AS BINARY(10)
 = sys.fn_cdc_map_time_to_lsn(‘largest less than or equal’, @end_time);
 DECLARE @min_lsn AS BINARY(10)
 = sys.fn_cdc_get_min_lsn(‘HumanResources_Employee’);
 IF @from_lsn < @min_lsn SET @from_lsn = @min_lsn;

 --Get the ordinal position(s) of the column(s) we want to track
 DECLARE @hiredate_ord INT
 = sys.fn_cdc_get_column_ordinal(N’HumanResources_Employee’,N’HireDate’);
 DECLARE @vac_hr_ord INT
 = sys.fn_cdc_get_column_ordinal(N’HumanResources_Employee’,N’VacationHours’);

 --Return ALL changes & flags to tell us if HireDate & VacationHours changed
 SELECT
 BusinessEntityID,
 BirthDate,
 HireDate,
 VacationHours,
 sys.fn_cdc_is_bit_set(@hiredate_ord, __$update_mask) AS [HireDtChg],

c11.indd 438c11.indd 438 8/28/08 12:23:51 PM8/28/08 12:23:51 PM

Chapter 11: Using the Relational Engine

439

 sys.fn_cdc_is_bit_set(@vac_hr_ord, __$update_mask) AS [VacHoursChg],
 __$operation AS [_Operation] --Include the operation type
 FROM
 cdc.fn_cdc_get_net_changes_HumanResources_Employee(@from_lsn, @to_lsn,
 N’all with mask’);

 SET NOCOUNT OFF;
END; --proc
GO

 You can test that the procedure works as expected using a command like this:

--Try calling the procedure
DECLARE @begin_time AS DATETIME = GETDATE() - 1;
DECLARE @end_time AS DATETIME = GETDATE();

EXEC dbo.CDC_GetHREmployee @begin_time, @end_time;

 One of the big advantages of CDC is that it provides enough information for you to easily develop
slowly changing dimension logic in your packages. For rows that are flagged as updates, you can use
the update mask functionality within a Conditional Split Transformation to send rows that qualify as
SCD - 2 updates down a different branch to those that qualify as SCD - 1 updates.

 Let ’ s build a package to use these concepts. Imagine you want to build a solution whereby all updates
are SCD - 1 (inline update) unless the HireDate value changed, in which case the row should be treated
as an SCD - 2 (insert). Open up BIDS, and create a new package. Create a new variable called StartTime
and set its type to DateTime with a default value of yesterday ’ s date or earlier. Create another variable
called EndTime also of type DateTime and set its default value to tomorrow ’ s date or later, all as shown
in Figure 11 - 6 .

 You are purposefully choosing an extremely wide date range in order to ensure you get all the rows.
These variables represent the start and end time of the batch window, so later on you can try changing
them to shorter ranges and seeing what happens. In a real solution, you should set the value of these
dates according to the current date and the required batch window.

 Figure 11 - 6

 Next you need to create a new Data Flow Task and in it set up an OLE DB Source Component, pointing
it at the AdventureWorks2008 database. Choose query mode, and in the query pane enter the
following text:

EXEC dbo.CDC_GetHREmployee ?, ?

c11.indd 439c11.indd 439 8/28/08 12:23:51 PM8/28/08 12:23:51 PM

Chapter 11: Using the Relational Engine

440

 This statement tells the Source adapter to call the procedure called CDC_GetHREmployee in the
AdventureWorks2008 database, and pass the procedure two parameters. Click the Parameters button
and map the two parameters to the StartTime and EndTime variables, as shown in Figure 11 - 7 .
Remember to also rename the default parameter names to match those in the stored procedure.

 Figure 11 - 7

 Click OK twice to close the edit screens and go back to the package editor. Drop a Conditional Split
Transformation on the design surface and connect the Source Component to it. Open the Conditional
Split Editor and enter the following conditions:

 Order Output Name Condition

 1 DeleteOutput _Operation == 1

 2 InsertOutput _Operation == 2

 3 SCD2Output _Operation == 4 & & HireDtChg

 4 SCD1Output _Operation == 4

c11.indd 440c11.indd 440 8/28/08 12:23:52 PM8/28/08 12:23:52 PM

Chapter 11: Using the Relational Engine

441

 Name the default output “ ElseOutput ” . You will not actually write the data to the destination because
the focus of this section is on extraction; instead you will just count the number of rows going down each
branch. You can imagine that a real package would do something more useful with each set of rows.

 Create five new variables in the package called (say) rc1 , rc2 , rc3 , rc4 , and rc5 , and make them all of
type Int32. Drop five Row Count Components on the package and connect each of the five outputs of the
Conditional Split to the Row Count Components one at a time. Open up each Row Count Component
and associate each one with a different one of the variables you just created.

 Using SQL Server Management Studio, try adding new rows into the source table in the database, delete
other rows, and make some updates. Execute the package and note how many rows flow down each
input. If you had inserted or deleted any rows in the source table, you should see them flow down the
insert and delete paths. The updates flow down the SCD2 branch if and only if the hire date changed.
All other updates flow down the SCD1 branch. You can put a Data Viewer grid on some of the paths to
see what data flows through them, as shown in Figure 11 - 8 .

 Figure 11 - 8

c11.indd 441c11.indd 441 8/28/08 12:23:52 PM8/28/08 12:23:52 PM

Chapter 11: Using the Relational Engine

442

 CDC gives you powerful capabilities to track changes in your source system without requiring any
schema changes. It runs in an asynchronous manner and so incurs minimal operational overhead on the
source. Once you get the basics right, it is simple to configure and use within SSIS — and most
importantly it allows you to build elegant, robust, and high - performance ETL solutions that load only
the delta.

 Data Loading
 The next major section focuses on data loading. Many of the same techniques presented in the data
extraction section apply here too, so the focus will be on areas that have not been covered before.

 Database Snapshots
 Database snapshots were introduced in SQL Server 2005 as a way to persist the state of a database at a
specific point in time. The underlying technology is referred to as copy - on - first - write, which is a fancy
way of saying that once you create the database snapshot, it is relatively cheap to maintain because it
only tracks things that have changed since the database snapshot was created. Once you have created a
database snapshot you can change the primary database in any way, for instance changing rows, creating
indexes, and dropping tables. If at any stage you want to revert all your changes back to when you
created the database snapshot, you can do that very easily by doing a database restore using the
database snapshot as the media source.

 In concept, the technology sounds very similar to backup and restore; the key difference being that this is
a completely online operation, and depending on your data loads, the operations can be near
instantaneous. This is because when you create the snapshot, it is a metadata operation only — you do
not physically “ back up ” any data. When you “ restore ” the database from the snapshot you do not
restore all the data; rather you restore only what has changed in the interim period.

 This technique proves very useful in ETL when you want to prototype any data changes. You can create
a package that makes any data changes you like, confident in the knowledge that you can easily roll back
the database to a clean state in a short amount of time. Of course you could achieve the same goals using
backup and restore (or transactional semantics), but those methods typically have more overhead and/
or take more time. Snapshots may also be a useful tool in operational ETL; you can imagine a scenario
whereby a snapshot is taken before an ETL load and then if there are any problems, the data changes can
be easily rolled back.

 There is a performance overhead to using snapshots, because you can think of them as a “ live ” backup.
Any activity on the source database incurs activity on the snapshot database, because the first change to
any database page causes that page to be copied to the database snapshot. Any further changes to the
same page do not cause further copy operations. You will need to test the performance overhead in the
solutions you create, though you should expect to see an overhead of anywhere from 5% to 20%.

c11.indd 442c11.indd 442 8/28/08 12:23:52 PM8/28/08 12:23:52 PM

Chapter 11: Using the Relational Engine

443

 Because you are writing data to the destination database in this section, it is useful to create a database
snapshot so you can roll back your changes very easily. Run this complete script:

--Use a snapshot to make it simple to rollback the DML
USE master;
GO

--To create a snapshot we need to close all other connections on the DB
ALTER DATABASE [AdventureWorksDW2008] SET SINGLE_USER WITH ROLLBACK IMMEDIATE;
ALTER DATABASE [AdventureWorksDW2008] SET MULTI_USER;

--Check if there is already a snapshot on this DB
IF EXISTS (SELECT [name] FROM sys.databases
 WHERE [name] = N’AdventureWorksDW2008_Snapshot’) BEGIN
 --If so RESTORE the database from the snapshot
 RESTORE DATABASE AdventureWorksDW2008
 FROM DATABASE_SNAPSHOT = N’AdventureWorksDW2008_Snapshot’;

 --If there were no errors, drop the snapshot
 IF @@error = 0 DROP DATABASE [AdventureWorksDW2008_Snapshot];
END; --if

--OK, let’s create a new snapshot on the DB
CREATE DATABASE [AdventureWorksDW2008_Snapshot] ON (
 NAME = N’AdventureWorksDW2008_Data’,
 --Make sure you specify a valid location for the snapshot file here
 FILENAME = N’D:\Data\AdventureWorksDW2008_Data.ss’)
AS SNAPSHOT OF [AdventureWorksDW2008];
GO

 The script should only take a couple of seconds to run. What it does is to create a database file in the
specified folder that it tagged as being a snapshot of the AdventureWorksDW2008 database. You can run
the following command to list all the database snapshots on the server:

--List database snapshots
SELECT
 d.[name] AS DatabaseName,
 s.[name] AS SnapshotName
FROM sys.databases AS s
INNER JOIN sys.databases AS d
ON (s.source_database_id = d.database_id);

 You should now have a snapshot called “ AdventureWorksDW2008_Snapshot ” . This snapshot is your
 “ live backup ” of AdventureWorksDW2008. Once you have ensured that the database snapshot is in
place, test the snapshot functionality by changing some data or metadata in AdventureWorksDW2008.
For instance, you can create a new table in the database and insert a few rows:

--Create a new table and add some rows
USE AdventureWorksDW2008;
GO

CREATE TABLE dbo.TableToTestSnapshot(ID INT);
GO
INSERT INTO dbo.TableToTestSnapshot(ID) SELECT 1 UNION SELECT 2 UNION SELECT 3;

c11.indd 443c11.indd 443 8/28/08 12:23:52 PM8/28/08 12:23:52 PM

Chapter 11: Using the Relational Engine

444

 You can confirm the table is present in the database by running this statement. You should get back
three rows:

--Confirm the table exists and has rows
SELECT * FROM dbo.TableToTestSnapshot;

 Now you can test the snapshot rollback functionality. Imagine that the change you made to the database
was much more impactful than just creating a new table (perhaps you dropped the complete sales
transaction table, for instance) and you now want to roll the changes back. Execute the same script that
you used to originally create the snapshot; you will notice that the script includes a check to make sure
the snapshot exists, and then, if so, it issues a RESTORE ... FROM DATABASE_SNAPSHOT command.

 After running the script, try running the SELECT command again that returned the three rows. You
should get an error saying the table “ TableToTestSnapshot ” does not exist. This is good news; the
database has been restored to its previous state! Of course this same logic applies whether you had
created a table or dropped one, added or deleted rows, or just about any other operation. And the really
cool benefit is that it should only have taken a couple of seconds to run this “ live restore. ”

 As part of the original snapshot script, the database was rolled back but the script should also have
created a new snapshot in the old one ’ s place. Make sure the snapshot is present before continuing with
the next sections, because you want to make it simple to roll back any changes you make.

 The MERGE Operator
 If your source data table is conveniently partitioned into data you want to insert, data you want to
delete, and data you want to update, then it is simple to use the INSERT , UPDATE , and DELETE statements
to perform the respective operations. However, it is often the case that the data is not presented to you in
this format. More often than not you have a source system with a range of data that needs to be loaded,
but you have no way of distinguishing which rows should be applied in which way. The source contains
a mix of new, updated, and unchanged rows, and may even have some tombstone structures to represent
deleted rows too.

 One way you can solve this problem is to build logic that compares each incoming row with the
destination table, using the likes of Lookup Transforms. See Chapter 7 for more information. Another
way to do this would be to use CDC (discussed previously in this chapter) to tell you explicitly which
rows and columns were changed, and in what way.

 There are many other ways of doing this too, but if none of these methods are suitable then there is a
new alternative in SQL Server 2008, which comes in the form of an operator called MERGE (also known in
some circles as “ upsert ” due to its mixed Update/Insert behavior).

 The MERGE statement is similar in usage to the INSERT , UPDATE , and DELETE statements; however, it is
more useful in that it can perform all three of their duties within the same operation. Here is pseudocode
to represent how it works; after this you will delve into the real syntax and try some examples:

MERGE INTO Destination
Using these semantics:
{
 < all actions optional >
 If a row in the Destination matches a row in the Source then: UPDATE

c11.indd 444c11.indd 444 8/28/08 12:23:53 PM8/28/08 12:23:53 PM

Chapter 11: Using the Relational Engine

445

 If a row exists in the Source but not in the Destination then: INSERT
 If a row exists in the Destination but not in the Source then: DELETE
}
FROM Source;

 As you can see, you are able to issue a single statement to SQL Server and it is able to figure out on a
row - by - row basis which rows should be INSERTED , UPDATED , and DELETED in the destination. This can
provide a huge time savings over doing it the old way; issuing two or three separate statements to
achieve the same goal. Note that SQL Server is not just cleverly rewriting the MERGE query back into
 INSERT and UPDATE statements behind the scenes; instead this functionality is a DML primitive deep
within the SQL core engine, and as such it is highly efficient.

 Now you are going to apply this knowledge to a real set of tables. In the extraction section of this chapter
you used customer data from AdventureWorks2008 and compared it to data in AdventureWorksDW2008.
There were some rows that occurred in both of the tables, some rows that were only in the source, and
some rows that were only in the destination. You will now use MERGE to synchronize the rows from
AdventureWorks2008 to AdventureWorksDW2008 so that both tables contain the same data.

 This is not a real - world scenario because you would not typically write rows directly from the source to
the destination without cleaning and shaping the data in an ETL tool like SSIS, but for the sake of
convenience the example is an illustrative way of demonstrating the concepts.

 First you need to add a new column to the destination table just so you can see what happens after you
run the statement. This is not something you would need to do in the real solution.

USE AdventureWorksDW2008;
GO

--Add a column to the destination table to help us track what happened
--You would not do this in a real solution, this just helps the example
ALTER TABLE dbo.DimCustomer ADD Operation NVARCHAR(10);
GO

 Now you can run the MERGE statement. The code is commented to explain what it does. The destination
data is updated from the source in the manner specified by the various options. There are blank lines
between each main section of the command to improve readability; however, this should not detract
from the fact that this is a single statement:

USE AdventureWorksDW2008;
GO

--Merge rows from source into the destintion
MERGE

--Define the destination table
INTO AdventureWorksDW2008.dbo.DimCustomer AS [Dest] --Friendly alias

--Define the source query
USING (

c11.indd 445c11.indd 445 8/28/08 12:23:53 PM8/28/08 12:23:53 PM

Chapter 11: Using the Relational Engine

446

 SELECT
 BusinessEntityID AS ContactID,
 --Convert key into destination format
 N’AW’ + RIGHT(N’0000000’
 + CONVERT(NVARCHAR(10), BusinessEntityID), 8) AS
CustomerAlternateKey,
 --Keep example simple by using just a few data columns
 FirstName,
 LastName
 FROM AdventureWorks2008.Person.Person
) AS [Source] --Friendly alias

--Define the join criteria (how SQL matches source/destination rows)
ON [Dest].CustomerAlternateKey = [Source].CustomerAlternateKey

--If the same key is found in both the source & destination...
WHEN MATCHED
--For *illustration* purposes, only update every second row...
AND ContactID % 2 = 0
 --Then update data values in the destination
 THEN UPDATE SET
 [Dest].FirstName = [Source].FirstName,
 [Dest].LastName = [Source].LastName,
 [Dest].Operation = N’Updated’
 --Note: < WHERE ContactID = ... > clause is implicit

--If a key is in the source but not in the destination...
WHEN NOT MATCHED BY TARGET
 --Then insert row into the destination
 THEN INSERT
 (
 GeographyKey, CustomerAlternateKey, FirstName,
 LastName, DateFirstPurchase, Operation
)
 VALUES
 (
 1, [Source].CustomerAlternateKey, [Source].FirstName,
 [Source].LastName, GETDATE(), N’Inserted’
)

--If a key is in the destination but not in the source...
WHEN NOT MATCHED BY SOURCE
 --Then do something relevant, say, flagging a status field
 THEN UPDATE SET
 [Dest].Operation = N’Deleted’;
 --Note: < WHERE ContactID = ... > clause is implicit

 --Alternatively we could have deleted the destination row
 --but in AdventureWorksDW2008 that would fail due to FK constraints
--WHEN NOT MATCHED BY SOURCE THEN DELETE;
GO

c11.indd 446c11.indd 446 8/28/08 12:23:53 PM8/28/08 12:23:53 PM

Chapter 11: Using the Relational Engine

447

 After running the statement you should get a message in the query output pane telling you how many
rows were affected:

(23789 row(s) affected)

 You can now check the results of the operation by looking at the data in the destination table. If you
scroll through the results you should see each row ’ s Operation column populated with the operation
that was applied to it:

--Have a look at the results
SELECT CustomerAlternateKey, DateFirstPurchase, Operation
FROM AdventureWorksDW2008.dbo.DimCustomer;

 Here is a subset of the results. For clarity, the different groups of rows have been separated in this book
by blank lines:

CustomerAlternateKey DateFirstPurchase Operation
-------------------- ----------------------- ----------
AW00019975 2002-04-11 00:00:00.000 NULL
AW00019976 2003-11-27 00:00:00.000 Updated
AW00019977 2002-04-26 00:00:00.000 NULL

AW00019978 2002-04-20 00:00:00.000 Deleted
AW00019979 2002-04-22 00:00:00.000 Deleted

AW00008000 2008-02-24 20:48:12.010 Inserted
AW00005229 2008-02-24 20:48:12.010 Inserted
AW00001809 2008-02-24 20:48:12.010 Inserted

 As you can see, a single MERGE statement has inserted, updated, and deleted rows in the destination in
the context of just one operation. The reason that some of the updates show a NULL operation is that
for illustration purposes a predicate was used in the WHEN MATCHED section to only UPDATE every
second row.

 Note that the source query can retrieve data from a different database (as per the example), and
furthermore it can even retrieve data using the OPENROWSET() function you read about earlier. However,
note that MERGE requires that the source data stream is sorted on the join key; SQL will automatically sort
the source data for you if required so make sure that the appropriate indexes are in place for a more
optimal experience.

 If the source query happens to be of the form OPENROWSET(BULK …) — in other words, you are reading
from a text file — then make sure you have specified any intrinsic sort order that the text file may
already have. If the text file is already sorted in the same manner as the order required for MERGE
(or you can ask the source extract system to do so), then SQL is smart enough to not incur a redundant
sort operation.

 The MERGE operator is a very powerful technique for improving mixed - operation data loads, but how do
you use it in the context of SSIS?

 If you do not have the benefit of change data capture (CDC, discussed previously in this chapter) and the
data sizes are too large to use the Lookup Component in an efficient manner (see Chapter 7), then you

c11.indd 447c11.indd 447 8/28/08 12:23:54 PM8/28/08 12:23:54 PM

Chapter 11: Using the Relational Engine

448

may have to extract your data from the source, clean and shape it in SSIS, and then dump the results to
a staging table in SQL Server. From the staging table, you now need to apply the rows against the true
destination table. You could certainly do this using two or three separate INSERT , UPDATE , and DELETE
statements; with each statement JOIN ing the staging table and the destination table together in order
to compare the respective row and column values. But you can now use a MERGE statement instead.
The MERGE operation is more efficient than running the separate statements, and it is also more
intentional and elegant to develop and maintain.

 Make sure you execute the original snapshot script again in order to undo the changes you made in the
destination database.

 Summary
 There are many other opportunities for using SQL in concert with SSIS in your ETL solution. The ideas
presented in this chapter are not exhaustive; there are many other ways to increase your return on
investment using the Microsoft data platform. Every time you find a way of using a tool optimized for
the task at hand, you can lower your costs and improve your efficiencies. There are tasks that SSIS is
much better at doing than the SQL engine, but the opposite statement applies too. Make sure you think
about which tool will provide you the best solution when building ETL solutions; the best solutions may
utilize a combination of the complete SQL Server business intelligence stack.

c11.indd 448c11.indd 448 8/28/08 12:23:54 PM8/28/08 12:23:54 PM

 Accessing
Heterogeneous Data

 In Chapter 11 you discovered how to incrementally extract data from sources with SSIS. In this
chapter, you learn about importing and working with data from heterogeneous, or non–SQL
Server, sources. In today’s enterprise environments, data may exist in many diverse systems, such
as mainframes, Oracle, DB2, Office documents, XML, or flat files, to name just a few. The data may
be generated within the company, or it may be delivered through the Internet from a trading
partner. Whether you need to import data from a spreadsheet to initially populate a table in a new
database application, pull data from other sources for your data warehouse, or rely on a Web
service to grab up-to-the-minute information, accessing heterogeneous data is probably a big part
of your job.

 You can load data into SQL Server using SSIS from any ODBC-compliant or OLE DB-compliant
source. Many ODBC drivers and OLE DB providers are supplied by Microsoft for sources like
Excel, Access, DB2, FoxPro, Sybase, Oracle, and dBase. Others are available from database
vendors. A variety of Data Source Components are found in SSIS. These include Excel, Flat File,
XML, ADO.NET (which is used to connect to .NET Sources), OLE DB (which allows connections to
many different types of data), and Raw File (which is a special source used to read data that has
been previously exported to a Raw File Destination). If the supplied Data Sources do not meet
your needs, you can also create custom Data Sources.

 This chapter walks you through accessing data from several of the most common sources. Each
one is relatively easy to work with, but each is configured a bit differently:

 Excel and MS Access (versions 2007 and earlier): Excel is often used as a quick way to
store data because spreadsheets are easy to set up and use. Access applications are
frequently upsized to SQL Server as the size of the database and number of users increase.

 Oracle: Even companies running their businesses on Oracle or another of SQL Server’s
competitors sometimes make use of SQL Server for its cost-effective reporting and
business intelligence solutions.

❑

❑

c12.indd 449c12.indd 449 8/28/08 12:26:38 PM8/28/08 12:26:38 PM

Chapter 12: Accessing Heterogeneous Data

450

 XML and Web Services: XML and Web services (which is XML delivered through HTTP) are
standards that allow very diverse systems to share data. The XML Data Source allows you to
work with XML as you would almost any other source of data.

 Flat Files: Beyond just standard delimited files, SSIS can parse flat files of various types and
code page encoding, which allow files to be received from and exported to different operating
systems and non-Windows based systems, which reduce the need to convert flat files before or
after working with them in SSIS.

 ODBC: Many organizations maintain older systems that use legacy ODBC providers for data
access. Because of the complexities and cost of migrating systems to newer versions, ODBC is
still a common source.

 Other Heterogeneous Sources: The sources listed so far are the most common; however,
this only touches upon the extent of Data Sources that SSIS can access. The last section of this
chapter provides you resources and generalities when you are trying to access other sources
such as Teradata, SAP, DB2, or Sybase.

 Excel and Access
 SSIS deals with Excel and Access data in a similar fashion because they use the same underlying
provider technology for data access. For Microsoft Office 2003 and earlier, the data storage technology is
called the JET Engine, which stands for Join Engine Technology; therefore, when you access these legacy
releases of Excel or Access, you will be using the JET OLE DB Provider.

 Since the release of Office 2007, a new office engine was introduced called ACE that is essentially a
newer version of the JET but that supports the new file formats of Excel and Access. ACE stands for
Access Engine and is used for Office 2007 and later. You will find it under the name “Microsoft Office
12.0 Access Database Engine OLE DB Provider” in the OLE DB provider list. Therefore, when connecting
to Access or Excel in these versions, you will use the ACE OLE DB Provider.

 Later in this section you will see how to connect to both Access and Excel for both the JET and ACE
engines.

 Limited 64-Bit Support
 As of the release of SQL Server 2008 and this book, 64-bit providers do not exist for either the JET or ACE
engines (either the X64 or IA64 64-bit versions). However, there are still ways to work with the 32-bit
version of the JET and ACE providers even if you are working on a 64-bit machine.

 To be sure, SSIS can run natively on a 64-bit machine (just like it can on a 32-bit machine). This means
that when the operating system is running the X64 version of Windows Server 2003, Windows Vista, or
Windows Server 2008, you are able to natively install and run SQL Server in the X64 architecture (an
IA64 Itanium build is also available from Microsoft support). The limitation is that some of the data
access providers (like ACE and JET) will not work when a package is run natively in this environment.
Instead, you will need to run the package in a 32-bit emulation mode on the same server.

 When you install SSIS with the native X64 installation bits, you will also get the 32-bit runtime
executables that can be used to run packages that need access to 32-bit drivers not supported in the

❑

❑

❑

❑

c12.indd 450c12.indd 450 8/28/08 12:26:39 PM8/28/08 12:26:39 PM

Chapter 12: Accessing Heterogeneous Data

451

64-bit environment. When working on a 64-bit machine, you can run packages in 32-bit emulation mode
through the BIDS design environment and through the 32-bit version of DTExec. Here are the details:

 Business Intelligence Development Studio: By default, when you are in a native 64-bit
environment and you run a package, you are running the package in 64-bit mode. However, you
can change this behavior by modifying the properties of your SSIS project. Figure 12-1 shows the
Run64bitRuntime property on the Debugging property page. When you set this to False, the
package will run in 32-bit emulation mode even though the machine is a 64-bit.

❑

Figure 12-1

 32-bit version of DTExec: By default, a 64-bit installation of SSIS will reference the 64-bit
version of DTExec, usually found in the C:\Program Files\Microsoft SQL Server\90\
DTS\Binn folder. However a 32-bit version will also be included in C:\Program Files (X86)\
Microsoft SQL Server\90\DTS\Binn , and you can reference that directly if you want a
package to run in 32-bit emulation mode in order to access the ACE and JET providers.

 Be careful to make sure not to run all your packages in 32-bit emulation mode when running on a 64-bit
machine, just the ones that need 32-bit support. The 32-bit emulation mode will limit the memory
accessibility and the performance. The best approach is to modularize your packages so you limit the
need for the 32-bit support.

 Refer to the following article for an in-depth discussion of the 64-bit support in SSIS:
http://ssis.wik.is/64-bit_Story .

❑

c12.indd 451c12.indd 451 8/28/08 12:26:39 PM8/28/08 12:26:39 PM

Chapter 12: Accessing Heterogeneous Data

452

 Working with Excel Files
 Excel is a common source and destination because it is often the favorite “database” software of many
people without database expertise (especially in your accounting department!). SQL Server Integration
Services has Data Flow Source and Destination Components made just for Excel that ease the connection
setup, whether connecting to Excel 2003 or earlier, or to Excel 2007 or later (the JET and ACE providers).

 You can be sure that these components will be used in many SSIS packages, because data is often
imported from Excel files into a SQL Server database or exported into Excel for many high-level tasks
such as sales forecasting. Because Excel is so easy to work with, it is common to find inconsistencies in
the data. For example, while possible to implement, it is less likely for an Excel workbook to have lookup
lists or data type enforcement in place. It’s often possible for the person entering data to type a note in a
cell where a date should go. Of course, cleansing the data is part of the ETL process, but it may be even
more of a challenge when importing from Excel.

 In this section, you look at both exporting to and importing from Excel as the AdventureWorks staff
performs their annual inventory.

 Access
 MS Access is the database of choice for countless individual users and small workgroups. It has many
great features and wizards that enable a small application or prototype to be quickly developed. Often,
when an application has outgrown its humble Access origins, discussions of moving the data to SQL
Server emerge. Many times, the client will be rewritten as a web or desktop application using VB.NET or
another language. Sometimes the plan will be to link to the SQL Server tables, utilizing the existing
Access front-end. Unfortunately, if the original application was poorly designed, moving the data to SQL
Server will not improve performance.

 Designing an application with a SQL back-end and Access front-end that performs well is beyond the
scope of this book. To learn more about creating Access applications where SQL Server hosts the data, read
 Expert One-on-One Microsoft Access Application Development by Helen Feddema. (Wrox, 2004.)

 Also, keep in mind that Access select queries will be imported into SQL Server as tables. Any queries
that must be ported to the SQL Server database will have to be rewritten. Many select queries can
be rewritten as views. Update, append, delete, create table, and parameterized select queries can be
rewritten as stored procedures if you need to move them to the SQL Server database. There may also
be VBA (Visual Basic for Applications) functions used in queries. You may want to rewrite them as CLR
User Defined Functions in SQL Server. What you do depends on the requirements for your application
or solution, and that discussion could fill up a whole book in itself.

 Importing Access tables is similar to importing Excel worksheets. It is very easy to accomplish using the
Import and Export Wizard and, if you have several tables to import at once, that’s probably the way
to go. See Chapter 2 for detailed instructions on how to use the wizard. In this section you learn how to
import data from Access by building an SSIS package along with a few tips specific to Access.

 Understanding Access Security
 Connecting to an Access database is usually quite simple. If Access security has been enabled on the
database, it gets a bit more complicated. Before you learn how to import from Access, take a quick look
at how Access security works.

c12.indd 452c12.indd 452 8/28/08 12:26:40 PM8/28/08 12:26:40 PM

Chapter 12: Accessing Heterogeneous Data

453

 The simplest way to “secure” an Access database is to set a Database Password. This is done by
opening the database in exclusive mode and then entering a password in the Set Database Password
dialog box found at Tools MA Security MA Set Database Password. After that, the password must
be supplied by anyone who opens the database, including your SSIS package.

 The other method involves associating a database with a Workgroup Information file (system.mdw),
setting up groups and users, and configuring permissions. Users attempting to open the database
authenticate against the workgroup file. Access provides a wizard that can be used to set up groups and
permissions, simplifying the process.

 A default Workgroup file is specified in the registry for the user. If more than one individual shares the
same database, usually a Workgroup Information file is stored on the network. Either that file can be the
default workgroup file for the user or it can be used only for a specific database. If it is for the specific
database, the path to the workgroup file must be specified as a startup command-line argument in a
shortcut provided to the user. A user name and password can also be included in the command, like this:

 “C:\Program Files\Microsoft Office\Office11\MSACCESS.EXE”
 “C:\SSIS_Pro_2008\SSIS_Pro_12_Samples\Northwind.mdb” /wrkgrp
“C:\SSIS_Pro_2008\SSIS_Pro_12_Samples\system.mdw”
 /user [user] /pwd [password]

 If the Access database does not have security enabled, all users actually open the database as the Admin
user with a blank password. That enables the user to create, modify, and own all of the Access objects
without even being aware that security, albeit not much security, is being used in the background.
Creating a non-blank Admin password effectively enables security.

 The Admin account is the same account no matter which Workgroup Information file is used, and it is a
member of the Admins group by default. It seems counterintuitive, but moving the Admin account to a
group with no object permissions and removing it from the Admins group is an Access security best
practice. This keeps anyone with a copy of Access, who opens the file using the Admin account from a
different Workgroup file, from viewing or modifying data. Before taking the rights away from Admin,
another account must be added to the Admins group.

 If you would like to learn more about how to set up Access security, refer to Microsoft Access Help for
more information.

 Configuring an Access Connection Manager
 Once the Connection Manager is configured properly, importing from Access is simple. First, look at the
steps required to set up the Connection Manager:

1. Create a new SSIS package and create a new Connection Manager by right-clicking in the
Connection Managers’ section of the design area of the screen.

2. Select New OLE DB Connection to bring up the Configure OLE DB Connection Manager
dialog box.

c12.indd 453c12.indd 453 8/28/08 12:26:40 PM8/28/08 12:26:40 PM

Chapter 12: Accessing Heterogeneous Data

454

 3. Click New to open the Connection Manager. In the Provider drop-down list, choose one of the
following access provider types:

❑ Microsoft Jet 4.0 OLE DB Provider (for Access 2003 and earlier)

❑ Microsoft Office 12.0 Access Database Engine OLE DB Provider (for Access 2007 and later)

4. Click OK after making your selection.

5. The Connection Manager dialog box changes to an Access-specific dialog. Browse to the Access
database file to set the Database File Name property. You are using the Northwind MS Access
sample database for this example.

6. By default, the database user name will be Admin with a blank password. If security has been
enabled for the Access database, a valid user name and password must be entered. Enter the
password on the All pane in the Security section. The user Password property is also available in
the properties window. Check the “Save my password” option. Additionally, the path to the
Workgroup Information File (system.mdw) must be set in the ODBC:System Database property,
also found by clicking the All tab.

7. If, on the other hand, a database password has been set, enter the database password in the
Password property on the Connection pane. This also sets the ODBC:Database Password property
found on the All tab.

8. If both a database password and user security have been set up, enter both passwords on the All
pane. In the Security section, enter the user password and enter the database password for the
Jet OLEDB:New Database Password property (see Figure 12-2). Check the “Save my password”
option. Be sure to test the connection and click OK to save the properties.

Figure 12-2

c12.indd 454c12.indd 454 8/28/08 12:26:40 PM8/28/08 12:26:40 PM

Chapter 12: Accessing Heterogeneous Data

455

 Importing from Access
 Once you have the Connection Manager created, follow these steps to import from Access:

1. Using the project you created in the last section with the Access Connection Manager already
configured, add a Data Flow Task to the Control Flow design area.

2. Click the Data Flow tab to view the Data Flow design area. Add an OLE DB Source Component
and name it Customers.

3. Double-click the Customers icon to open the OLE DB Source Editor. Set the OLE DB Connection
Manager property to the Connection Manager that you created in the last section.

4. Select Table or View from the “Data access mode” drop-down list. Choose the Customers table
from the list under “Name of the table or the view” (see Figure 12-3).

5. Click Columns on the left where you can choose which columns to import and change the
output names if you need to.

6. Click OK to accept the configuration.

Figure 12-3

7. Create a Connection Manager pointing to AdventureWorks2008.

8. Create an OLE DB Destination Component and name it NW_Customers. Drag the connection
(green arrow) from the Customers Source Component to the NW_Customers Destination
Component.

c12.indd 455c12.indd 455 8/28/08 12:26:41 PM8/28/08 12:26:41 PM

Chapter 12: Accessing Heterogeneous Data

456

9. Double-click the Destination Component to bring up the OLE DB Destination Editor and
configure it to use the AdventureWorks2008 Connection Manager.

10. You can choose an existing table or you can click New to create a new table as the Data
Destination. If you click New, you will notice that the Create Table designer does not script any
keys, constraints, defaults, or indexes from Access. It makes its best guess as to the data types,
which may not be the right ones for your solution. When building a package to be used in a
production system, you will probably want to design and create the SQL Server tables in
advance.

 A tool that could save some time when porting Access tables to SQL is the Access Upsizing Wizard.
This can be found in the Tools Database Utilities menu of Access. This tool will enable you to upload
the table and attributes along with, or without, the data. You still need to review the data types and the
index names that the wizard creates, but it could save you quite a bit of time over the manual process.

11. For now, click New to bring up the table definition (see Figure 12-4). Notice that the table name
is the same as the Destination Component, so change the name to NW_Customers if you did not
name the OLE DB Destination as instructed previously.

12. Click OK to create the new table.

13. Click Mappings on the left to map the source and destination columns.

14. Click OK to accept the configuration.

Figure 12-4

15. Run the package. All of the Northwind customers should now be listed in the SQL Server table.
Check this by clicking New Query in the Microsoft SQL Server Management Studio. Run the
following query to see the results (see Figure 12-5):

 USE AdventureWorks2008
GO
SELECT * FROM NW_Customers

c12.indd 456c12.indd 456 8/28/08 12:26:41 PM8/28/08 12:26:41 PM

Chapter 12: Accessing Heterogeneous Data

457

16. Empty the table to prepare for the next example by running this query:

 TRUNCATE TABLE NW_CUSTOMERS

 Using a Parameter
 Another interesting feature is the ability to pass a parameter from a package variable to a SQL command.

 In Access, you can create a query that prompts the user for parameters at runtime. You can import most
Access select queries as tables, but data from an Access parameter query cannot be imported using SSIS.

1. Using the package you started in the last section, create a variable to hold the parameter value.

2. Move back to the Control Flow tab and right-click the design area.

3. Choose Variables and add a variable by clicking the Add Variable icon. Name it CustomerID.
Change the Data Type to String. Give it a value of ANTON (see Figure 12-6). Close the Variables
window and navigate back to the Data Flow tab.

Figure 12-5

Figure 12-6

 The design area or component that is selected determines the scope of the variable when it is created. The
scope can be set to the package if it is created right after clicking the Control Flow design area. You can
also set the scope to a Control Flow Task, Data Flow Component, or Event Handler Task.

4. Double-click the Customers Component to bring up the OLE DB Source Editor and change the
data access mode to SQL Command. A SQL Command text box and some buttons appear. You
can click the Build Query button to bring up a designer to help build the command or click

c12.indd 457c12.indd 457 8/28/08 12:26:41 PM8/28/08 12:26:41 PM

Chapter 12: Accessing Heterogeneous Data

458

Browse to open a file with the command you want to use. For this example, type in the
following SQL statement (see Figure 12-7):

 SELECT CustomerID, CompanyName, ContactName, ContactTitle,
 Address, City, Region, PostalCode, Country, Phone, Fax
FROM Customers
WHERE (CustomerID = ?)

Figure 12-7

5. The ? symbol is used as the placeholder for the parameter in the query. Map the parameters
to variables in the package by clicking the Parameters button. Choose User::CustomerID from
the Variables list and click OK (see Figure 12-8).

Figure 12-8

c12.indd 458c12.indd 458 8/28/08 12:26:42 PM8/28/08 12:26:42 PM

Chapter 12: Accessing Heterogeneous Data

459

 Variables in SSIS belong to a namespace. By default, there are two namespaces, User and
System. Variables that you create belong to the User namespace. You can also create additional namespaces.

 Note that you cannot preview the data after setting up the parameter because the package must
be running to load the value into the parameter.

6. Click OK to accept the new configuration and run the package. This time, only one record will
be imported (see Figure 12-9).

Figure 12-9

 You can also go back to SQL Server Management Studio to view the results:

 USE AdventureWorks2008
GO
SELECT * FROM NW_Customers

 If you wish to use multiple parameters in your SQL command, use multiple question marks (?) in the
query and map them in order to the parameters in the parameter mapping. To do this you would set up
a second package-level variable for CompanyName and set the value to Island Trading. Change the query
in the Customers Component to the following:

 SELECT CustomerID, CompanyName, ContactName,
 ContactTitle, Address, City, Region,
 PostalCode, Country, Phone, Fax
FROM Customers
WHERE (CustomerID = ?) OR
 (CompanyName = ?)

 Now the Parameters dialog box will show the two parameters. Associate each parameter with the
appropriate variable (see Figure 12-10).

Figure 12-10

c12.indd 459c12.indd 459 8/28/08 12:26:42 PM8/28/08 12:26:42 PM

Chapter 12: Accessing Heterogeneous Data

460

 Importing data from Access is a simple process as long as Access security has not been enabled. Often,
porting an Access application to SQL Server is the desired result. Make sure you have a good book or
resource to help ensure success.

 Now you’ll see just how easy it is to import from Oracle, as long as you do a bit of configuration first.

 Oracle
 Because of SQL Server’s world-class reporting and business intelligence tools, more and more shops
running Oracle rely on SQL Server for their reporting needs. Luckily, importing data from Oracle is
much like importing from other sources, such as a text file or another SQL Server instance. In this
section, you learn how to access data from a sample Oracle database.

 Oracle Client Setup
 Connecting to Oracle in SSIS is a two-step process. First you have to install the Oracle client software,
and then you use the OLE DB provider in SSIS to connect to Oracle.

 To be sure, the Microsoft Data Access Components (MDAC) that come with the operating system include
an OLE DB provider for Oracle. This is the Microsoft-written OLE DB provider to access an Oracle
Source System. However, even though the OLE DB provider is installed, you cannot use it until you
install a second component called the Oracle client software from Oracle. In fact, when you install the
Oracle client software, Oracle has also written an OLE DB provider that can be used to access an Oracle
Source. The OLE DB providers have subtle differences, which are referenced later.

 Installing the Oracle Client Software
 Installing the Oracle client software involves first locating the right Oracle client software from the
Oracle website. This is found on the Oracle support website. To get there, first go to the main Oracle
home page at http://www.oracle.com/ and then click the support link.

 You will be looking for a link titled “Download Oracle Software.” As you are well aware, there are
several versions of Oracle (currently Oracle 8i, 9i, 10g, 11g), and each has a different version of the Oracle
client. Some of them are backward compatible; however, it is always best to go with the version that you
are connecting to.

 If you use the Instant Client, be sure to install the Basic and ODBC packages. Since you will be
connecting from SSIS, you need to choose the Microsoft Windows (32-bit, X64, or Itanium; Itanium is
only available for 10g) links for the specific version. Be sure you look for the Client, such as “Oracle
Database 11g Release 1 Client” or “Oracle Database 10g Client Release 2.” It is best to install the full
client software in order to make sure you have the right components needed for the OLE DB providers.

 Configuring the Oracle Client Software
 Once you download and install the right client for both the version of Oracle you will be connecting to
and the right platform of Windows you are running, the final step will be configuring it to reference the
Oracle servers. You will probably need help from your Oracle DBA or the support team of the Oracle
application to configure this. The two options are: an Oracle name server or manually configuring a TNS
file. The TNS file is more common and is found in the Oracle install directory under the network\ADMIN
folder. This is called the Oracle Home directory. The Oracle client uses the Windows environment

c12.indd 460c12.indd 460 8/28/08 12:26:42 PM8/28/08 12:26:42 PM

Chapter 12: Accessing Heterogeneous Data

461

variables %Path% and %ORACLE_HOME% to find the location to the client files. Either replace the default
TNS file with one provided by an Oracle admin, or create a new entry in it to connect to the Oracle server.

 A typical TNS entry looks like this:

 [Reference name] =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = [Server])(PORT = [Port Number]))
)
 (CONNECT_DATA =
 (SID = [Oracle SID Name])
)
)

 Replace the brackets with valid entries. The [Reference Name] will be used in SSIS to connect to the
Oracle server through the provider.

 64-Bit Considerations
 As mentioned, after you install the Oracle client software, you can then use the OLE DB provider for
Oracle in SSIS to extract data from an Oracle Source or to send data to an Oracle Destination. These
procedures are described next. However, if you are working on a 64-bit server, either Itanium or X64,
you may need to make some additional configurations.

 First of all, if you want to connect to Oracle with a native 64-bit connection, you will have to use the
Oracle-written OLE DB provider for Oracle because the Microsoft-written OLE DB driver for Oracle is
only available in a 32-bit mode. Be sure you also install the right 64-bit Oracle client (Itanium IA64 or
X64) if you want to use connect in native 64-bit mode. Although it is probably obvious to you, it bears
mentioning that even though you may have X64 hardware, in order to leverage it in 64-bit mode, the
operating system must be installed with the X64 version.

 Furthermore, even though you may be working on a 64-bit server, you can still use the 32-bit provider
through the 32-bit Windows emulation mode. Review the 64-bit details in the “Excel and Access” section
earlier in this chapter for details on how to work with packages in 32-bit mode when you are on a 64-bit
machine. You will need to use the 32-bit version of DTExec for package execution and when working in
BIDS, you will need to change the Run64bitRuntime property of the project to False.

 Importing Oracle Data
 In this example, the alias, ORCL , is used to connect to an Oracle database named orcl . Your Oracle
administrator can provide more information on how to set up your tnsnames.ora file to point to a test
or production database in your environment. The following tnsnames file entry is being used for the
subsequent steps:

 ORCL =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = VPC-XP)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl)
)
)

c12.indd 461c12.indd 461 8/28/08 12:26:43 PM8/28/08 12:26:43 PM

Chapter 12: Accessing Heterogeneous Data

462

 To extract data from an Oracle server, perform the following steps. These assume that you have installed
the Oracle client and configured a tnsnames file or an Oracle names server.

1. Create a new Integration Services project using BIDS.

2. Add a Data Flow Task to the design area. On the Data Flow tab, add an OLE DB Source. Name
the OLE DB Source Oracle.

3. In the Connection Managers area, right-click and choose New OLE DB Connection to open the
Configure OLE DB Connection Manager dialog.

4. Click New to open the Connection Manager dialog. Select Microsoft OLE DB Provider for
Oracle from the list of providers and click OK.

5. Type the alias from your tnsnames.ora file for the Server Name.

6. Type in the user name and password and check “Save my password” (see Figure 12-11). This
example illustrates connecting to the widely available scott sample database schema. The user
name is scott with a password of tiger . Verify the credentials with your Oracle administrator.
You will probably want to test the connection to make sure that everything is configured
properly. Click OK to accept the configuration.

Figure 12-11

7. In the custom properties section of the Oracle Component’s property dialog, change the
 AlwaysUseDefaultCodePage property to True.

8. Open the OLE DB Source Editor by double-clicking the Oracle Source Component. With the
Connection Manager tab selected, choose the Connection Manager pointing to the Oracle
database.

c12.indd 462c12.indd 462 8/28/08 12:26:43 PM8/28/08 12:26:43 PM

Chapter 12: Accessing Heterogeneous Data

463

9. Select “Table or view” from the “Data access mode” drop-down. Click the drop-down list under
“Name of the table or the view” to see a list of the available tables. Choose the “Scott”.”Dept”
table from the list.

10. Select the Columns tab to see a list of the columns in the table.

11. Click Preview to see sample data from the Oracle table. At this point, you can add a Data
Destination Component to import the data into SQL Server or another OLE DB Destination. This
is demonstrated several times elsewhere in the chapter, so you won’t look at it again here.

 Importing Oracle data is very straightforward, but there are a few things to watch out for. The current
Microsoft ODBC driver and Microsoft-written OLE DB provider for Oracle were designed for Oracle 7.
At the time of this writing, Oracle 11g is the latest version available. Specific functionality and data types
that were implemented after the 7 release will probably not work as expected. See Microsoft’s
Knowledge Base article 244661 for more information. If you want to take advantage of newer Oracle
features, you should consider using the Oracle-written OLE DB provider for Oracle, which will be
installed with the Oracle client software.

 Now that you have seen how to import data from several sources using SSIS, you’ll take a look at using
the XML features.

 XML and Web Services
 Although not a common source for large volumes of data, XML is an integral technology standard in the
realm of data. This section considers XML from a couple of different perspectives. First of all, you will
work with the Web Service Task to interact with a public Web service. Secondly, you will use the XML
Source adapter to extract data from an XML document embedded in a file. In one of the Web service
examples, you will also use the XML Task to read the XML file.

 Configuring the Web Service Task
 In very simple terms, a Web service is to the web as a function is to a code module. It accepts a message in
XML, including arguments, and returns the answer in XML. The thing about XML technology is that it
allows computer systems that are completely foreign to each other to communicate in this common
language. When using Web services, this transfer of XML data occurs across the enterprise or across the
Internet using the HTTP protocol. Many Web services — for example, stock-tickers and movie listings —
are freely available for anyone’s use. Some Web services, of course, are private or require a fee. Probably
the most useful application is to allow orders or other data to be exchanged easily by corporate partners,
or to receive information from either a service that you pay for or a public service that is exposed for free
on the Internet. In the following examples, you’ll learn how to use a Web service to get the weather
forecast of a U.S. ZIP code by subscribing to a public Web service and you will learn how to use the Web
Service Task to perform currency conversion.

c12.indd 463c12.indd 463 8/28/08 12:26:43 PM8/28/08 12:26:43 PM

Chapter 12: Accessing Heterogeneous Data

464

 Weather by ZIP Code Example
 In this example, you learn how to use a Web service to retrieve data.

1. To begin, create a new package and create an HTTP Connection by right-clicking in the
Connection Managers’ pane and choosing New Connection.

2. Choose HTTP and click Add to bring up the HTTP Connection Manager Editor. Type
http://www.webservicex.net/WeatherForecast.asmx?wsdl as the Server URL (see Figure 12-12).
In this case, you’ll use a publicly available Web service so you won’t have to worry about any
credentials or certificates. If you must supply proxy information to browse the web, fill that in
on the Proxy tab.

3. Before continuing, click the Test Connection button, and then click OK to accept the Connection
Manager.

Figure 12-12

4. Next, add a Web Service Task from the Toolbox to the Control Flow workspace.

5. Double-click the Web Service Task to bring up the Web Service Task Editor. Select the General
pane. Make sure that the HttpConnection property is set to the HTTP connection you created in
the last step.

6. In order for a Web service to be accessed by a client, a Web Service Definition Language (WSDL)
file must be available that describes how the Web service works — that is, the methods available
and the parameters that the Web service expects. The Web Service Task provides a way to
automatically download this file.

c12.indd 464c12.indd 464 8/28/08 12:26:44 PM8/28/08 12:26:44 PM

Chapter 12: Accessing Heterogeneous Data

465

 In the WSDLFile property, enter the fully qualified path c:\weather.wsdl where you want the
WSDL file to be created (see Figure 12-13).

7. Set the OverwriteWSDLFile property to True and then click Download WSDL to create the file.
If you are interested, you can open the file with Internet Explorer to learn more about its XML
structure.

Figure 12-13

 By downloading the WSDL file, the Web Service Task now knows the Web service definition.

8. Select the Input pane of the Web Service Task Editor and then, next to the Service property, open
the drop-down list and you will have one service to choose from, called WeatherForecast.

9. After selecting the WeatherForecast service, click in the Method property and choose the
GetWeatherByZipCode option.

10. Web services are not limited to providing just one method. If multiple methods are provided,
you’ll see all of them listed. Notice that another option exists called GetWeatherByPlaceName,
which you would use if you wanted to enter a city instead of a ZIP code. Once the
GetWeatherByZipCode method is selected, a list of arguments appears. In this case, a ZipCode
property is presented. Enter a ZIP code of a location in a U.S. city (such as 30303 for Atlanta, or if
you live in the U.S., try entering your own ZIP code). See Figure 12-14 .

c12.indd 465c12.indd 465 8/28/08 12:26:44 PM8/28/08 12:26:44 PM

Chapter 12: Accessing Heterogeneous Data

466

11. Now that everything is set up to invoke the Web service, you need to tell the Web Service Task
what to do with the result. Switch to the Output property page of the Web Service Task Editor.
Choose File Connection in the drop-down of the OutputType property. You can also store the
output in a variable to be referenced later in the package.

12. In the File property, open the drop-down list and choose <new connection>.

13. When you are presented with the File Connection Manager Editor, change the Usage type
property to “Create file” and change the File property to c:\weatheroutput.xml as Figure 12-15
shows.

Figure 12-14

Figure 12-15

14. Select OK in the File Connection Manager Editor and OK in the Web Service Task Editor to
finish configuring the SSIS package.

c12.indd 466c12.indd 466 8/28/08 12:26:44 PM8/28/08 12:26:44 PM

Chapter 12: Accessing Heterogeneous Data

467

 Now you’re ready to run the package. After executing the package, wait for the Web Service Task to
complete successfully. If all went well, use Internet Explorer to open the XML file that was returned by
the Web service (c:\weatheroutput.xml) and see the weather forecast for the ZIP code. It will look
something like this:

 <?xml version=”1.0” encoding=”utf-16” ?>
 <WeatherForecasts xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
 <Latitude xmlns=”http://www.webservicex.net”>33.93777</Latitude>
 <Longitude xmlns=”http://www.webservicex.net”>84.2716446</Longitude>
 <AllocationFactor
xmlns=”http://www.webservicex.net”>0.002473</AllocationFactor>
 <FipsCode xmlns=”http://www.webservicex.net”>13</FipsCode>
 <PlaceName xmlns=”http://www.webservicex.net”>ATLANTA</PlaceName>
 <StateCode xmlns=”http://www.webservicex.net”>GA</StateCode>
- <Details xmlns=”http://www.webservicex.net”>
- <WeatherData>
 <Day>Monday, March 31, 2008</Day>
 <WeatherImage>http://www.nws.noaa.gov/weather/images/fcicons/nfew.jpg
</WeatherImage>
 <MaxTemperatureF>61</MaxTemperatureF>
 <MinTemperatureF>35</MinTemperatureF>
 <MaxTemperatureC>16</MaxTemperatureC>
 <MinTemperatureC>2</MinTemperatureC>
 </WeatherData>
 </Details>
 </WeatherForecasts>

 The Currency Conversion Example
 In this second example, you learn how to use a Web service to get back a value that can be used in the
package to perform a calculation. You’ll use the value with the Derived Column Transformation, to
convert a price list to another currency.

1. Begin by creating a new SSIS package. This example will require three variables. To set up the
variables, make sure that the Control Flow tab is selected. If the Variables window is not visible,
right-click in the design area and select Variables. Set up the three variables as in the following
table. At this time, you do not need to have initial values.

Name Scope Data Type

XMLAnswer Package String

Answer Package String

ConversionRate Package Double

2. Add a Connection Manager pointing to the AdventureWorks2008 database.

c12.indd 467c12.indd 467 8/28/08 12:26:45 PM8/28/08 12:26:45 PM

Chapter 12: Accessing Heterogeneous Data

468

3. Add a second connection; this time create an HTTP Connection Manager and set the Server URL
to http://www.webservicex.net/CurrencyConvertor.asmx?wsdl .

 Note that this Web service was valid at the time of this writing, but the authors cannot guarantee its
future availability.

4. Drag a Web Service Task to the design area and double-click the task to open the Web Service
Task Editor. Set the HTTPConnection property to the Connection Manager you just created.

5. Type in a location to store the WSDLFile such as c:\CurrencyConversion.wsdl and then click
the Download WSDL button as you did in the last example to download the WSDL file.

6. Click Input to see the Web service properties. Select CurrencyConvertor in the Service property
and ConversionRate as the Method.

7. Two parameters will display, FromCurrency and ToCurrency. Set FromCurrency equal to USD
and ToCurrency equal to EUR (see Figure 12-16).

Figure 12-16

8. Click Output and set the OutputType to Variable.

c12.indd 468c12.indd 468 8/28/08 12:26:45 PM8/28/08 12:26:45 PM

Chapter 12: Accessing Heterogeneous Data

469

9. The variable name to use is User::XMLAnswer (see Figure 12-17). Click OK to accept the
configuration.

Figure 12-17

 At this point, you may be interested in viewing the XML that it returned from the Web service. You can
save the XML in a file instead of a variable. Then, after running the task, examine the file. Or, you
can set a breakpoint on the task and view the variable at runtime. See Chapter 17 to learn more about
breakpoints and debugging.

 The value of the XML returned will look something like this:

 <?xml version=”1.0” encoding=”utf-8”>
<double>0.836</double>

10. Since (for the sake of the example) you just need the number and not the XML, add an XML
Task to the designer to evaluate the XML.

11. Drag the precedence constraint from the Web Service Task to the XML Task, and then open the
XML Task Editor by double-clicking the XML Task.

c12.indd 469c12.indd 469 8/28/08 12:26:45 PM8/28/08 12:26:45 PM

Chapter 12: Accessing Heterogeneous Data

470

12. Change the OperationType to XPATH. The properties available will change to include those
specific for the XPATH operation. Set the properties to match those in the following table:

Section Property Value

Input OperationType XPATH

SourceType Variable

Source User:XMLAnswer

Output SaveOperationResult True

Operation Result OverwriteDestination True

Destination User::Answer

DestinationType Variable

Second Operand SecondOperandType Direct Input

SecondOperand /

Xpath Options PutResultInOneNode False

XpathOperation Values

 The XPATH query language is beyond the scope of this book and, luckily, this XML is very simple with
only a root element that can be accessed by using the slash character (/). Values are returned from the
query as a list with a one-character unprintable row delimiter. In this case, only one value is returned,
but it still has the row delimiter that you can’t use.

 There are a couple of options here. You could save the value to a file, then import using a File Source
Component into a SQL Server table, and finally use the Execute SQL Task to assign the value to a
variable. But, in this example, you will get a chance to use the Script Task to eliminate the extra character.

1. Add a Script Task to the design area and drag the precedence constraint from the XML Task to
the Script Task.

2. Open the Script Task Editor and select the Script pane.

3. In order for the Script Task to access the package variables, they must be listed in the
ReadOnlyVariables or ReadWriteVariables properties (as appropriate whether you will be
updating the variable value in the script) in a semicolon-delimited list. Enter User::Answer in
the ReadOnlyVariable property and User::ConversionRate in the ReadWriteVariables property
(see Figure 12-18).

c12.indd 470c12.indd 470 8/28/08 12:26:46 PM8/28/08 12:26:46 PM

Chapter 12: Accessing Heterogeneous Data

471

Figure 12-18

4. Click Design Script to open the code window. A Microsoft Visual Studio Tools For Applications
environment opens. The script will save the value returned from the Web service call to a
variable. One character will be removed from the end of the value, leaving only the conversion
factor. This will then be converted to a double and saved in the ConversionRate variable for
use in a later step.

5. Replace Sub Main with the following code:

 Public Sub Main()
 Dim strConversion As String
 strConversion = Dts.Variables(“User::Answer”).Value.ToString
 strConversion = strConversion.Remove(strConversion.Length -1,1)
 Dts.Variables(“User::ConversionRate”).Value = CType(strConversion,Double)
 Dts.TaskResult = Dts.Results.Success
End Sub

6. Close the scripting environment, and then click OK to accept the Script Task configuration.

c12.indd 471c12.indd 471 8/28/08 12:26:46 PM8/28/08 12:26:46 PM

Chapter 12: Accessing Heterogeneous Data

472

8. Move to the Data Flow tab and add a Connection Manager pointing to the AdventureWorks2008
database, if you did not do so when getting started with this example.

9. Drag an OLE DB Source Component to the design area.

10. Open the OLE DB Source Editor and set the OLE DB Connection Manager property to the
AdventureWorks2008 connection. Change the data access mode property to SQL Command.
Type the following query in the command window:

 SELECT ProductID, ListPrice
FROM Production.Product
WHERE ListPrice > 0

 11. Click OK to accept the properties.

12. Add a Derived Column Transform to the design area.

13. Drag the Data Flow Path from the OLE DB Source to the Derived Column Component.

14. Double-click to open the Derived Column Transformation Editor dialog box. Variables, columns,
and functions are available for easily building an expression. Add a Derived Column called
EuroListPrice. In the Expression field type:

 ListPrice * @[User::ConversionRate]

Figure 12-19

7. Add a Data Flow Task to the design area and connect the Script Task to the Data Flow Task. The
Control Flow area should resemble what you see in Figure 12-19 .

c12.indd 472c12.indd 472 8/28/08 12:26:46 PM8/28/08 12:26:46 PM

Chapter 12: Accessing Heterogeneous Data

473

16. Add a Flat File Destination Component to the Data Flow design area. Drag the Data Flow Path
from the Derived Column Component to the Flat File Destination Component.

17. Bring up the Flat File Destination Editor and click New to open the Flat File Format dialog.

18. Choose Delimited and click OK (see Figure 12-21).

Figure 12-20

15. The Data Type should be a decimal with a scale of 2. Click OK to accept the properties (see
Figure 12-20).

c12.indd 473c12.indd 473 8/28/08 12:26:47 PM8/28/08 12:26:47 PM

Chapter 12: Accessing Heterogeneous Data

474

19. The Flat File Connection Manager Editor will open. Browse to or type in the path to a file. Here
you can modify the file format and other properties if required (see Figure 12-22). Check
“Column names in the first data row.”

Figure 12-21

Figure 12-22

c12.indd 474c12.indd 474 8/28/08 12:26:47 PM8/28/08 12:26:47 PM

Chapter 12: Accessing Heterogeneous Data

475

20. Click OK to dismiss the Flat File Connection Manager Editor dialog box. You should now be
back at the Flat File Destination Editor.

21. Click Mappings and then click OK. The Data Flow design area should resemble what you see in
Figure 12-23 .

Figure 12-23

22. Run the package and then open the file that you defined in the last step. You should see a list of
products along with the list price and the list price converted to Euros (see Figure 12-24).

Figure 12-24

 Many free Web services are available for you to try. See www.xmethods.net for a list of services, some of
which are free. In the next section, you learn how to import an XML file into relational tables.

c12.indd 475c12.indd 475 8/28/08 12:26:47 PM8/28/08 12:26:47 PM

Chapter 12: Accessing Heterogeneous Data

476

 Working with XML Data as a Source
 SQL Server provides many ways to work with XML. The XML Source adapter is yet another jewel in the
SSIS treasure chest. It enables you to import an XML file directly into relational tables if that is what you
need to do. In this example, you import an RSS (Really Simple Syndication) file from the web.

 The way that the XML Source adapter works in SSIS is that you first connect to an XML file, and then
you need to provide the XSD definition of the XML structure, so that SSIS can read the file and correctly
interpret the XML elements and attribute structure. Don’t have an XSD? No problem, SSIS can self-
generate the XSD from right within the XML Source adapter. There is no guarantee that the generated
XSD will work with another XML file coming from the same source, which is why it is better to have
an XSD definition that is provided by the XML Source that will universally apply to the related files that
are used by SSIS.

1. Create a new Integration Services package to get started.

2. Add a Data Flow Task to the Control Flow design area and then click the Data Flow tab to view
the Data Flow design area.

3. Add an XML Source and name it SQLNews.

4. Double-click the SQLNews Component to open the XML Source Editor.

5. Make sure that the Connections Manager property page is selected on the left.

6. Select XML File Location for the data access mode. For the XML location property, type in the
following address:

 http://www.sqlservercentral.com/sscrss.xml

 If you click the Browse button, a regular File Open dialog box opens. It is not obvious at first that you
can use a URL address instead of a file on disk.

 The XML file must be defined with an XML Schema Definition (XSD), which describes the elements
in the XML file. Some XML files have an in-line XSD, which you can determine by opening the file and
looking for xsd tags. There are many resources and tutorials available on the web if you would like to
learn more about XML schemas. If the file you are importing has an in-line schema, make sure that “Use
inline schema” is checked. If an XSD file is available, you can enter the path in the XSD location property
(see Figure 12-25). In this case, you will create the XSD file right in the Source adapter.

c12.indd 476c12.indd 476 8/28/08 12:26:48 PM8/28/08 12:26:48 PM

Chapter 12: Accessing Heterogeneous Data

477

Figure 12-25

1. Click Generate XSD and put the file in a directory on your machine (such as c:\sscrss.xsd).
Once the file is generated, you can open the file with Internet Explorer to view it if you are
interested in learning more.

2. Now that the SQLNews Component understands the XML file, click Columns. You will notice a
drop-down box next to “Output name” listing channel and item (see Figure 12-26).

c12.indd 477c12.indd 477 8/28/08 12:26:48 PM8/28/08 12:26:48 PM

Chapter 12: Accessing Heterogeneous Data

478

 Even though the XML document is one file, it represents two tables with a one-to-many relationship. If
you browse to www.sqlservercentral.com/sscrss.xml , you’ll see a channel, which describes the
source of the information, usually news, and several items, or articles, defined. One note of caution here:
If you are importing into tables with primary/foreign key constraints, there is no guarantee that the
parent rows will be inserted before the child rows. Be sure to keep that in mind as you design your XML
solution.

 The properties of the channel and item tags match the columns displayed in the XML Source Editor. At
this point, you can choose which fields you are interested in importing and change the output names if
required. The way that the XML Source adapter works is that all the output name selections will be
available as downstream paths. When you use an output path from the XML Source adapter, you will be
able to choose which output you want to use.

1. Create a new Connection Manager pointing to the AdventureWorks2008 database or to another
test database.

2. Add an OLE DB Destination Component to the design area and name it Channel.

3. Drag the Data Flow Path (green arrow) from the XML Source to Channel. Because the XML data
represents two tables, an Input Output Selection box opens (see Figure 12-27). Choose Channel
in the Output drop-down and click OK.

Figure 12-26

c12.indd 478c12.indd 478 8/28/08 12:26:48 PM8/28/08 12:26:48 PM

Chapter 12: Accessing Heterogeneous Data

479

4. Double-click the Channel icon to bring up the OLE DB Destination Editor. Make sure that the
OLE DB Connection Manager property is set to point to your sample database.

5. Next to Use Table or View, click New. A window with a table definition will pop up. Click OK to
create the table. Click Mappings and then click OK to accept the configuration.

6. Add a second OLE DB Destination Component and name it NewsItem.

7. Drag a Data Flow Path (green arrow) from the XML Source to the NewsItem Component. This
time, the designer will automatically set up the connection to use the Item table.

8. Double-click the NewsItem Destination Component and verify that the Connection Manager
property is set to the test database.

9. Click the New button next to “Name of the table or the view” to see a Create Table statement.
Notice that the description field is only 255 characters. Modify the statement, increasing the
number of characters to 2000, and click OK to create the table (see Figure 12-28). Click Mappings
to view and set the mappings, and then click OK to accept the configuration.

Figure 12-27

Figure 12-28

c12.indd 479c12.indd 479 8/28/08 12:26:49 PM8/28/08 12:26:49 PM

Chapter 12: Accessing Heterogeneous Data

480

10. Add one more OLE DB Destination Component and name it Errors. Drag a red Data Flow Path
from the XML Source to the Errors Component. An Input Output Selection dialog box opens.
Select Item Error Output (Error Output) in the Output option (see Figure 12-29) and click OK.

Figure 12-29

11. The Configure Error Output dialog box will then open. In the Truncation property of the
Description row, change the value to Redirect row (see Figure 12-30) and click OK.

Figure 12-30

12. Double-click the OLE DB Destination that you named Errors and make sure it is pointing to the
test database. Click New next to “Name of the table or the view,” and OK to create an Errors
table. Click Mappings to accept the mappings and then click OK to save the configuration. The
Data Flow design area should now resemble Figure 12-31 .

c12.indd 480c12.indd 480 8/28/08 12:26:49 PM8/28/08 12:26:49 PM

Chapter 12: Accessing Heterogeneous Data

481

 Run the package. If it completed successfully, some of the rows will be added to the NewsItem table.
Any row with a description over 2000 characters long will end up in the Errors table.

 Flat Files
 Flat files are one of the more common sources to work with because data in the flat files is easy to read
and create by most RDBMS systems and ETL tools. The challenges in working with flat files deal with
handling data in a format where data types are not enforced, and also in data that is structured in
challenging ways. You may also run into files that are encoded into a different code page than ASCII,
such as a UNIX encoding.

 SSIS can handle various formats of flat files with varying code pages. The only challenging data is
unstructured data, but this can also be handled in SSIS, though not with the Flat File Source adapter, but
rather through a Script Component that is acting as a source. Refer to Chapter 9 for a primer on using the
Script Component.

 Loading Flat Files
 Loading flat files from SSIS is a lot more straightforward than extracting data from a flat file. The reason
is that when you are loading data into a flat file from an SSIS Data Flow, SSIS already knows the specific
data types and column lengths. Extracting data is harder because flat files do not contain information
about the data types of the column nor the structure of the file. This first example begins by using SSIS to
create and load a flat file.

1. Create a new SSIS package with a Data Flow Task.

2. From the Toolbox, drag an OLE DB Source adapter onto the Data Flow and configure it to
connect to AdventureWorks2008 database.

3. Change the data access mode to SQL Command and type in the following SQL statement in the
text window:

 SELECT Name, ProductNumber, ListPrice
FROM [Production].[Product]

Figure 12-31

c12.indd 481c12.indd 481 8/28/08 12:26:49 PM8/28/08 12:26:49 PM

Chapter 12: Accessing Heterogeneous Data

482

4. Switch to the Columns property page of the OLE DB Source Editor and change the column
selection to only include ProductID, Name, ProductNumber, ListPrice, and Size (these should be
the only columns that are checked).

5. Select OK to save your changes to the OLE DB Source adapter.

6. Add a Flat File Destination adapter to the Data Flow (be sure to use the Flat File Destination and
not the Source!) and connect the green data path from the OLE DB Source to the Flat File
Destination.

7. Double-click the Flat File Destination to open the editor.

8. Select New next to the Flat File Connection Manager drop-down, which will open up a new
window named Flat File Format (see Figure 12-32). Choose Fixed Width and select OK, which
will open up the Flat File Connection Manager Editor.

Figure 12-32

 Creating and configuring a Flat File Connection Manager is easier to create from within a Destination
adapter that already understands the data, than by adding a Flat File Connection Manager directly in the
Connection Managers’ window.

 As Figure 12-32 shows, there are several options for the format of the flat file. The options for the
Flat File are described right in the selection window.

9. At this point, in the Flat File Connection Manager Editor, name your connection Products Flat
File Destination, and pick a location and name for your file and enter it in the Filename window,
such as c:\products.txt .

10. Open the Code Page drop-down list and observe the dozens of supported code pages from
ANSI 1252 to IBM EBCDIC to UTF to MAC. Any of these can be selected if you intend to send
the file to another machine that will consume the data in a different format. Change the Code
page to 65001 (UTF-8), which should be the last one on the list.

c12.indd 482c12.indd 482 8/28/08 12:26:50 PM8/28/08 12:26:50 PM

Chapter 12: Accessing Heterogeneous Data

483

11. Switch to the Advanced property page on the left, which will show a list of the columns that the
Flat File Destination adapter received from the upstream transformation (in this case the Source
adapter). Select OK to save the Flat File Connection Manager properties.

12. Finally, in the Flat File Destination Editor, click the Mappings property page on the left, which
will by default map the input columns to the columns created in the destination file.

 Note that in the Flat File Destination Editor, on the Connection Manager tab, there is a checkbox
called “Overwrite data in the file” as Figure 12-33 shows. When this is checked, the file will be
cleared before data is loaded in the Data Flow. If this is unchecked, then data will be appended
to the file.

Figure 12-33

 13. Leave “Overwrite data in the file” checked and select OK to save the Flat File Destination
properties.

 Run this simple package, which will create the flat file and overwrite any data that previously existed.

 Extracting Data from Flat Files
 Now that you have created and loaded a flat file, the next task is to understand how to extract data from
a flat file. Of course, when you are working in your work environment, the first step in extracting data
from a flat file is to make sure you have access to the file and you somewhat understand how the data is
structured.

c12.indd 483c12.indd 483 8/28/08 12:26:50 PM8/28/08 12:26:50 PM

Chapter 12: Accessing Heterogeneous Data

484

 In this example, you will be working with a fixed-width file created in the prior example, encoded in
UTF-8 code page format. The file contains a list of AdventureWorks2008 products.

1. Create a new SSIS package and a new Data Flow Task within the package.

2. Drag the Flat File Source adapter from the Toolbox onto the Data Flow workspace and then
double-click the Flat File Source to open the flat file editor.

3. Connecting to a flat file requires using a package connection. Therefore, in the Flat File Source
Editor, click the New button next to the Flat File Connection Manager drop-down, which will
open up the Flat File Connection Manager Editor.

4. Name the connection Products File Source in the “Connection manager name” text box.

5. Click the Browse button and find the products.txt file that you created in the last exercise
(such as c:\products.txt).

6. Change the Code page to 65001 (UTF-8).

7. Change the Format drop-down to the Fixed-width selection option.

8. Switch to the Columns property page and note that because this file is a fixed-width file, you
need to set the column widths. Click on the red line and drag it to the right until the fields line
up based on rows and columns as Figure 12-34 shows (it is easier if your window is maximized,
and alternately, you can just change the Row width property to 102).

Figure 12-34

c12.indd 484c12.indd 484 8/28/08 12:26:50 PM8/28/08 12:26:50 PM

Chapter 12: Accessing Heterogeneous Data

485

9. Next, you will need to identify the fixed-width columns by clicking in the text space right before
each column starts as Figure 12-34 shows. You will need to do this for every column.

10. Click the Advanced property page tab and then click the Suggest Types button, which will open
up the Suggest Column Types window. Click OK to have SSIS scan the file and then suggest
data types for the file.

11. While you are still in the Advanced Editor, you should see Column 0 through Column 2. Click
Column 0 and in the properties in the right window, change the Name property to
ProductName.

12. Click on Column 2 and change its Name to ProductNumber.

13. For Column 2, change the Name property to ListPrice and change the DataType drop-down to
[DT_CY] as Figure 12-35 shows.

Figure 12-35

14. Select OK to save the Flat File Connection Manager properties.

15. While still in the Flat File Source Editor, select the Columns tab, and verify that all the columns
are checked in the Available External Columns list.

16. Select OK to save the properties.

17. Next from the Data Flow Toolbox, drag a Multicast Transformation to the Data Flow workspace
and connect the green data path from the Flat File Source adapter to the multicast.

c12.indd 485c12.indd 485 8/28/08 12:26:51 PM8/28/08 12:26:51 PM

Chapter 12: Accessing Heterogeneous Data

486

 At this point, you would usually create downstream transformations or a destination. For the purpose of
example, run the package and observe how the flat file data is extracted into the Data Flow. Nothing is
done with it, but it demonstrated how to extract data from a flat file.

 ODBC
 ODBC stands for Open Database Connectivity and is a legacy connection standard for passing data
between systems. However, it is still widely used today for access to RDBMS systems that do not have
an OLE DB provider.

 Just like the standard OLE DB providers, ODBC is part of the Windows operating system installed by the
MDAC (Microsoft Data Access Components) when the operating system gets installed. However, ODBC
works differently than the OLE DB providers in that you will need to set up the connection information
through an applet in the Administrative Tools called Data Sources (ODBC). The OLE DB connections, on
the other hand, are managed directly by the applications and not by the OS. There are some similarities
in connecting to Oracle because for Oracle connections, you need to have the configuration managed
external to SSIS as well.

 For SSIS, the ODBC connectivity is handled through the ADO.NET Source and ADO.NET Destination
adapters. Therefore, the process to get access to an ODBC Source or Destination is to first configure the
connection in the Data Sources (ODBC) applet and then reference the ODBC connection through an
ADO.NET connection in SSIS.

 The following example uses public domain data from a DBF Source file, which can be accessed through
an ODBC connection. The file is a set of records containing a list of U.S. cities and their properties and is
available for download with this book’s examples in a file called ci15au07.dbf . Use the following steps
to connect to an ODBC-based source:

1. Within the machine that you are working on, open up the Administrative Tools folder found in
the Control Panel list. Then open up the Data Sources (ODBC) application from this list of
administrative programs. Figure 12-36 shows the ODBC Data Source Administrator tool.

Figure 12-36

c12.indd 486c12.indd 486 8/28/08 12:26:53 PM8/28/08 12:26:53 PM

Chapter 12: Accessing Heterogeneous Data

487

2. Switch to the System DSN tab, where you will create the ODBC reference (so it is accessible to
all users) and click Add.

3. In the Create New Data Source window, scroll down and choose the Microsoft dBase Driver (not
the Microsoft Access dBase Driver) and select Finish.

4. In the ODBC dBase Setup window, change the Data Source Name to US_Cities and uncheck the
Use Current Directory checkbox.

5. Click the Select Directory button and navigate to the folder where the ci15au07.dbf file is
located (provided with the book’s online files). Select OK to save the directory path. Figure 12-37
shows the ODBC dBASE Setup window (in this case, the .dbf file is located at the root of the
c:\ drive).

Figure 12-37

6. Select OK in the ODBC dBASE Setup window and OK in the ODBC Data Sources Administrator
to save the US Cities DBF reference.

7. Create a new package in SSIS and a new Data Flow.

8. Drag an ADO.NET Source adapter from the Toolbox into the Data Flow workspace and double-
click the ADO.NET Source to open its editor.

9. In the ADO.NET Source Editor, click on the New button next to the ADO.NET Connection
Manager window.

10. Select the New button again when the Configure ADO.NET Connection Manager window
opens.

11. The Connection Manager window will allow you to reference the DBF file through an ODBC
connection. Change the Provider drop-down list to the .Net providers\Odbc Data Provider, and
in the “Use user or system Data Source name,” select US_Cities from the list as Figure 12-38
shows.

c12.indd 487c12.indd 487 8/28/08 12:26:53 PM8/28/08 12:26:53 PM

Chapter 12: Accessing Heterogeneous Data

488

12. Select OK in the Connection Manager window and OK in the Configure ADO.NET Connection
Manager window, which will return you to the ADO.NET Source Editor with the US_Cities
connection selected.

13. In the “Name of the table or the view” drop-down list, choose the ci15au07 table in the list.
Figure 12-39 shows the ADO.NET Source Editor window.

Figure 12-38

Figure 12-39

c12.indd 488c12.indd 488 8/28/08 12:26:53 PM8/28/08 12:26:53 PM

Chapter 12: Accessing Heterogeneous Data

489

14. Click the Columns property page tab to bring up a list of the columns available in this file.

15. Select OK to save the changes of the ADO.NET Source adapter.

16. To demonstrate loading this ODBC Source to a destination table, drag an OLE DB Destination
adapter and connect the green data path from the ADO NET Source to the OLE DB
Destination adapter.

17. Configure the OLE DB Destination to load the data to a new table in one of the sample
databases.

 After you run this new package, use SSMS to open the table you just loaded and observe the loaded
results.

 If you have a need to load data to an ODBC Destination, the process is very similar, only you will be
using the ADO NET Destination adapter to perform this operation.

 Other Heterogeneous Sources
 Beyond the heterogeneous data already discussed, you may come across other non-SQL Server systems
that you need access to. Examples of this include DB2 or Teradata or applications like SAP or Peoplesoft,
or even decision support systems (DSS). A general approach in connecting to these is to first search for
an OLE DB provider, so that you can then use the OLE DB adapters in the Data Flow to extract and load
data to the system.

 A great resource for other sources and information about connectivity is the SSIS wiki, http://ssis
.wik.is/Data_Sources .

 If you need to connect to an IBM DB2 system, an OLE DB provider is available from the Microsoft
website, http://msdn2.microsoft.com/en-us/library/Aa213281.aspx . This provider was
originally used in the Host Integration Server but has been made available for broad use.

 If an OLE DB provider is not available from Microsoft, you can always check the company that owns the
system to see if they provide a free OLE DB or ODBC driver. Be aware that sometimes it is not in their
interest to make it easy to connect to their systems, so even if they do have a provider, it may be slow.
Alternatively, some software companies sell providers. The following is a list of companies to research
that can assist in expanding your connectivity options:

 Data Direct (http://www.datadirect.com/) sells data connection providers (ODBC and OLE
DB) that can be installed on Windows operating systems. Some of the connections include
Sybase, IBM DB2, Teradata, Informix, and Lotus Notes.

 ETI (http://www.eti.com) offers data integration, some of which are specifically created for
SSIS use. These include SAS, SAP, Teradata, Sybase, DB2, and others.

 Persistent Systems (http://www.persistentsys.com/) has a high-performance Oracle
Destination adapter for SSIS if you are looking to bulk load data into Oracle. Performance
numbers show over 100 time performance gains as compared to the OLE DB Destination.

❑

❑

❑

c12.indd 489c12.indd 489 8/28/08 12:26:54 PM8/28/08 12:26:54 PM

Chapter 12: Accessing Heterogeneous Data

490

 Some systems may only have programmatic APIs that you can only connect to the data
programmatically. In these cases, you can also use the Script Component as a source and leverage the
system API. See Chapter 9 for more information about leveraging the Script Component.

 Summary
 SSIS includes the ability to connect to a variety of Data Sources for extraction and loading, but getting
there may take a little bit of configuring. Data connects can sometimes be tricky for the simple reason
that they require the coordination of third-party software and SSIS adapters. But the good news is that
most sources are accessible in SSIS whether through the standard built-in providers or through external
providers that can be installed on your SSIS server.

 So far this book has covered the basic techniques of building SSIS packages. You now have enough
knowledge to put all the pieces together and build a more complex package. The next chapter focuses on
how to guarantee that your SSIS packages will scale and work reliably.

c12.indd 490c12.indd 490 8/28/08 12:26:54 PM8/28/08 12:26:54 PM

 Reliability and Scalability

 Reliability and scalability are goals for all your systems, yet they may seem like a strange
combination for a chapter. Often, though, there are direct links, as you will see. Errors and the
unexpected conditions that precipitate them are the most obvious threats to a reliable process.
There are several features of SQL Server 2008 Integration Services that allow you to handle these
situations with grace and integrity, keeping the data moving and systems running. Error outputs
and checkpoints are the two features you will focus on in this chapter, and they highlight to you
how these can be used in the context of reliability. The implementation of these methods can also
have a direct effect on package performance, and therefore scalability, and you will learn how to
take into account these considerations for your package and process design. The ability to provide
checkpoints does not natively extend inside the Data Flow, but there are methods you can apply
to achieve this. The methods can then be transferred almost directly into the context of scalability,
allowing you to partition packages and improve both reliability and scalability at the same time.
All of these methods can be combined, and while there is no perfect answer, you will look at the
options and acquire the necessary information to make informed choices for your own SSIS
implementations.

 Restar ting Packages
 Everyone has been there — one of your Data Transformation Services (DTS) packages failed
overnight, and you now have to completely rerun the package. This is particularly painful if some
of the processes inside the package are expensive in terms of resources or time. In DTS, the ability
to restart a package from where it left off did not exist, and picking apart a package to run just
those tasks that failed was tedious and error - prone. There have been a variety of exotic solutions
demonstrated, such as a post - execution process that goes into the package and re - creates the
package from the failed step onward. Although this worked, it required someone with a detailed
knowledge of the DTS object model, which most production DBAs did not have. If your process
takes data from a production SQL Server that has a very small window of ETL opportunity, you
can almost guarantee that the DBA is not going to be pleased when you tell him you need to run
the extract again and that it may impact his users.

c13.indd 491c13.indd 491 8/28/08 5:08:01 PM8/28/08 5:08:01 PM

Chapter 13: Reliability and Scalability

492

 For this reason, the introduction of “ Package Restartability ” or checkpoints in SQL Server 2005 was
manna from heaven. In this chapter, you are going to learn everything you need to know to make this
happen in your SSIS packages.

 Checkpoints are the foundation for restarting packages in SSIS, and they work by writing state
information to a file after each task completes. This file can then be used to determine which tasks have
run and which failed. More detail about these files is provided in the “ Inside the Checkpoint File ”
section. To ensure that the checkpoint file is created correctly, there are three package properties and one
task property that you must set, and they can be found on the property pages of the package and task.
The package properties are as follows:

 CheckpointFilename: This is the filename of the checkpoint file, which must be provided. There
are no specific conventions or requirements for the filename.

 CheckpointUsage: There are three values, which describe how a checkpoint file is used during
package execution:

❑ Never: The package will not use a checkpoint file and therefore will never restart.

❑ If Exists: If a checkpoint file exists in the place you specified for the CheckpointFilename
property, then it will be used, and the package will restart according to the checkpoints
written.

❑ Always: The package will always use a checkpoint file to restart, and if one does not exist,
the package will fail.

 SaveCheckpoints: This is a simple Boolean to indicate whether checkpoints are to be written.
Obviously this must be set to true for this scenario.

 The one property you have to set on the task is FailPackageOnFailure. This must be set for each task or
container that you want to be the point for a checkpoint and restart. If you do not set this property to
true and the task fails, no file will be written, and the next time you invoke the package, it will start from
the beginning again. You ’ ll see an example of this happening later.

 As you know, SSIS packages are broken down into Control Flow and Data Flow. Checkpoints only
happen at the Control Flow; it is not possible to checkpoint transformations or restart inside a Data
Flow. The Data Flow Task can be a checkpoint, but it is treated as any other task. Implementing your
own checkpoint and restart feature for data is described later in the chapter.

 Remember also that if nothing fails in your package, no file will be generated. You ’ ll have a look later at
the generated file itself and try to make some sense out of it, but for now, you need to know that the file
will contain all the information needed by the package when it is restarted, to behave like nothing
untoward had interrupted it. That ’ s enough information to be able to make a start with using
checkpoints in your packages, so now you can proceed with some examples.

 Simple Control Flow
 The basic idea of this first example package is that you have three Execute SQL Tasks, as shown in
Figure 13 - 1 .

❑

❑

❑

 Figure 13 - 1

c13.indd 492c13.indd 492 8/28/08 5:08:02 PM8/28/08 5:08:02 PM

Chapter 13: Reliability and Scalability

493

 The second of those tasks, aptly named “ 2, ” is set to fail with a divide - by - zero error, as you can see in the
Task Editor, shown in Figure 13 - 2 .

 Figure 13 - 2

 Figure 13 - 3

 The task labeled “ 1 ” is expensive, so you want to make sure that you don ’ t need to execute it twice,
if it finishes and something else in the package fails. You now need to set up the package to use
checkpoints and the task itself. First, set the properties of the package that you read about earlier, as
shown in Figure 13 - 3 .

c13.indd 493c13.indd 493 8/28/08 5:08:02 PM8/28/08 5:08:02 PM

Chapter 13: Reliability and Scalability

494

 Now you need to set the properties of the task to use checkpoints, as you saw earlier (see Figure 13 - 4).
Change the FailPackageOnFailure property to True.

 Figure 13 - 4

 Figure 13 - 5

 Now you can execute the package. The expected outcome is shown in Figure 13 - 5 — the first task
completes successfully (green), but the second task fails (red). Since the printing of this book is in black
and white, you will not be able to see the distinct colors here, but you should notice that the tasks
contain different shades of gray.

 If you had created this package in DTS, you would have had to write some logic to cope with the failure
in order to not have to execute task 1 again. Because you are working in SSIS and have set the package
up properly, you can rely on checkpoints. When the package failed, the error output window said
something like this:

SSIS package “PackageSimple.dtsx” starting.
Information: 0x40016045 at PackageSimple: The package will be saving checkpoints to
file “C:\chkSimple3ExecuteSQLTasks.chk” during execution. The package is configured
to save checkpoints.
Information: 0x40016047 at 1: Checkpoint file “C:\chkSimple3ExecuteSQLTasks.chk”
was updated to record completion of this container.
Error: 0xC002F210 at 2, Execute SQL Task: Executing the query “select 1/0” failed
with the following error: “Divide by zero error encountered.”. Possible failure
reasons: Problems with the query, “ResultSet” property not set correctly,
parameters not set correctly, or connection not established correctly.
Task failed: 2
Warning: 0x80014058 at PackageSimple: This task or container has failed, but
because FailPackageOnFailure property is FALSE, the package will continue. This
warning is posted when the SaveCheckpoints property of the package is set to TRUE
and the task or container fails.
SSIS package “PackageSimple.dtsx” finished: Failure.

c13.indd 494c13.indd 494 8/28/08 5:08:03 PM8/28/08 5:08:03 PM

Chapter 13: Reliability and Scalability

495

 As you can see, the output window says that a checkpoint file was written. If you look at the file system,
you can see that this is true, as shown in Figure 13 - 6 . You ’ ll have a look inside the file later when you
have a few more things of interest in there, but for the moment, just know that the package now knows
what happened and where.

 Figure 13 - 6

 Figure 13 - 7

 Now you need to fix the problem by removing the divide - by - zero issue with the second task and run the
package again. Figure 13 - 7 shows what happens when you do that.

 Task 2 was executed again and then task 3. Task 1 was oblivious to the package running again.

 Earlier you saw that the task you want to be the site for a checkpoint must have the
FailPackageOnFailure property set to true, otherwise no file will be written, and when the package
executes again it will start from the beginning. Here is how that works. Set task 2 to not use checkpoints
by setting this property to false, as shown in Figure 13 - 8 .

c13.indd 495c13.indd 495 8/28/08 5:08:04 PM8/28/08 5:08:04 PM

Chapter 13: Reliability and Scalability

496

 Execute the package once again, setting up task 2 to fail with a divide - by - zero error. No checkpoint file is
written, as you expected. This means that after you ’ ve fixed the error in the task and rerun the package,
the results look like Figure 13 - 9 (all tasks are green), which may or may not be what you want.

 Figure 13 - 8

Figure 13-9

 This example has been a very simple one and has simply involved three tasks joined by workflow.
Hopefully this has given you an idea about restartability in packages; the examples that follow will be
more complicated and involved than this one.

 Containers within Containers and Checkpoints
 Containers and transactions have an effect on checkpoints. You ’ ll demonstrate that in this example and
change some properties and settings while you ’ re at it. First, create a package using Sequence Containers
and Checkpoints. In this package you have two sequence containers, which themselves contain Execute
SQL Tasks, as you can see in Figure 13 - 10 .

c13.indd 496c13.indd 496 8/28/08 5:08:04 PM8/28/08 5:08:04 PM

Chapter 13: Reliability and Scalability

497

 Make sure the package has all the settings necessary to use checkpoints, as in the previous example. On
the initial run - through of this package, the only container that you want to be the site for a checkpoint is
task 3, so set the FailPackageOnFailure property of task 3 to true. Figure 13 - 11 shows what happens
when you deliberately set this task to fail, perhaps with a divide - by - zero error; see the earlier example to
see how to do that.

Figure 13-10

Figure 13-11

Figure 13-12

 As expected, task 3 has failed, and the sequence container, seq2, has also failed because of this. If you
now fix the problem with task 3 and re - execute the package, you will see results similar to those shown
in Figure 13 - 12 .

c13.indd 497c13.indd 497 8/28/08 5:08:05 PM8/28/08 5:08:05 PM

Chapter 13: Reliability and Scalability

498

 So there ’ s no real difference here from the earlier example except that the sequence container “ seq 2 ” is
also colored green. Now you ’ ll change the setup of the package to see the behavior change dramatically.
What you ’ re going to do is make the sequence container “ seq 2 ” transacted. That means you ’ re going to
wrap “ seq 2 ” and its child containers in a transaction. Change the properties of the “ seq 2 ” container
to look like Figure 13 - 13 . Set the TransactionOption property to Required.

Figure 13-13

Figure 13-14

Figure 13-15

 The “ seq 2 ” container has its TransactionOption property set to Required, which means that it will start
its own transaction. Now open the two child Execute SQL Tasks and set their TransactionOption
properties to Supported, as shown in Figure 13 - 14 , so that they will join a transaction if one exists.

 Now execute the package again. On the first run - through, the package fails as before at task 3. The
difference comes when you fix the problem with task 3 and re - execute the package. The result looks like
Figure 13 - 15 .

c13.indd 498c13.indd 498 8/28/08 5:08:05 PM8/28/08 5:08:05 PM

Chapter 13: Reliability and Scalability

499

 As you can see, because the container was transacted, the fact that task 3 failed is not recorded in the
checkpoint file. The fact that the sequence container failed is recorded instead; hence the sequence
container is re - executed in its entirety when the package is rerun.

 Variations on a Theme
 You may have noticed another property in the task property pages next to the FailPackageOnFailure
property — the FailParentOnFailure property. In the previous example, the “ seq 2 ” container is the
parent to the two Execute SQL Tasks 2 and 3. You ’ ll run through a few variations of the parent/child
relationship here so that you can see the differences. In each example, you will force a failure on the
first run - through; you will correct whatever problem there is and then run the package through a
second time.

 Failing the Parent, Not the Package
 What happens then if instead of setting the FailPackageOnFailure property of task 3 to true, you set the
FailParentOnFailure property to true? After fixing the issue, on the re - execution of the package the whole
package will be run again. Why? Because no checkpoint file has been written.

 Remember that if you want a checkpoint file to be written, the task that fails must have the
FailPackageOnFailure property set to true; otherwise no file is written.

 Failing the Parent and the Package
 In this variation, you still have a transacted sequence container, and you still have task
3 ’ s FailParentOnFailure property set to true. What you also have is the “ seq 2 ” sequence container ’ s
FailPackageOnFailure property set to true. Figure 13 - 16 shows what happens on the rerun of the package
after a failure.

Figure 13-16

c13.indd 499c13.indd 499 8/28/08 5:08:05 PM8/28/08 5:08:05 PM

Chapter 13: Reliability and Scalability

500

 As you can see, the sequence container executes in its entirety, and the output window from the package
confirms that you used a checkpoint file and that you started a transaction:

SSIS package “PackageContainerFailures.dtsx” starting.
Information: 0x40016046 at PackageContainerFailures: The package restarted from
checkpoint file “ C:\Restartability\CheckPoint Files\ContainerTest.chp “. The
package was configured to restart from checkpoint.
Information: 0x40016045 at PackageContainerFailures: The package will be saving
checkpoints to file “C:\Restartability\CheckPoint Files\ContainerTest.chp” during
execution. The package is configured to save checkpoints.
Information: 0x4001100A at seq 2: Starting distributed transaction for this
container.
Information: 0x4001100B at seq 2: Committing distributed transaction started by
this container.
SSIS package “PackageContainerFailures.dtsx” finished: Success.

 Failing the Task with No Transaction
 Remove the transactions from your package and simply run through this package again, getting it to
fail the first time around at task 3; fix the problem and then re - execute the package. Remember that
task 3 has its FailParentOnFailure property set to true, and the “ seq 2 ” sequence container has its
FailPackageOnFailure set to true. The outcome, shown in Figure 13 - 17 , is not exactly what you expected.
The sequence container has executed but nothing within has. The usage case for this scenario at the time
of this writing escapes us.

Figure 13-17

 Failing the Package, Not the Sequence
 You may think that if the tasks 2 and 3 have the sequence container as a parent, then the package itself
must be the parent of the sequence container. If this is the case, would setting FailParentOnFailure on the
sequence container not be the same as setting FailPackageOnFailure on the same container? The quick
answer is no. If you try this option, you will see no checkpoint file being written, and by now you know
what that means. The message here is that if you want a checkpoint file to be written, then make sure
that the place you want to set as a restart point has FailPackageOnFailure set to true.

 Inside the Checkpoint File
 Earlier we mentioned that you would look inside, the file and see what is actually inside, once you had
more things to put in there. In the package shown in Figure 13 - 18 , although you have only three tasks,

c13.indd 500c13.indd 500 8/28/08 5:08:06 PM8/28/08 5:08:06 PM

Chapter 13: Reliability and Scalability

501

you also have a variable value being changed. The purpose of this package is to show you what kind of
information is stored in a checkpoint file. To add a variable, simply click the designer while in Workflow
and choose Variables from the SSIS menu.

Figure 13-18

Figure 13-19

 To alter the value of a variable using the Script Task, you add the variable name to the
ReadWriteVariables section on the Script Task ’ s editor. You then need to add some script to change
the value. The following is that script:

 public void Main()
 {
 Dts.Variables[“v1”].Value = 2;
 Dts.TaskResult = (int)ScriptResults.Success;
 }

 Now, cause the package to fail as shown in Figure 13 - 19 .

 Instead of spending too much time figuring out an elaborate way to make your task or container fail,
you can simply set the ForceExecutionResult on the task or container to Failure.

 Inside the generated checkpoint file, you should find something like this:

 < DTS:Checkpoint xmlns:DTS=”www.microsoft.com/SqlServer/Dts”
DTS:PackageID=”{5B59AB20-8B19-4C58-8021-6296A2F57158}” > < DTS:Variables
DTS:ContID=”{5B59AB20-8B19-4C58-8021-6296A2F57158}” >
 < DTS:Variable > < DTS:Property DTS:Name=”Expression” > < /DTS:Property > < DTS:Property
DTS:Name=”EvaluateAsExpression” > 0 < /DTS:Property > < DTS:Property
DTS:Name=”Namespace” > User < /DTS:Property > < DTS:Property
DTS:Name=”ReadOnly” > 0 < /DTS:Property > < DTS:Property
DTS:Name=”RaiseChangedEvent” > 0 < /DTS:Property > < DTS:VariableValue
DTS:DataType=”3” > 2 < /DTS:VariableValue > < DTS:Property
DTS:Name=”ObjectName” > v1 < /DTS:Property > < DTS:Property DTS:Name=”DTSID” >
{A28969A0-0633-4D43-9325-DF54B30EBF2D} < /DTS:Property > < DTS:Property
DTS:Name=”Description” > This is the variable being
changed < /DTS:Property > < DTS:Property
DTS:Name=”CreationName” > < /DTS:Property > < /DTS:Variable > < /DTS:Variables >
< DTS:Container DTS:ContID=”{5BE98D21-AE77-4278-9784-BEE4D9115967}” DTS:Result=”0”
DTS:PrecedenceMap=””/ > < DTS:Container DTS:ContID=”{87431A77-CB01-4AFF-8A18-
0CB89209DD26}” DTS:Result=”0” DTS:PrecedenceMap=”Y”/ > < /DTS:Checkpoint >

c13.indd 501c13.indd 501 8/28/08 5:08:06 PM8/28/08 5:08:06 PM

Chapter 13: Reliability and Scalability

502

 The file is better broken down into the constituent parts. The first part tells you about the package to
which this file applies:

 < DTS:Checkpoint xmlns:DTS=”www.microsoft.com/SqlServer/Dts”
DTS:PackageID=”{5B59AB20-8B19-4C58-8021-6296A2F57158}” >

 The next section of the file, the longest part, details the package variable that you were manipulating:

 < DTS:Variables DTS:ContID=”{5B59AB20-8B19-4C58-8021-6296A2F57158}” >
 < DTS:Variable > < DTS:Property DTS:Name=”Expression” > < /DTS:Property > < DTS:Property
DTS:Name=”EvaluateAsExpression” > 0 < /DTS:Property > < DTS:Property
DTS:Name=”Namespace” > User < /DTS:Property > < DTS:Property
DTS:Name=”ReadOnly” > 0 < /DTS:Property > < DTS:Property
DTS:Name=”RaiseChangedEvent” > 0 < /DTS:Property > < DTS:VariableValue
DTS:DataType=”3” > 2 < /DTS:VariableValue > < DTS:Property
DTS:Name=”ObjectName” > v1 < /DTS:Property > < DTS:Property DTS:Name=”DTSID” >
 {A28969A0-0633-4D43-9325-DF54B30EBF2D} < /DTS:Property > < DTS:Property
DTS:Name=”Description” > This is the variable being
changed < /DTS:Property > < DTS:Property
DTS:Name=”CreationName” > < /DTS:Property > < /DTS:Variable > < /DTS:Variables >

 One of the most important things this part of the file tells you is that the last value assigned to the
variable, v1, was 2. When the package re - executes, it is this value that will be used.

 The final part of the file tells you about the tasks in the package and what their outcomes were. It only
tells you about the two tasks that succeeded and not the one that failed:

 < DTS:Container DTS:ContID=”{5BE98D21-AE77-4278-9784-BEE4D9115967}” DTS:Result=”0”
DTS:PrecedenceMap=””/ > < DTS:Container DTS:ContID=”{87431A77-CB01-4AFF-8A18-
0CB89209DD26}” DTS:Result=”0” DTS:PrecedenceMap=”Y”/ > < /DTS:Checkpoint >

 The first container mentioned is the “ Set v1 value to 2 ” Task:

 < DTS:Container DTS:ContID=”{5BE98D21-AE77-4278-9784-BEE4D9115967}” DTS:Result=”0”
DTS:PrecedenceMap=””/ >

 The next and final task to be mentioned is the “ Set v1 value to 1 ” Task:

DTS:Container DTS:ContID=”{87431A77-CB01-4AFF-8A18-0CB89209DD26}” DTS:Result=”0”
DTS:PrecedenceMap=”Y”/ > < /DTS:Checkpoint >

 That concludes your whirlwind tour of package restartability in SSIS. Hopefully, you will get something
out of it, because using the features will save you hours of reloading time.

 Package Transactions
 In this part of the chapter, you see how you can use transactions within your packages to handle data
consistency. There are two types of transactions available in an SSIS package:

c13.indd 502c13.indd 502 8/28/08 5:08:06 PM8/28/08 5:08:06 PM

Chapter 13: Reliability and Scalability

503

 Distributed Transaction Coordinator (DTC) Transactions: One or more transactions that
require a DTC and can span connections, tasks, and packages

 Native Transaction: A transaction at a SQL Server engine level, using a single connection
managed through using TSQL transaction commands

 Here is how Books Online defines MSDTC: “ The Microsoft Distributed Transaction Coordinator
(MS DTC) allows applications to extend transactions across two or more instances of SQL Server.
It also allows applications to participate in transactions managed by transaction managers that comply
with the X/Open DTP XA standard . ”

 You will learn how to use them by going through four examples in detail. Each example builds on the
previous example, except for the last one:

 Single Package: Single transaction using DTC

 Single Package: Multiple transactions using DTC

 Two Packages: One transaction using DTC

 Single Package: One transaction using a native transaction in SQL Server

 For transactions to happen in a package and for tasks to join them, you need to set a few properties at
both the package and the task level. As you go through the examples, you will see the finer print of what
this means, but the following table will get you started with understanding the possible settings for the
TransactionOption property.

 Property Value Description

 Supported If a transaction already exists at the parent, the container will join the transaction.

 Not Supported The container will not join a transaction, if one is present.

 Required The container will start a transaction if the parent has not; otherwise it will
join the parent transaction.

 So armed with these facts, you can get right into the thick of things and look at the first example.

 Single Package, Single Transaction
 To start the first example, create the simple package shown in Figure 13 - 20 .

❑

❑

❑

❑

❑

❑

c13.indd 503c13.indd 503 8/28/08 5:08:07 PM8/28/08 5:08:07 PM

Chapter 13: Reliability and Scalability

504

 This package is quite basic in that all it does is create a table and insert some data into the table, and then
the final task will deliberately fail. The first task contains the following as the code to be executed:

CREATE TABLE dbo.T1(col1 int)

 The second task inserts some data into the table you just created:

INSERT dbo.T1(col1) VALUES(1)

 To make the final task fail, you may want to try executing from this task a statement like the following:

INSERT dbo.T1(col1) VALUES(‘A’)

 Run the package with no transactions in place and see what happens. The results should look like
Figure 13 - 21 : The first two tasks succeed, and the third fails.

Figure 13-21

 If you go to your database, you should see that the table was created and the data inserted, as shown in
Figure 13 - 22 .

Figure 13-20

c13.indd 504c13.indd 504 8/28/08 5:08:07 PM8/28/08 5:08:07 PM

Chapter 13: Reliability and Scalability

505

 Now you want to make sure that the table will not be created if anything in the package fails. Drop the
table and start again. The first thing you want to do is to tell the package to start a transaction that the tasks
can join. You do that by setting the properties of the package as shown in Figure 13 - 23 . Set the
TransactionOption property to Required.

Figure 13-22

Figure 13-23

c13.indd 505c13.indd 505 8/28/08 5:08:07 PM8/28/08 5:08:07 PM

Chapter 13: Reliability and Scalability

506

 You now need to tell the tasks in the package to join this transaction, by setting their TransactionOption
properties to “ Supported, ” as shown in Figure 13 - 24 . As an option for setting the properties of all these
tasks quickly, select all the tasks and set the TransactionOption property to the desired value. This
technique will allow you to set the properties on all the tasks at once.

Figure 13-24

Figure 13-25

 Now when you re - execute the package, a DTC transaction will be started by the package, all the tasks
will join, and because of the failure in the last task, the work in the package will be undone. A good way
to see that a DTC transaction was started is to look at the output window:

SSIS package “Transactions .dtsx” starting.
Information: 0x4001100A at Transactions: Starting distributed transaction for this
container.
Task failed: Insert Some Data ERROR !!!
Information: 0x4001100C at Insert Some Data ERROR !!!: Aborting the current
distributed transaction.
Information: 0x4001100B at Transactions: Committing distributed transaction started
by this container.
Warning: 0x8004D019 at Transactions: The transaction has already been aborted.
SSIS package “Transactions .dtsx” finished: Failure.

 Single Package, Multiple Transactions
 The aim of this second package is to be able to have two transactions running in the same package at the
same time. Create the package as shown in Figure 13 - 25 . If you ’ re not feeling creative, you can use
the same statements in the tasks as you used in the previous example.

c13.indd 506c13.indd 506 8/28/08 5:08:08 PM8/28/08 5:08:08 PM

Chapter 13: Reliability and Scalability

507

 The package contains two sequence containers, each containing its own child tasks. The “ Start Tran 1 ”
Container begins a transaction, and the child tasks will join the transaction. The “ Start Tran 2 ” Container
also starts a transaction of its own, and its child task will join that transaction. As you can see, the task in
 “ Start Tran 2 ” will deliberately fail. The “ CREATE TABLE ” Task creates a table into which all the other
child tasks of both sequence containers will insert. The idea here is that after this package has run, the
table will be created and the data inserted by the “ Insert Some Data(1) ” Task will be in the table even
though the task in “ Start Tran 2 ” fails. This could be useful when you have logical grouping of data
manipulation routines to perform, and they either all succeed or none of them do. The following table
details the tasks and containers in the package along with the package itself and the setting of their
TransactionOption properties.

 Task/Container TransactionOption Property Value

 Package Supported

 “ Start Tran 1 ” Required

 CREATE TABLE Supported

 Insert Some Data(1) Supported

 “ Start Tran 2 ” Required

 Insert Some Data ERROR !!! Supported

 After you execute the package, the results should look like Figure 13 - 26 . The first container succeeded,
but the second one failed because its child task failed.

Figure 13-26

c13.indd 507c13.indd 507 8/28/08 5:08:08 PM8/28/08 5:08:08 PM

Chapter 13: Reliability and Scalability

508

 If you now look in the database, you will see that the table was created and a row inserted. To prove that
two transactions were instantiated, take another look at the output window:

SSIS package “Multiple transactions same Package.dtsx” starting.
Information: 0x4001100A at Start Tran 1: Starting distributed transaction for this
container.
Information: 0x4001100B at Start Tran 1: Committing distributed transaction started
by this container.
Information: 0x4001100A at Start Tran 2: Starting distributed transaction for this
container.
Error: 0xC00291D7 at ERROR !!!, Execute SQL Task: No connection manager is
specified.
Error: 0xC0024107 at ERROR !!!: There were errors during task validation.
Information: 0x4001100C at ERROR !!!: Aborting the current distributed transaction.
Warning: 0x80019002 at Start Tran 2: The Execution method succeeded, but the number
of errors raised (3) reached the maximum allowed (1); resulting in failure. This
occurs when the number of errors reaches the number specified in MaximumErrorCount.
Change the MaximumErrorCount or fix the errors.
Information: 0x4001100C at Start Tran 2: Aborting the current distributed
transaction.
Warning: 0x80019002 at Multiple transactions same Package: The Execution method
succeeded, but the number of errors raised (3) reached the maximum allowed (1);
resulting in failure. This occurs when the number of errors reaches the number
specified in MaximumErrorCount. Change the MaximumErrorCount or fix the errors.
SSIS package “Multiple transactions same Package.dtsx” finished: Failure.

 Two Packages, One Transaction
 This example consists of two packages: “ Caller ” and “ Called. ” What you want to do is to have a
transaction span multiple packages. You ’ ll have the Caller package create a table and then call a child
package using an Execute Package Task, Called, which itself will create a table and insert some data.
You will then introduce an error in the Caller package that will cause it to fail. The result should be that
the work done in both of the packages is undone. Figure 13 - 27 shows the “ Caller ” package.

Figure 13-27

c13.indd 508c13.indd 508 8/28/08 5:08:08 PM8/28/08 5:08:08 PM

Chapter 13: Reliability and Scalability

509

 Figure 13 - 28 shows the “ Called ” package.

Figure 13-28

 As before, you will need to set the TransactionOption properties on the tasks and containers, using the
values in the following table:

 Task/Container TransactionOption Property Value

 “ Caller ” Package Required

 CREATE TABLE “ Caller ” Supported

 EXECUTE “ Called ” Package Supported

 Make Things Fail Supported

 “ Called ” Package Supported

 Created Table “ Called ” Supported

 Insert Some Rows Supported

 The point to note here is that the child package “ Called ” becomes nothing more than another task. The
parent of the “ Called ” package is the Execute Package Task in the “ Caller ” package. Because the Execute
Package Task is in a transaction, and the Called package also has its TransactionOption set to Supported,
it will join the transaction in the parent package.

 If you change the TransactionOption property on the Execute Package Task in the “ Caller ” package to
Not Supported, when the final task in the “ Caller ” package fails, the work in the “ Called ” package
will not be undone. To see how to change the option, please refer back to Figure 13 - 24 .

 Single Package Using a Native Transaction in SQL Server
 This example differs from the others in that you are going to use the transaction - handling abilities of
SQL Server and not those of MSDTC. Although the example is short, it does demonstrate the fact that
transactions can be used in packages that are not MSDTC transactions. Native SQL transactions will
allow you a finer level of granularity when deciding what data gets rolled back and committed, but they
are possible only against SQL Server. The package for this example is shown in Figure 13 - 29 .

c13.indd 509c13.indd 509 8/28/08 5:08:09 PM8/28/08 5:08:09 PM

Chapter 13: Reliability and Scalability

510

 Although you cannot see it because the book is in black and white, the workflow line coming from the
 “ CREATE TABLE Transactions ” Task to the “ Rollback ” Task is red, indicating failure.

 The following table lists the contents of the SQLStatement property for each of the Execute SQL Tasks:

 Task SQLStatement Property Value

 BEGIN TRANSACTION BEGIN TRANSACTION

 CREATE TABLE Transactions CREATE TABLE dbo.Transactions(col1 int)

 ROLLBACK ROLLBACK TRANSACTION

 COMMIT COMMIT TRANSACTION

 The key to making the package use the native transaction capabilities in SQL Server is to have
all the tasks use the same Connection Manager. In addition to this, you must make sure that the
RetainSameConnection property on the Connection Manager is set to True, as shown in Figure 13 - 30 .

Figure 13-29

Figure 13-30

c13.indd 510c13.indd 510 8/28/08 5:08:09 PM8/28/08 5:08:09 PM

Chapter 13: Reliability and Scalability

511

 When the package is executed, SQL Server will fire up a transaction and either commit or rollback that
transaction at the end of the package. You will now have a look at that happening on SQL Server by
using Profiler, as shown in Figure 13 - 31 . Profiler is really useful in situations like this. Here you simply
want to prove that a transaction was started and that it either finished successfully or failed. You could
also use it when firing SSIS packages to make sure that what you think you are executing is what you are
actually executing.

Figure 13-31

 That ends your whistle - stop look at transactions within SSIS packages, and hopefully you can take
something away from this section and use it in your packages.

 Error Outputs
 Error outputs can obviously be used to improve reliability, but they also have an important part to play
for scalability as well. From a reliability perspective, they are a critical feature for coping with bad data.
An appropriately configured component will direct failing rows down the error output as opposed to
the main output. These rows are now removed from the main Data Flow path and may then receive
additional treatment and cleansing to enable them to be recovered and merged back into the main flow.
They can be explicitly merged, such as with a Union Transform, or implicitly through a second adapter
directed at the final destination. Alternatively they could be discarded. Rows are rarely discarded totally;
more often they will be logged and dealt with at a later point in time.

 The capability to recover rows is perhaps the most useful course of action. If a data item is missing in the
source extract but required in the final destination, the error flow path can be used to fix this. If the data
item is available from a secondary system, then a lookup could be used. If the data item is not available
elsewhere, then perhaps a default value can be used instead.

 In other situations, the data may be out of range for the process or destination. If the data causes an
integrity violation, then the failed data could be used to populate the constraining reference with new
values and then the data itself could be successfully processed. If a data type conflict occurs, then maybe

c13.indd 511c13.indd 511 8/28/08 5:08:09 PM8/28/08 5:08:09 PM

Chapter 13: Reliability and Scalability

512

a simple truncation would suffice, or an additional set of logic could be applied to try and detect the real
value, such as with data time values held in strings. The data could then be converted into the required
format.

 When assumptions or fixes have been made to data in this way, it is best practice to always mark rows
as having been manipulated, so that if additional information becomes available later, they can be
targeted directly. In addition, whenever an assumption is made, it should be clearly identified as such
to the end user.

 All of the scenarios described here revolve around trying to recover from poor data, within the pipeline
and the current session, allowing processing to continue, and ideally fixing the problem such that data is
recovered. This is a new concept when compared with DTS and several other products, but the ability to
fix errors in real time is a very valuable option that you should always consider when building solutions.

 The obvious question that then occurs is this: Why not include the additional transformations used to
correct and cleanse the data in the main Data Flow path, so that any problems are dealt with before they
cause an error? This would mean that all data flowed down a single path and the overall Data Flow
design may appear simpler, with no branching and merging flows. This is where the scalability factor
should come into your solution design. Ideally, you would always build the simplest Data Flow possible,
using as few transformations as possible. The less work you perform, the greater the performance and
therefore scalability.

 Figure 13 - 32 illustrates a simple Data Flow used to load some data. In this contrived scenario, some of
the rows will be missing values for SpecialtyCode and ConsultantCode. The source data contains text
descriptions as well, so these are being used to perform a lookup to retrieve the missing values. The
initial design logic goes that you evaluate the column for NULL values in a Conditional Split Transform.
Bad rows are directed to an alternate output that connects to the Lookup Transform. Once the lookup has
populated the missing value, the rows are then fed back into the main pipeline through the Union All
Transform. The same pattern is followed for the SpecialtyCode and ConsultantCode columns, ensuring
that the final insert through the OLE DB Destination has all good data. This is the base design for solving
your problem, and it follows the procedural logic quite closely.

Figure 13-32

c13.indd 512c13.indd 512 8/28/08 5:08:10 PM8/28/08 5:08:10 PM

Chapter 13: Reliability and Scalability

513

 Figure 13 - 33 shows two alternative Data Flow designs, presented side by side for easy comparison. In
the first design, you disregard any existing data in the SpecialtyCode and ConsultantCode columns and
populate them entirely through the lookup. Although this may seem like wasted effort, the overall
design is simpler, and in testing it was slightly faster compared to the more complicated design in Figure
 13 - 32 . This was with a test dataset that had a bad row ratio of 1 in 3, that is, one row in three had missing
values. If the ratio dropped to 1 in 6 for the bad rows, then the two methods performed the same.

 The second design assumes that all data is good until proven otherwise, so you insert directly into the
destination. Rows that fail due to the missing values pass down the error output, “ OLE DB Destination
Error Output, ” and are then processed through the two lookups. The choice between the two designs is
whether you fix all rows or only those that fail. Using the 1 in 3 bad rows test data, fixing only the failed
rows was 20% faster than fixing all rows. When the bad row ratio dropped to 1 in 6, the performance
gain also dropped, to only 10%.

Figure 13-33

 As demonstrated by the previous examples, the decision on where to include the corrective
transformations is based on the ratio of good rows to bad rows, when compared with how much work is
required to validate the quality of the data. The cost of fixing the data should be excluded if possible, as
that will be required regardless of the design, but often the two are inseparable.

 The performance characteristics of the corrective transforms should also be considered. In the preceding
examples, you used lookups, which are inherently expensive transforms. The test data and lookup
reference data included only six distinct values to minimize the impact on the overall testing. Lookups
with more distinct values, and higher cardinality, will be more expensive, as the caching becomes less
effective and itself will consume more resources.

 In summary, the more expensive the verification, the more bad rows you require to justify adding the
validation and fix to the main flow. For fewer bad rows, or a more expensive validation procedure, you
have increased justification for keeping the main flow simple and for using the error flow to perform the
fix - up work.

 The overall number of rows should also influence your design, because any advantages or
disadvantages will be amplified with a greater number of rows, regardless of the ratio. For a smaller
number of rows, the fixed costs may outweigh the implied benefits, as any component has a cost to
manage at runtime, so a more complicated Data Flow may not be worthwhile with fewer overall rows.

c13.indd 513c13.indd 513 8/28/08 5:08:10 PM8/28/08 5:08:10 PM

Chapter 13: Reliability and Scalability

514

 This concept of using error flows versus the main flow to correct data quality issues and related errors is
not confined to those outputs that implement the error output explicitly. You can apply the same logic
manually, primarily through the use of the Conditional Split Transformation, as shown in the first
example, Figure 13 - 32 . You can perform a simple test to detect any potential issues and direct rows of
differing quality down different outputs. Where expensive operations are required, your goal is to
ensure that as few rows as possible follow this path, and that the majority of the rows follow cheaper,
and usually simpler, routes to their destination.

 Finally, do not be put off by the name of an error output; they are not things to be avoided at all costs.
Component developers often take advantage of the rich underlying pipeline architecture, using error
outputs as a simple way of indicating the result of a transformation for a given row. They do not affect
the overall success or failure state of a package, so don ’ t be put off from using them.

 You should be aware that the performance figures quoted here are for indicative purposes only. They
illustrate the differences in the methods described but should not be taken as literal values that you can
expect to reproduce, unless you ’ re using exactly the same design, data, and environment. The key point
is that testing such scenarios should be a routine part of your development practice.

 Scaling Out
 You are no doubt already familiar with the term scaling out , and of course the concept can be applied to
SSIS systems. Although there are no magic switches here, there are several interesting features of SSIS,
and you will see how they can be applied. Following this combined theme, you will learn how these
strategies benefit reliability as well.

 Architectural Improvements
 The development team at Microsoft has made two important improvements in the Integration Services
engine in regards to performance and scalability. The first improvement is in the Lookup Transformation
in the Data Flow. The second improvement is within the Transformation Data Pipeline itself. These
improvements represent an enormous leap from the previous version of SQL Server. So drastic are
these improvements that recent benchmarks are boasting a 1 terabyte load in less than 30 minutes.

 This benchmark test is documented by Microsoft at the following URL:
 http://www.microsoft.com/sqlserver/2008/en/us/benchmarks.aspx.

 Lookup Transformation Improvements
 The most notable improvement in the Lookup Transformation is in the way it caches data and the
options available to optimize that configuration. The new Data Sources available to this transformation
now include pure in - memory cache and persistent file storage (also called persisted cache). Both of these
options require the transformation to be configured to use the full-cache option, however. A new
Connection Manager called the Cache Connection Manager governs these two types of caching options.

 Caching operations in the new Lookup Transformation provide three modes to choose from (full, partial,
or none). Using the fulls-cache mode, the lookup set will be stored in its entirety and will load before the
lookup operation actually runs, but will not repopulate on every subsequent lookup operation. A partial
cache will only store matched lookups, and no - cache will repopulate the cache every time. Of course you
can also manually configure the size of the cache to store, measured in megabytes.

c13.indd 514c13.indd 514 8/28/08 5:08:11 PM8/28/08 5:08:11 PM

Chapter 13: Reliability and Scalability

515

 Persistent file storage is another very exciting caching feature in that it will store your cache in a file that
can been reused across other packages. Talk about reusability! To add to the excitement, the cache can
now be loaded from a variety of sources including text files, XML files, or even Web services. Basically,
any source can now be used to populate the cache in Integration Services 2008. Lastly, partial-cache
mode is enhanced with a new cache option called miss - cache, in which items being processed for lookup
that do not have a match will be cached, so that they will not be retried in future lookup operations. All
these features translate into scalability and performance gains that make this new version a real winner.

 Data Pipeline Improvements
 The Data Pipeline, as the work - horse of the data processing engine, has been the main target by the
Integration Services development team for improvement in regards to scalability and performance.
In 2008, the Data Pipeline architecture has been re - written to provide a fully multi - threaded engine for
true parallelism. This improvement allows most pipelines to scale better without the manual tweaking
that was required in 2005. This is perhaps the greatest improvement in the area of scalability.

 Scale Out Memory Pressures
 By design, the pipeline processing takes place almost exclusively in memory. This makes for faster data
movement and transformations, and a design goal should always be to make a single pass over your
data. In this way, you eliminate the time - consuming staging and the costs of reading and writing the
same data several times. The potential disadvantage of this is that for large amounts of data and
complicated sets of transformations, you need a large amount of memory, and it needs to be the right
type of memory for optimum performance.

 The virtual memory space for 32 - bit Windows operating systems is limited to 2 GB by default. Although
you can increase this amount through the use of the /3GB switch applied in the boot.ini file, this often
falls short of the total memory available today. This limit is applied per process, which for your purposes
means a single package during execution, so by partitioning a process across multiple packages, you can
ensure that each of the smaller packages is its own process and therefore takes advantage of the full 2 – 3
GB virtual space independently. The most common method of chaining packages together to form a
consolidated process is through the Execute Package Task, in which case it is imperative that you set the
child package to execute out of process. You must set the ExecuteOutOfProcess property to true to allow
this to happen.

 It is worth noting that unlike the SQL Server database engine, SSIS does not support Advanced
Windowing Extensions (AWE), so scaling out to multiple packages across processes is the only way to
take advantage of larger amounts of memory. If you have a very large memory requirement, then you
should consider a 64 - bit system for hosting these processes.

 For more a more detailed explanation of how SSIS uses memory, and the in - memory buffer structure
used to move data through the pipeline, see Chapter 14 .

 Scale Out by Staging Data
 Staging of data is very much on the decline; after all, why incur the cost of writing to and reading from a
staging area, when you can perform all the processing in memory with a single pass of data? With the
inclusion of the Dimension and Partition Processing Destinations, you no longer need a physical Data
Source to populate your SQL Server Analysis Services (SSAS) cubes — yet another reason for the decline

c13.indd 515c13.indd 515 8/28/08 5:08:11 PM8/28/08 5:08:11 PM

Chapter 13: Reliability and Scalability

516

of staging or even the traditional data warehouse. Although this is still a contentious subject for many,
the issue here is this: Should you use staging during the SSIS processing flow? Although it may not be
technically required to achieve the overall goal, there are still some very good reasons why you may
want to, coming from both the scalability and reliability perspectives.

 For this discussion, staging could also be described as partitioning. The process could be implemented
within a single Data Flow, but for one or more of the reasons described next, it may be subdivided into
multiple Data Flows. These smaller units could be within a single package, or they may be distributed
through several as discussed next. The staged data will be used only by another Data Flow and does not
need to be accessed directly through regular interfaces. For this reason, the ideal choices for the source
and destinations are the raw file adapters. This could be described as vertical partitioning, but you could
also overlay a level of horizontal partitioning, as by executing multiple instances of a package in parallel.

 Raw file adapters allow you to persist the native buffer structures to disk. The in - memory buffer
structure is simply dumped to and from the file, without any translation or processing as found in all
other adapters, making these the fastest adapters for staging data. You can take advantage of this to
artificially force a memory checkpoint to be written to disk, allowing you to span multiple Data Flow
Tasks and packages. Staging environments and raw files are also discussed later on in Chapter 14 , but
some specific examples will be illustrated here.

 The key use for raw files is that by splitting a Data Flow into at least two individual tasks, the primary
task can end with a raw file destination, and the secondary task can begin with a raw file source. The
buffer structure is exactly the same between the two tasks, so the split can be considered irrelevant from
an overall flow perspective, but it provides perfect preservation between the two.

 Data Flow Restart
 As covered previously, the checkpoint feature provides the ability to restart a package from the point of
failure, but it does not extend inside a Data Flow. However, if you divide a Data Flow into one or more
individual tasks, each linked together by raw files, you immediately gain the ability to restart the
combined flow. Through the correct use of native checkpoints at the (Data Flow) task level, this process
becomes very simple to manage.

 The choice of where to divide a flow is subjective, but two common choices would be immediately after
extraction and immediately after transformation, prior to load.

 The post - extraction point offers several key benefits. Many source systems are remote, so extraction may
take place over suboptimal network links and can be the slowest part of the process. By staging
immediately after the extraction, you do not have to repeat this slow step in the event of a failure and
restart. There may also be an impact on the source system during the extraction, and very often this must
take place during a fixed time window when utilization is low. In this case, it may be unacceptable to
repeat the extract in the event of a failure, until the next time window, usually the following night.

 Staging post - transformation simply ensures that the transformation is not wasted if the destination
system is unavailable.

 You may wish to include additional staging points mid - transformation. These would usually be located
after particularly expensive operations and before those that you suspect are at risk to fail. Although you
can plan for problems, and the use of error outputs described previously should allow you to handle
many situations, you can still expect the unexpected and plan a staging point with this in mind. The goal

c13.indd 516c13.indd 516 8/28/08 5:08:11 PM8/28/08 5:08:11 PM

Chapter 13: Reliability and Scalability

517

remains the ability to restart as close to the failure point as possible and to reduce the cost of any
reprocessing required.

 Figure 13 - 34 shows an example data load process that you may wish to partition into multiple tasks to
take advantage of Data Flow restart.

Figure 13-34

Figure 13-35

Figure 13-36

 For this scenario, the OLE DB Source connects to a remote SQL Server over a slow network link. Due
to the time taken for this data extraction and the impact on the source system, it is not acceptable to
repeat the extract if the subsequent processing fails for any reason. For this reason, you choose to stage
data through a raw file immediately after the Source Component. The resulting Data Flow layout is
shown in Figure 13 - 35 . This is a Data Flow Task.

 The Flat File Source data is accessed across the LAN, and it needs to be captured before it is
overwritten. The sort operation is also particularly expensive due to the volume of data. For this reason,
you choose to stage the data after the sort is complete. The resulting Data Flow is shown in Figure 13 - 36 .

c13.indd 517c13.indd 517 8/28/08 5:08:12 PM8/28/08 5:08:12 PM

Chapter 13: Reliability and Scalability

518

 Finally, you use a third Data Flow Task to consume the two staging raw files and complete the process.
This is shown in Figure 13 - 37 .

Figure 13-37

 Following this example, a single Data Flow has been divided into three separate tasks. For the purposes
of restarting a failed process, you would use a single package and implement checkpoints on each of the
three Data Flow Tasks.

 Scale across Machines
 In a similar manner to the Data Flow restart just discussed, you can also use raw file adapters to partition
the Data Flow. By separating tasks into different packages, you can run packages across machines. This
may be advantageous if a specific machine has properties not shared with others. Perhaps the machine
capable of performing the extract is situated in a different network segment from the machine best suited
for processing the data, and direct access is unavailable between the main processing machine and the
source. The extract could be performed, and the main processing machine would then retrieve the raw
data to continue the process. These situations will be organizational restrictions rather than decisions
driven by the design architecture.

 The more compelling story for scaling across machines is to use horizontal partitioning. A simple
scenario would utilize two packages. The first package would extract data from the source system, and
through the Conditional Split you produce two or more exclusive subsets of the data and write this to
individual raw files. Each raw file would contain some of the rows from the extract, as determined by
the expression used in the Conditional Split. The most common horizontal partition scheme is time -
 based, but any method could be used here. The goal is to subdivide the total extract into manageable
chunks, so for example if a sequential row number is already available in the source, this would be
ideal, or one could be applied. See the T - SQL ROW_NUMBER function. Similarly a Row Number
Transformation could be used to apply the numbering, which could then be used by the split, or the
numbering and splitting could be delivered through a Script Component.

 With a sorted dataset, each raw file may be written in sequence, completing in order, before moving on
to the next one. While this may seem uneven and inefficient, it is assumed that the time delay between
completion of the first and final destinations is inconsequential compared to the savings achieved by the
subsequent parallel processing.

c13.indd 518c13.indd 518 8/28/08 5:08:12 PM8/28/08 5:08:12 PM

Chapter 13: Reliability and Scalability

519

 Once the partitioned raw files are complete, they are consumed by the second package, which performs
the transformation and load aspects of the processing. Each file is processed by an instance of the
package running on a separate machine. This way, you can scale across machines and perform expensive
transformations in parallel. For a smaller - scale implementation, where the previously described 32 - bit
virtual memory constraints apply, you could parallel process on a single machine, such that each
package instance would be a separate thread, allowed its own allocation of virtual memory space.

 For destinations that are partitioned themselves, such as a SQL Server data warehouse with table
partitions or a partitioned view model, or Analysis Services partitions, it may also make sense to match
the partition schema to that of the destination, such that each package addresses a single table or
partition.

 Figure 13 - 38 shows a sample package that for the purposes of this example you will partition
horizontally.

Figure 13-38

Figure 13-39

 In this scenario, the Fuzzy Lookup is processing names against a very large reference set, and this is
taking too long. To introduce some parallel processing, you decide to partition on the first letter of a
name field. It is deemed stable enough for matches to be within the same letter, although in a real - world
scenario this may not always be true. You use a Conditional Split Transformation to produce the two raw
files partitioned from A to M and from N to Z. This primer package is illustrated in Figure 13 - 39 .

 Ideally you would then have two instances of the second package, Figure 13 - 39 , running in parallel on
two separate machines. However, you need to ensure that the lookup data is filtered on name to match
the raw file. Not all Pipeline Component properties are exposed as expressions, allowing you to
dynamically control them, so you would need two versions of the package, identical except for a
different Reference table name property in the Fuzzy Lookup, as shown in Figure 13 - 40 . In preparation,

c13.indd 519c13.indd 519 8/28/08 5:08:12 PM8/28/08 5:08:12 PM

Chapter 13: Reliability and Scalability

520

you would create two views, one for names A to M and the other for names N to Z to match the two raw
files. The two package versions would each use the view to match the raw file they will process.

Figure 13-40

 For any design that uses raw files, the additional I/O cost must be evaluated against the processing
performance gains, but for large - scale implementations it offers a convenient way of ensuring
consistency within the overall flow and incurs no translation penalty associated with other storage
formats.

 Summary
 In this chapter, you looked at some of the obvious SSIS features provided to help you build reliable and
scalable solutions, such as checkpoints and transactions. You also learned about some practices you can
apply, such as Data Flow restarts and scaling across machines; although these may not be explicit
features, they are nonetheless very powerful techniques that can be implemented in your package
designs.

c13.indd 520c13.indd 520 8/28/08 5:08:13 PM8/28/08 5:08:13 PM

 Understanding and Tuning
the Data Flow Engine

 This chapter dives under the hood of SSIS to consider the architecture of the engine and its
components, and then best practices for design and optimization including the following concepts:

 Control Flow and Data Flow comparison

 Data Flow Transformation types

 Data Flow buffer architecture and execution trees

 Monitoring Data Flow execution

 Data Flow design practices

 Tuning the Data Flow engine

 Performance monitoring

 The initial part of this chapter is more abstract and theoretical, but we ’ ll then move into the
practical and tangible. In the concluding sections, you will take the knowledge you have
developed here and bring it to application, considering a methodology to optimization and
looking at a few real - world scenarios.

 The SSIS Engine
 Before learning about buffers, asynchronous components, and execution trees, consider this
analogy — traffic management. Have you ever driven in a big city and wondered how the traffic
system works? It ’ s remarkable to consider how the traffic lights are all coordinated in a city.
In Manhattan, for example, a taxi drive can take you from midtown to downtown in minutes — in
part because the lights are timed in a rolling fashion to maintain efficiency. The heavy fine assessed

❑

❑

❑

❑

❑

❑

❑

c14.indd 521c14.indd 521 8/28/08 12:36:27 PM8/28/08 12:36:27 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

522

to anyone who “ locks the box ” (remains in the intersection after the light turns red) demonstrates how
detrimental it is to interfere with the synchronization of such a complex traffic grid.

 Contrast the efficiency of Manhattan with the gridlock and delay that result from a poorly designed
traffic system. Everyone has been there before — sitting at a red light for minutes despite the absence
of traffic on the intersecting streets, and then after the light changes, you find yourself at the next
intersection in the same scenario! Even in a light - traffic environment, progress is impeded by poor
coordination and inefficient design.

 Bringing this back around to SSIS, in some ways the engine is similar to the grid management of a big
city because the SSIS engine coordinates server resources and Data Flow for efficient information
processing. Part of the process to make a package execution efficient requires your involvement. In turn,
this requires knowing how the SSIS engine works and some important particulars of components and
properties that affect the data processing. That is the purpose of this chapter: to provide the groundwork
of understanding SSIS that will lead to better and more efficient design.

 Understanding the SSIS Data Flow and Control Flow
 From an architectural perspective, the difference between SSIS Data Flow and Control Flow is important.
One aspect that will help illustrate the distinction is to look at them from the perspective of how the
components are handled. In the Control Flow, the task is the smallest unit of work, and tasks require
completion (success, failure, or just completion) before the subsequent tasks are handled. In the Data
Flow, the transformation is the basic component; however, a transformation functions very differently
from a task. Instead of one transformation necessarily waiting for associated transformations before
work can be done, the transformations work together to process and manage data.

 Comparing and Contrasting the Data Flow and Control Flow
 Although the Control Flow looks very similar to the Data Flow with processing objects (tasks and
transformations) and green and red connectors that bridge them, there is a world of difference between
them. The Control Flow, for example, does not manage or pass data between components; rather it
functions as a task coordinator with isolated units of work. Here are some of the Control Flow concepts:

 Workflow orchestration

 Process - oriented

 Serial or parallel tasks execution

 Synchronous processing

 As highlighted, the Control Flow Tasks can be designed to execute both serially and in parallel — in fact,
more often than not there will be aspects of both. A Control Flow Task can branch off into multiple tasks
that are performed in parallel as well as a single next step that is performed essentially in serial from the
first. To show this, Figure 14 - 1 is a very simple Control Flow process where the tasks are connected in a
linear fashion. The execution of this package shows that the components are serialized — only a single
task is executing at a time.

❑

❑

❑

❑

c14.indd 522c14.indd 522 8/28/08 12:36:28 PM8/28/08 12:36:28 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

523

 The Data Flow, on the other hand, can branch, split, and merge, providing parallel processing, but the
concept is different from the Control Flow. Even though there may be a set of connected linear
transformations, you cannot necessarily call the process serial, because the transformations in most cases
will be running at the same time, handling subsets of the data in parallel. Here are some of the unique
aspects of the Data Flow:

 Information - oriented

 Data correlation and transformation

 Coordinated processing

 Streaming in nature

 Sources and destinations

 Similar to the Control Flow shown in Figure 14 - 1 , Figure 14 - 2 models a simple Data Flow where the
components are connected one after the other. The difference between the Data Flow in Figure 14 - 2 and
the Control Flow in Figure 14 - 1 is that only a single task is executing in the linear flow. In the Data Flow,
however, all the transformations are doing work at the same time. In other words, the first batch of Data
Flowing in from the source may be in the final destination step (Currency Rate Destination), while at the
same time data is still flowing in from the source.

❑

❑

❑

❑

❑

Figure 14-1

c14.indd 523c14.indd 523 8/28/08 12:36:28 PM8/28/08 12:36:28 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

524

 Multiple components are running at the same time because the Data Flow Transformations are working
together in a coordinated streaming fashion, and the data is being transformed in groups as it is passed
down from the source to the subsequent transformations.

 SSIS Package Execution Times from Package Start to Package Finish
 Since a Data Flow is merely a type of Control Flow Task, and there can be more than one Data Flow
embedded in a package, the total time it takes to execute a package is measured from the execution
of the first Control Flow Task or Tasks through the completion of the last task being executed, regardless
of whether the components executing are Data Flow Transformations or Control Flow Tasks. This may
sound obvious, but it is worth mentioning, because when designing a package, maximizing the parallel
processing where appropriate (with due regard to your server resources) will help optimize the flow and
reduce the overall processing time.

 The package in Figure 14 - 3 has several tasks executing a variety of processes and using precedence
constraints in a way that demonstrates parallel execution of tasks. The last task, Back Up Database, is the
only task that does not execute in parallel because it has to wait for the execution of all the other tasks.

Figure 14-2

c14.indd 524c14.indd 524 8/28/08 12:36:28 PM8/28/08 12:36:28 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

525

 Because the Control Flow has been designed with parallelization, the overlap in tasks allows the
execution of the package to complete faster than it would if the steps were executed in a serial manner
as earlier shown in Figure 14 - 1 .

 Handling Workflows with the Control Flow
 Both of the components of the Control Flow have been discussed in Chapter 3 as well as the different
types of precedence constraints. Since the Control Flow contains standard workflow concepts that are
common to most scheduling and ETL tools, the rest of this chapter will focus on the Data Flow; however,
a brief look at the Control Flow parallelization and processing is warranted.

 The Control Flow, as has already been mentioned, can be designed to execute tasks in parallel or serial, or
a combination of the two. Tasks also are synchronous in nature, meaning that the task requires completion
before handing off an operation to another process. While it is possible to design a Control Flow that
contains tasks that are not connected with constraints to other tasks, the tasks are still synchronously tied
to the execution of the package. Said in another way, a package cannot kick off the execution of a task and
then complete execution while the task is still executing. Rather, the SSIS execution thread for the task is
synchronously tied to the task ’ s execution and will not release until the task completes successfully or fails.

 The synchronous nature of tasks should not be confused with the synchronous and asynchronous nature
of transformations in the Data Flow. The concepts are slightly different. In the Data Flow, a
transformation ’ s synchronicity is a matter of communication (how data is passed between
transformations) rather than the process orientation of the Control Flow.

Figure 14-3

c14.indd 525c14.indd 525 8/28/08 12:36:29 PM8/28/08 12:36:29 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

526

 SSIS allows the maximum number of parallel tasks that execute to be set on a package - by - package basis.
This setting, called the MaxConcurrentExecutables , is a property of the Control Flow. Click in a blank
space on the Control Flow, and then pull up the Properties window. Figure 14 - 4 shows the property,
which is settable to a whole number.

Figure 14-4

 The default setting is - 1, indicating to SSIS to add 2 to the number of processors and use that value
for the number of tasks to execute in parallel. For example, if the server has four processors and the
default value is used, SSIS will allow up to six tasks to be executed in parallel. Furthermore, if the
number of possible parallel executing tasks (based on Control Flow design) is more than the number of
allowable parallel tasks (“ allowable ” as specified by the MaxConcurrentExecutables setting), then
some of the Control Flow Tasks will have to wait to execute until parallel threads are available.

 Some tasks require more server resources than others, so the package Concurrency should not be tied
directly to the number of processors that your server contains. Rather, task workload should be evaluated
across the tasks. For example, if your package contains a Data Flow, then most likely it will consume
more server resources than the other tasks. In fact, each Data Flow can be set up to use multiple threads
during execution, a property that is described in more detail in the Data Flow section that follows.

 Data Processing in the Data Flow
 The Data Flow is the core data processing factory of SSIS packages, where the primary data is handled,
managed, transformed, integrated, and cleansed. Think of the Data Flow as a pipeline for data. A house,
for example, has a primary water source, which is branched to all the different outlets in the house.

c14.indd 526c14.indd 526 8/28/08 12:36:29 PM8/28/08 12:36:29 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

527

If a faucet is turned on, water will flow out the faucet, while at the same time water is coming in from the
source. If all the water outlets in a house are turned off, then the pressure backs up to the source to where
it will no longer flow into the house until the pressure is relieved. On the contrary, if all the water outlets
in the house are opened at once, then the source pressure may not be able to keep up with the flow of
water and the pressure coming out of the faucets will be weaker. Of course, don ’ t try this at home; it may
produce other problems!

 The Data Flow is appropriately named because the data equates to the water in the plumbing
analogy. The Data Flows from the Data Sources through the transformations to the Data Destinations.
In addition to the flowing concept, there are similarities to the Data Flow pressure within the pipeline.
For example, while a Data Source may be able to stream 10,000 rows per second, if a downstream
transformation consumes too much server resources, it could apply backward pressure on the source
and reduce the number of rows coming from the source. Essentially, this creates a bottleneck that may
need to be addressed to optimize the flow. In order to understand and apply design principles in a Data
Flow, an in - depth discussion of the Data Flow architecture is merited. Understanding several Data Flow
concepts will give you a fuller perspective of what is going on under the hood of an executing package.
Each of these are addressed over the next few pages:

 Data buffer architecture

 Transformation types

 Transformation communication

 Execution trees

 After your review of the architecture, your analysis will shift to monitoring packages in order to
determine how the Data Flow engine is handling data processing.

 Memory Buffer Architecture
 The Data Flow manages data in groups of data called buffers . A buffer is merely memory that is allocated
for the use of storing rows and columns of data where transformations are applied. This means that as
data is being extracted from sources into the engine, it is put into these pre - allocated memory buffers.
Buffers are dynamically sized based on row width (the cumulative number of bytes in a row) and other
package and server criteria. A buffer, for example, may include 9000 rows of data with a few columns of
data. Figure 14 - 5 shows a few groupings of buffers.

❑

❑

❑

❑

c14.indd 527c14.indd 527 8/28/08 12:36:29 PM8/28/08 12:36:29 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

528

 Although it is easy to picture data being passed down from transformation to transformation in the Data
Flow similar to the flow of water in the pipeline analogy, this is not a complete picture of what is going
on behind the scenes. Instead of data being passed down through the transformations, groups of
transformations pass over the buffers of data and make in - place changes as defined by the
transformations. Think of how much more efficient this process is than if the data were copied from one
buffer to the next every time a transformation specified a change in the data! To be sure, there are times
when the buffers are copied and other times when the buffers are held up in cache by transformations.
The understanding of how and when this happens will help determine the right design to optimize your
solution.

 The understanding of how memory buffers are managed requires knowing something about the
different types of Data Flow Components — transformations and adapters.

row num col 1

.

.

.

.

.

.

1
2
3
.
.

9000

col 2

.

.

.

.

.

.

col 3

.

.

.

.

.

.

col 4

.

.

.

.

.

.

col 5

.

.

.

.

.

.

col 6

.

.

.

.

.

.

col 7

.

.

.

.

.

.

Buffer 1

row num col 1

.

.

.

.

.

.

9001
9002
9003

.

.
18000

col 2

.

.

.

.

.

.

col 3

.

.

.

.

.

.

col 4

.

.

.

.

.

.

col 5

.

.

.

.

.

.

col 6

.

.

.

.

.

.

col 7

.

.

.

.

.

.

Buffer 2

...

row num col 1

.

.

.

.

.

.

9000*n�1
9000*n�2
9000*n�3

.

.
9000*(n�1)

col 2

.

.

.

.

.

.

col 3

.

.

.

.

.

.

col 4

.

.

.

.

.

.

col 5

.

.

.

.

.

.

col 6

.

.

.

.

.

.

col 7

.

.

.

.

.

.

Buffer N

Figure 14-5

c14.indd 528c14.indd 528 8/28/08 12:36:30 PM8/28/08 12:36:30 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

529

 Types of Transformations
 The adapters and the transformations in the Data Flow have certain characteristics that group each into
different categories. The base - level differences between them are the way they communicate with
each other, and how and when data is handed off from one transformation to another. Evaluating
transformations on two fronts will provide the background you need to understand how the buffers
are managed:

 Blocking nature: non - blocking (sometimes called streaming), semi - blocking, blocking

 Communication mechanism: synchronous and asynchronous

 In reality, these classifications are related, but from a practical standpoint, discussing them separately
provides some context to data management in the Data Flow.

 Non - Blocking, Semi - Blocking, and Blocking
 The most obvious distinction between transformations is their blocking nature. All transformations fall
into one of three categories: non - blocking, semi - blocking, or blocking. These terms describe whether
data in a transformation is passed downstream in the pipeline immediately, in increments, or after all
the data is fully received.

 The blocking nature of a transformation is related to what a transformation is designed to accomplish.
Since the Data Flow engine just invokes the transformations without knowing what they internally do,
there are no properties of the transformation that discretely identify this nature. However, when we look
at the communication between transformations in the next section (the synchronous and asynchronous
communication), we can identify how the engine will manage transformations one to another.

Non - Blocking Transformations, Streaming and Row - Based
 Most of the SSIS Transformations are non - blocking. This means that the transformation logic that is
applied in the transformation does not impede the data from moving on to the next transformation after
the transformation logic is applied to the row. Two categories of non - blocking transformations exist:
streaming and row - based. The difference is whether the SSIS Transformation can use internal
information and processes to handle its work or whether the transformation has to call an external
process to retrieve information it needs for the work. Some transformations can be categorized as
streaming or row - based depending on their configuration, which are indicated in the list below.

 Streaming transformations are usually able to apply transformation logic quickly, using pre - cached data
and processing calculations within the row being worked on. In these transformations, it is usually the
case that a transformation will not slip behind the rate of the data being fed to it. These transformations
focus their resources on the CPUs, which in most cases is not the bottleneck of an ETL system. Therefore,
they are classified as streaming. The following transformations stream the data from transformation to
transformation in the Data Flow:

 Audit

 Character Map

 Conditional Split

 Copy Column

❑

❑

❑

❑

❑

❑

c14.indd 529c14.indd 529 8/28/08 12:36:30 PM8/28/08 12:36:30 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

530

 Data Conversion

 Derived Column

 Lookup (with a full-cache setting)

 Multicast

 Percent Sampling

 Row Count

 Script Component (provided the script is not configured with an asynchronous output, which
will be discussed later)

 Union All (the Union All acts like a streaming transformation but is actually a semi - blocking
transformation because it communicates asynchronously, which we will consider in the next
section)

 The second grouping of non - blocking transformations is identified as row - based . These transformations
are still non - blocking in the sense that the data can flow immediately to the next transformation after the
transformation logic is applied to the buffer. The row - based description indicates that the rows flowing
through the transformation are acted on one - by - one with a requirement to interact with an outside
process such as a database, file, or component. Given their row - based processes, in most cases these
transformations may not be able to keep up with the rate at which the data is fed to them, and the
buffers are held up until each row is processed. The following transformations are classified as
row - based:

 Export Column

 Import Column

 Lookup (with a no-cache or partial-cache setting)

 OLE DB Command

 Script Component (where the script interacts with an external component)

 Slowly Changing Dimension (each row is looked up against the dimension in the database)

 Figure 14 - 6 shows a Data Flow composed of only streaming transformations. If you look at the row
counts in the design UI, you will notice that the transformations are passing rows downstream in the
pipeline as soon as the transformation logic is completed. Streaming transformations do not have to wait
for other operations in order for the rows being processed to be passed downstream.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 530c14.indd 530 8/28/08 12:36:30 PM8/28/08 12:36:30 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

531

 Also, notice in Figure 14 - 6 that data is inserted into the destination even while transformation logic is
still being applied to some of the earlier transformations. This very simple Data Flow is handling a high
volume of data with minimal resources, such as memory usage, because of the streaming nature of the
Transformation Components used.

Semi - Blocking Transformations
 The next category of Transformation Components are the ones that hold up records in the Data Flow for
a period of time before allowing the memory buffers to be passed downstream. These are typically called
semi - blocking transformations, given their nature. Only a few out - of - the - box transformations are semi -
 blocking in nature:

 Data Mining Query

 Merge

 Merge Join

 Pivot

 Term Lookup

 Unpivot

 Union All (Also included in the streaming transformations list, but under the covers, the Union
All is semi - blocking.)

 The Merge and Merge Join Transformations are described in detail in Chapter 5 and Chapter 7 , but in
relation to the semi - blocking nature of these components, note that they require the sources to be sorted
on the matching keys of the merge. Both of these transformations function by waiting for key matches
from both sides of the merge (or join), and when the matching sorted keys from both sides pass through
the transformations, the records can then be sent downstream while the next set of keys is handled.
Figure 14 - 7 shows how a Merge Join within a Data Flow will partially hold up the processing of the rows
until the matches are made.

❑

❑

❑

❑

❑

❑

❑

Figure 14-6

c14.indd 531c14.indd 531 8/28/08 12:36:31 PM8/28/08 12:36:31 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

532

 Typically the row count upstream of the Merge Join is much higher than the row count just below the
Merge Join, because the Merge Join waits for the sorted key matches as they flow in from both sides of
the merge. Buffers are being released downstream, just not in a streaming fashion as in the non - blocking
Transformation Components. You may also be wondering why there is not a Sort Transformation on the
right - side source of the Merge Join despite the fact that the transformations require the sources to be
sorted. This is because the source data was pre - sorted and the Source adapter was configured to
recognize that Data Flowing into the Data Flow was already sorted. Chapter 7 describes how to set the
 IsSorted property of a source.

Figure 14-7

 Semi - blocking transformations require a little more server resources since the buffers will need to stay in
memory until the right data is received.

Blocking Transformations
 The final category of the transformation types is the actual blocking transformations. For one reason or
another, these components require a complete review of the upstream data before releasing any row
downstream to the connected transformations and destinations. The list is also smaller than the list of
non - blocking transformations because of the limited logic applications that require all the rows. Here is
the list of the blocking transformations:

 Aggregate

 Fuzzy Grouping

 Fuzzy Lookup

 Row Sampling

 Sort

 Term Extraction

 Script Component (when configured to receive all rows before sending any downstream)

❑

❑

❑

❑

❑

❑

❑

c14.indd 532c14.indd 532 8/28/08 12:36:31 PM8/28/08 12:36:31 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

533

 The two widely used examples of the blocking transformations are the Sort and Aggregate Transforms;
each of these requires the entire dataset before handing off the data to the next transform. For example,
in order to have an accurate average, all the records need to be held up by the Aggregate Transform.
Similarly, to sort data in a flow, all the data needs to be available to the Sort Transformation before the
component will know the order in which to release records downstream. Figure 14 - 8 shows a Data Flow
that contains an Aggregate Transformation. The screen capture of this process shows that the entire
source has already been brought into the Data Flow, but no rows have been released downstream while
the transformation is determining the order.

Figure 14-8

 With a Blocking Component in the Data Flow, as you can see in Figure 14 - 8 , the data is no longer
streaming through the Data Flow, and there will not be a time when data can be inserted into the
destination while data is being extracted from the source.

 Blocking transformations are more resource - intensive for several reasons. First, since all the data is
being held up, either the server must use a lot of memory to store the data or, in the case where the server
does not have enough memory, a process of file staging happens, which requires the IO overhead of
staging the data to disk temporarily. The second reason these transformations are intensive is that they
usually put a heavy burden on the processor to perform the work of data aggregation, sorting, or fuzzy
matching.

 Synchronous and Asynchronous Transformation Outputs
 Another important differentiation between transformations is how transformations that are connected to
one another by a path communicate with one another. While closely related to the discussion on the
blocking nature of transformations, synchronous and asynchronous refer more to the relationship between
the input and Output Component connections and buffers.

 Some transformations have an Advanced Editor window, which, among other things, drills into specific
column - level properties of the transformations ’ input and output columns and is useful in explaining
the difference between synchronous and asynchronous outputs. Figure 14 - 9 shows the Advanced Editor
of the Sort Transformation, highlighting the Input and Output Properties tab. This particular
transformation has a Sort Input and Sort Output group with a set of columns associated with each.

c14.indd 533c14.indd 533 8/28/08 12:36:31 PM8/28/08 12:36:31 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

534

 When a column is highlighted, the advanced properties of that column are displayed on the right, as
Figure 14 - 9 shows. The advanced properties include such things as the data type of the column, the
description, and so on. One important property to note is the LineageID . This is the integer pointer to the
column within the buffers. Every column used in the Data Flow has at least one LineageID in the Data
Flow. A column can have more than one LineageID as it passes through the Data Flow based on the types
of transformation outputs (synchronous or asynchronous) that a column goes through in the Data Flow.

 Asynchronous Transformation Outputs
 It is easier to begin with the asynchronous definition because it leads into a comparison of the two kinds
of transformation outputs, synchronous and asynchronous. A transformation output is asynchronous if
the buffers used in the input are different from the buffers used in the output. In other words, many
of the transformations cannot perform the specified operation and at the same time preserve the buffers
(the number of rows or the order of the rows), so a copy of the data must be made to accomplish the
desired effect.

 The Aggregate Transformation, for example, may output only a fraction of the number of rows coming
into it, or when the Merge Join Transformation has to marry two datasets together, the resulting number
of rows will not be equivalent to the number of input rows. In both cases, the buffers are received, the
processing is handled, and new buffers are created.

Figure 14-9

c14.indd 534c14.indd 534 8/28/08 12:36:32 PM8/28/08 12:36:32 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

535

 The Advanced Editor of the Sort shown earlier in Figure 14 - 9 highlights an input column. One of the
properties of the input column is the LineageID . Notice that in this transformation, all the input
columns are duplicated in the output columns list. In fact, as Figure 14 - 10 shows, the output column
highlighted for the same input has a different LineageID .

 The LineageID s are different for the same column because the Sort Transformation output is
asynchronous, and the data buffers in the input are not the same buffers in the output; therefore a new
column identifier is needed for the output. In the preceding examples, the input LineageID is 380, while
in the output column, the LineageID is 566.

Figure 14-10

 A list doesn ’ t need to be included here, because all of the semi - blocking and blocking transformations
already listed have asynchronous outputs by definition — none of them can pass input buffers on
downstream because the data is held up for processing and reorganized.

 One of the SSIS engine components is called the buffer manager. For asynchronous component outputs,
the buffer manager is busy at work, decommissioning buffers for use elsewhere (in sources or other
asynchronous outputs) and reassigning new buffers to the data coming out of the transformation. The
buffer manager also schedules processor threads to components as threads are needed.

c14.indd 535c14.indd 535 8/28/08 12:36:32 PM8/28/08 12:36:32 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

536

Synchronous Transformation Outputs
 A synchronous transformation is one where the buffers are immediately handed off to the next
downstream transformation at the completion of the transformation logic. This may sound like the
definition given for streaming transformations, and it should, since there is almost complete overlap
between streaming transformations and synchronous transformations. The word buffers was
intentionally used in the definition of synchronous outputs, because the important point is that the same
buffers received by the transformation input are passed out the output. Regarding the LineageID s of
the columns, they remain the same as the data is passed through the synchronous output, without a
need to duplicate the buffers and assign a new LineageID as discussed previously in the asynchronous
transformation output section.

 Figure 14 - 11 shows the Advanced Editor of a synchronous component output, the Derived Column
Transformation. There is a big difference between the advanced Input and Output properties of the
Derived Column compared with the Sort (shown in Figure 14 - 9 and Figure 14 - 10). As you saw, all of the
columns in the Sort ’ s input and output are duplicated, while Figure 14 - 11 shows that the Derived
Column Transformation contains only output columns.

Figure 14-11

c14.indd 536c14.indd 536 8/28/08 12:36:33 PM8/28/08 12:36:33 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

537

 The rest of the columns are not included in the input or output list because they are not directly used
by the transformation, and because the Derived Column Transformation output is synchronous. In other
words, the columns coming from the upstream component flow through the Derived Column
Transformation (in this example) and are available to the next downstream component.

 A transformation is not limited to a single synchronous output. Both the Multicast and the Conditional
Split can have multiple outputs, but all the outputs are synchronous.

 With the exception of the Union All, all of the non - blocking transformations listed in the previous section
also have synchronous outputs. The Union All, while it functions like a streaming transformation, is
really an asynchronous transformation. Given the complexity of unioning multiple sources together and
keeping track of all the pointers to the right data from the different source inputs, the Union All instead
copies the upstream data to new buffers as it receives them and passes the new buffers off to the
downstream transformations.

 Synchronous transformation outputs preserve the sort order of incoming data, while some of the
asynchronous transformations do not. The Sort, Merge, and Merge Join asynchronous components of
course have sorted outputs because of their nature, but the Union All, for example, does not.

 A definitive way to identify synchronous versus asynchronous components is to look at the
 SynchronousInputID property of the Column Output properties. If this value is 0, the component
output is asynchronous, but if this property is set to a value greater than 0, the transformation output is
synchronous to the input whose ID matches the SynchronousInputID value. Figure 14 - 11 shows the
Derived Column Transformation with a value of 1065, indicating that the Derived Column
Transformation output is synchronous and tied to the single Derived Column input.

 Finally, a transformation output can be synchronous with only one of its inputs. This is why the Union
All is asynchronous; its output cannot be synchronous with all inputs.

 Source and Destination Adapters
 Source and Destination adapters are integral to the Data Flow, and therefore merit brief consideration in
this chapter. In fact, because of their differences in functionality, sources and destinations are therefore
classified differently.

 First of all, in looking at the advanced properties of a Source adapter, the source will have the same list of
external columns and output columns. The external columns come directly from the source and are
copied into the Data Flow buffers and subsequently assigned LineageID s. While the external source
columns do not have LineageID s, the process is effectively the same as an asynchronous component
output. Source adapters require buffers to be allocated where the incoming data can be grouped and
managed for the downstream transformations to perform work against.

 Destination adapters, on the other hand, function as synchronous components, since their buffers are
de - allocated and data is loaded into the destinations. In the advanced properties of the destination adapter
(as shown in Figure 14 - 12), an External Column list is also shown, which represents the destination
columns used in the load. Notice that there is no primary Output Container (besides the Error Output) for
the Destination adapter, since the buffers do not flow through the component, but rather are committed to
a destination adapter as a final step in the Data Flow.

c14.indd 537c14.indd 537 8/28/08 12:36:33 PM8/28/08 12:36:33 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

538

 Advanced Data Flow Execution Concepts
 The discussion of transformation types and how outputs handle buffers leads into a more advanced
discussion of how the SSIS coordinates and manages the overall Data Flow processing. This section will
take and apply the discussion of synchronous and asynchronous transformations and tie them together
to provide the bigger picture of a package execution.

 Relevant to this discussion is a more detailed understanding of buffer management within an executing
package based on how the package is designed.

 Execution Trees
 In one sense, you have already looked at execution trees, although they weren ’ t explicitly referred to by
this name. An execution tree is the logical grouping of Data Flow Components (transformations and
adapters) based on their synchronous relationship to one another. Groupings are delineated by
asynchronous component outputs that indicate the completion of one execution tree and the start of
the next.

Figure 14-12

c14.indd 538c14.indd 538 8/28/08 12:36:33 PM8/28/08 12:36:33 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

539

 You will recall that components with asynchronous outputs use different input buffers. The input
participates in the upstream execution tree, while the asynchronous output begins the next execution
tree. In light of this, the execution trees for Figure 14 - 13 start at the Source adapters and are then
completed, and a new execution tree begins at every asynchronous transformation. The example in
Figure 14 - 14 has six execution trees.

Figure 14-13

 Figure 14 - 13 shows a moderately complex Data Flow that uses multiple components with asynchronous
outputs.

c14.indd 539c14.indd 539 8/28/08 12:36:34 PM8/28/08 12:36:34 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

540

 Execution trees are base 0, meaning you count them starting with a 0. In the next section, you will see
how the pipeline logging identifies them. Although the execution trees seem out of order, you have used
the explicit order given by the pipeline logging.

 In the next section, you will address ways to log and track the execution trees within a Data Flow, but for
now the discussion will emphasize a few principles of what happens in an execution tree.

 As previously explained, the input and output buffers in a transformation with asynchronous outputs
are different because the buffer data grouping cannot be preserved in both count, order, and columns.
Rows within the input buffers may merge with other buffers, creating more (or fewer) rows in the output
buffers than in either of the source buffers. Or input buffers may contain data that needs to be sorted or
aggregated, which also fails to preserve the order or row count.

 When SSIS executes a package, the buffer manager defines different buffer profiles based on the execution
trees within a package. All the buffers used for a particular execution tree are identical in definition.
When defining the buffer profile for each execution tree, the SSIS buffer manager looks at all the
transformations used in the execution tree and includes every column in the buffer that is needed at any
point within the execution tree. If you focus on execution tree path #3 in Figure 14 - 14 , you ’ ll see that it
contains a Source adapter, a Derived Column Transformation, and a Lookup. Without looking at the source
properties, the following list defines the four columns that the Source adapter is using from the source:

Execution Tree Path 3

Execution Tree Path 1

Execution Tree Path 4Execution Tree Path 5

Execution Tree Path 2

Execution Tree Path 0

Figure 14-14

c14.indd 540c14.indd 540 8/28/08 12:36:34 PM8/28/08 12:36:34 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

541

 CurrencyCode

 CurrencyRate

 AverageRate

 EndofDayRate

 A quick look at the Derived Column Transformation in Figure 14 - 15 shows that two more columns are
being added to the Data Flow: Average_Sale and Audit_Date.

❑

❑

❑

❑

Figure 14-15

 And finally, the Lookup Transformation adds another three columns to the Data Flow, as Figure 14 - 16
highlights.

c14.indd 541c14.indd 541 8/28/08 12:36:34 PM8/28/08 12:36:34 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

542

 Added together, the columns used in these three components total nine. This means that the buffers used
in this execution tree will have nine columns allocated, even though some of the columns are not used in
the initial transformations or adapter. Optimization of a Data Flow can be compared with optimizing a
relational table, where the smaller the width and number of columns, the more that can fit into a Data
Flow buffer. This has some performance implications, and the next section will look in more detail at
optimizing buffers.

 When a buffer is used in an execution tree and reaches the transformation input of the asynchronous
component (the last step in the execution tree), the data is subsequently not needed since it has been
passed off to a new execution tree and a new set of buffers. At this point, the buffer manager can use the
allocated buffer for other purposes in the Data Flow.

 It is important to call out that SSIS 2008 differs from SSIS 2005 in how the processor threads are
assigned to execution trees. In SSIS 2005, each execution tree only received a single processor thread,
and therefore a large execution tree may have generated a processor bottleneck even without the
processors being fully utilized. However, with SSIS 2008, the process thread scheduler can assign more
than one thread to a single execution tree if threads are available and if the execution tree requires
intense processor utilization. To be sure, each transformation can receive a single thread, so if an
execution tree only has two components that participate, then the execution tree can have a max
of two threads.

Figure 14-16

c14.indd 542c14.indd 542 8/28/08 12:36:35 PM8/28/08 12:36:35 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

543

 One advanced property of the Data Flow is the EngineThreads property. In the Control Flow, when a
Data Flow Task is highlighted, this property appears in the property window list, as Figure 14 - 17 shows.

 It is important to modify the EngineThreads property of the Data Flow so that the execution trees are
not sharing process threads, and extra threads are available for large or complex execution trees.
Furthermore, all the execution trees in a package share the number of processor threads allocated in the
 EngineThreads property of the Data Flow. A single thread or multiple threads are assigned to an
execution tree based on availability of threads and complexity of the execution tree.

Figure 14-17

 In the last section of this chapter, you will see how the number of threads available in a Data Flow is
allocated to the execution trees. The value for EngineThreads does not include the threads allocated for
the number of sources in a Data Flow, which are automatically allocated separate threads.

 Monitoring Data Flow Execution
 Built into the SSIS logging is the ability to monitor specific pipeline events related to execution trees. This
can be very useful in understanding your Data Flow and how the engine is managing buffers and
execution.

 Pipeline logging events are available in the Logging features of SSIS. An overview of the general SSIS
logging is provided in Chapter 9 , but for this discussion, you will focus on only the specific pipeline
events that relate to the execution tree discussion. Two specific pipeline execution events are available to
capture during the processing:

 PipelineExecutionPlan

 PipelineExecutionTrees

❑

❑

c14.indd 543c14.indd 543 8/28/08 12:36:35 PM8/28/08 12:36:35 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

544

 To capture the event, create a new log entry through the logging designer window under the SSIS menu
Logging option. The pipeline events are available only when your Data Flow is selected in the tree menu
navigator of the package executable navigator, as Figure 14 - 18 shows.

Figure 14-18

 On the Details tab of the Configure SSIS Logs window, shown in Figure 14 - 18 , the two execution
information log events just listed are available to capture. When the package is run, these events can be
tracked to the selected log provider as defined. However, during development, it is useful to see these
events when testing and designing a package. SSIS includes a way to see these events in the Business
Intelligence Development Studio as a separate window. The Log Events window can be pulled up either
from the SSIS menu by selecting “ Log Events ” or through the View menu, listed under the Other
Windows submenu. As is standard, this window can float or be docked in the designer.

 When the package is executed in design - time through the interface, the log events selected will be
displayed in the Log Events window. For each Data Flow, there will be one event returned for the
PipelineExecutionPlan event and one for the PipelineExecutionTrees event, as shown in Figure 14 - 19 .
These log details have been captured from the sample Data Flow used in Figure 14 - 13 and Figure 14 - 14 .

c14.indd 544c14.indd 544 8/28/08 12:36:36 PM8/28/08 12:36:36 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

545

 Note that all pipeline events selected in the Logging configuration are included in the Log window. To
capture the details for a more readable view of the Message column, simply right - click the log entry and
copy, which will put the event message into the clipboard. A more detailed analysis of the message text
is discussed in the following section.

Pipeline Execution Tree Log Details
 The execution tree log event describes the grouping of transformation inputs and outputs that
participate in each execution tree. Each execution tree is numbered for readability. The following text
comes from the message column of the PipelineExecutionTrees log entry:

Begin Path 0
 output “OLE DB Source Output” (582); component “Customer Validation” (573)
 input “Merge Join Right Input” (686); component “Filter Valid Customers”
 (684)
End Path 0

Begin Path 1
 output “Sort Output” (554); component “Sort” (552)
 input “Merge Join Left Input” (685); component “Filter Valid Customers”
 (684)
End Path 1

Begin Path 2
 output “Merge Join Output” (687); component “Filter Valid Customers” (684)
 input “Union All Input 1” (1530); component “Union All” (1529)
End Path 2

Begin Path 3
 output “Flat File Source Output” (878); component “Weekly Vendor Export”
 (877)
 input “Derived Column Input” (1064); component “Average Calc” (1063)
 output “Derived Column Output” (1065); component “Average Calc” (1063)
 input “Lookup Input” (276); component “Customer Attributes” (266)

Figure 14-19

c14.indd 545c14.indd 545 8/28/08 12:36:36 PM8/28/08 12:36:36 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

546

 output “Lookup Match Output” (280); component “Customer Attributes” (266)
 input “Sort Input” (553); component “Sort” (552)
End Path 3

Begin Path 4
 output “OLE DB Source Output” (1524); component “Prior Weeks” (1514)
 input “Union All Input 2” (1542); component “Union All” (1529)
End Path 4

Begin Path 5
 output “Union All Output 1” (1531); component “Union All” (1529)
 input “SQL Server Destination Input” (813); component “Monthly Vendor
 Details” (800)
End Path 5

 In the log output, each execution tree evaluated by the engine is listed with a begin path and an end
path , with the transformation input and outputs that participate in the execution tree. Some execution
trees may have several synchronous component outputs participating in the grouping, while others may
be composed of only an input and output between two asynchronous components. The listing of the
execution trees is base 0, so the total number of execution trees for your Data Flow will be the numeral of
the last execution tree plus one. In this example, there are six execution trees. A quick way to identify
synchronous and asynchronous transformation outputs in your Data Flow is to review this log. Any
transformation where both the inputs and outputs are contained within one execution tree is
synchronous. Contrarily, any transformation where one or more inputs are separated from the outputs in
different execution trees therefore has asynchronous outputs.

Pipeline Execution Plan Log Details
 The second type of log detail that applies to the discussion of execution trees and execution threads is the
PipelineExecutionPlan. This particular log detail dives one step deeper into the SSIS engine process for a
Data Flow by identifying the threads that will be allocated and used during the process. The following
text comes from the message column of the PipelineExecutionPlan log output:

Begin output plan
 Begin transform plan
 Call PrimeOutput on component “Sort” (552)
 for output “Sort Output” (554)
 Call PrimeOutput on component “Filter Valid Customers” (684)
 for output “Merge Join Output” (687)
 Call PrimeOutput on component “Union All” (1529)
 for output “Union All Output 1” (1531)
 End transform plan

 Begin source plan
 Call PrimeOutput on component “Customer Validation” (573)
 for output “OLE DB Source Output” (582)
 Call PrimeOutput on component “Weekly Vendor Export” (877)
 for output “Flat File Source Output” (878)

c14.indd 546c14.indd 546 8/28/08 12:36:36 PM8/28/08 12:36:36 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

547

 Call PrimeOutput on component “Prior Weeks” (1514)
 for output “OLE DB Source Output” (1524)
 End source plan
End output plan

Begin path plan
 Begin Path Plan 0
 Call ProcessInput on component “Filter Valid Customers” (684)
 for input “Merge Join Right Input” (686)
 End Path Plan 0

 Begin Path Plan 1
 Call ProcessInput on component “Filter Valid Customers” (684)
 for input “Merge Join Left Input” (685)
 End Path Plan 1

 Begin Path Plan 2
 Call ProcessInput on component “Union All” (1529)
 for input “Union All Input 1” (1530)
 End Path Plan 2

 Begin Path Plan 3
 Call ProcessInput on component “Average Calc” (1063)
 for input “Derived Column Input” (1064)
 Create new row view for output “Derived Column Output” (1065)
 Call ProcessInput on component “Customer Attributes” (266)
 for input “Lookup Input” (276)
 Create new row view for output “Lookup Match Output” (280)
 Call ProcessInput on component “Sort” (552)
 for input “Sort Input” (553)
 End Path Plan 3

 Begin Path Plan 4
 Call ProcessInput on component “Union All” (1529)
 for input “Union All Input 2” (1542)
 End Path Plan 4

 Begin Path Plan 5
 Call ProcessInput on component “Monthly Vendor Details” (800)
 for input “SQL Server Destination Input” (813)
 End Path Plan 5

End path plan

 This text is a little more difficult to decipher. A few pointers will help determine some details of the
pipeline execution plan. First of all, execution plan is identified by three types, source plan ,
 transform plan , and path plan . The Source Plan and Transform Plan are allocated for the
Source adapters and outputs of the asynchronous components. The Path Plan defines how the
execution trees are broken up into subtrees for processor thread assignments. Each plan matches up with
the plans reviewed in the execution tree details in the previous section. The Subpath Plan shows when
an execution tree has a subtree for threading parallelization.

c14.indd 547c14.indd 547 8/28/08 12:36:37 PM8/28/08 12:36:37 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

548

 By using the two pipeline log entries just described, you can now better understand how the engine is
processing your data. In any system, the road to applying design principles first requires a level of
understanding.

 SSIS Data Flow Design and Tuning
 Now that you have the background of how the Data Flow engine works, it will now be easier to
understand the design principles and tuning practices for creating Data Flows.

 Designing a data - processing solution requires more than just sending the source data into a black - box
transformation engine with outputs that push the data into the destination. And of course, system
requirements will dictate the final design of the process, including but not limited to the following:

 Source and destination system impact

 Processing time windows and performance

 Destination system state consistency

 Hard and soft exception handling and restartability needs

 Environment architecture model, distributed hardware, or scaled - up servers

 Solution architecture requirements, such as flexibility of change or OEM targeted solutions

 Modular and configurable solution needs

 Manageability and administration requirements

 In reviewing this list, you can quickly map several of these to what you have learned about SSIS
already. In most cases, a good architecture will leverage the built - in functionality of the tool, which in the
end reduces administration and support requirements. The tool selection process, if it is not completed
before a solution is developed, should include a consideration of the system requirements and
functionality of the available products.

 Data Flow Design Practices
 There are three main design practices that you should constantly have in mind when designing
packages:

 Limit synchronicity

 Reduce staging and disk IO

 Reduce the reliance on an RDBMS

 When looking to limit synchronicity, what you should be conscious of is processes that need to complete
before the next process begins. For example, if you run a long INSERT TSQL statement that takes one
half hour to complete, and then run an UPDATE statement that updates the same table, the UPDATE
statement cannot run until the INSERT script finishes. These processes are synchronous. It would be
better to design a Data Flow that handles the same logic as the INSERT statement and also combines the

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 548c14.indd 548 8/28/08 12:36:37 PM8/28/08 12:36:37 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

549

 UPDATE logic at the same time (without using a SQL UPDATE); then you are not only taking advantage of
the SSIS Data Flow, but you are making the logic asynchronous. You can seriously reduce overall process
times by taking this approach.

 Reducing disk IO is about minimizing the staging requirements in your ETL process. Disk IO is often the
biggest bottleneck in an ETL job because the nature bulk operations is about moving a lot of data, and
when you add staging data to a database, that data ultimately needs to be saved to the disk drives.
Instead, reduce your need on staging tables and leverage the Data Flow for those same operations; then
you will decrease the disk overhead of the process and achieve better scalability. The Data Flow
primarily uses memory, and memory is a lot faster to access than disks, so you will gain significant
improvements of speed. Not only that, but when you stage data to a table, you are doubling the disk IO
of the data, because you are both inserting and then selecting back out of the table.

 Keep in mind that solution requirements often drive design decisions, and there are situations where
staging or the RDBMS are useful in data processing. Some of these are discussed in this section. Your
goal, though, is to rethink your design paradigms with SSIS.

 Reducing the RDBMS reliance is similar to reducing staging environments, but it also means reducing
the logic you place on the DDBMS to perform operations like grouping and data cleansing. This will not
only reduce the impact on your RDBMS, but when using production databases, it will alleviate the load
and make room for more critical RDBMS operations.

 These three principles are worked out further in the next section by discussing ways to leverage the Data
Flow for your ETL operations.

 Leveraging the Data Flow
 For sure, the biggest value that SSIS brings is the power of the Data Flow. Not to minimize the out - of - the -
 box functionality of restartability, configurations, logging, event handlers, or other Control Flow Tasks;
the primary goal of the engine is to “ integrate, ” and the Data Flow is the key to realizing that goal.
Accomplishing data - processing logic through Data Flow Transformations brings performance and
flexibility.

 Most data architects come from DBA backgrounds, which means that the first thing that comes to their
minds when trying to solve a data integration, processing, or cleansing scenario is to use an RDBMS,
such as SQL Server. People gravitate to areas they are comfortable with, so this is a natural response.
When your comfort in SQL is combined with an easy - to - use and low - cost product like DTS, which in
many ways relies on relational databases, the result is a widely adopted tool.

 Moving to SSIS in some ways requires thinking in different terms — Data Flow terms. In previous
chapters, you looked at the different Data Flow Transformations, so the focus in this section will be on
applying some of those components into design decisions and translating the SQL - based designs into
Data Flow processes.

 The three architecture best practices relate directly to the value that the Data Flow provides:

 Limit synchronicity: By bringing more of the processing logic into the Data Flow, the natural
result is fewer process - oriented steps that require completion before moving on. In the previous
chapter, you looked at the general streaming nature of the Data Flow. This translates to reduced
overall processing times.

❑

c14.indd 549c14.indd 549 8/28/08 12:36:37 PM8/28/08 12:36:37 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

550

 Reduce staging and expensive IO operations: The Data Flow performs most operations in
memory (with occasional use of temp folders and some interaction with external systems).
Whenever processing happens on data that resides in RAM, processing is more efficient. Disk IO
operations rely on the performance of the drives, the throughput of the IO channels, and
the overhead of the operating system to write and read information to the disk. With high
volumes or bursting scenarios typical with data processing and ETL, disk IO is often a bottleneck.

 Reduce reliance on RDBMS: Relational engines are powerful tools to use, and the point here is
not to detract from their appropriate uses to store and manage data. By using the Data Flow to
cleanse and join data rather than the RDBMS, the result is reduced impact on the relational
system, which frees it up for other functions that may be higher priority. Reading data from a
database is generally less expensive than performing complex joins or complicated queries. In
addition, related to the first bullet, all RDBMS operations are synchronous. Set - based operations,
while they are very useful and optimized in a relational database system, still require that the
operation be complete before the data is available for other purposes. The Data Flow, on the
other hand, can process joins and lookups and other cleansing steps in parallel while the data is
flowing through the pipeline. However, it is important to note that an RDBMS engine can be
leveraged in certain ways; for example, if a table has the right indexes, you can use an ORDER
BY , which may be faster than an SSIS Sort Transformation.

 Data Integration and Correlation
 The Data Flow provides the means to combine data from different source objects completely
independent of the connection source where the data originates. The most obvious benefit of this is the
ability to perform in - memory correlation operations against heterogeneous data without having to stage
the data. Said in another way, with SSIS, you can extract data from a flat file and join it to data from a
database table inside the Data Flow, without first having to stage the flat file to a table and then perform
a SQL Join operation. This can be valuable even when the data is coming from the same source, such as a
relational database engine; source data extractions are more efficient without complex or expensive joins,
and data can usually begin to flow into the Data Flow immediately. In addition, single table SELECT
statements provide less impact to the source systems than do pulls where join logic is applied. Certainly
there are situations where joining data in the source system may be useful and efficient; in many cases,
however, focusing on data integration within the Data Flow will yield better performance. When
different source systems are involved, the requirement to stage the data is reduced.

 Several of the built - in transformations can perform data correlation similar to how a database would
handle joins and other more complex data relationship logic. The following transformations provide
data association for more than one Data Source:

 Lookup

 Merge Join

 Merge

 Union All

 Fuzzy Lookup

 Term Lookup

 Term Extract

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 550c14.indd 550 8/28/08 12:36:37 PM8/28/08 12:36:37 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

551

 Chapter 7 dives into leveraging the joining capabilities of SSIS, a great reference for designing your SSIS
Data Flows.

 Furthermore, beyond the built - in capabilities of SSIS, custom adapters and transformations allow more
complex or unique scenarios to be handled. This is discussed in Chapter 18 .

 Data Cleansing and Transformation
 The second major area of consideration where you can apply the Data Flow is data cleansing. Cleansing
data involves managing missing values; correcting out - of - date, incomplete, or miskeyed data; converting
values to standard data types; changing data grain or filtering data subsets; and de - duplicating
redundant data. Consistency is the goal of data cleansing whether the Data Source is a single system or
multiple disparate sources.

 Many of the Data Flow Components provide data - cleansing capabilities or can participate in a data -
 cleansing process. Some of the more explicit transformations usable for this process include the
following:

 Aggregate

 Character Map

 Conditional Split

 Data Conversion

 Derived Column

 Fuzzy Grouping

 Fuzzy Lookup

 Pivot

 Script Component

 Sort (with de - duplicating capabilities)

 Unpivot

 Each of these transformations, or a combination of them, can handle many data - cleansing scenarios.
A few of the transformations provide compelling data - cleansing features that even go beyond the
capabilities of many relational engines. This makes use of the Data Flow. For example, the Fuzzy Lookup
and Fuzzy Grouping (de - duplication) provide cleansing of dirty data by comparing data similarity
within certain defined ranges. Pivot and Unpivot have the ability to transform data coming in by
pivoting rows to columns or vice versa. Also, the Script Transformation offers very powerful data -
 cleansing capabilities with the full features of VB.NET embedded; it is highlighted in detail in Chapter 9 .
Since the goal of this chapter is to highlight and discuss the application of SSIS, the example will focus
on a couple of common examples of data cleansing using the Derived Column Transformation and the
Aggregate Transformation. These two transformations have particular relevance in how data cleansing
can be accomplished in the Data Flow in comparison with common query logic.

 As Chapter 5 demonstrates, the Derived Column Transformation ’ s capabilities allow the ability to
replace column values coming through the Data Flow. One of the more common data - cleansing scenarios
that the Derived Column Transformation can accomplish is to replace [blank] and NULL values

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 551c14.indd 551 8/28/08 12:36:38 PM8/28/08 12:36:38 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

552

extracted from various sources. Using the expression language, described in detail in Chapter 6 , a check
of values could be performed for both cases described. Figure 14 - 20 shows the Derived Column using
the “ Replace ” column option on the SalesTerritoryAlternateKey column coming through this
transformation.

Figure 14-20

 The following expression code is used to cleanse the [AddressLine1] input column in the example:

ISNULL(SalesTerritoryAlternateKey) ? 0 : SalesTerritoryAlternateKey

 The expression checks to see if the SalesTerritoryAlternateKey is NULL. If the input column value is
NULL, the expression returns a 0; otherwise the actual column value is used. The expression uses a few
of the different functions available in the language, particularly the conditional case expression
(< Boolean > ? < True > : < false >).

 The second valuable transformation to highlight is the Aggregate. The Aggregate Transformation brings
 GROUP BY logic to the Data Flow, but you can have multiple groups of aggregates with different outputs,
and different aggregations defined for each group. Many Data Transformation scenarios require
changing the grain or the level of detail from the source to the destination, and in most situations the
requirement is to roll up the data to higher levels of detail than what the source system makes available.

c14.indd 552c14.indd 552 8/28/08 12:36:38 PM8/28/08 12:36:38 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

553

 In Figure 14 - 21 , the Aggregate Transformation takes the input, and groups by source date column, and
applies aggregations across three other input columns.

Figure 14-21

 Although not pictured, the Aggregate Transformation can also provide multiple groupings with different
outputs per grouping. This means if one grouping should be by SalesOrderID and another by
OrderDate, they both can be accomplished in the same Aggregate Component. The Advanced button
will enable multiple groups and outputs.

 Staging Environments
 A word must be mentioned about the appropriate use of staging environments. To this point in the
chapter, the emphasis has been on thinking in Data Flow terms by moving core data process logic into
the Data Flow. And in most cases, this will yield high - performance results, especially when the
timeliness of moving the data from point A to point B is the highest priority, such as near real - time or
tight - processing - window scenarios. Doing this also mitigates some management overhead, limiting
interim database usage.

c14.indd 553c14.indd 553 8/28/08 12:36:41 PM8/28/08 12:36:41 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

554

 A few situations merit staging environments and are worth mentioning for consideration:

 Restartability: The built - in checkpoint logic of SSIS revolves around the Control Flow. What this
means is that a failure in the Data Flow will not persist the data state. Rather, when the package
is restarted, the Data Flow will restart from the beginning. The implications affect design if the
source system is in flux and an error in the Data Flow causes a processing window to be missed.
By landing the raw data first, the chance for data errors is minimized, and in the event of a
failure during the load process, the package can be restarted from the staged data.

 Processing Windows and Precedence: Certain requirements may dictate that the various source
extraction windows do not line up with each other or with the data load window for the
destination. In these scenarios, it would be necessary to stage the data for a period of time until
the full data set is available or the destination database load window has been reached.

 Source Back Pressure: At times, the Data Flow Transformations may apply back pressure on the
source extractions. This would happen when the flow of data coming in is faster than the
performance of the transformations to handle the data processing in the pipeline. The back
pressure created would slow down the extraction on the source system, and if the requirement is
to extract the data in the fastest time with the least impact, then staging the raw data extract may
help eliminate the back pressure.

 Data Flow Optimization: Staging certain elements, such as business keys, can actually provide
valuable data to optimize the primary Data Flow. For example, if the Lookup Source query can
be filtered based on a set of keys that was pre - staged, this may allow overall gains in processing
times by reducing the time it takes to load the Lookup plus the amount of memory needed for
the operation. A second example is the use of staging to perform set - based table updates.
Updates in a large system are often the source of system bottlenecks, and since SSIS cannot
perform set - based updates in the Data Flow, one consideration is to stage tables that can be used
in a later Execute SQL Task for a set - based update, which may provide a more efficient process.

 Staged data can also prove useful in data validation and error handling. Given some of the uses of
staging, is there a way to accomplish data staging but still retain the performance gain by leveraging the
Data Flow? Yes. One emphasis that has been suggested is the reduction of synchronous processing in the
Control Flow. In regard to data staging, the most natural thought when you have to introduce a staging
environment is to first pick up the data from the source and land it to a staging environment, and then
pick the data back up from the staging environment and apply the transformation logic to it. What about
landing the raw data to a staging environment at the same time that the transformations are applied?
Figure 14 - 22 shows a Data Flow designed with a staging table that does not require the data to reside in
the table before the transformation logic is applied.

❑

❑

❑

❑

c14.indd 554c14.indd 554 8/28/08 12:36:41 PM8/28/08 12:36:41 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

555

 The Multicast Transformation in this example is taking the raw source data and allowing it to stream
down to the core Data Flow, while at the same time the raw source data is being staged to a table. The
data within the table is now available to query for data validation and checking purposes; in addition, it
provides a snapshot of the source system that can then be used for reprocessing when needed. Although
the data is landed to staging, two differences distinguish this example from a model that first stages
data, and then uses the staged data as a source. First, as has been mentioned, the process is no longer
synchronous; data can move from point A to point B in many cases in the time it takes simply to extract
the data from A. Second, the staging process requires only a single pass on the staging table (for the
writes) rather than the IO overhead of a second pass that reads the data from the staging. If your
restartibility requirements and source systems allow, this approach may provide the best of both worlds
— leveraging the Data Flow but providing the value of a stage environment.

 Optimizing Package Processing
 There are a few techniques you can apply when you ’ re streamlining packages for performance. This
section covers how to apply certain optimization techniques to achieve better throughput.

Figure 14-22

c14.indd 555c14.indd 555 8/28/08 12:36:42 PM8/28/08 12:36:42 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

556

 Optimizing Buffers, Execution Trees, and Engine Threads
 If you recall earlier in this chapter, for each execution tree in a Data Flow, a different buffer profile is
used. This means that downstream execution trees may require different columns based on what is
added or subtracted in the Data Flow. You also saw that the performance of a buffer within a Data Flow
is directly related to the row width of the buffer. Narrow buffers can hold more rows, and therefore the
throughput will be higher.

 Some columns that are used in an execution tree may not be needed downstream. For example, if an
input column to a Lookup Transformation is used as the key match to the reference table, this column
may not be needed after the Lookup, and therefore should be removed before the next execution tree.
SSIS does a good job of providing warnings when columns exist in an execution tree but are not used in
any downstream transformation or destination adapter. Figure 14 - 23 highlights the Progress tab within a
package where column usage has not been optimized in the Data Flow. Each warning, highlighted with
a yellow exclamation point, indicates the existence of a column not used later in downstream
components, and which therefore should be removed from the pipeline after initial use.

Figure 14-23

 The warning text describes the optimization technique well:

[SSIS.Pipeline] Warning: The output column “CurrencyRateID” (9091) on
output “Union All Output 1” (6034) and component “Union All” (6032) is
not subsequently used in the Data Flow Task. Removing this unused
output column can increase Data Flow Task performance.

 Any asynchronous component whose input closes out an execution tree will have the option of
removing columns in the output. You would normally do this through the edit dialog box of the
transformation, but you can also do it in the Advanced Editor if the component provides an advanced

c14.indd 556c14.indd 556 8/28/08 12:36:42 PM8/28/08 12:36:42 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

557

properties window. For example, in the Union All Transformation, you can highlight a row in the editor
and delete it with the Delete keyboard key. This will ensure that the column is not used in the next
execution tree.

 A second optimization technique in this area revolves around optimizing the processor utilization by
adding the available use of more execution threads for the Data Flow. As was highlighted in the last
chapter, increasing the EngineThreads Data Flow property to a value greater than the number of
execution trees plus the number of Source Components will ensure that SSIS has enough threads to use.

 Careful Use of Row - Based Transformations
 Row - based transforms, as described earlier in this chapter, are non - blocking transformations, but they
exhibit the functionality of interacting with an outside system (for example, a database or file system) on
a row - by - row basis. Compared with other non - blocking transformations, these transformations are
slower because of this nature. The other type of non - blocking transformation, streaming, can use internal
cache or provide calculations using other columns or variables readily available to the Data Flow,
making them perform very fast. Given the nature of row - based transformations, their usage should be
cautious and calculated.

 Of course, some row - based transformations have critical functionality, so this caution needs to be
balanced with data - processing requirements. For example, the Export and Import Column
Transformation can read and write from files to columns, which is a very valuable tool, but has the
obvious overhead of the IO activity with the file system.

 Another useful row - based transformation is the OLE DB Command Transformation, which can use input
column values and execute parameterized queries against a database, row by row. The interaction with
the database, although it can be optimized, still requires overhead to process. Figure 14 - 24 shows a SQL
Server Trace run against a database that is receiving updates from an OLE DB Command Transformation.

Figure 14-24

c14.indd 557c14.indd 557 8/28/08 12:36:43 PM8/28/08 12:36:43 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

558

 This is only a snapshot, but for each row that goes through the OLE DB Command Transformation, a
separate UPDATE statement is issued against the database. Taking into consideration the duration, reads,
and writes, the aggregated impact of thousands of rows will cause Data Flow latency at the
transformation.

 For this scenario, one alternative is to leverage set - based processes within databases. In order to do
this, the data will need to be staged during the Data Flow, and you will need to add a secondary Execute
SQL Task to the Control Flow that runs the set - based update statement. The result may actually reduce
the overall processing time when compared with the original OLE DB Command approach. This
alternative approach is not meant to diminish the usefulness of the OLE DB Command but rather to
provide an example of optimizing the Data Flow for higher - volume scenarios that may require
optimization.

 Understand Blocking Transformation Impacts
 A blocking transformation requires the complete set of records cached from the input before it can
release records downstream. Earlier in the chapter, we showed you a list of about a dozen
transformations that meet this criterion. The most common examples are the Sort and Aggregate
Transformations.

 Blocking transformations are intensive because they require caching all the upstream input data, and
they also may require more intensive processor usage based on their functionality. When not enough
RAM is available in the system, the blocking transformations may also require temporary disk storage.
You need to be aware of these limitations when you ’ re working to optimize a Data Flow. The point of
mentioning the nature of blocking transformations is not to minimize their usefulness but rather to
advise that in some situations they are very useful and perform much better than alternative approaches.
Rather, the intention here is to use these transformations in the right places and know the resource
impact.

 Since sorting data is a common requirement, one optimization technique is valuable to mention.
Source data that can be sorted in the adapter through an ORDER BY statement (if the right indexes are
in the source table) or presorted in a flat file does not require the use of a Sort Transformation. As
long as the data is physically sorted in the right order when coming into the Data Flow, the Source
adapter can be configured to indicate that the data is sorted and which columns are sorted in what
order. Figure 14 - 25 shows the Advanced Editor of a Source adapter with the Source Output folder
highlighted. The first step is to set the IsSorted property to True , as seen on the right - hand
properties screen.

c14.indd 558c14.indd 558 8/28/08 12:36:43 PM8/28/08 12:36:43 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

559

 The second requirement is to indicate which columns are sorted. To do this, open the Source Output
folder and then the Output Columns subfolder. This will open the list of columns that the adapter will
send out into the pipeline. To set the sort column order and direction, highlight the first column that is
sorted. The example in Figure 14 - 26 uses the presorted SalesOrderID column, which is highlighted in
the figure.

Figure 14-25

c14.indd 559c14.indd 559 8/28/08 12:36:43 PM8/28/08 12:36:43 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

560

 The SortKeyPosition should be set for the columns used in sorting. For the first column that is sorted,
set the SortKeyPosition to a 1 or - 1. A - 1 indicates that the column is sorted in descending order.
Continue to the next sorted column, if applicable, and set the value to a 2 or - 2, and subsequently continue
for all sorted columns. It is important to note that when sort columns include character - based columns,
make sure the collation in SQL matches the SSIS collation. Otherwise you may get wrong results.

 Troubleshooting Data Flow Performance Bottlenecks
 A great approach for identifying bottlenecks within a specific Data Flow is to make a copy of your Data
Flow and begin decomposing your Data Flow by replacing components out with a placeholder
transformation. In other words, take a copy of your Data Flow and run it without any changes. This will
give you a baseline of the execution time of the package.

Figure 14-26

c14.indd 560c14.indd 560 8/28/08 12:36:43 PM8/28/08 12:36:43 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

561

 Run this modified Data Flow and evaluate your execution time. Is it a lot faster? If so, you ’ ve identified
your problem — it ’ s one or more of your destinations.

 If your package without the destinations still runs the same, then your performance bottleneck is a
source or one of the transformations. The next most common issue is the source, so this time, delete all
your transformations and replace them with Multicast Transformations, as Figure 14 - 28 shows.

Figure 14-27

 Next, remove all the Destination adapters, and replace them with the Multicast Transformation (the
Multicast is a great placeholder transformation as it can act as a destination without any outputs and has
no overhead). Figure 14 - 27 represents a modified package where the Destination adapters have been
replaced with Multicast Transformations.

c14.indd 561c14.indd 561 8/28/08 12:36:44 PM8/28/08 12:36:44 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

562

 Now, run your package. If the execution time is just as slow as the first run, then you can be sure that
the performance issue is one or more of the sources. If the performance is a lot faster, then you have a
performance issue with one of the transformations.

 This generalized approach can be applied over an over until you figure out where the issue lies. In other
words, go back to your original copy of the Data Flow and start keep replacing transformations out until
you have identified the transformation that causes the biggest slowdown. It may be the case that you
have more than one transformation or adapter that is the culprit, but with this approach you will know
where to focus your redesign or reconfiguration efforts.

 Pipeline Performance Monitoring
 Earlier in this chapter, one of the things you looked at was the built - in Pipeline logging functionality and
how it could help you understand what SSIS was doing behind the scenes when running a package with
one or more Data Flows. Another tool available to SSIS is the Windows operating system tool called
Performance Monitor (PerfMon for short), which is available to local administrators in the machine ’ s
Administrative Tools. When SSIS is installed on a machine, a set of counters is added that allows the
tracking of the Data Flow ’ s performance.

 As Figure 14 - 29 shows, the Pipeline counters can be used when selecting the SQLServer:SSIS Pipeline
10.0 object.

Figure 14-28

c14.indd 562c14.indd 562 8/28/08 12:36:44 PM8/28/08 12:36:44 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

563

 The following counters are available in the SQLServer:SSIS Pipeline object within PerfMon. Descriptions
of these counters are provided next:

 BLOB bytes read

 BLOB bytes written

 BLOB files in use

 Buffer memory

 Buffers in use

 Buffers spooled

 Flat buffer memory

 Flat buffers in use

 Private buffers in use

 Rows read

 Rows written

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Figure 14-29

c14.indd 563c14.indd 563 8/28/08 12:36:45 PM8/28/08 12:36:45 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

564

 The BLOB counters (Binary Large Objects, such as images) help identify the volume of the BLOB data
types flowing through the Data Flow. Since handling large binary columns can be a huge drain on the
available memory, understanding how your Data Flow is handling BLOB data types becomes important.
Remember that BLOB data can be introduced to the Data Flow not only by Source adapters but also by
the Import (and Export) Column Transformations.

 Since buffers are the mechanism that the Data Flow uses to process all data, the buffer - related counters
provide the most valuable information to seeing how much and where memory is being used in the Data
Flow. The Buffer Memory and Buffers in Use counters are the high - level counters that provide totals for
the server, both memory use and total buffer count. Essentially, the Buffer Memory counter shows the
total memory being used by SSIS and can be compared with the amount of available system memory to
know if SSIS processing is bottlenecked by the available physical memory. Furthermore, the Buffers
Spooled counter provides even more indication of resource limitations on your server. It shows the
number of buffers temporarily written to disk if enough system memory is not available. Anything
greater than zero shows that your Data Flow is having to use temporary disk storage to accomplish its
work, which comes with an IO impact and overhead.

 In regard to the buffer details, two types of buffers exist, flat and private. Flat buffers are the primary
Data Flow buffers used when a Source adapter sends data into the Data Flow. Synchronous
transformation outputs pass the flat buffers to the next component, and asynchronous outputs use
reprovisioned or new flat buffers to be passed to the next transformation. On the other hand, some
transformations require different buffers, called private buffers , which are not received from upstream
transformations or passed on to downstream transformations. Instead, they are the private cache of data
that a transformation uses to perform its operation. Three primary examples of private buffer use are
found in the Aggregate, Sort, and Lookup Transformations, which use private buffers to cache data that
is used for calculations and matching. These transformations still use flat buffers for data being received
and passed, but they also use private buffers to manage and cache supplemental data used in the
transformation. The flat and private buffer counters show the breakdown of these usages and help
identify where buffers are being used and to what extent.

 The last counters in the Pipeline counters list simply show the number of rows handled in the Data Flow,
whether Rows Read or Rows Written. These numbers are aggregates of the rows processed since the
counters were started.

 When reviewing these counters, remember that they are an aggregate of all the SSIS packages and
embedded Data Flows running on your server. If you are attempting to isolate performance impacts of
specific Data Flows or packages, run these by themselves and capture the Pipeline counters for review.

 The Pipeline counters can be tracked in the UI of Performance Monitor in real time or captured at a
recurring interval for later evaluation. Figure 14 - 30 shows the Pipeline counters tracked during the
execution of Figure 14 - 22 .

c14.indd 564c14.indd 564 8/28/08 12:36:45 PM8/28/08 12:36:45 PM

Chapter 14: Understanding and Tuning the Data Flow Engine

565

 Notice that the buffer usage scales up and then drops, and that the plateau lines occur during the
database commit process, when SSIS has completed its processes and is waiting on the database to
commit the insert transaction. When the package is complete, the buffers are released and the buffer
counters drop to zero, while the row count buffers remain stable, since they represent the aggregate rows
processed since the PerfMon was started.

 Summary
 The flexibility of SSIS brings more design options and, in turn, requires you to give more attention to
establishing the architecture. As you ’ ve seen in this chapter, understanding and leveraging the Data
Flow in SSIS reduces processing time, eases management, and opens the door to scalability. Therefore,
choose the right architecture up front, and it will ease the design burden and give overall gains to your
solution.

 Once you have established a model for scalability, the reduced development time of SSIS will allow
attention to be given to optimization, where fine - tuning the pipeline and process will make every second
count.

Figure 14-30

c14.indd 565c14.indd 565 8/28/08 12:36:45 PM8/28/08 12:36:45 PM

 Source Control and
Software Development

Life Cycle

 Software Development Life Cycles play an important role in any type of application development.
Many SQL Server database administrators and ETL developers have little experience with
Microsoft Source Control tools because the tools themselves have been less than “ database project -
 friendly. ” Microsoft has responded with a more reliable version of Visual SourceSafe and a new
source control architecture called Team System.

 In addition, many SQL Server DBAs have not been involved with Software Development Life
Cycles (SDLCs) beyond executing scripts attached to change control documentation. Legislation
around the world has changed the role of the SQL Server DBA in the enterprise because of new
requirements for tracking changes. Regarding Software Development Life Cycles, DBAs now must
participate in ever - earlier phases of the project development.

 In addition, SQL Server DBAs — especially SSIS developers — will realize greater productivity
and development cycle fault tolerance as they employ source - controlled development practices.
These practices produce code that is auditable, an added benefit in the current corporate climate.

 This chapter provides an overview of some of the available features in Microsoft ’ s new offerings.
It includes a brief description of how to store a project in Visual SourceSafe and a detailed
walkthrough that describes creating a Team Project — using Visual Studio Team System — for
SSIS. In practice, Team Projects will most likely be created by someone else in the software
development enterprise.

 A more detailed examination of Team System is beyond the scope of this book but can be found in
 Professional Software Testing with Visual Studio 2005 Team System: Tools for Software
Developers and Test Engineers by Tom Arnold, Dominic Hopton, Andy Leonard, and Mike
Frost. (Wrox, 2007).

c15.indd 567c15.indd 567 8/28/08 12:37:48 PM8/28/08 12:37:48 PM

Chapter 15: Source Control and Software Development Life Cycle

568

 Because the line between database administrator and software developer has blurred and blended over
the years, the Team Project walkthrough is built in Visual Studio 2008. In the Team Project walkthrough,
you are going to put together a project that uses the source control and collaboration functionality
provided by Visual Studio Team System to demonstrate working with the tool and complying with your
SDLC process.

 This chapter also contains information about debugging and breakpoints — highlighting features new to
database administrators and ETL developers in SSIS.

 Included is a discussion regarding development and testing with an emphasis on agile development
methodology, which is very well suited for SSIS development because of the methodology ’ s ability to
adapt to changes — a common occurrence in ETL development.

 The chapter concludes with a discussion about managing package deployment.

 Introduction to Software Development
Life Cycles

 Software Development Life Cycles (or SDLCs) are a systematic approach to each component of application
development — from the initial idea to a functioning production application. A step (or phase) is a unit of
related work in an SDLC. A methodology is a collection of SDLC steps in action, applied to a project.
 Artifacts are the recorded output from steps.

 For example, the first step of an SDLC is Analysis. The methodology requires a requirements document
as an Analysis artifact.

 Software Development Life Cycles: A Brief History
 Software Development Life Cycles have existed in some form or other since the first software
applications were developed. The true beginning of what is now termed “ software ” is debatable. For our
purposes, the topic is confined to binary operations based on Boolean algebra.

 In 1854, mathematician George Boole published An Investigation of the Laws of Thought, on which are
founded the Mathematical Theories of Logic and Probabilities . This work became the foundation of what is
now called Boolean algebra. Some 80 years later, Claude Shannon applied Boole ’ s theories to computing
machines of Shannon ’ s era. Shannon later went to work for Bell Labs.

 Another Bell Labs employee, Dr. Walter Shewhart, was tasked with quality control. Perhaps the pinnacle
of Dr. Shewhart ’ s work is statistical process control (SPC). Most quality control and continuous
improvement philosophies in practice today utilize SPC. Dr. Shewhart ’ s work produced a precursor to
Software Development Life Cycles, a methodology defined by four principles: Plan, Do, Study, and Act
(PDSA).

 Dr. Shewhart ’ s ideas influenced many at Bell Labs, making an accurate and formal trace of the history
difficult. Suffice it to say that Dr. Shewhart ’ s ideas regarding quality spread throughout many industries;
one industry influenced was the software industry.

c15.indd 568c15.indd 568 8/28/08 12:37:49 PM8/28/08 12:37:49 PM

Chapter 15: Source Control and Software Development Life Cycle

569

 Types of Software Development Life Cycles
 SQL Server Integration Services provides integrated support for many SDLC methodologies. This
chapter touches on a few of them. In general, SDLCs can be placed into one of two categories: waterfall
and iterative.

 Waterfall SDLCs
 The first formal Software Development Life Cycles are sequential or linear. That is, they begin with one
step and proceed through subsequent steps until reaching a final step. A typical example of linear
methodology steps is the following:

 Analysis: Review the business needs and develop requirements.

 Design: Develop a plan to meet the business requirements with a software solution.

 Development: Build the software solution.

 Implementation: Install and configure the software solution.

 Maintenance: Address software issues identified after implementation.

 These methodologies are referred to as waterfall methodologies because information and software “ fall ”
one - way from plateau to plateau (step to step).

 Waterfall methodology has lots of appeal for project managers. It is easier to determine the status and
completeness of a linear project: It ’ s either in analysis, in development, in implementation, or in
maintenance.

 A potential downside to the waterfall methodology is that the analysis and design steps are traditionally
completed in a single pass at the beginning of the project. This does not allow much flexibility should
business needs change after the project starts. In addition, the development and implementation steps
are expected to be defined prior to any coding.

 Iterative SDLC s
 Iterative methodology begins with the premise that it ’ s impossible to know all requirements for a
successful application before development starts. Conversely, iterative development holds that software
is best developed within the context of knowledge gained during earlier development of the project.
Development therefore consists of several small, limited - scope, feature - based iterations that deliver a
product ever closer to the customer ’ s vision.

 The following are examples of iterative SDLCs:

 Spiral: Typified by ever - expanding scope in hopes of identifying large design flaws as soon as
possible.

 Agile: A collection of methodologies fall into this category, including Scrum, Feature - Driven
Development, Extreme Programming, Test - Driven Design, and others.

 Microsoft Solutions Framework: Microsoft ’ s own practice gleaned from a sampling of best
practices from different methodologies.

❑

❑

❑

❑

❑

❑

❑

❑

c15.indd 569c15.indd 569 8/28/08 12:37:49 PM8/28/08 12:37:49 PM

Chapter 15: Source Control and Software Development Life Cycle

570

 What happens if, hypothetically, an iteration fails to produce the desired functionality? The developer or
DBA must remove the changes of the last iteration from the code and begin again. This is much easier to
accomplish if the developer or DBA has stored a copy of the previous version someplace safe, hence the
need for source control .

 Source control is defined as preserving the software source code in a format that allows recovery to a
previous state of development or version, and it is a basic tenet of all iterative Software Development
Life Cycles.

 Versioning and Source Code Control
 SQL Server 2008 and SQL Server Integration Services (SSIS) integrate with source control products such
as Microsoft Visual SourceSafe (VSS) and the Visual Studio Team System. Visual SourceSafe is
Microsoft ’ s basic stand - alone source control product. Visual Studio Team System is part of Microsoft ’ s
Team Foundation Server, a suite of SDLC management tools — which includes a source control engine.

 Microsoft Visual SourceSafe
 Visual SourceSafe 2005, which ships with the Visual Studio developer product suites, works with
both Visual Studio 2005 and Visual Studio 2008. It boasts improved stability, performance, access, and
capacity. In this section, you ’ ll create a project in SQL Server Business Intelligence Development Studio
(BIDS) and use it to demonstrate integrated source control with Microsoft Visual SourceSafe.

 After installing Visual SourceSafe 2005, be sure to install the update for using Visual SourceSafe 2005
with Visual Studio 2008 and the SQL Server Business Intelligence Development Studio. The update is
available from http://msdn2.microsoft.com/en-us/vstudio/aa718670.aspx .

 To configure SSIS source control integration with Microsoft Visual SourceSafe 2005, open the SQL Server
Business Intelligence Development Studio. You don ’ t need to connect to an instance of SQL Server to
configure integrated source control.

 To configure Visual SourceSafe as your SSIS source control, click Tools Options. Click Source Control
and select Microsoft Visual SourceSafe. Expand the Source Control Node and click Environment for
detailed configuration, as shown in Figure 15 - 1 .

Figure 15-1

c15.indd 570c15.indd 570 8/28/08 12:37:49 PM8/28/08 12:37:49 PM

Chapter 15: Source Control and Software Development Life Cycle

571

 The Source Control Environment Settings drop - down list contains three options that represent source
control environment roles: Visual SourceSafe, Independent Developer, and Custom.

 The Custom role is automatically selected if you begin customizing the source control behaviors in the
environment. The following options are available for customization:

 Get everything when opening a solution or project:

❑ Checked: Retrieves all solution or project files from source control when a solution or
project is opened.

❑ Not checked: You must manually retrieve files from source control.

 Check in everything when closing a solution or project:

❑ Checked: Automatically checks in all files related to a solution or project on close.

❑ Not checked: Does not automatically check in all files related to a solution or project on
close.

 Don ’ t show Check Out dialog box when checking out items:

❑ Checked: Hides Check Out dialog box when checking out items.

❑ Not checked: Displays Check Out dialog box when checking out items.

 Don ’ t show Check In dialog box when checking in items:

❑ Checked: Hides Check In dialog box when checking in items.

❑ Not checked: Displays Check In dialog box when checking in items.

 Keep items checked out when checking in:

❑ Checked: Allows you to continue editing items that have been checked into source control.

❑ Not checked: You must manually check out the file before editing it.

 Checked - in item behavior on Save:

❑ Prompt for checkout: You are prompted to check out the files after each Save.

❑ Check out automatically: Files are checked out automatically when you Save.

❑ Save as: When Save is clicked, a Save As dialog box appears.

 Checked - in item behavior on Edit:

❑ Prompt for checkout: You are prompted to check out the files when you begin editing.

❑ Prompt for exclusive checkouts: You are prompted to exclusively check out the files when
you begin editing.

❑ Check out automatically: Files are checked out automatically when you begin editing.

❑ Do nothing: When you begin editing, SQL Server Management Studio does nothing.

❑

❑

❑

❑

❑

❑

❑

c15.indd 571c15.indd 571 8/28/08 12:37:50 PM8/28/08 12:37:50 PM

Chapter 15: Source Control and Software Development Life Cycle

572

 Allow checked - in items to be edited:

❑ Checked: When you begin editing a checked - in file, the Checkout on Edit dialog box
appears. This option allows you to check out the file or continue editing without checking
out the file.

 This is not a best practice. The only situation where this has any useful application is if you intend to
save the contents as a new file. If this is the case, it is recommended that you open the existing source -
 controlled version, save it as the other file, and then make your edits.

❑ Not checked: Edits to checked - in items are not allowed.

 The following predefined roles, and their settings, are available:

 Visual SourceSafe : A generic role with the following settings:

❑ Keep items checked out when checking in: Not checked.

❑ Checked - in item behavior on Save: Check out automatically.

❑ Checked - in item behavior on Edit: Check out automatically.

❑ Allow checked - in items to be edited: Not checked.

 Independent Developer : A role defined for stand - alone development with the following
settings:

❑ Keep items checked out when checking in: Checked.

❑ Checked - in item behavior on Save: Check out automatically.

❑ Checked - in item behavior on Edit: Check out automatically.

❑ Allow checked - in items to be edited: Not checked.

 Check out automatically is the default behavior for checked - in items when saving or editing a project. By
not requiring developers to manually check out code, this feature alone saves hours of development time.

 One of the options for Source Control (or the Plug - in Selection) is Microsoft Visual SourceSafe
(Internet). You can configure Visual SourceSafe for remote access through an intranet or the Internet.
This allows you to store source files off - site. A detailed description is beyond the scope of this book, but
you can learn more by browsing the “ How to: Enable the Internet Service for Remote Access ” topic in
the Microsoft Visual SourceSafe Documentation.

 For the purposes of this demo, select Visual SourceSafe from the Source Control Environment Settings
drop - down list and configure source control options as shown in Figure 15 - 1 . This SourceSafe
walkthrough assumes that you have installed Visual SourceSafe 2005 on your local machine and the
Visual Studio 2008 update.

 1. Open the SQL Server Business Intelligence Development Studio. Because BIDS uses the Visual
Studio Integrated Development Environment (IDE), opening SQL Server Business Intelligence
Development Studio will open Visual Studio 2008.

 2. When the BIDS IDE opens, click File New Project to start a new project. Enter a project
name in the New Project dialog box. For now, do not check the Add to Source Control checkbox
as shown in Figure 15 - 2 .

❑

❑

❑

c15.indd 572c15.indd 572 8/28/08 12:37:50 PM8/28/08 12:37:50 PM

Chapter 15: Source Control and Software Development Life Cycle

573

 3. Click OK to proceed, and a new project is created in the BIDS IDE.

 4. Add the project to Microsoft Visual SourceSafe by right - clicking the project name in the Solution
Explorer and selecting Add to Source Control.

 5. If you are connecting for the first time to Visual SourceSafe 2005, a wizard will walk you through
the creation of a new SourceSafe database. If you have an existing database, proceed to Step 6.

 a. The first screen of the wizard will prompt you to choose an existing SourceSafe database or
create a new one. Select the “ Create a new database ” option and click Next.

 b. The location of the SourceSafe files can be on a local drive, or on a windows share. If you
have an available share, enter it here. To test the use of SourceSafe, enter a path to the local
C: drive such as C:\VSS_Files as shown in Figure 15 - 3 .

Figure 15-2

Figure 15-3

c15.indd 573c15.indd 573 8/28/08 12:37:50 PM8/28/08 12:37:50 PM

Chapter 15: Source Control and Software Development Life Cycle

574

 c. On the next screen of the wizard, you will be prompted to give the VSS database connec-
tion a name. Enter a name such as “ SSIS Project Source Control ” and click Next.

 d. On the next screen you will need to choose the Team Version Control Model. You must
choose the Lock - Modify - Unlock Model as shown in Figure 15 - 4 . The Copy - Modify - Merge
model will corrupt your packages in SSIS.

Figure 15-4

 e. To complete the wizard, click Next and then Finish.

 6. In order to add your project to SourceSafe, you will need to log into the Visual SourceSafe
database. You will therefore be prompted to log in to Microsoft Visual SourceSafe. Enter your
credentials and click OK as shown in Figure 15 - 5 .

Figure 15-5

 7. The final screen is to specify the root of the solution. The Add to SourceSafe dialog box appears,
as shown in Figure 15 - 6 . SSIS Source Control Test.root is the default VSS project name assigned
to your project. Accept the default by clicking OK.

c15.indd 574c15.indd 574 8/28/08 12:37:51 PM8/28/08 12:37:51 PM

Chapter 15: Source Control and Software Development Life Cycle

575

 8. Because an SSIS Source Control Test project does not currently exist in your instance of Visual
SourceSafe, you will be prompted to create a project. Click Yes on the dialog box.

 After successfully creating a VSS project to maintain your source code, you are returned to the BIDS
development environment. Notice the source control “ lock ” icons beside your project and Package file as
shown in Figure 15 - 7 . The lock icons indicate that the objects are checked in.

Figure 15-6

Figure 15-7

 To test SourceSafe integration with your new SSIS project, manually check out Package.dtsx for editing
by right - clicking Package.dtsx in the Solution Explorer and clicking Check Out for Edit. The Check
Out for Edit dialog box appears, as shown in Figure 15 - 8 . You can enter a comment to identify why you
are checking out the package. This is a good location for change control documentation references, or at
a minimum, good notes.

c15.indd 575c15.indd 575 8/28/08 12:37:51 PM8/28/08 12:37:51 PM

Chapter 15: Source Control and Software Development Life Cycle

576

 Click Check Out to start the checkout process. If a copy of the package already exists in your local project
files, then a Microsoft Visual SourceSafe dialog box will appear, prompting you overwrite your local file
or keep your changes. Select the “ Replace Your Local File with this Version from SourceSafe? ” option
and check the Apply to All Items checkbox. Click OK to begin editing. The Solution Explorer icon beside
the Package.dtsx item will change to a red check mark to indicate that the item is checked out
exclusively to you, as shown in Figure 15 - 9 .

Figure 15-8

Figure 15-9

 When you are ready to check in your packages, follow these brief steps:

 1. Click View Pending Checkins to open the Pending Checkins window. The Pending Checkins
window displays checked - out files awaiting check - in, as shown in Figure 15 - 10 .

c15.indd 576c15.indd 576 8/28/08 12:37:52 PM8/28/08 12:37:52 PM

Chapter 15: Source Control and Software Development Life Cycle

577

 2. Click the Comments button to add any notes to your check - in operation. Again, this is an
excellent place to add change control documentation references and bug fixes. Click the Check
In button to check your code back into source control. The Source Control confirmation dialog
box appears.

 3. If you check the Don ’ t Show this Dialog Box Again (Always Check In) checkbox, you will not
see this dialog box on check - in operations. Click the Check In button to continue. Note that the
Pending Checkins window is now empty, as no items are checked out for the project.

 Now that the package is checked in, recall that the On Edit property back in Figure 15 - 1 is set to
 “ Check out automatically. ”

 4. Observe the Package.dtsx item in the Solution Explorer as you drag a Data Flow Task onto the
Control Flow workspace. What happened? A red check mark appears beside the Package.dtsx
item. This is the “ automatic checkout on edit ” feature in action. The Pending Checkins window
will now contain the Package.dtsx item, as well as its parent items.

 In the next set of steps, you will create a simple package and during your package development, you
will occasionally make comments in the source control and periodically check in your package. At the
end of the package development, you will roll back the changes to the prior version that was checked in
and branch the development to a second version of the package.

 1. Continue the package construction by right - clicking the Connection Managers’ workspace just
below the Control Flow workspace. Click New ADO.NET Connection to launch the Configure
ADO.NET Connection Manager. Click the New button to open the Connection Manager editor.
Type or select a server name in the Server Name drop - down list. Select “ Use Windows
Authentication ” to log on to the server, and select AdventureWorks2008 in the Database Name
drop - down list, as shown in Figure 15 - 11 .

Figure 15-10

c15.indd 577c15.indd 577 8/28/08 12:37:52 PM8/28/08 12:37:52 PM

Chapter 15: Source Control and Software Development Life Cycle

578

 2. Click OK to continue, and OK again to choose the ADO.NET Connection Manager just created.

 3. Double - click the Data Flow Task on the Control Flow workspace to edit it. Drag an ADO.NET
Source onto the Data Flow workspace and double - click it to edit.

 4. In the “ Name of the table or the view ” drop - down, choose the Purchasing.vVendor database
view from the list and click OK.

 5. Save your package, and then open the Pending Checkins window by clicking View Pending
Checkins. Click the Comments button and enter Added Connection and ADO.NET source in
the Comment text box as shown in Figure 15 - 12 .

Figure 15-11

Figure 15-12

c15.indd 578c15.indd 578 8/28/08 12:37:53 PM8/28/08 12:37:53 PM

Chapter 15: Source Control and Software Development Life Cycle

579

 6. Click the Check In button to add current changes to source control.

 7. Continue editing the package by dragging a Flat File Destination onto the Data Flow workspace.
Drag the ADO.NET Source output (represented by a green arrow) from the ADO.NET Source to
the Flat File Destination.

 8. Double - click the Flat File Destination to edit. Click the New button beside the Flat File
Connection Manager drop - down list.

 9. The Flat File Format dialog box will appear; select Delimited and click OK. The Flat File
Connection Manager appears. Enter File 1 in the Connection Manager Name text box. Click the
Browse button beside the File Name text box and enter C:\File1.txt in the File Name text box.
Click Open to continue.

 10. Check the “ Column names in the first data row ” checkbox and accept the remaining defaults as
shown in Figure 15 - 13 .

Figure 15-13

 11. Click OK to close the Flat File Connection Manager Editor. This returns you to the Flat File
Destination Editor. Click the Mappings item from the list on the left to configure column
mappings for the connection.

 12. Click OK to close the Flat File Destination Editor, and then save your package changes.

 13. Next, click View Pending Checkins to view the Pending Checkins window. Enter Added
File1.txt destination in the Comments text box and click the Check In button.

c15.indd 579c15.indd 579 8/28/08 12:37:53 PM8/28/08 12:37:53 PM

Chapter 15: Source Control and Software Development Life Cycle

580

 14. You now have a functional version of a package in source control. Click the Play button
(or press F5) to execute the package. After some validation completes, confirm that your
package will execute in BIDS.

 Note that the Package.dtsx item is read - only, as it is now saved in VSS.

 15. Click the Stop button (or press Shift+F5) to stop the debugger and then close the package.

 You will now roll back to an earlier version of the package:

 1. To begin the rollback, click File Source Control Launch Microsoft Visual SourceSafe.
Navigate to the SSISDemo1 folder containing Package.dtsx as shown in Figure 15 - 14 .

Figure 15-14

 2. View the history of the project by clicking Tools Show History (or Ctrl+H). The Project History
Options dialog box displays as shown in Figure 15 - 15 .

Figure 15-15

 3. For the purposes of this demo, click the OK button to accept the defaults. The History of Project
dialog box appears, showing all source control activity and items, as shown in Figure 15 - 16 .

c15.indd 580c15.indd 580 8/28/08 12:37:53 PM8/28/08 12:37:53 PM

Chapter 15: Source Control and Software Development Life Cycle

581

 4. Package.dtsx will be shown multiple times in the list. Highlight the second newest and click
the Details button on the right, which will open up the History Details window as shown in
Figure 15 - 17 .

Figure 15-16

Figure 15-17

 5. Confirm that the Comment text area displays the Added Connection and ADO.Net source
version of the package and click Close to return to the History window.

 6. With the same package selected, click the Get button. A dialog box asking if you wish to get the
entire project with this version displays. Click the Yes button, and another dialog box will
prompt you for the location of the project files, as shown in Figure 15 - 18 .

c15.indd 581c15.indd 581 8/28/08 12:37:54 PM8/28/08 12:37:54 PM

Chapter 15: Source Control and Software Development Life Cycle

582

 7. Clicking the OK button restores the previous version of code over your existing version.
After clicking the OK button, return to the SQL Server Business Intelligence Development
Studio environment. A prompt to reload displays as shown in Figure 15 - 19 .

Figure 15-18

Figure 15-19

 8. Click the Yes to All button to reload all files in the project. Click the Data Flow tab to observe
that the Flat File Destination and File1 Connection Manager are no longer part of this project, as
shown in Figure 15 - 20 . They have been removed from the project due to your version rollback
from source control.

Figure 15-20

c15.indd 582c15.indd 582 8/28/08 12:37:54 PM8/28/08 12:37:54 PM

Chapter 15: Source Control and Software Development Life Cycle

583

 9. Add another Flat File Destination to the Data Flow workspace. Configure this Flat File
Destination exactly like the first, except change the file and Connection Manager names from
File1 to File2 as shown in Figure 15 - 21 .

Figure 15-21

 10. Open the Pending Checkins window and add the following comment: Rolled back and added
File2.txt destination . Click the Check In button to store this version in source control.

 11. Execute the package by clicking the Play button. Verify that C:\File2.txt is created and
populated with Vendor data from the AdventureWorks2008 database.

 12. Return to Visual SourceSafe and if the package is checked in, right - click the package and choose
Check Out.

 13. Next, pull up the history of Package.dtsx by right - clicking the package within the Solution
Explorer and choosing View History. The version history of Package 1 is shown in Figure 15 - 22 .
Highlight the second version of the package in the list and click the Get button.

c15.indd 583c15.indd 583 8/28/08 12:37:55 PM8/28/08 12:37:55 PM

Chapter 15: Source Control and Software Development Life Cycle

584

 14. Click OK when the location confirmation dialog box displays and return to the BIDS
environment. You will also be prompted on what to do with the existing file, as shown in
Figure 15 - 23 . Choose Replace to overwrite the current version in BIDS with the old version.

Figure 15-22

Figure 15-23

 15. Click the Data Flow Task tab and confirm that you now see the original working version of the
package. The File1 Connection Manager and Flat File Destination should now reflect this status,
as shown in Figure 15 - 24 .

c15.indd 584c15.indd 584 8/28/08 12:37:55 PM8/28/08 12:37:55 PM

Chapter 15: Source Control and Software Development Life Cycle

585

Figure 15-24

 This example has provided a rudimentary procedure for manually accomplishing branching — a topic
that is covered in the next section.

 Visual SourceSafe is a familiar source control tool to many with application development experience. For
this reason, it has been updated and integrated into the 2008 integrated Visual Studio development
environments.

 The next section provides a brief introduction to Microsoft ’ s new source control (and so much more)
server and client tools known collectively as Visual Studio Team System.

 Team Foundation Server, Team System, and SSIS
 With the coordinated release of Visual Studio 2005, Microsoft introduced Team System and Team
Foundation Server — a powerful enterprise Software Development Life Cycle suite and project
management repository consisting of collaborative services, integrated functionality, and an extensible
application programming interface (API). Team System seamlessly integrates software development,
project management, testing, and source control into the Visual Studio IDE, both Visual Studio 2005 and
Visual Studio 2008.

 Using Team System with BIDS and SSIS requires that you have a Visual Studio Team System 2008 on
your network and have installed the Team Explorer 2008 on your development machine.

c15.indd 585c15.indd 585 8/28/08 12:37:56 PM8/28/08 12:37:56 PM

Chapter 15: Source Control and Software Development Life Cycle

586

 Visual Studio Team System 2008 (VSTS) can be purchased for use, but during your evaluation
period, Microsoft has provided a Virtual PC that you can download and use. The trial virtual PC
image is available from http://download.microsoft.com . Search for VSTS 2008 Trial. The
examples in this section use the same trial version of VSTS.

 Visual Studio Team Explorer 2008 is the client tool that integrates with Visual Studio and allows
you to connect to the Team System server and explore the development items as well as work
with the source control environment built into VSTS. The source control used by VSTS is not a
version of Visual SourceSafe, but rather a more robust source control environment.

 After satisfying the preceding requirements, follow these steps to use the VSTS source control. In the
next section, you will also see how to create bugs and work items in the VSTS Team Explorer.

 1. To configure Team Foundation Server as your SSIS source control, open up BIDS (or close any
existing open projects) and click Tools Options. Choose Source Control and select Visual
Studio Team Foundation Server. Expand the Source Control Node for detailed configuration, as
shown in Figure 15 - 25 .

❑

❑

Figure 15-25

 This section discusses the relationship between Team System and SQL Server Integration Services.
The walkthrough is shown using Business Intelligence Developer Studio (BIDS). If the SQL Server
2008 client tools are installed or Visual Studio 2008 is installed, opening BIDS will open Visual
Studio 2008. If Team System is specified as the source controller for either environment, the
environment, upon opening, will attempt to connect to a Team Foundation Server.

 2. Once Visual Studio 2008 is configured to use Visual Studio Team Foundation Server as the
source control, press Ctrl+\, Ctrl+M, or click the Team Explorer tab to view the Team System
properties (or choose Team Explorer under the View menu).

 3. In the Team Explorer window, click the Add Existing Team Project icon (as shown in
Figure 15 - 26) to connect to the Team System server.

c15.indd 586c15.indd 586 8/28/08 12:37:56 PM8/28/08 12:37:56 PM

Chapter 15: Source Control and Software Development Life Cycle

587

 4. Click the Servers’ button to browse for a Team Foundation Server (or select an existing TF Server
from the drop - down list if the server has already been added). In the Add/Remove Team
Foundation Server window, click Add to add a new server. Figure 15 - 27 shows the tfsrtm08 trial
version server added to the list.

Figure 15-26

Figure 15-27

 5. After adding the server, close the server list window and choose the new server from the drop -
 down list. Click OK to save your server selection changes.

 6. Once you ’ ve connected to the Team Foundation Server, open the Team Explorer and click the
New Team Project icon, or right - click the Team Foundation Server and click New Team Project.
The New Team Project Wizard starts. Enter a name (such as SSIS VSTS Project) and optional
description for the new team project, and click Next to continue. Select a Process Template on
the next step of the New Team Project Wizard, as shown in Figure 15 - 28 .

c15.indd 587c15.indd 587 8/28/08 12:37:56 PM8/28/08 12:37:56 PM

Chapter 15: Source Control and Software Development Life Cycle

588

 7. Click Next to continue. A great feature of the Visual Studio Team System product is the
automatic creation of a project management website using Windows SharePoint Services and
Reporting Services.

 8. Click Next to proceed and enter a Team Project Portal title and description in the next step of the
wizard as shown in Figure 15 - 29 , and click Next to continue.

Figure 15-28

Figure 15-29

c15.indd 588c15.indd 588 8/28/08 12:37:57 PM8/28/08 12:37:57 PM

Chapter 15: Source Control and Software Development Life Cycle

589

 9. In the next step of the wizard, you ’ ll initialize source control. Confirm that the “ Create an empty
source control folder ” option is selected, and click Next to continue.

 10. The confirmation dialog box displays a summary of selections made. Click Finish to set up the
new Team Project. A new Team Project is defined according to the configuration you specified.
Creation status is indicated by a progress bar as setup scripts execute. If all goes as expected, the
wizard will display a Team Project Created dialog box as shown in Figure 15 - 30 .

 At this point, you have created a Team System Container for your SSIS projects. A Team Project is
similar to a Visual Studio solution, in that you can add several SSIS projects (or any other type of
project) to it.

Figure 15-30

 If this is your first Team Project, leave the “ Launch the process guidance for more information about
running the team project ” checkbox as shown in Figure 15 - 30 and click the Close button to complete the
New Team Project Wizard.

 The View Process Guidance Page is checked by default. Team System provides a great overview of the
process in the Process Guidance page as shown in Figure 15 - 31 . These pages provide a wealth of
information, useful to beginners and the experienced alike.

 “ Why create a Team Project, ” you ask? The short answer is, “ The practice of database development is
changing. ” Team development is becoming practical, even required for DBAs, in software shops of all
sizes. It is no longer confined to the enterprise with dozens or hundreds of developers.

 Team System provides a mechanism for DBAs to utilize team - based methodologies, perhaps for the first
time. The Team Project is the heart of Team System ’ s framework for the database developer.

c15.indd 589c15.indd 589 8/28/08 12:37:57 PM8/28/08 12:37:57 PM

Chapter 15: Source Control and Software Development Life Cycle

590

 MSF Agile and SSIS
 MSF Agile is an iterative methodology template included with Team System. In a typical agile software
project, a time - and scope - limited project — called an iteration — is defined by collaboration with the
customer. Deliverables are established, but they may be de - scoped in the interests of delivering a
completed feature - set at the end of the iteration. An important aspect of agile iterations is that features
slip, but timelines do not slip. In other words, if the team realizes that all features cannot be developed
to completion during the time allotted, the time is not extended, and features that cannot be developed to
completion are removed from the feature - set.

 Agile methodologies are very suitable to SSIS and BI development projects because they allow more
flexible changes so the end solution is suited to the user ’ s need and is adopted.

 No one uses a single methodology alone. There are facets of waterfall thinking in any iterative project. In
practice, your methodology is a function of the constraints of the development environment imposed by
regulatory concerns, personal style, and results.

 Once an MSF Agile Team Project hierarchy has been successfully created, the following sub - items are
available under the project in Team Explorer (see Figure 15 - 32):

 Work Items

 Documents

 Reports

 Team Builds

 Source Control

❑

❑

❑

❑

❑

Figure 15-31

c15.indd 590c15.indd 590 8/28/08 12:37:58 PM8/28/08 12:37:58 PM

Chapter 15: Source Control and Software Development Life Cycle

591

Figure 15-32

 Take a moment now to examine some sub - items.

 Work Items
 In MSF Agile projects, work items consist of Tasks, Bugs, Scenarios, and Quality of Service Requirements.
Bugs are self - explanatory — they are deficiencies or defects in the code or performance of the
application. Scenarios map to requirements and are akin to Use Cases in practice. Quality of Service
(QoS) Requirements include acceptable performance under attack or stress. QoS includes scalability and
security. Tasks are a catchall category for work items that includes features yet to be developed.

 To create a Work Item, right - click the Work Item folder, select Add Work Item, and choose one of the
work item types. Figure 15 - 33 shows the work item Bug template, which allows bugs to be tracked and
handled for your SSIS project.

Figure 15-33

c15.indd 591c15.indd 591 8/28/08 12:37:58 PM8/28/08 12:37:58 PM

Chapter 15: Source Control and Software Development Life Cycle

592

 Documents
 The MSF Agile template includes several document templates to get you started with project
documentation. Included are the following:

 Development: Microsoft Project templates for development and testing efforts

 Process Guidance: An HTML document that describes the MSF Agile process

 Project Management: An Excel template containing a project “ to do ” list as well as an issues
and triage spreadsheet

 Requirements: Listing requirements for validation scenarios and a Quality of Service (QoS)
Requirements list

 Security: Document sample defining the security plan for functional areas in the solution

 Shared Documents: A repository for miscellaneous project documents

 Test: Test plans for unit and integration testing

 Reports
 The MSF Agile template contains several built - in Reporting Services project status reports. These reports
are accessible directly from Reporting Services or from the Project Portal (SharePoint Portal Services)
website.

 The Reporting Services home page contains links to several reports as shown in Figure 15 - 34 .

❑

❑

❑

❑

❑

❑

❑

Figure 15-34

c15.indd 592c15.indd 592 8/28/08 12:37:58 PM8/28/08 12:37:58 PM

Chapter 15: Source Control and Software Development Life Cycle

593

 The reports are formatted in a style sheet that complements the SharePoint Portal website. The
Remaining Work report is shown in Figure 15 - 35 .

Figure 15-35

 The Remaining Work report is part of the larger reporting solution provided by the Project Portal. The
Project Portal provides a nice interface for the development team, but project managers are the target
audience. The Project Portal can also serve to inform business stakeholders of project status.

 To navigate to the Project Portal home page, right - click the Team Project in the Team Explorer and click
Show Project Portal.

c15.indd 593c15.indd 593 8/28/08 12:37:59 PM8/28/08 12:37:59 PM

Chapter 15: Source Control and Software Development Life Cycle

594

 The Project Portal
 The Project Portal (see Figure 15 - 36) is implemented in SharePoint Portal Services and contains several
helpful portals, including the following:

 Main Menu

 Announcements

 Links

 Reports (Bug Rates, Builds, and Quality Indicators)

❑

❑

❑

❑

Figure 15-36

 Putting It to Work
 In this section, you ’ ll create a small SSIS package to demonstrate some fundamental Team System
features.

 1. To begin, create a new SSIS project in BIDS by clicking File New Project. From the Project
Types tree view, select Business Intelligence Projects. From the Templates list view, select
Integration Services Project. Do not check the Add to Source Control checkbox. Enter SSIS
VSTS Integration Example as the project name in the Name text box as shown in Figure 15 - 37 .

c15.indd 594c15.indd 594 8/28/08 12:37:59 PM8/28/08 12:37:59 PM

Chapter 15: Source Control and Software Development Life Cycle

595

 2. Click OK to create the new project. Drag a Data Flow Task onto the Control Flow workspace.

 3. Right - click in the Connection Managers tab and select New OLE DB Connection to add a
database connection. Click the New button to create a new OLE DB Connection.

 4. Select your local server from the Server Name drop - down list. Configure the connection for
Windows or SQL Server authentication. Select AdventureWorks2008 as the database name. You
can click the Test Connection button to test connectivity configuration. Click OK to close the
Connection Manager dialog, and OK again to continue.

 5. Double - click the Data Flow Task to edit. Drag an OLE DB Source onto the Data Flow
workspace. Double - click the OLE DB Source to edit.

 6. In the OLE DB Source Editor window, select the AdventureWorks2008 connection in the OLE
DB Connection Manager drop - down list. Select Table or View in the Data Access Mode drop -
 down list. Select [Sales].[vStoreWithDemographics] in the “ Name of the table or the view ”
drop - down list. Click OK to continue.

 7. Drag an Aggregate Transformation onto the Data Flow workspace. Connect the output of the
OLE DB Source to the Aggregate Transformation by dragging the green arrow from the Source
to the Transformation. From the Available Input Columns table, select StateProvinceName,
SquareFeet, and AnnualSales. In the grid below, ensure that the operation for
StateProvinceName is Group by, the operation for SquareFeet is Average, and the operation for
AnnualSales is Sum as shown in Figure 15 - 38 .

Figure 15-37

c15.indd 595c15.indd 595 8/28/08 12:38:00 PM8/28/08 12:38:00 PM

Chapter 15: Source Control and Software Development Life Cycle

596

 8. Click OK to close the Aggregate editor, and drag an OLE DB Source Output (denoted by the
green arrow) from the OLE DB Source to the Aggregate.

 Drag an Excel Destination onto the Data Flow workspace and connect the Aggregate output to
it. Double - click the Excel Destination to open the Excel Destination Editor. Click the New button
beside the OLE DB Connection Manager drop - down list to create a new Excel connection object.
Enter c:\SSIS_output.xls in the Excel file path text box. Click OK to continue.

 9. You can create an Excel spreadsheet in this step. If you enter the desired name of a spreadsheet
that does not yet exist, the Excel Destination Editor will not be able to locate a worksheet name.
The “ No tables or views could be loaded ” message to this effect will appear in the Name of
Excel Worksheet drop - down list.

 10. To create a worksheet, click the New button beside the Name of the Excel Sheet drop - down list.
A Create Table dialog box will appear. Click OK to accept the defaults and create the worksheet
and Excel workbook.

 11. Click Mappings in the Excel Destination Editor to configure column - to - data mappings. Accept
the defaults by clicking OK.

 12. Click File Save All to save your work.

Figure 15-38

c15.indd 596c15.indd 596 8/28/08 12:38:00 PM8/28/08 12:38:00 PM

Chapter 15: Source Control and Software Development Life Cycle

597

 Now that you have created a simple SSIS package, you will use this package to test out the Team System
functionality with SSIS.

 Version and Source Control with Team System
 The objective in this section is to walk you through integrating your SSIS project and package with Team
System source control and versioning functionality.

 1. To add your SSIS project to the Team Project, open the Solution Explorer, right - click the project,
and click Add to Source Control.

 2. The Add Solution SSIS VSTS Integration Example to Source Control dialog box appears
containing a list of Team Projects. Select the SSIS VSTS Project you created earlier, as shown in
Figure 15 - 39 .

Figure 15-39

 3. Click OK to continue. You have successfully created a Team Project and an SSIS project. The
Team Project contains version control information — even now.

 4. Click View Other Windows Pending Changes to view the current source control status for
the SSIS project, as shown in Figure 15 - 40 .

c15.indd 597c15.indd 597 8/28/08 12:38:00 PM8/28/08 12:38:00 PM

Chapter 15: Source Control and Software Development Life Cycle

598

 The Change column indicates that the files are currently in an Add status. This means the files
are not yet source - controlled but are ready to be added to source control.

 5. Click the Check In button to add the current SSIS VSTS Integration Example project to the
SSIS VSTS Project ’ s source control. This clears the Pending Checkin list. Editing the SSIS VSTS
Integration Example project will cause the affected files to reappear in the Pending Checkin list.

 Any change to the SSIS VSTS Integration Example project is now tracked against the source - controlled
version maintained by the SSIS VSTS Project. Seemingly insignificant changes count: For instance,
moving any of the items in the Data Flow workspace is considered an edit to the package item and is
tracked.

 The default behavior for source control in Visual Studio is that checked - in items are
 automatically checked out when edited.

 6. You can view the current status of all Team Projects on your Team Foundation Server in the
Source Control Explorer. To access the Source Control Explorer, double - click Source Control in
the Team Explorer or click View Other Windows Source Control Explorer as shown in
Figure 15 - 41 .

Figure 15-40

c15.indd 598c15.indd 598 8/28/08 12:38:01 PM8/28/08 12:38:01 PM

Chapter 15: Source Control and Software Development Life Cycle

599

 This next example will now implement a larger change to demonstrate practical source control
management before moving into some advanced source control functionality.

 1. In your SSIS project, add an Execute SQL Task to the Control Flow workspace. Configure the
task by setting the Connection Type to OLE DB, the Connection to your AdventureWorks2008
connection, and the SQLSourceType to Direct input. Set the SQL Statement to the following:

if not exists(select * from sysobjects where id = object_id(‘Log’)
 and ObjectProperty(id, ‘IsUserTable’) = 1)
 begin
 CREATE TABLE Log (
 LogDateTime datetime NOT NULL,
 LogLocation VarChar(50) NOT NULL,
 LogEvent VarChar(50) NOT NULL,
 LogDetails VarChar(1000) NULL,
 LogCount Int NULL
) ON [Primary]
 ALTER TABLE Log ADD CONSTRAINT DF_Log_LogDateTime DEFAULT (getdate()) FOR
 LogDateTime
 end

INSERT INTO Log
(LogLocation, LogEvent, LogDetails, LogCount)
VALUES(‘SSISDemo’, ‘DataFlow’, ‘Completed’, ‘1st Run’)

Figure 15-41

c15.indd 599c15.indd 599 8/28/08 12:38:01 PM8/28/08 12:38:01 PM

Chapter 15: Source Control and Software Development Life Cycle

600

 2. It is always a good practice to check your SQL before execution. Do so by clicking the Parse
Query button and correct the SQL if necessary. Then click OK to continue.

 3. Connect the Data Flow Task to the Execute SQL Task by dragging the output (green arrow) of
the Data Flow Task over to the Execute SQL Task.

 4. Save your changes by clicking the Save button on the toolbar. You now have updated your SSIS
project and saved the changes to disk, but you have not committed the changes to source
control. You can verify this in the Pending Changes window by clicking View Other
Windows Pending Changes as shown in the lower window in Figure 15 - 42 .

Figure 15-42

 5. The Change column indicates that Package.dtsx is in an Edit status. This means that changes
to the existing source - controlled Package.dtsx file have been detected. Click the Check In
button to publish your changes to source control.

 The next section introduces shelving and unshelving changes, using the code in its current state.

 Shelving and Unshelving
 Shelving is a new concept in Microsoft source control technology since the release of VSTS. It allows you to
preserve a snapshot of the current source state on the server for later retrieval and resumed development.
You can also shelve code and pass it to another developer as part of a workload reassignment. In
automated nightly build environments, shelving provides a means to preserve semi - complete code in a
source control system without fully checking it into the build.

c15.indd 600c15.indd 600 8/28/08 12:38:01 PM8/28/08 12:38:01 PM

Chapter 15: Source Control and Software Development Life Cycle

601

 1. Shelving a package requires that you have a pending check - in. If there are no packages pending
a check - in, first make a change to the package such as moving the Data Flow Task. To shelve
code, click the Shelve button on the Pending Checkin toolbar. The Shelve dialog box appears, as
shown in Figure 15 - 43 .

Figure 15-43

 The “ Preserve pending changes locally ” checkbox allows you to choose between rolling back or
keeping the edits since the last source code check - in. Checking the checkbox will keep the
changes. Unchecking the checkbox will roll changes back to the last source - controlled version.

 The rollback will effectively “ undo ” all changes — even changes saved to disk.

 2. Leave the “ Preserve pending changes locally ” checkbox checked and click Shelve to proceed.

 The shelving process has stored the code changes for later use, and you or other developers on your team
can resume the development process from the point of the original code check - in before the modified
version was shelved. At some point you may need to go back and unshelve the code. This can be
handled with the following steps, but before unshelving, you need to have all pending code checked in.

c15.indd 601c15.indd 601 8/28/08 12:38:02 PM8/28/08 12:38:02 PM

Chapter 15: Source Control and Software Development Life Cycle

602

 1. To unshelve code, click the Unshelve button on the Pending Checkin toolbar. You ’ ll see the
dialog box shown in Figure 15 - 44 .

Figure 15-44

 2. Click Unshelve to proceed with unshelving. The Unshelve Details Wizard opens, providing
options for unshelving metadata and preserving the shelve set on the server.

 Also note that an administrator or the user who created the shelving can now delete the shelved files
after the code is checked back in.

 Unshelving code with conflicts will roll the project back to its state at the time of shelving. For this
reason, you may wish to consider shelving your current version of the code prior to unshelving a
previous version.

 If you are prompted to reload objects in your Visual Studio project, respond by clicking Yes or Yes to All.
Your current version will be rolled back to the shelve set version.

 Branching
 The ability to branch code provides a mechanism to preserve the current state of a SSIS project and
modify it in some fashion. Think of it as driving a stake in the sod of project space marking the status of
the current change set as “ good. ”

 To branch, open Source Control Explorer by clicking View Other Windows Source Control Explorer.
Right - click the project name you wish to branch and click Branch from the context menu, which brings
up the Branch dialog box shown in Figure 15 - 45 . Select a name for the branched project and enter it into
the To text box. Note the option to lock the new branch — thus preserving it indefinitely from accidental
modification. You can further secure the branched code by including the option to not create local
working copies for the new branch.

c15.indd 602c15.indd 602 8/28/08 12:38:02 PM8/28/08 12:38:02 PM

Chapter 15: Source Control and Software Development Life Cycle

603

 Merging
 Merging is the inverse operation for branching. It involves recombining code that has been modified with
a branch that has not been modified. A merge operation requires that the code has first been changed
and checked - in. Follow these steps to merge two branches:

 1. To merge projects, open Source Control Explorer. Right - click the name of the branched project
containing the changes and click Merge.

 2. The project you right - clicked in the previous step should appear in the Source Branch text box of
the Version Control Merge Wizard. Select the Target branch (the branch containing no changes)
from the Target Branch drop - down, as shown in Figure 15 - 46 . Note the options to merge all or
selected changes from the Source branch into the Target branch. Click Next to proceed.

Figure 15-45

Figure 15-46

c15.indd 603c15.indd 603 8/28/08 12:38:03 PM8/28/08 12:38:03 PM

Chapter 15: Source Control and Software Development Life Cycle

604

 3. The Source Control Merge Wizard allows users to select the version criteria during merge. The
options include Latest Version (default), Workspace, Label, Date, and Change Set. Click Finish to
proceed.

 If the Version Control Merge Wizard encounters errors while attempting the merge, the Resolve Conflicts
dialog box is displayed. Click Auto - Merge All to attempt an automatic merge. Click Resolve to manually
merge branches.

 When all conflicts have been resolved, the Resolve Conflicts dialog will reflect this condition.

 You should never merge the XML code within a package file from different versions. This could corrupt
the file. Therefore when merging projects, always merge the list of objects but not the files themselves.

 Labeling (Striping) Source Versions
 Labeling provides a means to mark (or “ stripe ”) a version of the code. Generally, labeling is the last step
performed in a source - controlled version of code — marking the version as complete. Additional
changes require a branch.

 1. To label a version, open Source Control Explorer. Right - click the project and click Apply Label.
Enter a name for the Label and optional comment. Click the Add button to select files or
project(s) to be labeled as shown in Figure 15 - 47 .

Figure 15-47

 2. Click OK to complete labeling.

c15.indd 604c15.indd 604 8/28/08 12:38:03 PM8/28/08 12:38:03 PM

Chapter 15: Source Control and Software Development Life Cycle

605

 Much has been debated about when to shelve, branch, or label. The following advice is recommended to
standardize your SSIS development process:

 Shelve: When your code is not code complete. In other words, if your code isn ’ t ready for the
nightly or weekly build, shelve it for now.

 Branch: When you need to add functionality and features to an application that can be
considered complete in some form. Some shops will have you branch if the code can be
successfully built; others will insist on no branching unless the code can be labeled.

 Label: When you wish to mark a version of the application as “ complete. ” In practice, labels are
the version; for instance “ 1.2.0.2406. ”

 Code Deployment and Promotion from
Development to Test to Production

 SQL Server Integration Services is decoupled from the SQL Server engine. Packages are developed in
either Business Intelligence Development Studio or Visual Studio. Because of this, code promotion is
addressed in different ways.

 After packages are developed, they exist in XML files with a .dtsx file extension. The packages can then
be deployed to the file system of a test or production server, or they can be deployed to a SQL Server
database where they can reside in the MSDB database.

 The Deployment Wizard
 You will now look at one method for migrating a package created in Visual Studio into an instance of
SQL Server using the Deployment Wizard.

 1. In Solution Explorer, right - click the project and click Properties to display the project Property
Pages. Click Deployment Utility beneath Configuration Properties and set
CreateDeploymentUtility to True, as shown in Figure 15 - 48 .

❑

❑

❑

Figure 15-48

c15.indd 605c15.indd 605 8/28/08 12:38:03 PM8/28/08 12:38:03 PM

Chapter 15: Source Control and Software Development Life Cycle

606

 2. Click OK to close the Property Pages.

 3. Build the solution in Visual Studio (or Business BIDS) by clicking Build the Build Solution
(or Build [Solution Name]).

 4. A \Deployment folder is created in the project \bin directory if you accepted the Configuration
Property defaults in a previous step. The Deployment folder contains the package .dtsx files
(one per package in the project) and a file of type SSISDeploymentManifest (one per project).
To deploy the package, right - click the SSISDeploymentManifest file and click Deploy to start the
Package Installation Wizard.

 The Package Installation Wizard allows you to install an SSIS package to an instance of SQL
Server (which is managed by the Integration Services service) or to a File System location.
For SQL Server or File System installations, a folder is created (the default directory is in
 %Program Files%) to hold support files only or support and package .dtsx files, respectively —
 as shown in Figure 15 - 49 .

Figure 15-49

 5. After you select the installation location, click Next to continue.

 6. A confirmation screen displays; click Next to continue. A summary displays showing the
location of the files installed; click Finish to complete the installation.

 Import a Package
 Another method for migrating a code - complete package is to import it directly into an instance of
Integration Services on a target server, as follows:

 1. To import a package into SQL Server (through the Integration Services service) open Microsoft
SQL Server Management Studio and connect to an instance of Integration Services on the
destination SQL Server.

c15.indd 606c15.indd 606 8/28/08 12:38:04 PM8/28/08 12:38:04 PM

Chapter 15: Source Control and Software Development Life Cycle

607

 2. In the Integration Services tree view, expand the Stored Packages item. There are two sub - items
listed beneath Stored Packages: File System and MSDB. The package may be imported into
either (or both — with the same name, if desired). Right - click File System or MSDB and click
Import Package to begin the import.

 3. Select a Package location (SQL Server, File System, or SSIS Package Store). Choosing File System
disables the Server text box and Authentication controls. Select File System.

 4. Click the ellipsis beside the Package Path text box and navigate to the .dtsx file of the package
you desire to import as shown in Figure 15 - 50 . Enter a Package name in the appropriate text box
and click OK to import the package.

Figure 15-50

 Once a package is imported into an instance of SQL Server Integration Services, it may be exported to
another instance of SQL Server, File System, or SSIS Package Store via the Export Package functionality
as shown in Figure 15 - 51 .

 To start the export, right - click the Package name and click Export Package.

Figure 15-51

c15.indd 607c15.indd 607 8/28/08 12:38:04 PM8/28/08 12:38:04 PM

Chapter 15: Source Control and Software Development Life Cycle

608

 Export functionality can be used to promote SSIS packages from development to test to production
environments .

 Summary
 You now have a clearer picture of the Software Development Life Cycle of SSIS projects. In this
chapter, you learned how to use Visual Studio to add SSIS projects to Microsoft Visual SourceSafe. You
also learned how to do the following:

 Create a Team Project in Team System

 Add an SSIS project to the Team Project

 Manage and report project status

 Control the SSIS source code

 Finally, you have more experience with code promotion — deploying an SSIS package from
Development to an Integration Services server, as well as exporting a package to another Integration
Services server.

 You also know more about software development methodologies and about how Team Foundation
Server allows you to customize Team System to clearly reflect your methodology of choice.

❑

❑

❑

❑

c15.indd 608c15.indd 608 8/28/08 12:38:05 PM8/28/08 12:38:05 PM

 DTS 2000 Migration

 By now, you are probably pretty familiar with various basic aspects of SSIS. In earlier chapters,
you ’ ve studied the new SSIS interface, the new object model, internal design, and how to write
SSIS packages.

 In SQL Server 2008, you can easily run SQL Server 2000 DTS packages in the 2008 environment. In
a future release of SQL Server however, DTS will be officially deprecated and not supported.
In this chapter, you look at how to migrate DTS 2000 packages to SSIS and, if necessary, how to
run DTS 2000 packages under SSIS.

 Managing DTS 2000 Packages within
 SQL Server Management Studio

 Later in this chapter, we discuss how to migrate your DTS packages to SSIS, but for some
companies, that isn ’ t an option for a number of months until the migration project is approved. As
a temporary solution, you can choose to run DTS 2000 packages under SSIS, if you have the Data
Transformation Services 2000 runtime installed or run the package from within the SQL Server
2008 Management Studio using the SQL Server 2000 DTS runtime engine.

 To edit packages in SQL Server 2008, you ’ ll first need to install a component of the SQL Server 2005
(yes, SQL Server 2005) Feature Pack. The SQL Server Feature Pack is a series of optional
installations that can enhance your SQL Server experience like an OLE DB Provider for DB2 or in
our case the SQL Server 2000 DTS Designer Components. If you do not have this one component
installed, you will receive the following error when you try to open DTS packages in Management
Studio:

SQL Server 2000 DTS Designer Components are required to edit DTS packages.
Install the special Web download, “SQL Server 2000 DTS Designer Components” to
use this feature. (Microsoft.SqlServer.DtsObjectExplorerUI)

c16.indd 609c16.indd 609 8/28/08 12:41:46 PM8/28/08 12:41:46 PM

Chapter 16: DTS 2000 Migration

610

 To open a DTS package in Management Studio that is stored in SQL Server ’ s MSDB database, connect to the
database engine and select the package in the Management Legacy Data Transformation Services tree.
This will open the DTS Designer that you ’ re already familiar with. You can also right - click Data Transfor-
mation Services and select Open Package to open a COM - structured package (.dts). If you right - click the
DTS folder and select Import Package, you can import the package from the file system into the MSDB
database of your SQL Server 2008 instance.

 Once the package is open, you can edit the package just like you did in SQL Server 2000. The main
missing feature you will see is that you cannot create a new package in Management Studio. To create a
new package, you ’ ll have to open an existing DTS package, delete all the tasks, and then click Save As to
the new package name.

 Running DTS 2000 Packages under SSIS
 You can also run DTS packages in SSIS by using the Execute DTS Package Task. Though you can do this,
the package becomes difficult to manage because you have to manage two runtimes and logging
mechanisms. To try an example on how to do this: First, download the two sample DTS packages from
 www.wrox.com . Then, create a blank SSIS package called DTSExample.dtsx . In the Control Flow, drag
on an Execute DTS 2000 Package Task.

 In the task, set the StorageLocation property to Structured Storage File. Then, point the File property to
the DTS package you downloaded from the Wiley website as shown in Figure 16 - 1 . For the
PackageName property, select the most recent version of the package. The PackagePassword and
PackageID properties will automatically be updated.

Figure 16-1

c16.indd 610c16.indd 610 8/28/08 12:41:47 PM8/28/08 12:41:47 PM

Chapter 16: DTS 2000 Migration

611

 You can then click the Load DTS2000 Package Internally button to embed the package inside the SSIS
package so that you will no longer have to manage the package externally. If the DTS Designer
Components are installed, you can click Edit Package to open the Package Designer to make changes to
the package. Don ’ t make any changes to the package at this time. Close the DTS 2000 Package Designer
if it ’ s open, and then click OK. You will be at the design surface of the Control Flow tab, with the
package showing, as shown in Figure 16 - 2 .

Figure 16-2

 Test - run this package and it will be successful. If for any reason it is not, read the error message to find
out what went wrong and make modifications accordingly.

 Migrating DTS 2000 Packages to SSIS
 Microsoft provides the DTS Migration Wizard to facilitate the process of transferring your DTS 2000
packages to SSIS. The DTS Migration Wizard analyzes your current DTS 2000 package and tries to map
its tasks, components, global variables, and workflow constraints to their equivalent parts, where
applicable, in SSIS.

 The bad news is that because SSIS is totally reengineered, it is not possible to migrate all packages that
you can create in DTS 2000. The Migration Wizard provides a best - effort attempt. If your package cannot
be migrated using the wizard, you will have to upgrade it manually. In fact, for those packages, you
probably want to use manual upgrade anyway so that you can take full advantage of the enhanced
functions and capabilities. From personal experience of migrating thousands of packages, we ’ ve seen

c16.indd 611c16.indd 611 8/28/08 12:41:47 PM8/28/08 12:41:47 PM

Chapter 16: DTS 2000 Migration

612

anywhere between a 35 and 50 percent success rate using the wizard. We qualify a successful package
migration as a package that migrates with no intervention needed. To be clear, all of your DTS packages
will migrate to SSIS but there ’ s a strong chance that they will not work in SSIS once migrated. Here are a
few of the components in DTS and the chance that they will migrate with no issues to SSIS, based on our
conversion experience.

 DTS Object Migration Success to SSIS

 Execute SQL Task 95%

 Transform Data Task 50%

 ActiveX Script Task 10% (depending on what objects are in the task)

 OLAP Tasks 0%

 Flat File Source 25%

 OLE DB Source 75%

 The Transform Data Task may not migrate if any ActiveX scripting is inside of it. People would typically
use ActiveX script inside a Transform Data Task in order to apply business rules to the data as it moves
through the task. If the task cannot migrate to SSIS, it will instead migrate to an Execute DTS Package
Task and embed that one DTS task inside the task.

 The ActiveX Script Task in general will always migrate to an ActiveX Script Task in SSIS but there ’ s a fair
chance it won ’ t work once you click the Execute button. Whether the task works depends on what type
of code you ’ re doing inside of the task. The DTS object model and the SSIS object model are substantially
different, and some items may not work. If, however, you ’ re using a WMI object inside the script, the
ActiveX Script Task will function in SSIS. In addition to that, the ActiveX Script Task will be
decommissioned in a future release of SQL Server and need to be replaced anyway.

 The Flat File Source will always migrate to SSIS as well, but may require additional work once you
migrate. For example, if you have a flat file that does not map all of its columns to the destination in the
Transform Data Task, the migrated task in SSIS could potentially send the data to the wrong destination
column, which would be a horrible bug in your new package. It will be critically important to test each
of these and all converted packages after migration because of flaws like this in the wizard.

 In this section, you will see how to use the Migration Wizard to upgrade two sample DTS 2000
packages. You can download the two sample packages from www.wrox.com . The packages are identical
with one small exception, which is discussed momentarily. They will create a sample table in the
TempDB database to load with an Execute SQL Task and then send data into the table using a Transform
Data Task. The package, which is shown in Figure 16 - 3 , has a series of global variables to dynamically
configure the package. The main global variables set the server name (strServerName) and the location
of the flat file (strFileName). The dynamic nature of the package is done through the Dynamic
Properties Task.

c16.indd 612c16.indd 612 8/28/08 12:41:48 PM8/28/08 12:41:48 PM

Chapter 16: DTS 2000 Migration

613

 The Simple Package Load UCASE.dts package is slightly special, even though from all outward
appearances it looks identical to the Simple Package Load.dts package. The difference between the two
packages is that the Simple Package Load UCASE.dts package contains a small ActiveX script inside the
Transform Data Task (shown in Figure 16 - 4). To see the script, go to the Transform Data Task and double -
 click the line between the StateAbbr columns in the Transformations tab.

Figure 16-4

Figure 16-3

c16.indd 613c16.indd 613 8/28/08 12:41:48 PM8/28/08 12:41:48 PM

Chapter 16: DTS 2000 Migration

614

 The reason this package is included in the example packages is to show you how differently this package
is treated by the Package Migration Wizard. Any package that contains even the simplest ActiveX script
inside a transformation like this will not be properly migrated. Instead this logic will be broken into its
own Execute DTS 2000 Package Task in SSIS.

 Using the Package Migration Wizard
 You can invoke the Package Migration Wizard from multiple places. Depending on where you invoke
the wizard from, the migrated package destination location will be different. For example, if you
invoke the wizard from BIDS, it will assume that you want to migrate DTS 2000 packages into an SSIS
package file (.dtsx). If the wizard is invoked from Management Studio, it will assume that you want
to migrate the package into the MSDB database on a server you define. Following are ways you can
use to invoke the Package Migration Wizard:

 From SQL Server Management Studio, connect to the database engine, and you can invoke the
Package Migration Wizard by using the right - click context menu of the Data Transformation
Services Node under the Management Legacy Node in the Object Explorer.

 From BIDS, right - click SSIS Packages in Solution Explorer with the SSIS project open and pick
Migrate DTS 2000 Package.

 From a DOS prompt, type DTSMigrationWizard to invoke the wizard. By default, the binary
 DTSMigrationWizard.exe resides at C:\Program Files\Microsoft SQL Server\10\DTS\
Binn folder . This may be different in your environment if you customized your SQL Server
2008 installation.

 Because BIDS is the home where you create and edit your SSIS packages, you ’ ll use BIDS to see step -
by - step how you can migrate the package you created in the previous section. If you migrate the
packages using Management Studio, your packages will be deployed right in the MSDB database, and
you won ’ t be able edit the package easily.

 To start this example, place the sample file (ZipCodeExtract.csv) in the C:\Projects\
Pro SSIS 2008 directory. Invoke the Package Migration Wizard from BIDS by right - clicking the SSIS
Packages Node and selecting Migrate DTS 2000 Package. You will see a welcome window from the
wizard. Click Next to continue.

 In the next page, shown in Figure 16 - 5 , you choose the source type and location. In this case, you can
assume that your package is stored in a .DTS package file (Structured Storage File). If you choose this
option, you can only migrate a single package at a time. After you select Structured Storage File, point to
the location where your file is located (C:\Projects\Pro SSIS 2008\Simple Package Load.dts in
my case). If you select Microsoft SQL Server, you can migrate all the packages on that instance to SSIS.
Click Next.

❑

❑

❑

c16.indd 614c16.indd 614 8/28/08 12:41:48 PM8/28/08 12:41:48 PM

Chapter 16: DTS 2000 Migration

615

 The next page of the wizard asks you to pick the destination location of the package you are migrating,
as shown in Figure 16 - 6 . As mentioned earlier, because the wizard is invoked within BIDS, it assumes
that you want the package in a .dtsx file format. You can see from the figure that the Destination drop -
 down list box is grayed out and the default selection is DTSX File. If you want to migrate the package to
a database server, invoke the package from the command line instead. In this case, you can pick the
C:\Projects\Pro SSIS 2008 directory as the destination folder. Click Next.

Figure 16-5

Figure 16-6

c16.indd 615c16.indd 615 8/28/08 12:41:49 PM8/28/08 12:41:49 PM

Chapter 16: DTS 2000 Migration

616

 In the next step, the wizard lists the packages available on the source server that can be migrated, as
shown in Figure 16 - 7 . Because we ’ re migrating from a structured file (.dts), there ’ s only one package,
Simple Package Load, which you downloaded earlier. Check the box next to the package name. Note
that it even gives you the choice of migrating previous versions of the package. You can also change the
name of the SSIS package that will be created as well. Click Next.

Figure 16-7

 The wizard then asks you to provide a log file location, as shown in Figure 16 - 8 . The log file will
log the migration process. This information will be valuable if the migration is unsuccessful, because the
migration process can take a large amount of time in some cases if you ’ re migrating a larger number of
packages. For example, a test case of migrating 50 mildly complex packages took 40 minutes, and by
optionally creating a log, you can walk away from the process and read the log when you come back.
You will use the C:\Projects\Pro SSIS 2008\MigrationLog.log file for this example. Click Next.

Figure 16-8

c16.indd 616c16.indd 616 8/28/08 12:41:49 PM8/28/08 12:41:49 PM

Chapter 16: DTS 2000 Migration

617

 You now will see a summary screen of this migration - related information, as shown in Figure 16 - 9 . You
can scan over, and go back and change settings, if desired. Otherwise, click Finish to migrate the
package now.

Figure 16-9

 The migration process starts; you will see its progress in real time. After it is done, you can click the
Report button to view the migration report. In this case, your package has migrated successfully, as
shown in Figure 16 - 10 . Click Close to finish the Package Migration Wizard and be returned back to the
BIDS environment where you can edit the package. If for any reason the migration is not successful,
the error will be in the final report. Based on the error message, you will be able to fix what is wrong to
continue.

Figure 16-10

c16.indd 617c16.indd 617 8/28/08 12:41:49 PM8/28/08 12:41:49 PM

Chapter 16: DTS 2000 Migration

618

 With the package now migrated, you will want to complete the migration final touches in BIDS and test
it there. The converted package looks like Figure 16 - 11 . Earlier on, you ’ ll recall that the package had two
global variables that were used by the Dynamic Properties Task to set the connection properties of the
server name and the flat file connection string. In SSIS, there is no equivalent task, so the Dynamic
Properties has now become a non - functional Script Task.

Figure 16-11

 Inside the Script Task, you ’ ll see that all the code is commented out and essentially acts as a placeholder
to remind you to convert the logic to expressions. The script will show you all the properties that the
variables were setting previously. You will replace this logic with SSIS expressions.

 To map the first connection to the variable, left - click the Text File (Source) Connection Manager and in the
Properties window, click the ellipsis button next to the Expressions property. This opens the Properties
Expression Editor. Select the ConnectionString property and click the ellipsis button in the Expression
column. This opens the Expression Builder screen, which aids in writing expressions. Drag the strFileName
variable from the Variables tree in the top - left pane as shown in Figure 16 - 12 and click OK twice.

c16.indd 618c16.indd 618 8/28/08 12:41:50 PM8/28/08 12:41:50 PM

Chapter 16: DTS 2000 Migration

619

 Repeat the same process over again for the Local TempDB Connection Manager. This time, you ’ ll set the
ServerName property to the strServerName variable. After you have this process complete, you can
remove the Script Task in your package. You ’ re now ready to execute the package.

 After you ’ re able to see the first package working, you can migrate the second package, Simple Package
Load UCASE.dts, which has the ActiveX script inside of the Transform Data Task. This time you ’ ll see
that because of the ActiveX script, one piece of the package is migrated into an Execute DTS 2000
Package Task renamed Load ZipCodes (shown in Figure 16 - 13). To truly migrate this package to SSIS,
you would want to remove this task and rebuild the logic for that one section from scratch.

Figure 16-12

Figure 16-13

c16.indd 619c16.indd 619 8/28/08 12:41:50 PM8/28/08 12:41:50 PM

Chapter 16: DTS 2000 Migration

620

 Third - Party Migration Solution
 DTS xChange (http://www.dtsxchange.com) is a solution offered by a Microsoft partner, Pragmatic
Works Software, which migrates DTS packages to SSIS while applying a series of best practices rules to
the packages. The solution is broken into three pillars:

 Profile: DTS xChange Profiler helps you estimate your migration project in hours and dollar
cost whether you choose to use an automation tool or not.

 Convert: DTS xChange will migrate your packages, applying rules to each DTS package as it
migrates them to enforce best practices.

 Monitor: The SSIS Performance Warehouse is a software development kit (SDK) to help you get
the most out of your new SSIS environment. It contains a series of reports and a data warehouse
to monitor your SSIS package execution.

 The DTS xChange Profiler feature allows you to profile how large of a migration effort you have to
completely migrate to SSIS in terms of dollars and hours. The process allows you to specify how long
you believe each type of task will take you to migrate, whether you choose to use DTS xChange or
manually re - engineer the package. Then, a report is generated with the migration cost in terms of dollars
and hours to migrate each package and the total cost in man - hours.

 The core component to DTS xChange is the actual migration of the packages. Prior to migrating the
packages, you can choose between a dozen best practice rules that Pragmatic Works has implemented
over thousands of packages for its customers. These rules will enable you to truly capture the full
benefit of SSIS and realize some of your investment in the new platform. DTS xChange will also migrate
many of the tasks that the built - in Migration Wizard cannot migrate, like Dynamic Properties Tasks.
Some of these best practice rules can also be applied to new packages you create in the SSIS environment
by using a separate tool called SSIS Wiz by Pragmatic Works.

 Migration of hundreds of packages is a fast process with DTS xChange. As packages migrate, they are
also validated to ensure that the package will work in production once you click the Start button. The
program will check to ensure that files exists, table names that you think are there have actually been
deployed, and that your credentials will also work in the package.

 The last component of DTS xChange is a reporting and analytics component called the SSIS Performance
Warehouse. This component is a software development kit (SDK) that will send auditing information
about your package runtime and statistics into a data warehouse for future inspection. There is also a
series of reports and cubes that goes on top of the data warehouse for easy viewing.

 You can download DTS xChange from http://www.DTSxChange.com , and the demo version can
migrate up to five packages for free, and profile your entire environment.

❑

❑

❑

c16.indd 620c16.indd 620 8/28/08 12:41:51 PM8/28/08 12:41:51 PM

Chapter 16: DTS 2000 Migration

621

 Summary
 In this chapter, you learned about DTS 2000 package migration, and about running DTS 2000 packages
within SSIS. Eventually, you will have to migrate all your DTS 2000 packages into SSIS packages. If you
have many packages and they are fairly complex, you can choose to install the DTS 2000 runtime and
continue running them within SSIS. You can start migrating smaller and simpler packages with the
Migration Wizard. As you gain more experience, you can start to tackle more complex packages. As
mentioned earlier, you will probably have to rethink how the old package was designed and then
redesign it using SSIS ’ s enhanced functionality. This way, you will be able to fully take advantage of the
richer functionality, and better performance and scalability provided by SSIS.

c16.indd 621c16.indd 621 8/28/08 12:41:51 PM8/28/08 12:41:51 PM

 Error and Event Handling

 SQL Server Integration Services provides some valuable features to enable you to control the
workflow of your SSIS packages at a very granular level. Functionality that you might expect to
be available only by scripting can often be accomplished by setting a few properties of a
component. In addition, SSIS comes with powerful error - handling capabilities, the ability to log
detailed information as the package runs, and debugging functionality that speeds up
troubleshooting and design.

 This chapter walks you through controlling the package workflow, beginning at the highest level
using precedence constraints and then drilling down to event handling. You ’ ll see how trappable
events play a role in breakpoints, and how to perform exception handling for bad data in the Data
Flow. Finally, you learn how these features can be used for troubleshooting, debugging, and
enabling you to build robust SSIS packages.

 Precedence Constraint
 Precedence constraints are the green, red, and blue connectors in the Control Flow that can be
used to handle error conditions and the workflow of a package.

 Be aware, precedence constraints look a lot like data paths in the Data Flow, but they are much
different. On the one hand, precedence constraints define what tasks should be executed in which
order; on the other hand, Data Flow paths define what transformations and destinations data
should be routed to. Data Flow paths deal with moving data; precedence constraints deal with
workflow handling.

c17.indd 623c17.indd 623 8/28/08 12:42:32 PM8/28/08 12:42:32 PM

Chapter 17: Error and Event Handling

624

 Precedence Constraint Basics
 The main purpose of precedence constraints is to control when tasks and containers should run in
relation to one another. This revolves around whether tasks are successful (green) or fail (red) or whether
they just complete (blue for success or failure). Precedence constraints can be more granularly controlled
through advanced properties, which are addressed in the next section.

 Figure 17 - 1 shows a typical example. If the Initial Data Flow Task completes successfully, the Success
Data Flow Task will execute. A green arrow (on the left) points to the Success Data Flow Task. If the
Initial Data Flow Task fails, the Failure Send Mail Task executes, sending notification of the failure. A red
arrow (in the middle) points to the Failure Send Mail Task. No matter what happens, the Completion
Script Task will always execute. A blue arrow (on the right) points to the Completion Script Task.

Figure 17-1

 By default, the precedence constraint will be a green arrow designating success. To change how the
precedence constraint is evaluated, you can right - click the arrow and choose a different outcome from
the pop - up menu, as shown in Figure 17 - 2 .

 Tasks may also be combined into groups by using containers, and with this design the workflow can be
controlled by the success or failure of the container. For example, a package may have several Data Flow
Tasks that can run in parallel, each loading data from a different source. All of these must complete
successfully before continuing on to the next step. These tasks can be added to a Sequence Container,

Figure 17-2

c17.indd 624c17.indd 624 8/28/08 12:42:33 PM8/28/08 12:42:33 PM

Chapter 17: Error and Event Handling

625

and the precedence constraint can be drawn from the container to the next step. Figure 17 - 3 is an
example showing how a Sequence Container might be used. After the Initialization Script runs, the
Import Data Container executes. Within it, three Data Flow processes run in parallel. A failure of any of
the Data Flow Tasks will cause the Import Data Container to fail, and the failure message will be sent. If
all three complete successfully, the Clean Up Script will run.

 Advanced Precedence Constraints and Expressions
 Beyond the basics, precedence constraints can also be configured to evaluate Boolean expressions and be
combined with other precedence constraints through a logical OR evaluation. The advanced precedence
constraints are defined through the Precedence Constraint Editor, which Figure 17 - 4 shows. To pull up
the editor, either double - click the precedence constraint arrow or right - click the arrow and choose Edit.

Figure 17-4

Figure 17-3

c17.indd 625c17.indd 625 8/28/08 12:42:33 PM8/28/08 12:42:33 PM

Chapter 17: Error and Event Handling

626

 Using Boolean Expressions with Precedence Constraints
 With the editor, the workflow within a package can be controlled by using Boolean expressions in place
of, or in addition to, the outcome of the initial task or container. Any expression that can be evaluated to
True or False can be used. For example, the value of a variable that changes as the package executes can
be compared to a constant. If the comparison resolves to True, the connected task will execute. The way
a precedence constraint is evaluated can be based on both the outcome of the initial task and an
expression. This allows the SSIS developer to finely tune the workflow of a package. The following table
shows the four Evaluation Operation options contained in the drop - down box for configuring a
precedence constraint:

 Evaluation Operation Definition

 Constraint The execution result is applied to the constraint (success, failure, or
completion) without the use of an expression .

 Expression Any expression that evaluates to True or False is used to evaluate
the constraint without the consideration of the execution result .

 Expression AND Constraint Both the specified execution result and an expression condition
must be satisfied for the constraint to allow the next task to run .

 Expression OR Constraint Either the specified execution result or an expression condition
must be satisfied for the constraint to allow the next task to run .

 There you can choose which type of Evaluation Operation to use and set the value of the constraint and/
or supply the expression.

 In the following example, you simulate flipping a coin to learn more about using expressions with
precedence constraints. First, create a new table to hold the results. Connect to a test database in SQL
Server Management Studio and run this script:

CREATE TABLE CoinToss (
 Heads INT NULL,
 Tails INT NULL)
GO
INSERT INTO CoinToss SELECT 0,0

 1. Start a new SSIS project in BIDS.

 2. Create a Connection Manager pointing to the test database where the CoinToss table was
created. The steps for creating a Connection Manager are covered in Chapter 3 .

 3. Add an Execute SQL Task to the Control Flow design area.

 4. Change the name of the task to Clear Results.

 5. Double - click the Clear Results Task to open the Execute SQL Task Editor.

 6. Set the Connection property to point to the Connection Manager that you just created and then
type the following code in the SQLStatement field:

UPDATE CoinToss
SET Tails = 0, Heads = 0

c17.indd 626c17.indd 626 8/28/08 12:42:33 PM8/28/08 12:42:33 PM

Chapter 17: Error and Event Handling

627

 7. Click OK to accept the configuration and dismiss the dialog box.

 8. Right - click the Control Flow design area and select Variables from the pop - up menu to open the
Variables window.

 9. Create a new package - level variable called Result. Set the Data Type to Int32.

 10. Add a For Loop Container to the design area. You will use the container to simulate flipping the
coin a given number of times, so name it Coin Toss Simulator.

 11. Drag the Precedence Constraint from the Clear Results Task to the Coin Toss Simulator.

 12. Select the Coin Toss Simulator and open the Variables window.

 13. Add a variable called Count, with a Data Type of Int32. In this case, the variable will only be
used by the For Loop and the scope will be Coin Toss Simulator.

 14. Double - click the Coin Toss Simulator Container to open the For Loop Editor.

 15. Set the properties as in the following table and click OK.

 Property Value

 InitExpression @Count = 0

 EvalExpression @Count < 100

 AssignExpression @Count = @Count + 1

 This should look familiar to you if you have programmed in almost any language: The For loop
will execute 100 times.

 16. Drag a Script Task into the Coin Toss Simulator. Because the Coin Toss Simulator is a container,
you can drag other tasks into it. Name the Script Task “ Toss. ”

 17. Double - click Toss to open the Script Task Editor. In the Script pane, ReadWriteVariables section,
type in User::Result . The script will have access only to variables set up in this way.

 18. Click Design Script to open the Visual Studio design environment. Each time this script runs, it
will randomly set the Result variable equal to a one or a two. Replace Sub Main with this code:

 Public Sub Main()
 Randomize()
 Dts.Variables(“User::Result”).Value = CInt(Int((2 * Rnd()) + 1))
 Dts.TaskResult = ScriptResults.Success
 End Sub

 19. Close the script design area and click OK to accept the changes.

 20. Drag two Execute SQL Tasks into the Coin Toss Simulator Container. Name one Heads and the
other Tails.

c17.indd 627c17.indd 627 8/28/08 12:42:34 PM8/28/08 12:42:34 PM

Chapter 17: Error and Event Handling

628

 21. Connect the Coin Toss Script Task to each of the Execute SQL Tasks.

 22. Double - click the Precedence Constraint pointing to Heads to bring up the Precedence Constraint
Editor.

 23. Change the Evaluation Operation from Constraint to Expression. The Expression text box will
now become available. Type the following into the Expression property:

@Result == 1

 24. Click OK. The precedence constraint will change from green to blue, meaning completion, and
will have an f x symbol next to it specifying that the precedence uses an expression. Figure 17 - 5
shows the Precedence Constraint Editor with an expression set.

Figure 17-5

 When evaluating two values in an SSIS Boolean expression, you will need to use two equals, signs (==).
This indicates that the expression will return TRUE or FALSE depending on whether the values are
equal. NULL values do not evaluate, so be sure to check to make sure that both sides of the == will
return an actual value. The only time you will use a single equals sign is when you are using an SSIS
expression to set the value of a variable, such as when using a For Loop Container.

 25. To continue with the example, next open the properties of the precedence constraint that is
connected to the Tails Task. Change the Evaluation Operation from Constraint to Expression.
Type this in the Expression property:

@Result == 2

 26. Click OK to accept the properties. At this point, the package should resemble Figure 17 - 6 .

c17.indd 628c17.indd 628 8/28/08 12:42:34 PM8/28/08 12:42:34 PM

Chapter 17: Error and Event Handling

629

 Just a couple more details and you ’ ll be ready to run the package!

 27. Double - click Heads to open the Execute SQL Task Editor. In the Connection property, set the
value to the test database Connection Manager. Type this in the SQLStatement property to
increment the count in the CoinToss table:

UPDATE CoinToss SET Heads = Heads + 1

 28. Click OK to accept the changes. Bring up the Execute SQL Task Editor for the Tails object. Set the
Connection property to the test database Connection Manager. Type this code in the
SQLStatement property:

UPDATE CoinToss SET Tails = Tails + 1

 29. Click OK to accept the configuration and run the package.

 As the package runs, you can see that sometimes Heads will execute, and sometimes Tails will execute.
Once the package execution completes, return to SQL Server Management Studio to view the results by
running this query:

SELECT * FROM CoinToss

 Out of 100 coin tosses, Heads should have come up approximately 50 times.

Figure 17-6

c17.indd 629c17.indd 629 8/28/08 12:42:35 PM8/28/08 12:42:35 PM

Chapter 17: Error and Event Handling

630

 This simple example demonstrates how to use an expression to control the package workflow instead of
or combined with the outcome of a task. In a business application, maybe the precedence constraint
could be used to ensure that the number of rows affected by a previous step is less than a certain value.
Or possibly, a task should execute only if it is a particular day of the week. Any variable within scope
can be used, and several functions and operators are available to build the expression. Any valid
expression will work as long as it evaluates to True or False. See Chapter 6 to learn more about building
and using expressions.

 Working with Multiple Precedence Constraints
 In your package workflow, you can have multiple precedence constraints pointing to the same task. By
default, the conditions of both must be True to enable execution of the constrained task. You also have
the option of running a task if at least one of the conditions is True by setting the Multiple Constraint
property to “ Logical OR. One constraint must evaluate to True ” (see Figure 17 - 7).

Figure 17-7

 The solid arrows change to dotted arrows when the Logical OR option is chosen. Figure 17 - 8 shows
how the Send Mail Task will execute if either of the Data Flow Tasks fails. In this example, both
precedence constraints are configured to fail but the Logical OR has been set instead of the Logical AND.
Because the Logical OR has been turned on, the precedence constraints are dashed lines. Figure 17 - 8
shows the Import Customers Data Flow is successful (green), but the Import Orders failed (red). Because
one of the Data Flows is red, the Error Message Send Mail Task is executing. If both Data Flows had been
successful, the Error Message Task would not have run.

c17.indd 630c17.indd 630 8/28/08 12:42:35 PM8/28/08 12:42:35 PM

Chapter 17: Error and Event Handling

631

 Let ’ s take a look at another example where an expression is evaluated in addition to using multiple
constraints. In this workflow we are loading data from a series of files that exist on a network drive into a
SQL database. The business rules require that no file will be allowed to be loaded into the database more
than once, and the files must be archived, whether they have been loaded previously or not. Figure 17 - 9
shows the workflow with the required business rules implemented.

Figure 17-9

 In this workflow, a Foreach Loop Container will be used to loop through the files you want to load into
the database. With each iteration of the loop, the filename will be assigned to a variable, which will then
be used in the next task (the Execute SQL Task) to determine if it has been previously loaded. The
Execute SQL Task called Check Log Table will use the variable that holds the current filename as an
input parameter to a SQL statement to determine if it does in fact exist in the table. The result of the
query will return either a 1 or a 0, to be stored in a variable that is called User::blnFlag. This task is
pivotal in that it will be the basis for the evaluation within the precedence constraints. Double - clicking
the precedence constraint connecting the Check Log Table Execute SQL Task and the Process Files Data
Flow Task will display the dialog as shown in Figure 17 - 10 .

Figure 17-8

c17.indd 631c17.indd 631 8/28/08 12:42:35 PM8/28/08 12:42:35 PM

Chapter 17: Error and Event Handling

632

 The properties of the precedence constraint in Figure 17 - 10 are set to allow the workflow to pass through
to the next task (the Process Files Data Flow Task) if the previous step succeeded and the expression has
evaluated to true. What this constraint is essentially asking is: “ Was the previous step successful and is
this a new file that has not been previously loaded? ” Now that you have determined the business rule
behind that constraint, double - click the “ dotted ” precedence constraint that connects the Check Log
Table Execute SQL Task and the Move to Archive File System Task. The dialog presented for this
constraint is shown in Figure 17 - 11

Figure 17-10

Figure 17-11

 The properties of the precedence constraint in Figure 17 - 11 are representing a couple of pieces of
business rule logic. First, the evaluation operation is set to Expression and Constraint. Second, the

c17.indd 632c17.indd 632 8/28/08 12:42:36 PM8/28/08 12:42:36 PM

Chapter 17: Error and Event Handling

633

Expression is testing whether your variable @blnFlag is greater than 0. The interpretation of this
expression is asking: “ Has the current file been previously loaded? ” Lastly, the Logical OR radio button
is selected to facilitate an “ OR ” condition between your two precedence constraints. In plain English, the
properties that are defined for the two precedence constraints will allow the file to be processed and
archived if it hasn ’ t been previously loaded OR to just archive the file.

 By using precedence constraints, you control the order of events within a package. After a task or
container executes, and depending on how the precedence constraint between the two components was
evaluated, the second task or container runs. With all of these options, you can control the workflow of
your package at a very granular level. The great thing about precedence constraints in SSIS is that they
afford you the flexibility to implement complex business rules like the scenario previously demonstrated.
Drilling down a bit more, you will now learn another way to control package execution: event handling.

 Event Handling
 Each task and container raises events as it runs, such as an OnError event, among several others that are
discussed shortly. SSIS allows you to trap and handle these events by setting up workflows that will run
when particular events fire. This functionality in SSIS is called event handlers.

 Event handlers are set up by navigating to the Event Handlers tab in the SSIS package design
environment. Figure 17 - 9 shows the Event Handler tab right next to the Control Flow and Data Flow
tabs that you have worked with up to now. The Event Handler design area is just like the Control
Flow area — you can use the same component types and do anything that is possible at the Control Flow
level. Once several event handlers have been added to a package, the workflow could get very
complicated and difficult to understand if you had to view it all at once, so separating event handlers
from the Control Flow makes sense.

Figure 17-12

c17.indd 633c17.indd 633 8/28/08 12:42:36 PM8/28/08 12:42:36 PM

Chapter 17: Error and Event Handling

634

 It is important, however, to make sure your packages are well designed and documented because an
event handler that was set up and then forgotten could be the source of a hard - to - troubleshoot problem
within the package.

 As you can see in Figure 17 - 12 , the event handler functionality is driven by two drop - down menus. The
first, Executable, is used to set which task or container in the package the event handler is associated
with. The highest level executable is the package itself, followed by the tasks and containers contained in
the Control Flow.

 The second drop - down, called Event Handler, defines what event the event handler will listen for in the
defined executable. Events are described next.

 Events
 As the package and each task or container executes, a dozen different events are raised. You can capture
the events by adding event handlers that will run when the event fires. The OnError event may be the
event most frequently handled, but some of the other events will be useful in complex ETL packages.
Events can also be used to set breakpoints and control logging, which are all covered later in the chapter.

 The following table shows a list of all of the events:

 Event Description

 OnError This event is raised whenever an error occurs. You can use this event
to capture errors instead of using the failure precedence constraint to
redirect the workflow.

 OnExecStatusChanged Each time the execution status changes on a task or container, this
event fires.

 OnInformation During the validation and execution events of the tasks and
containers, this event reports information. This is the information
displayed in the Progress tab.

 OnPostExecute Just after task or container execution completes, this event fires. You
could use this event to clean up work tables or delete no - longer -
 needed files.

 OnPostValidate This event fires after validation of the task is complete.

 OnPreExecute Just before a task or container runs, this event fires. This event could
be used to check the value of a variable before the task executes.

 OnPreValidate Before validation of a task begins, this event fires.

 OnProgress As measurable progress is made, this event fires. The information
about the progress of an event can be viewed in the Progress tab.

 OnQueryCancel This event is raised when an executable checks to see if it should stop
or continue running.

c17.indd 634c17.indd 634 8/28/08 12:42:37 PM8/28/08 12:42:37 PM

Chapter 17: Error and Event Handling

635

 Event Description

 OnTaskFailed It ’ s possible for a task or container to fail without actual errors. You
can trap that condition with this event.

 OnVariableValueChanged Any time a variable value changes, this event fires. Setting the
 RaiseChangeEvent property to False prevents this event from
firing. This event will be very useful when debugging a package.

 OnWarning Warnings are less critical than errors. This event fires when a warning
occurs. Warnings are displayed in the Progress tab.

 Inventory Example
 This example demonstrates how to use event handlers by setting up a simulation that checks the
inventory status of some random products from AdventureWorks. For this example, you begin by
setting up a new SSIS package that performs several steps, next you define an OnError event handler
event to fire when an error occurs, and finally, you use the OnPreExecute event to capture execution
details of the package.

 1. Run this script in SQL Server Management Studio against the AdventureWorks2008 database to
create the tables and a stored procedure used in the example:

USE AdventureWorks2008
GO
CREATE TABLE InventoryCheck (
 ProductID INT)
GO
CREATE TABLE InventoryWarning (
 ProductID INT, ReorderQuantity INT)
GO
CREATE TABLE MissingProductID (
 ProductID INT)
GO
CREATE PROC usp_GetReorderQuantity @ProductID INT,
 @ReorderQuantity INT OUTPUT AS
 IF NOT EXISTS(SELECT ProductID FROM Production.ProductInventory
 WHERE ProductID = @ProductID) BEGIN
 RAISERROR(‘InvalidID’,16,1)
 RETURN 1
 END

 SELECT @ReorderQuantity = SafetyStockLevel - SUM(Quantity)
 FROM Production.Product AS p
 INNER JOIN Production.ProductInventory AS i
 ON p.ProductID = i.ProductID
 WHERE p.ProductID = @ProductID
 GROUP BY p.ProductID, SafetyStockLevel
 RETURN 0
GO

c17.indd 635c17.indd 635 8/28/08 12:42:37 PM8/28/08 12:42:37 PM

Chapter 17: Error and Event Handling

636

 2. Create a new SSIS package.

 3. Add a Connection Manager pointing to the AdventureWorks2008 database using the ADO.NET
provider. This example uses the Execute SQL Task with parameters. The parameters work
differently depending on which provider is being used. For example, parameters used with the
OLE DB provider are numerically named starting with zero. Parameters used with ADO.NET
providers use names beginning with the @ symbol.

 4. Set up the variables in the following table. (Click the Control Flow area right before opening the
Variables window so that the scope of the variables will be at the Package level.)

 Name Scope Data Type Value

 Count Package Int32 0

 ProductID Package Int32 0

 ReorderQuantity Package Int32 0

 5. Drag a Sequence Container to the Control Flow design area and name it Inventory Check. You
can use a Sequence Container to group tasks, treating the tasks as a unit in the workflow of the
package. In this case, you will use it to experiment with the event handlers. Set the
 MaximumErrorCount property of Inventory Check to 9999 in the Property window. This
example will raise errors by design, and setting the MaximumErrorCount property will allow
the simulation to continue running after the errors fire.

 6. Drag an Execute SQL Task into the Inventory Check Container, and name it Empty Tables.
Double - click the task to open the Execute SQL Task Editor. First change the ConnectionType
property to ADO.NET. Set the Connection property to the Connection Manager pointing to
AdventureWorks2008. Click the ellipsis button next to the SQLStatement property and type the
following into the Enter SQL Query window:

DELETE FROM MissingProductID
DELETE FROM InventoryWarning
DELETE FROM InventoryCheck

 7. Click OK to accept the statements and OK once more to accept the Execute SQL Task Editor
changes.

 8. Drag a For Loop Container into the Inventory Check Container, and name it Inventory Query
Simulator. Double - click the Inventory Query Simulator and fill in the properties as shown in the
following table:

 Property Value

 InitExpression @Count =1

 EvalExpression @Count < = 50

 AssignExpression @Count = @Count + 1

c17.indd 636c17.indd 636 8/28/08 12:42:37 PM8/28/08 12:42:37 PM

Chapter 17: Error and Event Handling

637

 9. Click OK to accept the configuration.

 10. Set the MaximumErrorCount property of the Inventory Query Simulator to 9999 in the
Properties window.

 11. Drag a precedence constraint from the Empty Tables Task to the Inventory Query Simulator.

 12. Drag a Script Task into the Inventory Query Simulator Container, and name it Generate
ProductID.

 13. Double - click to open the Script Task Editor. Select the Script pane. Set the ReadWriteVariables
property to User::ProductID , as shown in Figure 17 - 13 .

Figure 17-13

 14. Check the ScriptLanguage property. If this property is set to Microsoft Visual C# 2008, change
the drop - down to Microsoft Visual Basic 2008.

 15. Next, click Edit Script to open the Visual Studio design environment. You will use this Script
Task to generate a random ProductID. Replace Sub Main with the following code:

 Public Sub Main()
 Randomize()
 Dts.Variables(“User::ProductID”).Value = CInt(Int((900 * Rnd()) + 1))
 Dts.TaskResult = ScriptResults.Success
 End Sub

 16. Close the Visual Studio script design environment and then click OK to accept the changes to
the Script Task.

c17.indd 637c17.indd 637 8/28/08 12:42:38 PM8/28/08 12:42:38 PM

Chapter 17: Error and Event Handling

638

 17. Add an Execute SQL Task to the Inventory Query Simulator and name it Check Inventory Level.

 18. Drag a Precedence Constraint from Generate ProductID to Check Inventory Level.

 19. Double - click the Check Inventory Level Task to open the Execute SQL Task Editor.

 20. Set the ConnectionType property to ADO.NET.

 21. Find the Connection Manager for the AdventureWorks2008 database in the list of connections
and change the SQLStatement property to usp_GetReorderQuantity . Next change the
 IsQueryStoredProcedure to True . This task will call the usp_GetReorderQuantity with the
two parameters. The ResultSet property should be set to None since you are using an output
parameter to get the ReorderQuantity value from the stored procedure. The General pane of
the Execute SQL Task Editor should resemble Figure 17 - 14 .

Figure 17-14

 22. On the Parameter Mapping pane, set up the parameters as in the following table:

 Variable Name Direction Data Type Parameter Name

 User::ProductID Input LONG @ProductID

 User::ReorderQuantity Output LONG @ReorderQuantity

c17.indd 638c17.indd 638 8/28/08 12:42:38 PM8/28/08 12:42:38 PM

Chapter 17: Error and Event Handling

639

 23. Click OK to accept the configuration. As described earlier, set the MaximumErrorCount
property of the Check Inventory Level Task to 9999 using the Properties window.

 24. Add another Execute SQL Task and name it Insert Warning. This task will be used to insert a
row into the InventoryWarning table whenever the current inventory is less than the established
reorder point for a particular product. Connect Check Inventory Level to Insert Warning.

 25. Double - click the Precedence Constraint and set the Evaluation operation property to Expression
and Constraint.

 26. Set the Expression property to @ReorderQuantity > 0 and leave the Value property at
Success (see Figure 17 - 15).

 27. Click OK to accept the changes to the precedence constraint.

Figure 17-15

 28. Double - click the Insert Warning Task and set the ConnectionType to ADO.NET.

 29. Choose the AdventureWorks2008 Connection Manager from the Connection list, and click the
ellipsis next to SQLStatement, and type this into the Enter SQL Query dialog box:

INSERT INTO InventoryWarning (ProductID, ReorderQuantity)
SELECT @ProductID, @ReorderQuantity

 30. Click OK to accept the command. On the Parameter Mapping pane, set up two parameters, as
shown in the following table. In this case they will both be input parameters.

 Variable Name Direction Data Type Parameter Name

 User::ProductID Input LONG @ProductID

 User::ReorderQuantity Input LONG @ReorderQuantity

c17.indd 639c17.indd 639 8/28/08 12:42:39 PM8/28/08 12:42:39 PM

Chapter 17: Error and Event Handling

640

 31. Click OK to accept the configuration. The package should now resemble Figure 17 - 16 .

Figure 17-16

 When you run the package, sometimes the Check Inventory Level Task will fail. The Generate ProductID
script will not always come up with a valid ProductID. When that happens, the stored procedure will
raise an error and cause the Check Inventory Level Task to fail. Because the FailParentOnFailure and
 FailPackageOnFailure properties are set to False by default, and the MaximumErrorCount property
is set to 9999 on the task and parent containers, the package will continue to run through the simulation
even after a failure of this task.

 You will notice that once the Check Inventory Level Task fails, it will turn red, but the simulation will
continue running and the loop will cause the color to change between red and green. A great way to
view what is going on as the package runs is to click the Progress tab. This is also a fantastic
troubleshooting tool, with detailed information about each step. Once the package completes and
debugging is stopped, you can continue to view the information on the Execution Results tab.

 After running the package, you can view the results by querying the InventoryWarning table to see the
rows that were inserted when the User::ReorderQuantity variable was greater than 0. Run this query
in SQL Server Management Studio:

SELECT * FROM InventoryWarning

c17.indd 640c17.indd 640 8/28/08 12:42:39 PM8/28/08 12:42:39 PM

Chapter 17: Error and Event Handling

641

 Using the OnError Event Handler Event
 The package you just created is almost guaranteed to generate some errors at the Check Inventory Level
Task every time it runs. You could add a task connected to the Check Inventory Level with the
Precedence Constraint set to Failure, but in this case you will create an event handler to add a row to the
MissingProductID table each time the Check Inventory Level Task fails.

 1. Click the Event Handlers tab. Because you can have a large number of event handlers in a
package, you must select the object and the event from the drop - down lists.

 2. Click the Executable drop - down to see the package objects in a hierarchy. The Package has a
child, Inventory Check, which has children Empty Tables, Inventory Query Simulator, and so on
(see Figure 17 - 17).

Figure 17-17

 3. Select Check Inventory Level and click OK to close the list.

 4. Choose OnError in the Event Handler list if it isn ’ t there by default. You must click the link
 “ Click here to create an ‘ OnExecute ’ event handler for executable ‘ Check Inventory Level ’ ” to
create the new event handler. The screen will change to a design area very much like the Control
Flow tab. You can now drag any Control Flow Level Task or Container to the design area. In
this case you will add an Execute SQL Task that adds a row to the MissingProductID table
whenever the Check Inventory Level Task fails.

 5. Event handlers can be as simple or as complex as you need them to be. All functionality
available at the Control Flow level is available at the Event Handler level, including the ability
to add an event handler to an event handler.

c17.indd 641c17.indd 641 8/28/08 12:42:39 PM8/28/08 12:42:39 PM

Chapter 17: Error and Event Handling

642

 6. Drag an Execute SQL Task to the Event Handler design area and name it Insert Missing
ProductID.

 7. Double - click the task to bring up the Execute SQL Task Editor.

 8. Change the Connection Type to ADO.NET.

 9. Choose the AdventureWorks2008 Connection Manager from the Connection list. Click the
ellipsis next to the SQLStatement property to open the Enter SQL Query dialog box. Type
the following statement:

INSERT INTO MissingProductID (ProductID) SELECT @ProductID

 10. Click OK to accept the query and then switch to the Parameter Mapping pane. Add one
parameter with the properties shown in the following table:

 Variable Name Direction Data Type Parameter Name

 User::ProductID Input LONG @ProductID

 11. Click OK to accept the configuration.

 Now, when you run the package, the new event handler will fire whenever the Check Inventory Level
Task raises an error. You can query the MissingProductID table to see the results by running this query in
SQL Server Management Studio:

SELECT * from MissingProductID

 Using the OnPreExecute Event Handler Event
 Suppose you would like to keep a record of all the ProductID numbers that were tested. To do this,
complete the following steps:

 1. Add another event handler to the Check Inventory Level Task. With Check Inventory Level
selected in the Executable list, select OnPreExecute under Event Handler.

 2. Click the link to create the handler.

 3. Add an Execute SQL Task to the Event Handler design area and name it Record ProductID.

 4. Double - click to open the Execute SQL Task Editor.

 5. Change the ConnectionType property to ADO.NET.

 6. Select the AdventureWorks2008 Connection Manager from the Connection list.

 7. Add this statement to the SQLStatement property by typing in the Property text box or using the
Enter SQL Query dialog box:

INSERT INTO InventoryCheck (ProductID) SELECT @ProductID

c17.indd 642c17.indd 642 8/28/08 12:42:40 PM8/28/08 12:42:40 PM

Chapter 17: Error and Event Handling

643

 8. Add one parameter, @ProductID , on the Parameter Mapping pane with exactly the same
properties as the one added to the OnError event task, as the following table shows.

 Variable Name Direction Data Type Parameter Name

 User::ProductID Input LONG @ProductID

 9. Click OK to accept the configuration and run the package.

 Once execution of the package has completed, go back to SQL Server Management Studio to see the
results by running the following queries:

SELECT * FROM InventoryCheck
SELECT * FROM MissingProductID
SELECT * FROM InventoryWarning

 The InventoryCheck table should have one row for each ProductID that was generated. This row was
entered at the Check Inventory Level OnPreExecute event, in other words, before the task actually
executed. The MissingProductID table should have several rows, one for each ProductID that caused the
 usp_GetReorderQuantity to raise an error. These rows were added at the Check Inventory Level
 OnError event. Finally, the InventoryWarning table will have some rows if the inventory level of any of
the products was low. These rows were added at the Control Flow level.

 Event Handler Inheritance
 Events handlers defined at executables will inherit the events of their children. This means that if you
have a container and the container had an event handler OnError event defined on it, then if a child task
that exists in the container errors, the event handler of the container will fire. This is sometimes referred
to as the event “ bubbling ” or traveling up from child task to parent container. As mentioned already, the
highest level executable is the package itself. Therefore if you define an event handler event at the
package level, then whenever that event occurs in the package, the event handler will fire.
To demonstrate this with the example inventory package, you ’ ll move the OnError event handler from
the task to a parent container.

 1. Using the package created in the previous section, navigate to the Check Inventory Level
 OnError event handler.

 2. Select the Insert Missing Product ID Task, then right - click and select Copy from the pop - up
window.

 3. Create an OnError event handler for the Inventory Check Container.

 4. Right - click the design area of the new event handler and select Paste.

 5. Go back to the Check Inventory Level OnError event and click the Delete button to completely
remove the original event handler.

 Run your package again. You will see that the errors are now trapped at the Inventory Check Container
level by viewing the error handler as the package runs. The OnError event bubbled up from the task to
the For Loop Container to the Inventory Check Container.

c17.indd 643c17.indd 643 8/28/08 12:42:40 PM8/28/08 12:42:40 PM

Chapter 17: Error and Event Handling

644

 What would happen if you had an OnError event handler on both the Check Inventory Level Task and
the Sequence Container? Surprisingly, both will fire when an error is raised at the Check Inventory Level
Task. This could cause some unexpected results. For example, suppose you had an error handler at the
parent container to perform a particular task, such as sending an email message. An error in a child
container that you expected to be handled at that level would also cause the parent ’ s OnError handler to
execute. To prevent this from happening, you can set a system variable, Propagate , to False at the child
task ’ s Error Handler level. To demonstrate this, add the OnError event handler back to the Check
Inventory Level Task.

 1. Once again, create an event handler for the Check Inventory Level OnError event. You can copy
and paste the Insert Missing Product ID Task from the Inventory Check OnError event handler.

 2. While still working in the Check Inventory Level OnError Event design area, click the design
area and open the Variables window. If the system variables are not visible, click the gray X box
to display them (see Figure 17 - 18). Make sure that the Propagate property is set to True, the
default.

Figure 17-18

 3. Run the package. While the package is running, navigate to each of the error handlers to watch
as they execute. You will notice that both OnError events will fire and the MissingProductID
table will end up with two rows for every invalid ProductID.

 4. After execution of the package is complete, change the Propagate property to False by using the
Variables window. Now only the Check Inventory Level OnError event handler will execute.
The OnError event will no longer bubble to the parent containers.

 5. Run the package again. This time, you should find the expected behavior; the error will be
handled only at the Check Inventory Level Task.

c17.indd 644c17.indd 644 8/28/08 12:42:41 PM8/28/08 12:42:41 PM

Chapter 17: Error and Event Handling

645

 When the Propagate property is set to False on an OnEvent handler, you no longer need to modify
the MaximumErrorCount property of the parent containers from the default setting of 1 to keep the
package running after the error.

 Breakpoints
 Many programmers use breakpoints to debug programs, viewing the value of variables and following
the flow of the logic as they step through the source code. SSIS allows you to set breakpoints on the
package or any Control Flow Level Task or Container. You can also set breakpoints in Script Task code
just like most programming environments.

 Using the Inventory Example package created in a previous section, follow these steps to enable and use
breakpoints:

 1. Right - click the Inventory Query Simulator (For Loop) Container, and choose Edit Breakpoints
from the pop - up menu. The Set Breakpoints dialog box opens. A list of possible events where a
breakpoint can be set is displayed, as shown in Figure 17 - 19 .

Figure 17-19

 2. Enable the last item, “ Break at the beginning of every iteration of the loop, ” which is available
only for looping containers. Under Hit Count Type, you can choose Always, Hit Count Equals,
Hit Count Greater Than or Equal To, or Hit Count Multiple. The last item will suspend
execution when the hit count is equal to a multiple of the value set for Hit Count. For example,
setting the Hit Count Type to Hit Count Multiple and the Hit Count to 5 will cause the execution
to be suspended every fifth time through the loop.

 3. Go ahead and set the type to Hit Count Multiple and the Hit Count to 5 as in Figure 17 - 20 .

c17.indd 645c17.indd 645 8/28/08 12:42:41 PM8/28/08 12:42:41 PM

Chapter 17: Error and Event Handling

646

Figure 17-20

 4. Click OK. The container will now have a red circle in its top - right corner specifying that a
breakpoint has been set (see Figure 17 - 21).

Figure 17-21

 5. Run the package.

c17.indd 646c17.indd 646 8/28/08 12:42:41 PM8/28/08 12:42:41 PM

Chapter 17: Error and Event Handling

647

 When the Hit Count reaches 5, the execution will stop and the red dot will change to a red circle with an
arrow. You can now view the values of the variables in the Locals window. If the Locals window is not
visible, open it from Debug Windows Locals. Expand Variables, and look for the User variables that
were set up for the package (see Figure 17 - 22). User::Count should have a value of 5. If the value of a
variable cannot be completely viewed in the window, such as a long string, you can mouse over to see
the entire value in a tooltip.

Figure 17-22

 Restart the package and it will run until the Hit Count reaches 10.

 There are also watch windows to make it easier to view the variables you are interested in viewing.
Open the Locals watch window from Debug Windows Watch WatchLocals. In the first row of the
Watch 1 window, type User::Count in the Name field (see Figure 17 - 23). You can view the values of all
system and user variables from the Locals window. You can also add variables to the watch windows by
right - clicking the variables you want to in the Locals window (Figure 17 - 22) and choosing Add Watch.

c17.indd 647c17.indd 647 8/28/08 12:42:42 PM8/28/08 12:42:42 PM

Chapter 17: Error and Event Handling

648

 Another very cool feature is the ability to change the value of variables on the fly. In the watch window,
expand User::Count. Right - click and choose Edit Value. Change the value to 40 and restart the package.
The next time the execution is suspended, the value should be at 45. The value of some system variables
may also be interesting to view and change. For example, you might modify the value of a task property
as the package executes. You can use breakpoints and the watch windows to view the value to make sure
it is what you expected or change the value manually to correct it.

 An additional debugging window may also help troubleshoot packages, known as the Call Stack
window. This window shows a list of the tasks that have executed up to the breakpoint. This could be
very useful when trying to figure out a very complex workflow.

 The ability to set breakpoints on the tasks and containers will save you lots of time while troubleshooting
your packages. Data Viewers are similar to breakpoints, but they are used to view data as the package
executes. See Chapter 5 for more information on how you can use Data Viewers in your packages.

 Error Rows
 Error rows have been briefly touched upon in several chapters including Chapter 5 , “ The Data Flow, ”
Chapter 12 , “ Accessing Heterogeneous Data, ” and Chapter 14 , “ Understanding and Tuning the Data
Flow Engine. ” However, a chapter on SSIS error and event handling would only be partially complete
without a further discussion on handling errors.

 Error rows are dealt with in the Data Flow through the use of the Error Row Configuration properties.
These properties tell the Data Flow Components what to do when a row fails an operation, such as a
data conversion or a missing lookup or a truncation. The properties are found in sources,
transformations, and destinations, depending on whether an error can occur.

 The basic error properties window allows errors to be handled in one of three ways: failure of the Data
Flow Task, ignoring the failure, or redirecting the row. Furthermore, truncation errors can be handled
separately than conversion errors. Figure 17 - 24 shows the Error Output property page of an OLE DB
Source adapter.

Figure 17-23

c17.indd 648c17.indd 648 8/28/08 12:42:42 PM8/28/08 12:42:42 PM

Chapter 17: Error and Event Handling

649

 Figure 17 - 24 also shows the drop - down selection of the ProductNumber column that defines how the
SSIS Data Flow engine should handle an error row for the selected column. The following table clarifies
the implications of the error handling section:

 Error Handler Description

 Fail Component When Fail Component is chosen for a column or the component and an error
occurs (such as a conversion from a source to the Data Flow Pipeline), the Data
Flow will stop and fail, and any OnError events will fire for the Data Flow Task.

 Redirect Row If a row reaches an error for any column marked to be redirected, the entire
row is sent out the red error path output and the Data Flow will not fail. If the
red error path output is not used, then the row will get tossed out of the Data
Flow.

 Ignore Failure Ignore Failure simply means that the error will be ignored. If the error is in a
source or transformation such as a conversion or a missing lookup record, then
the error column values will be set to NULL. If the error is a truncation, then
the value will be sent downstream just with the partially truncated value.
Beware that when you are dealing with destinations, an ignore failure for a
truncation or other error will ignore the entire row, not just the error column.

Figure 17-24

c17.indd 649c17.indd 649 8/28/08 12:42:42 PM8/28/08 12:42:42 PM

Chapter 17: Error and Event Handling

650

 When Redirect Row is selected for any column (error or truncation), be aware that when the Redirect
Row condition is met, the entire row will be redirected out the red error path output.

 As an example of how to use the error row handling, create a new package in BIDS with an OLE DB
connection to the AdventureWorks2008 database.

 1. Create a Data Flow Task in the package and navigate to the Data Flow designer.

 2. Drag an OLE DB Source adapter to the Data Flow and configure it to use the
AdventureWorks2008 connection as the Connection Manager. In the “ Name of the table or the
view ” drop - down, choose the [Production].[Product] table from the list.

 3. Drag a Data Conversion Transformation onto the Data Flow region, and then connect the OLE
DB Source adapter to the Data Conversion.

 4. Edit the Data Conversion Component and add a new row based on the input column Size.
Name the output alias Size_Numeric and configure the new data type to be numeric
[DT_Numeric] as Figure 17 - 25 shows.

Figure 17-25

 The Data Conversion Transformation will create a new column in the Data Flow called
Size_Numeric with a numeric data type, but the original Size column will still remain with the
WSTR length 5 data type.

 5. Within the Data Conversion Transformation, click the Configure Error Output button in the
bottom - left corner of the transformation, which will bring up the Configure Error Output
window. Because there is only one column defined in the Data Conversion Transformation, you
will only see one column to change the error settings for.

c17.indd 650c17.indd 650 8/28/08 12:42:43 PM8/28/08 12:42:43 PM

Chapter 17: Error and Event Handling

651

 6. Change the Error value to Redirect Row for the Size_Numeric column as Figure 17 - 26
demonstrates.

Figure 17-26

 7. Return to the Data Flow by selecting OK in both the Configure Error Output and the Data
Conversion Transformation Editor. You will see that the Data Conversion Transformation now
has a yellow exclamation mark on it, indicating that an error row was configured to be
redirected, but the red error path has not yet been used.

 8. Drag a Derived Column Transformation to the Data Flow and then connect the red error path
from the Data Conversion onto the new Derived Column Transformation. When you do this,
the Configure Error Output window will automatically pop up for the Data Conversion
Transformation. This is an alternate method to set the error handling for a failure. Click OK to
return to the Data Flow.

 9. Edit the Derived Column Transformation and add a new column named Size_Numeric. For the
Expression type, type in the following code to add a 0 value to the records that failed the
conversion in the prior transformation: (DT_NUMERIC,18,0) 0

 10. After saving the Derived Column Transformation, drag a Union All Transformation to the
Data Flow and then connect both the green data path output from the Data Conversion
Transformation and the green data path output from the Derived Column Transformation to the
Union All Transformation. Double - click the Union All Transformation to bring up its editor and
scroll down to the bottom of the column list. Multi select both the ErrorCode and ErrorColumn
columns, and then hit the Delete key on your keyboard. Click OK to save the changes.

 11. Before running your package to test it, add a Multicast Transformation to the Data Flow
connected to the output of the Union All. A Multicast is usable as a placeholder transformation

c17.indd 651c17.indd 651 8/28/08 12:42:43 PM8/28/08 12:42:43 PM

Chapter 17: Error and Event Handling

652

as you are developing and testing your package. Run your package, and observe the results.
Your Data Flow execution will look similar to Figure 17 - 27 .

 Note that some of the rows are sent to the Derived Column Transformation, but are brought
back together with the main Data Flow rows through the Union All Transformation. At this
point you have not added a destination, so the next step in this example will be to land the data
to a new destination table, where you can also handle errors.

 12. Stop the package execution and replace the Multicast with an OLE DB Destination adapter.

 13. Edit the OLE DB Destination and confirm that the AdventureWorks2008 connection is listed in
the OLE DB Connection Manager drop - down and change the data access mode to “ Table or
view. ”

 14. To create a new destination table, click the New button next to the “ Name of the table or the
view ” drop - down box. Change the name of the table to [Updated_Products] and also change
the data type of the [Name] column to nvarchar(21) Select OK in the Create Table window,
which will run the CREATE TABLE statement in the AdventureWorks2008 database.

 15. While still in the OLE DB Destination Editor, click the Mappings property page, which will by
default map all the input columns form the Data Flow to the destination table columns based on
name and data type. Click OK to save the changes.

 In the Data Flow designer, you will notice that the Destination adapter has a yellow exclamation
point on it, and when hovering over it (or displaying the error window) it indicated that there
may be a truncation error for the Name column going from a length of 50 to a length of 21. To
finish this example, you will now redirect the error rows to a flat file.

 16. Drag a Flat File Destination adapter onto the Data Flow and connect the red error path output
from the OLE DB Destination onto the Flat File Destination. When the Configure Error Output
window pops up, change the Error handling drop - down to Redirect Row and click OK to save
your changes.

 17. Edit the Flat File Destination adapter and click the New button next to the Flat File Connection
Manager drop - down. When prompted, leave the Flat File Format selected on Delimited and
click OK, which will bring up the Flat File Connection Manager Editor.

Figure 17-27

c17.indd 652c17.indd 652 8/28/08 12:42:43 PM8/28/08 12:42:43 PM

Chapter 17: Error and Event Handling

653

 18. Type C:\Truncated_Names.txt in the File name text box and then click OK to save the
connection properties. You will be returned to the Flat File Destination Editor; to finish, click the
Mappings page in the Flat File Destination Editor, which will automatically map the columns
from the error path to the flat file. Click OK to close the Destination Editor.

 When you run your package, your results should look like what is shown in Figure 17 - 28 .

Figure 17-28

 The rows with the Name column truncation were sent to the flat file. You can check your results by
opening the flat file on your C:\ drive, which will show that the full names were added to the flat file.
As noted earlier, if you had set the OLE DB Destination error to Ignore Failure, error rows would be
ignored, not just the column value.

 Logging
 Logging is an important part of any data process, because logging gives administrators and developers
insight into what transpired during a process, with the following benefits:

 Error triage to help identify as quickly as possible what was the point and cause of the failure,
such as the failure of a Lookup Transformation to match a record.

 Root cause analysis so that a solution can be put in place to prevent a failure situation in the
future.

 Performance metrics such as package and execution times so that negative performance trends
can be observed and addressed before the performance impact causes an ETL failure.

 SSIS contains built - in logging features that capture execution details about your packages. Logging
enables you to record information about events you are interested in as the package runs. The logging
information can be stored in a text or XML file, to a SQL Server table, to the Windows Event Log, or to a
file suitable for Profiler.

 Logging can be enabled for all or some tasks and containers and for all or any events. Tasks and
containers can inherit the settings from parent containers. Multiple logs can be set up, and a task or

❑

❑

❑

c17.indd 653c17.indd 653 8/28/08 12:42:44 PM8/28/08 12:42:44 PM

Chapter 17: Error and Event Handling

654

event can log to any or all logs configured. You also have the ability to control which pieces of
information are recorded for any event.

 Logging Providers
 SSIS includes several default log providers. These providers are selected in the Provider type combo box
and are defined as follows:

 SSIS Log Provider for Text Files: This provider is used to store log information to a CSV file on
the file system. This provider requires you to configure a File Connection object that defines the
location of the file. Storing log information in a text file is the easiest way to persist a package ’ s
execution. Text files are portable, and the CSV format is a simple - to - use industry - wide standard.

 SSIS Log Provider for SQL Profiler: This provider produces a SQL Profiler trace file. The file
must be specified with a trc file extension so that you can open it using the SQL Profiler
diagnostic tool. Using SQL profiler trace files is an easy way for DBAs to view log information.
Using Profiler, you could view the execution of the package step - by - step, even replaying the
steps in a test environment.

 SSIS Log Provider for SQL Server: This provider sends package log events to a table in the
specified SQL Server database. The database is defined using an OLE DB Connection. The first
time this package is executed, a table called sysdtslog100 will be created automatically. Storing
log information in a SQL Server database inherits the benefits of persisting information in a
relational database system. You could easily retrieve log information for analysis across multiple
package executions.

 SSIS Log Provider for Windows Event Log: This provider sends log information to the
Application event store. The entries created will be under the Source name SQLISPackage. No
additional configuration is required for this provider. Logging package execution to the
Windows Event Log is possibly the easiest way to store log events. The Windows Event Log is
easy to view and can be viewed remotely if required.

 SSIS Log Provider for XML Files: This provider stores log information in a specified XML file
on the file system. The file is specified through a File Connection object. Make sure you save the
file with an xml file extension. Logging events to XML inherits the advantages of the XML
specification. XML files are very portable across systems and can be validated against a Schema
definition.

 Log Events
 Once you have configured the log providers you wish to employ, you must define what events in the
package to log. This is done in the Details tab of the Log Configuration dialog box, as shown in Figure
 17 - 29 . To enable an event to be logged, check the box next to its name. For instance, in Figure 17 - 29 ,
the OnError event for the package has been selected to be logged. By selecting other containers on the
left - hand side of the dialog box, additional events can be selected down to an individual task or Data

❑

❑

❑

❑

❑

c17.indd 654c17.indd 654 8/28/08 12:42:44 PM8/28/08 12:42:44 PM

Chapter 17: Error and Event Handling

655

Figure 17-29

 To practice working with the SSIS logging, follow these steps:

 1. Open one of the packages you created earlier in this chapter or any package with several
Control Flow Tasks.

 2. From the menu, navigate to SSIS Logging to open the Configure SSIS Logs dialog box. To
enable logging, you must first check the box next to the package name in the left pane (see
Figure 17 - 30), in the example in Figure 17 - 30 , the package is titled
 “ CH17_Precedence_Constraints. ”

Flow event level. To select all events at once, check the box in the header row of the table. By selecting
individual containers in the tree view on the left, you can configure the logging of events on an
individual task level. By configuring logging at the task level, the special events exposed by a task can
additionally be included in the log.

c17.indd 655c17.indd 655 8/28/08 12:42:45 PM8/28/08 12:42:45 PM

Chapter 17: Error and Event Handling

656

 Notice that the checkboxes for the child objects in the package are grayed out. This means that
they will inherit the logging properties of the package. You can click into any checkbox to un-
check an object. Clicking again to check the box will allow you to set up logging properties spe-
cific for that task or container.

 3. To get started, the log providers must be defined at the package level. Select package in the
TreeView control on the left (the top level) so that the package is highlighted.

 4. In the Provider type dropdown list, choose which type of provider you would like to configure;
as an example, choose SSIS Log Provider for XML File.

 5. Click Add to add the provider to the list. Click the drop - down under Configuration and choose
 < New Connection > . Once the File Connection Manager Editor opens, set the Usage Type
property to Create File. Type c:\SSIS_Log.xml as the path for the XML file or click Browse to the
XML file location as in Figure 17 - 31 .

Figure 17-30

c17.indd 656c17.indd 656 8/28/08 12:42:45 PM8/28/08 12:42:45 PM

Chapter 17: Error and Event Handling

657

 6. Click OK to accept the configuration and dismiss the dialog box. In the Configure SSIS Logs
dialog box, you should now see the new log provider and its properties.

 7. Check the box next to the new logging provider to enable it at the package level. At this point,
you can give the log provider a descriptive name if you wish as in Figure 17 - 32 .

Figure 17-31

Figure 17-32

c17.indd 657c17.indd 657 8/28/08 12:42:45 PM8/28/08 12:42:45 PM

Chapter 17: Error and Event Handling

658

 8. Click the Details tab to view a list of events that you can log. By clicking Advanced, you will also
see a list of possible fields (see Figure 17 - 33).

 9. Choose the OnPreExecute , OnPostExecute , and OnError events. Notice that all of the fields
are automatically chosen. You can uncheck some of the fields if you don ’ t think the information
will be useful.

Figure 17-33

 10. Move back to the Providers and Logs tab. When you checked the log provider at the package
level (by checking the checkbox at the highest level in the tree view of the left pane), you
enabled that log for all components in the package that are set to inherit settings from their
parent container. Even if that log provider is chosen for an object that does not inherit the log
settings, you can use it to select different events and fields. Once you modify the logging on a
parent container, such as a For Loop Container, the child objects will now inherit from the
container, not the package.

 11. When you are satisfied with the logging settings, click OK to close the dialog box. If you view
the Properties window of a task or container, you will find the LoggingMode property. This
property can be set to UseParentSetting, Enabled, or Disabled and will match the settings you
just configured.

 Run the package. Once the package execution has completed, open the log file to view the XML
(see Figure 17 - 34).

c17.indd 658c17.indd 658 8/28/08 12:42:46 PM8/28/08 12:42:46 PM

Chapter 17: Error and Event Handling

659

Figure 17-34

 Setting up logging for a package can be as complicated or as simple as you would like. It ’ s possible that
you may want to log similar information, such as the OnError event, for all packages. You can save the
settings as a template by clicking Save when on the Detail tab of the Configure SSIS Logs dialog box.
Alternatively, you can load a previously saved template by clicking the Load button.

 Summary
 In conclusion, SSIS gives you the ability to handle errors during execution and while troubleshooting:

 During execution, you can handle errors gracefully by using the precedence constraints to
control what tasks execute when errors occur; by using the event handlers to trap for specific
events in the package at different levels and run code to perform cleanup and alerting; and by
configuring the Data Flow error paths to handle data exceptions gracefully without failing the
package.

 While troubleshooting and developing, you can use the breakpoint functionality to pause
execution and monitor variable values and package state information, and you can turn on SSIS
package logging to capture execution information that can give insight into the execution details
such as errors, warnings, and execution times.

 Now that the core features of SSIS have been covered, the final chapters focus on advanced topics,
including building custom components, integrating SSIS with applications, and managing SSIS
externally.

❑

❑

c17.indd 659c17.indd 659 8/28/08 12:42:46 PM8/28/08 12:42:46 PM

 Programming and
Extending SSIS

 Once you start implementing a real - world integration solution, you may have requirements that
the built - in functionality in SSIS does not meet. For instance, you may have a legacy system
that has a proprietary export file format, and you need to import that data into your warehouse.
You have a robust SSIS infrastructure that you have put in place that allows you to efficiently
develop and manage complex ETL solutions, but how do you meld that base infrastructure with
the need for customization? That ’ s where custom component development comes into play. Out-
of-the-box, Microsoft provides a huge list of components for you in SSIS; however, you can
augment those base components with your own more specialized tasks.

 The benefit here is not only to businesses, but to software vendors too. You may decide to
build components and sell them on the web, or maybe start a community - driven effort on a site
such as www.codeplex.com . Either way, the benefit you get is that your components will be
built in exactly the same way that the ones that ship with SSIS are built; there is no secret sauce
(besides expertise) that Microsoft adds to their components to make them behave any differently
from your own. The opportunity is that you truly can “ build a better mouse trap ” — if you don ’ t
like the way that one of the built - in components behaves, then you can simply build your own
one instead.

 Building your first component may be a little challenging, but hopefully with the help of this
chapter you will be able to overcome this. In this chapter you focus on the pipeline — not because
it is better than any other area of programmability within SSIS, but because it will probably be the
area where you have the most benefit to gain; and it does require a slightly greater level of
understanding. It also allows you to see some of the really interesting things that Microsoft has
done in SSIS. All forms of extensibility are well covered in the SQL Server documentation and
samples, so don ’ t forget to leverage those resources as well.

c18.indd 661c18.indd 661 8/28/08 12:43:58 PM8/28/08 12:43:58 PM

Chapter 18: Programming and Extending SSIS

662

 The Sample Components
 Three sample components will be defined in this section to demonstrate the main component types. The
Transform Component will then be expanded in Chapter 19 to include a user interface. All code samples
will be available on the website for this book, which you can find at www.wrox.com .

 The pipeline , for all intents and purposes, is the way your data moves from A to B and how it is
manipulated, if at all. You can find it on the Data Flow tab of your packages after you have dropped a
Data Flow Task into the Control Flow. There ’ s no need to go into any more detail about where to find the
pipeline in your package, because this has been covered elsewhere in this book.

 As discussed in other chapters, Integration Services allow you to use three basic component types in the
pipeline. The first component type is a Source, which retrieves data from an external location (for
instance a SQL Server query, a text file, or a Web service) and transforms the input into the internal
buffer format that the pipeline expects.

 The Transformation - Type Component accepts buffers of data from the pipeline on one side, does
something useful with the data (for instance sorting it, calculating totals, or multicasting the rows), and
then pushes the rows downstream for the next component to consume.

 The Destination - Type Component also accepts buffers of data from the pipeline on its input, but instead
of writing the output rows to the pipeline again, it writes them to a specific external source, such as a text
file or SQL Server table.

 This chapter walks you through building three components; one example for each of the component
types just discussed. Note that there are further classifications of components such as synchronous and
asynchronous components, but this chapter will help you get the basics right. Following is a high - level
description of what each sample component will do.

 Component 1: Source Adapter
 The Source adapter needs to be able to do quite a few things in order to be able to present the data to the
downstream components in the pipeline in a format that the next component understands and is
expecting. Here is a list of what the component needs to do:

 Accept and validate a Connection Manager. A Connection Manager is an optional component
for Source adapters, since it is possible to write a Source adapter that does not require a
Connection Manager. However, a Connection Manager helps to isolate the connectivity logic
(such as the credentials) from the user - specific functionality (such as the query) defined in the
Source adaptor. As such a Connection Manager is highly recommended.

 Add output columns to the component for the downstream processes.

 Connect to the Data Source.

 Get the data from the Data Source.

 Assign the correct parts of the data to the correct output columns.

 Handle any data errors.

❑

❑

❑

❑

❑

❑

c18.indd 662c18.indd 662 8/28/08 12:43:59 PM8/28/08 12:43:59 PM

Chapter 18: Programming and Extending SSIS

663

 This component is going to need to do quite a bit of work in order to present its data to the outside
world. Stick with it and you ’ ll see how easy this can be. Your aim in the Source adapter is to be able to
take a file with a custom format, read it, and present its data to the downstream components.

 The real - world scenario that we will cover is that there are many systems that export data in a
proprietary format, which is hard to then import into another system. Let ’ s imagine that the legacy
system exports customer data in the following format:

 < START >
Name:
Age:
Married:
Salary:
 < END >

 As you can see, this is a nonstandard format that none of the Source adapters out-of-the-box could deal
with adequately. Of course, you could use a Script Component to read and parse the file using VB or C#,
but then you ’ d need to duplicate the code in every package that needed to read this type of file. Writing
a custom Source Component means that you can re - use the component in many different packages,
which may save you time and maintenance compared to the scripting route.

 Component 2: Transformation
 The transform is where you are going to take data from a source, manipulate it, and then present the
newly arranged data to the downstream components. This component performs the following tasks:

 Creates input columns to accept the data from upstream.

 Validates the data to see that it is how the component expects it.

 Checks the column properties because this transform will be changing them in place.

 Handles somebody trying to change the metadata of the transform by adding or removing
inputs and/or outputs.

 The scenario we will use here is that we want to create a simple data obfuscation device that will take
data from the source and reverse the contents. The quirk, though, is that the column properties must be
set correctly, and you can only perform this operation on certain data types.

 Component 3: Destination Adapter
 The Destination adapter will take the data received from the upstream component and write it to the
destination. This component will need to do the following:

 Create an input that accepts the data.

 Validate that the data is correct.

 Accept a Connection Manager.

 Validate the Connection Manager (did you get the right type of Connection Manager?).

❑

❑

❑

❑

❑

❑

❑

❑

c18.indd 663c18.indd 663 8/28/08 12:43:59 PM8/28/08 12:43:59 PM

Chapter 18: Programming and Extending SSIS

664

 Connect to the Data Source.

 Write data from the Data Source.

 We will use the opposite scenario here to the one presented earlier. In this case we will imagine that the
pipeline retrieved data from some standard source (such as SQL Server) but we now want to write
the data out to a custom flat file format, perhaps as the input file for a legacy system.

 The Destination adapter will basically be a reverse of the Source adapter. When it receives the input
rows, it needs to create a new file with data layout resembling that of the source file.

 The components you ’ ll build are really quite simple, but the point is not their complexity, but how you
use the methods in Microsoft ’ s object model. The methods presented for tackling these tasks can be used
as the basis for more complex operations.

 The Pipeline Component Methods
 Components are normally described as having two distinct phases: design - time and runtime. The
design - time phase refers to the methods and interfaces that are called when the component is being used
in a development sense. In other words, the code that is being run when the component is dragged onto
the SSIS design surface, and when it is being configured. The runtime functionality refers to the calls and
interfaces that are being used when the component is actually being executed, in other words when the
package is being run.

 When you implement a component, you inherit from the base class, Microsoft.SqlServer.Dts
.Pipeline.PipelineComponent , and provide your own functionality by overriding the base methods,
some of which are primarily design - time, others runtime. If you are using native code to write SSIS
components, then the divide between the runtime and design - time is clearer because the functionality is
implemented on different interfaces. Commentary on the methods has been divided into these two
sections, but there are some exceptions, notably the connection - related methods; a section on connection
time – related methods is included later on.

 In programming terms, a class can inherit functionality from another class, termed the base class. If the
base class provides a method, and the inheriting class wishes to change the functionality within this
method, it can override the method. In effect, you replace the base method with your own. From within
the overriding method, you can still access the base method, and call it explicitly if required, but any
consumer of the new class will see only the overriding method.

 Design - Time Functionality
 The following methods are explicitly implemented for design - time, overriding the PipelineComponent
methods, although they will usually be called from within your overriding method. Not all of
the methods have been listed, because for some there is little more to say, and others have been grouped
together according to their area of function, Refer to the SQL Server documentation for a complete list.

 There are some methods that are described as verification methods, and these are a particularly
interesting group. They provide minor functions, such as adding a column or setting a property value,
and you could quite rightly think that there is little point in ever overriding them, because there isn ’ t

❑

❑

c18.indd 664c18.indd 664 8/28/08 12:43:59 PM8/28/08 12:43:59 PM

Chapter 18: Programming and Extending SSIS

665

much value to add to the base implementation. As mentioned, these are your verification methods, and
code has been added to verify that the operation about to take place within the base class is allowed.
The following sections expand on the types of checks you can do, and if you want to build a robust
component, these are well worth looking into.

 Another very good reason to implement these methods as described is actually to reduce code.
These methods will be used by both a custom user interface (UI) and the built - in component editor,
or Advanced Editor. If you raise an error saying that a change is not allowed, then both user interfaces
can capture this and provide feedback to the user. Although a custom UI would be expected to prevent
blatantly inappropriate actions, the Advanced Editor is designed to offer all functionality, so you are
protecting the integrity of your component regardless of the method used.

 ProvideComponentProperties
 This method is provided so you can set up your component. It is called when a component is first
added to the Data Flow, and it initializes the component. It does not perform any column - level activity,
because this is left to ReinitializeMetadata ; when this method is invoked, there are generally no
inputs or outputs to be manipulated anyway. The sorts of procedures you may want to set in here are:

 Remove existing settings, such as inputs and outputs. This allows the component to be rebuilt
and can be useful when things go wrong.

 Add inputs and outputs, ready for column work later on in the component lifetime. You may
also define custom properties on them and specify related properties, such as linking them
together for synchronous behavior.

 Define the connection requirements. By adding an item to the RuntimeConnectionCollection,
you have a placeholder prepared for the Connection Manager at runtime, as well as informing
the designer of this requirement.

 The component may have custom properties that are configurable by a user in addition to those
you get for free from Microsoft. These will hold settings other than the column - related one that
affect the overall component operation or behavior.

 Validate
 Validate is called numerous times during the lifetime of the component, both at design - time and at
runtime, but the most interesting work is usually the result of a design - time call. As the name suggests,
it validates that the content of the component is correct and will enable you to at least run the package.
If the validation encounters a problem, then the return code used is important to determine any further
actions, such as calling ReinitializeMetaData . The base class version of Validate performs its own
checks in the component, and you will need to extend it further in order to cover your specific needs.
 Validate should not be used to change the component at all; it should only report the problems it finds.

 ReinitializeMetaData
 The ReinitializeMetaData method is where all the building work for your component is done. You
add new columns, remove invalid columns, and generally build up the columns. It is called when the
 Validate method returns VS_NEEDSNEWMETADATA . It is also your opportunity in the component to do
any repairs that need to be done, particularly around invalid columns as mentioned previously.

❑

❑

❑

❑

c18.indd 665c18.indd 665 8/28/08 12:44:00 PM8/28/08 12:44:00 PM

Chapter 18: Programming and Extending SSIS

666

 MapInputColumn and MapOutputColumn
 These methods are used to create a relationship between an input/output column and an external
metadata column. An external metadata column is an offline representation of an output or input
column and can be used by downstream components to create an input. For instance, you may connect
your Source Component to a database table and retrieve the list of columns. However, once you
disconnect from the database and edit the package in an offline manner, it may be useful for the source
to “ remember ” the external database columns.

 This functionality allows you to validate and maintain columns even when the Data Source is not
available. It is not required, but it makes the user experience better. If the component declares that it will
be using External Metadata (IDTSComponentMetaData100.ValidateExternalMetadata) then the
user in the advanced UI will see upstream columns to the left and the external columns on the right;
if you are validating your component against an output, you will see the checked listbox of columns.

 Input and Output Verification Methods
 There are several methods you can use to deal with inputs and outputs. The three functions you may
need to perform are adding, deleting, and setting a custom property. The method names clearly indicate
their functions:

 InsertInput

 DeleteInput

 SetInputProperty

 InsertOutput

 DeleteOutput

 SetOutputProperty

 For most components, the inputs and outputs will have been configured during
 ProvideComponentProperties , so unless you expect a user to add additional inputs and outputs and
fully support this, you should override these methods and fire an error to prevent this. Similarly, unless
you support additions, you would also want to deny deletions by overriding the corresponding
methods. Properties can be checked for validity during the Set methods as well.

 Set Column Data Types
 There are two methods used to set column data types: one for output columns and the other for external
metadata columns. There is no input column equivalent, because the data types of input columns are
determined by the upstream component.

 SetOutputColumnDataTypeProperties

 SetExternalMetadataColumnDataTypeProperties

 These are verification methods that can be used to validate or prevent changes to a column. For example,
in a Source Component, you would normally define the columns and their data types within
 ReinitializeMetaData . You could then override SetOutputColumnDataTypeProperties , and by

❑

❑

❑

❑

❑

❑

❑

❑

c18.indd 666c18.indd 666 8/28/08 12:44:00 PM8/28/08 12:44:00 PM

Chapter 18: Programming and Extending SSIS

667

comparing the method ’ s supplied data types to the existing column, you could prevent data type
changes but allow length changes.

 There is quite a complex relationship between all of the parameters for these methods; please refer to
SQL Server documentation for reference when using this method yourself.

 PerformUpgrade
 This method should allow you to take a new version of the component and update an existing version of
the component on the destination machine in a transparent manner.

 RegisterEvents
 This method allows you to register custom events in a Pipeline Component. You can therefore have an
event fire on something happening at runtime in the package. This is then eligible to be logged in the
package log.

 RegisterLogEntries
 This method decides which of the new custom events are going to be registered and selectable in the
package log.

 SetComponentProperty
 In the ProvideComponentProperties method, you told the component about any custom properties
that you would like to expose to the user of the component and perhaps allow them to set. This is a
verification method, and here you can check what it is that the user has entered for which custom
property on the component and ensure that the values are valid.

 Set Column Properties
 There are three column property methods, each allowing you to set a property for the relevant column type:

 SetInputColumnProperty

 SetOutputColumnProperty

 SetExternalMetadataColumnProperty

 These are all verification methods and should be used accordingly. For example, you may set a column
property during ReinitializeMetaData , and to prevent a user interfering with this, you could
examine the property name (or index) and throw an exception if it is a restricted property, in effect
making it read - only.

 Similarly, if several properties are used in conjunction with each other at runtime to provide direction on
the operation to be performed, you could enumerate all column properties to ensure that those related
properties exist and have suitable values. You could assign a default value if a value is not present or
raise an exception depending on the exact situation.

 For an external metadata column, which will be mapped to an input or output column, any property set
directly on this external metadata column can be cascaded down onto the corresponding Input or
Output column through this overridden function.

❑

❑

❑

c18.indd 667c18.indd 667 8/28/08 12:44:00 PM8/28/08 12:44:00 PM

Chapter 18: Programming and Extending SSIS

668

 SetUsageType
 This method deals with the columns on inputs into the component. In a nutshell, you use it to select a
column and to tell the component how you will treat each column. What you see coming into this
method is the Virtual Input. What this means is that it is a representation of what is available for
selection to be used by your component. These are the three possible usage types for a column:

 DTSUsageType.UT_IGNORED : The column will not be used by the component. What happens
is that you will be removing this InputColumn from the InputColumnCollection . This differs
from the other two usage types, which add a reference to the InputColumn to the
 InputColumnCollection if it does not exist already or you may be changing its Read/Write
property.

 DTSUsageType.UT_READONLY : The column is read - only. The column is selected, and data can
be read and used within the component but cannot be modified.

 DTSUsageType.UT_READWRITE : The column is selected, and you can both read and write or
change the data within your component.

 This is another of the verification methods, and you should use it to ensure that the columns selected are
valid. For example, the Reverse String sample shown later in the chapter can operate only on string
columns, so you must check that the data type of the input column is DT_STR for string or DT_WSTR for
Unicode strings. Similarly, the component performs an in - place change, so the usage type must be
read/write. Setting it to read - only would cause problems during execution when you try to write the
changed data back to the pipeline buffer. The Data Flow makes important decisions on column handling
based on the read/write flag, and if the component writes to a read - only column, it will likely corrupt
the data and the user will get incorrect results. Therefore you should validate the columns as they are
selected to ensure that they meet the requirements for your component design.

 On Path Attachment
 There are three closely related path attachment methods, called when the named events occur, and the
first two in particular can be used to improve the user experience:

 OnInputPathAttached

 OnOutputPathAttached

 The reason these methods are here is to handle situations where, for instance, the inputs or outputs are
all identical and interchangeable. Using the multicast as an example, you attach to the dangling output
and another dangling output is automatically created. You detach, and the extra output is deleted.

 Runtime
 Runtime, also known as execution - time, is when you actually work with the data, through the pipeline
buffer, with columns and rows of data. The following methods are all about preparing the component,
doing the job it was designed for, and then cleaning up afterward.

❑

❑

❑

❑

❑

c18.indd 668c18.indd 668 8/28/08 12:44:01 PM8/28/08 12:44:01 PM

Chapter 18: Programming and Extending SSIS

669

 PrepareForExecute
 This method is rather like the PreExecute method described next and can be used for setting up
anything in the component that you will need at runtime. The difference is that you do not have access
to the Buffer Manager, so you cannot get your hands on the columns in either the output or the input at
this stage. The distinction between the two is very fine apart from that, so usually you will end up using
 PreExecute exclusively, because you will need access to the Buffer Manager anyway.

 PreExecute
 PreExecute is called once and once only each time the component is run, and it is the recommendation
of Microsoft that you do as much preparation as possible for the execution of your component in
this method. In this case, you ’ ll use it to enumerate the columns, reading off values and properties,
calling methods to get more information, and generally preparing by gathering all the information you
require in advance. For instance, you may want to save references to common properties, column
indexes, and state information to a variable so that you access it efficiently once you start pumping
rows through the component.

 This is the earliest point in the component that you will access the component ’ s Buffer Manager, so you
have the live context of columns, as opposed to the design - time representation. The live and design - time
representations of columns may not match. The design - time may contain more information that you do
not need at runtime. As mentioned, you do the column preparation for your component in this method,
because it is called only once per component execution, unlike some of the other runtime methods,
which are called multiple times.

 PrimeOutput and ProcessInput
 These two methods are dealt with together because they are so closely linked that to deal with them
any other way would be disjointed. These two methods are essentially how the data flows through
components. Sometimes you use only one of them, and sometimes you use both. There are some
rules you can follow.

 In a Source adapter, the ProcessInput method is never called, and all of the work is done through
 PrimeOutput . In a Destination adapter, it is the opposite way around; the PrimeOutput method is
never called, and the whole of the work is done through the ProcessInput method.

 Things are not quite that simple with a transform. There are two types of transforms, and the type of
transform you are writing will dictate which method or indeed methods your component should call.
For a discussion on synchronous versus asynchronous transforms, see Chapter 5 .

 Synchronous: PrimeOutput is not called and therefore all the work is done in the
 ProcessInput method. The buffer LineageIDs remain the same. For a detailed explanation of
buffers and LineageIDs, please refer to Chapter 14 .

 Asynchronous: Both methods are called here. The key difference between a synchronous and an
asynchronous component is that the asynchronous component does not reuse the input buffer.
The PrimeOutput method hands the ProcessInput method a buffer to fill with its data.

❑

❑

c18.indd 669c18.indd 669 8/28/08 12:44:01 PM8/28/08 12:44:01 PM

Chapter 18: Programming and Extending SSIS

670

 PostExecute
 This method would be where you clean up anything that you started in PreExecute . Although it can
do this, it is not limited to just that. After reading the description of the Cleanup method in just a
second, you ’ re going to wonder about the difference between that and this method. The answer is, for
this release, nothing. If you want to think about this logically, then PostExecute is the opposite side of
the coin to PreExecute .

 Cleanup
 As the method name suggests, this is called as the very last thing your component will do, and it is your
chance to clean up whatever resources may be left. However, it is rarely used. Logically, then Cleanup is
the opposite of PrepareForExecute .

 DescribeRedirectedErrorCode
 If you are using an error output and directing rows down there in case of errors, then you should expose
this method to give more information about the error. When you direct a row to the error output, you
specify an error code. This method will be called by the pipeline engine, passing in that error code, and it
is expected to return a full error description string for the code specified. These two values are then
included in the columns of the error output.

 Connection Time
 These two methods are called several times throughout the life cycle of a component, both at design - time
and at runtime, and are used to manage connections within the component.

 AcquireConnections
 This method is called both at design - time and when the component executes. There is no explicit result,
but the connection is normally validated and then cached in a member variable within the component
for later use. At this stage, a connection should be open and ready to use.

 ReleaseConnections
 If you have any open connections, as set in the AcquireConnections method, then this is where they
should be closed and released. If the connection was cached in a member variable, use that reference to
issue any appropriate Close or Dispose methods. For some connections, such as a File Connection
Manager, this may not be relevant as all that was returned was a file path string, but if you took this a
stage further and opened a text stream or similar on the file, it should now be closed.

 Building the Components
 Now you can move on to actually building the components. These components are simple and
demonstrate the most commonly used methods when building your own components. They also help
give you an idea of what the composition of a component resembles, the order in which things happen,
and which method is meant to do what. They will not implement all the available methods. The
components have been built and they can be extended, so why not download them and give them a go?
If you happen to break them, simply revert back to a previous good copy. No programmer gets things

c18.indd 670c18.indd 670 8/28/08 12:44:01 PM8/28/08 12:44:01 PM

Chapter 18: Programming and Extending SSIS

671

right the first time, so having the component break is part of the experience. (Or at least that ’ s what
programmers tell themselves at two o ’ clock in the morning when they are still trying to figure out why
the thing isn ’ t doing what they asked.) The component classes are covered in the next sections. You will
then be shown how to make sure your component appears in the correct folder, what to put in the
 AssemblyInfo file, how it gets registered in the GAC, and how to sign the assembly. This is common to
all three components, so it is dealt with as one topic.

 Preparation
 In this section of the chapter, you ’ ll go through the steps that are common to all the Pipeline Components.
These are the basic sets of things you need to do before you fly into coding.

 Start by opening Visual Studio 2008, and create a new project, a Class Library project, as shown in
Figure 18 - 1 .

Figure 18-1

 Now select the Add References option from the Project menu, and select the following assemblies, which
are also illustrated in Figure 18 - 2 :

 Microsoft.SqlServer.DTSPipelineWrap

 Microsoft.Sqlserver.DTSRuntimeWrap

 Microsoft.Sqlserver.ManagedDTS

 Microsoft.SqlServer.PipelineHost

❑

❑

❑

❑

c18.indd 671c18.indd 671 8/28/08 12:44:01 PM8/28/08 12:44:01 PM

Chapter 18: Programming and Extending SSIS

672

 Once you have those set up, you can start to add the using directives. These directives tell the compiler
which libraries you are going to use. These are the directives you will need:

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;
using System.Globalization;
using System.Runtime.InteropServices;
using Microsoft.SqlServer.Dts.Pipeline;
using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;
using Microsoft.SqlServer.Dts.Runtime;

#endregion

 The first stage in building a component is to inherit from the PipelineComponent base class and to
decorate the class with DtsPipelineComponent . From this point on, you are officially working on a
Pipeline Component.

Figure 18-2

c18.indd 672c18.indd 672 8/28/08 12:44:02 PM8/28/08 12:44:02 PM

Chapter 18: Programming and Extending SSIS

673

namespace Konesans.Dts.Pipeline.ReverseString
{
 [DtsPipelineComponent(
 DisplayName = “ReverseString”,
 ComponentType = ComponentType.Transform,
 IconResource = “Konesans.Dts.Pipeline.ReverseString.ReverseString.ico”)]
 public class ReverseString : PipelineComponent
 {
 ...

 The DtsPipelineComponent attribute supplies design - time information about your component,
and the first key property here is ComponentType . The three options — Source, Destination, or
Transformation — reflect the three tabs within the SSIS designer Toolbox. This option determines
which tab or grouping of components your component belongs to. The display name should be self -
 explanatory, and the IconResource is the reference to the icon in your project that will be shown to the
user in both the Toolbox and when the component is dropped onto the Package Designer. This part of
the code will be revisited later in the chapter when the attribute for the User Interface, which you ’ ll be
building later, is added.

 Now type the following in the code window:

public override

 Once you hit the spacebar after the word “ override, ” you ’ ll see a list of all the methods on the base class.
You are now free to type away to your heart ’ s content and develop the component.

 We cover development of the components a little later, but for now let ’ s focus on how you deploy it into
the SSIS environment once it is ready. The component will need to be built and it also needs a few other
things to happen to it. If you are a seasoned developer, then this section will probably be old hat to you,
but it ’ s important for everybody to understand what needs to happen for the components to work. This
is what needs to be covered:

 Provide a strong name key for signing the assembly.

 Set the build output location to the PipelineComponents folder.

 Use a post - build event to install the assembly into the global assembly cache (GAC).

 Set assembly - level attributes in the AssemblyInfo.cs file.

❑

❑

❑

❑

c18.indd 673c18.indd 673 8/28/08 12:44:02 PM8/28/08 12:44:02 PM

Chapter 18: Programming and Extending SSIS

674

 SSIS needs the GAC because it can execute in designer or agent, with different directories. Strong names
are a consequence of this requirement. The PipelineComponents folder allows the designer to discover
the component and put it in the Toolbox. Assembly - level stuff is a consequence of the fact that the strong
name, with version, is persisted in the package, making all your packages break if you rebuild the
component unless you stop incrementing the version.

 You can start by looking at how you sign the project. Right - click your C# project and choose Properties
from the context menu. You are not going to look at all of the tabs on the left - hand side of the screen, but
you are going to look at the ones that are relevant to what you ’ re doing here. Figure 18 - 3 shows the
Application tab.

Figure 18-3

 In this tab, the only thing you really need to do is change the assembly name to be the same as your
default namespace.

 On the Build tab, shown in Figure 18 - 4 , you need to be concerned with the output path box toward the
bottom of the dialog box. This tells the project that when it builds, the output should be placed in a
certain folder. On a 32bit (x86) PC, this folder is usually located here:

C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents

 Note that if you have 64bit (x64) environment then you should explicitly choose the 32bit location:

C:\Program Files (x86)\Microsoft SQL Server\100\DTS\PipelineComponents

c18.indd 674c18.indd 674 8/28/08 12:44:02 PM8/28/08 12:44:02 PM

Chapter 18: Programming and Extending SSIS

675

 For the designer to use a component it must be placed in a defined folder, and for the runtime engine to
work correctly, it must be placed in the global assembly cache. So setting the build location and installing
into the GAC are both required steps, which you can do manually, but it makes for faster development if
you do it as part of the build process.

 Click the Build Events tab and then in the “ Post - build command line ” enter the commands that will
automatically do these tasks. An example build event command is shown as follows and also illustrated
in Figure 18 - 5 . Be sure to include the double quotes in the path statements. If this exact command doesn ’ t
work in your development environment then do a search for gacutil.exe on your hard drive, and use
its path in the manner shown here:

“C:\Program Files\Microsoft SDKs\Windows\v6.0A\Bin\gacutil” /if “$(TargetPath)”

Figure 18-4

c18.indd 675c18.indd 675 8/28/08 12:44:03 PM8/28/08 12:44:03 PM

Chapter 18: Programming and Extending SSIS

676

 What happens when you compile the code is that Visual Studio will expand the macros shown in the
preceding code into real paths, for instance the first command shown will expand into the following
statement, and Visual Studio will then execute the statement. Since you have declared the statement
in the Post - build event, then, after compiling the code, the statement will run automatically and will place
the new library (dll) into the global assembly cache (GAC).

“C:\Program Files\Microsoft SDKs\Windows\v6.0A\Bin\gacutil” /if
“C:\Program Files\Microsoft SQL
 Server\100\DTS\PipelineComponents\ReverseString.dll”

 Because the assembly is to be installed in the GAC, you also need to sign the assembly
using a strong name key, which can be specified and created from the Signing page, as shown
in Figure 18 - 6 .

Figure 18-5

c18.indd 676c18.indd 676 8/28/08 12:44:03 PM8/28/08 12:44:03 PM

Chapter 18: Programming and Extending SSIS

677

 That is it as far as the project ’ s properties are concerned, so now you can move on to looking at the
 AssemblyInfo file. While most assembly attributes can be set through the Assembly Information dialog
box, available from the Application tab of Project Properties, shown previously in Figure 18 - 3 , you
require some additional settings. Shown next is the AssemblyInfo.cs file for the example project,
which can be found under the Properties folder within the Solution Explorer of Visual Studio:

#region Using directives
using System;
using System.Security.Permissions;
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

#endregion

[assembly: AssemblyTitle(“ReverseString”)]
[assembly: AssemblyDescription(“Reversing String Transformation for SQL Server
Integration Services”)]
[assembly: AssemblyConfiguration(“”)]
[assembly: AssemblyProduct(“Reverse String Transformation”)]
[assembly: AssemblyTrademark(“”)]
[assembly: AssemblyCulture(“”)]

[assembly: AssemblyVersion(“2.0.0.0”)]
[assembly: AssemblyFileVersion(“2.0.0.0”)]
[assembly: CLSCompliant(true)]
[assembly: PermissionSet(SecurityAction.RequestMinimum)]
[assembly: ComVisible(false)]

Figure 18-6

c18.indd 677c18.indd 677 8/28/08 12:44:03 PM8/28/08 12:44:03 PM

Chapter 18: Programming and Extending SSIS

678

 The first section of attributes listed represents primarily information, and you would change these
to reflect your component and company, for example. The AssemblyCulture should be left blank
unless you are experienced at working with localized assemblies and understand the implications
of any change.

 The AssemblyVersion attribute is also worth noting; as the version is fixed, it does not use the asterisk
token to generate an automatically incrementing build number. The assembly version forms part of the
fully qualified assembly name, which is how a package references a component under the covers. So if
you changed the version for every build, you would have to rebuild your packages for every new
version of the component. So that you can differentiate between versions, you should use
 AssemblyFileVersion , although you will need to manually update this.

 The other attribute worth special note is CLSCompliant . Best practice dictates that the .NET classes and
assemblies conform to the Command Language Specification (CLS), and compliance should be marked
at the assembly level. Individual items of noncompliant code can then be decorated with the
 CLSCompliant attribute, marked as false . The completed samples all include this, and you can also
refer to SQL Server documentation for guidance, as well as following the simple compiler warnings that
are raised when this condition is not met.

 Here is an example of how to deal with a method being noncompliant in your component:

[CLSCompliant(false)]
public override DTSValidationStatus Validate()
{
...

 Building the Source Component
 As mentioned earlier, the Source adapter needs to be able to retrieve information from a file and present
the data to the downstream component. The file is not your standard - looking file. The format is strange
but consistent. When you design the Destination adapter, you will write the contents of an upstream
component to a file in a very similar format. After you have read this chapter, you may want to take the
Source adapter and alter it slightly so that it can read a file produced by the sample Destination adapter.

 The very first method to look at is ProvideComponentProperties . This gets called almost as soon as
you drop the component onto the designer. Here is the method in full before you begin to break it down:

public override void ProvideComponentProperties()
{
 ComponentMetaData.RuntimeConnectionCollection.RemoveAll();
 RemoveAllInputsOutputsAndCustomProperties();

 ComponentMetaData.Name = “Professional SSIS Source Adapter”;
 ComponentMetaData.Description = “Our first Source Adapter”;

 IDTSRuntimeConnection100 rtc =
 ComponentMetaData.RuntimeConnectionCollection.New();
 rtc.Name = “File To Read”;
 rtc.Description = “This is the file from which we want to read”;

c18.indd 678c18.indd 678 8/28/08 12:44:04 PM8/28/08 12:44:04 PM

Chapter 18: Programming and Extending SSIS

679

 IDTSOutput100 output = ComponentMetaData.OutputCollection.New();
 output.Name = “Component Output”;
 output.Description = “This is what downstream Components will see”;

 output.ExternalMetadataColumnCollection.IsUsed = true;
}

 Now you can break down some of this code.

ComponentMetaData.RuntimeConnectionCollection.RemoveAll();
RemoveAllInputsOutputsAndCustomProperties();

 The very first thing this code does is remove any runtime connections in the component, which you ’ ll be
adding back soon. You can also remove inputs, outputs, and custom properties. Basically your
component is now a clean slate. This is not strictly required for this example; however, it ’ s advantageous
to follow this convention, because it prevents any unexpected situations that may arise in more
complicated components.

ComponentMetaData.Name = “Professional SSIS Source Adapter”;
ComponentMetaData.Description = “Our first Source Adapter”;
ComponentMetaData.ContactInfo = “www.Konesans.com”;

 These three lines of code simply help to identify your component when you look in the property pages
after adding it to the designer. The only property here that may not be obvious is ContactInfo , which
simply identifies to the user the developer of the component. If a component throws a fatal error during
loading or saving, for example — areas not influenced by the user - controlled settings — then the
designer will show the contact information for support purposes.

IDTSRuntimeConnection100 rtc = ComponentMetaData.RuntimeConnectionCollection.New();
rtc.Name = “File To Read”;
rtc.Description = “This is the file from which we want to read”;

 Your component needs a runtime connection from which you can read and get the data. You removed
any existing connections earlier in the method, so here is where you add it back. Simply give it a name
and a description.

IDTSOutput100 output = ComponentMetaData.OutputCollection.New();
output.Name = “Component Output”;
output.Description = “This is what downstream Components will see”;

 The way downstream components will see the data is to present it to them from an output in this
component. In other words, the output is the vehicle that the component will use to present data from
the input file to the next component downstream. Here you add a new output to the output collection
and give it a name and a description. The final part of this component is to use
 ExternalMetadataColumns , which will allow you to view the structure of the Data Source with no
connection.

output.ExternalMetadataColumnCollection.IsUsed = true;

 Here, you tell the output you created earlier that it will use ExternalMetaData columns.

c18.indd 679c18.indd 679 8/28/08 12:44:04 PM8/28/08 12:44:04 PM

Chapter 18: Programming and Extending SSIS

680

 The next method to look at is the AcquireConnections method. In this method, you want to make sure
that you have a runtime connection available and that it is the correct type. You then want to retrieve the
filename from the file itself. Here is the method in full:

public override void AcquireConnections(object transaction)
{

 if (ComponentMetaData.RuntimeConnectionCollection[“File To
Read”].ConnectionManager != null)
 {
 ConnectionManager cm =
 Microsoft.SqlServer.Dts.Runtime.DtsConvert.GetWrapper(
 ComponentMetaData.RuntimeConnectionCollection[“File To Read”].
 ConnectionManager);

 if (cm.CreationName != “FILE”)
 {
 throw new Exception(“The Connection Manager is not a FILE Connection
 Manager”);
 }
 else
 {
 fil = (Microsoft.SqlServer.Dts.Runtime.DTSFileConnectionUsageType)
 cm.Properties[“FileUsageType”].GetValue(cm);

 if (_fil != DTSFileConnectionUsageType.FileExists)
 {
 throw new Exception(“The type of FILE connection manager must be an
 Existing File”);
 }
 else
 {
 _filename = ComponentMetaData.RuntimeConnectionCollection[“File To
 Read”].ConnectionManager.AcquireConnection(transaction).
 ToString();
 if (_filename == null || _filename.Length == 0)
 {
 throw new Exception(“Nothing returned when grabbing the filename”);
 }
 }
 }
 }
}

 This method covers a lot of ground and is really quite interesting. The first thing you want to do is find
out if you can get a Connection Manager from the runtime connection collection of the component.
The runtime connection was defined during ProvideComponentProperties earlier. If it is null,
then the user has not provided a runtime connection.

if (ComponentMetaData.RuntimeConnectionCollection[“File To Read”].ConnectionManager
!= null)

c18.indd 680c18.indd 680 8/28/08 12:44:04 PM8/28/08 12:44:04 PM

Chapter 18: Programming and Extending SSIS

681

 The next line of code is quite cool. What it does is convert the native Connection Manager object to a
managed Connection Manager. You need the managed Connection Manager to find out what type it is
and the properties.

ConnectionManager cm =
Microsoft.SqlServer.Dts.Runtime.DtsConvert.ToConnectionManager(
ComponentMetaData.RuntimeConnectionCollection[“File To Read”].ConnectionManager);

 Once you have the managed Connection Manager, you can start to look at some of its properties and
make sure that it is what you want. All Connection Managers have a CreationName property. For this
component, you want to make sure that the CreationName property is FILE , as highlighted here:

if (cm.CreationName != “FILE”)

 If the CreationName is not FILE , then you send an exception back to the component:

throw new Exception(“The type of FILE connection manager must be an Existing
File”);

 You ’ ve established that a connection has been specified and that it is the right type. The problem with
the FILE Connection Manager is that it can still have the wrong usage mode specified. To find out if it
has the right mode, you will have to look at another of its properties, the FileUsageType property. This
can return to you one of four values, defined by the DTSFileConnectionUsageType enumeration:

 DTSFileConnectionUsageType.CreateFile : The file does not yet exist and will be created
by the component. If the file does exist, then you can raise an error, although you may also
accept this and overwrite the file. Use this type for components that create new files. This mode
is more useful for Destination Components, not sources.

 DTSFileConnectionUsageType.FileExists : The file exists, and you would be expected to
raise an error if this is not the case.

 DTSFileConnectionUsageType.CreateFolder : The folder does not yet exist and will be
created by the component. If the folder does exist, then you can decide how to handle this
situation as with CreateFile earlier. Also more useful for destinations.

 DTSFileConnectionUsageType.FolderExists : The folder exists, and you would be expected
to raise an error if this is not the case.

 The type you want to check for in your component is DTSFileConnectionUsageType.FileExists
and you do that like this, throwing an exception if the type is not what you want:

fil = (Microsoft.SqlServer.Dts.Runtime.DTSFileConnectionUsageType)cm.Properties
[“FileUsageType”].GetValue(cm);

if (_fil != Microsoft.SqlServer.Dts.Runtime.DTSFileConnectionUsageType.FileExists)
{...}

❑

❑

❑

❑

c18.indd 681c18.indd 681 8/28/08 12:44:05 PM8/28/08 12:44:05 PM

Chapter 18: Programming and Extending SSIS

682

 You ’ re nearly done checking your Connection Manager now. At this point, you need the filename so you
can retrieve the file later on when you need to read it for data. You do that like this:

_filename = ComponentMetaData.RuntimeConnectionCollection
[“File To Read”].ConnectionManager.AcquireConnection(transaction).ToString();

 That concludes the AcquireConnections method, so you can now move straight on to the Validate
method:

[CLSCompliant(false)]
public override DTSValidationStatus Validate()
{
 bool pbCancel = false;

 IDTSOutput100 output = ComponentMetaData.OutputCollection[“Component Output”];

 if (ComponentMetaData.InputCollection.Count != 0)
 {
 ComponentMetaData.FireError(0, ComponentMetaData.Name, “Unexpected input
 found. Source components do not support inputs.”, “”, 0, out pbCancel);
 return DTSValidationStatus.VS_ISCORRUPT;
 }

 if (ComponentMetaData.RuntimeConnectionCollection[“File To Read”].
 ConnectionManager == null)
 {
 ComponentMetaData.FireError(0, “Validate”, “No Connection Manager
 Specified.”, “”, 0, out pbCancel);
 return DTSValidationStatus.VS_ISBROKEN;
 }

 // Check for Output Columns, if not then force ReinitializeMetaData
 if (ComponentMetaData.OutputCollection[“Component
 Output”].OutputColumnCollection.Count == 0)
 {
 ComponentMetaData.FireError(0, “Validate”, “No output columns specified.
 Making call to ReinitializeMetaData.”, “”, 0, out pbCancel);
 return DTSValidationStatus.VS_NEEDSNEWMETADATA;
 }

 //What about if we have output columns but we have no ExternalMetaData
 // columns? Maybe somebody removed them through code.

 if (DoesEachOutputColumnHaveAMetaDataColumnAndDoDatatypesMatch(output.ID)
 == false)
 {
 ComponentMetaData.FireError(0, “Validate”, “Output columns and metadata
 columns are out of sync. Making call to ReinitializeMetaData.”, “”,
 0, out pbCancel);
 return DTSValidationStatus.VS_NEEDSNEWMETADATA;
 }
 return base.Validate();
}

c18.indd 682c18.indd 682 8/28/08 12:44:05 PM8/28/08 12:44:05 PM

Chapter 18: Programming and Extending SSIS

683

 The first thing this method does is check for an input. If it has an input, it raises an error back to the
component using the FireError method and returns DTSValidationStatus.VS_ISCORRUPT . This is a
Source adapter, and there is no place for an input. Since the data rows enter the component from the file,
there is no need for a buffer input that would receive data from an upstream component.

if (ComponentMetaData.InputCollection.Count != 0)

 The next thing you do is check that the user has specified a Connection Manager for your component. If
not, then you return back to the user a message indicating that a Connection Manager is required. Again,
you do this through the FireError method. If there is no Connection Manager specified, then you tell
the component it is broken. Remember that you do the validation of any Connection Manager that is
specified in AcquireConnections() .

if (ComponentMetaData.RuntimeConnectionCollection[“File To Read”].ConnectionManager
== null)
{
 ComponentMetaData.FireError(0, “Validate”, “No Connection Manager Specified.”,
“”, 0, out pbCancel);
 return DTSValidationStatus.VS_ISBROKEN;
}

 The next thing to do is check to see if the output has any columns. On the initial drop onto the
designer, the output will have no columns. If this is the case, the Validate() method will return
 DTSValidationStatus.VS_NEEDSNEWMETADATA , which in turn calls ReinitializeMetaData . You
will see later what happens in that method.

if (ComponentMetaData.OutputCollection[“Component
Output”].OutputColumnCollection.Count == 0)
{
 ComponentMetaData.FireError(0, “Validate”, “No output columns specified. Making
 call to ReinitializeMetaData.”, “”, 0, out pbCancel);
 return DTSValidationStatus.VS_NEEDSNEWMETADATA;
}

 So if the output has output columns, then one of the things you want to check for is whether the
output columns have an ExternalMetaDataColumn associated with them. You ’ ll recall that in
 ProvideComponentProperties , it was stated that you would use an
 ExternalMetadataColumnCollection . So for each output column, you need to make sure that there is
an equivalent external metadata column, and that the data type properties also match.

if (DoesEachOutputColumnHaveAMetaDataColumnAndDoDatatypesMatch(output.ID) == false)
{
 ComponentMetaData.FireError(0, “Validate”, “Output columns and metadata columns
 are out of sync. Making call to ReinitializeMetaData.”, “”,
 0, out pbCancel);
 return DTSValidationStatus.VS_NEEDSNEWMETADATA;
}

c18.indd 683c18.indd 683 8/28/08 12:44:05 PM8/28/08 12:44:05 PM

Chapter 18: Programming and Extending SSIS

684

 The next method is a function that we use to validate some properties of the component. This is not a
method provided by Microsoft that we are overriding; rather it is completely custom code used to help
us do some common work — which is why such functions are sometimes called helper methods. This
rather long - named helper method,
 DoesEachOutputColumnHaveAMetaDataColumnAndDoDatatypesMatch , accepts as a parameter the ID
of an output, so you pass in the output ’ s ID. There are two things that this method has to do. First, it has
to check that each output column has an ExternalMetadataColumn associated with it, and second, it
has to make sure that the two columns have the same column data type properties. Here is the method
in full:

private bool DoesEachOutputColumnHaveAMetaDataColumnAndDoDatatypesMatch(int
outputID)
{

 IDTSOutput100 output =
 ComponentMetaData.OutputCollection.GetObjectByID(outputID);
 IDTSExternalMetadataColumn100 mdc;
 bool rtnVal = true;

 foreach (IDTSOutputColumn100 col in output.OutputColumnCollection)
 {

 if (col.ExternalMetadataColumnID == 0)
 {
 rtnVal = false;
 }
 else
 {
 mdc = output.ExternalMetadataColumnCollection.GetObjectByID
 (col.ExternalMetadataColumnID);

 if (mdc.DataType != col.DataType || mdc.Length != col.Length ||
 mdc.Precision != col.Precision || mdc.Scale != col.Scale ||
 mdc.CodePage != col.CodePage)
 {
 rtnVal = false;
 }
 }
 }
 return rtnVal;
}

 The first thing this method does is to translate the ID passed in as a parameter to the method into an
output.

IDTSOutput100 output = ComponentMetaData.OutputCollection.GetObjectByID(outputID);

 Once you have that, the code loops over the output columns in that output and asks if the
 ExternalMetadataColumnID associated with that output column has a value of 0 (that is, there is no
value). If the code finds an instance of a value, then it sets the return value from the method to be false.

c18.indd 684c18.indd 684 8/28/08 12:44:05 PM8/28/08 12:44:05 PM

Chapter 18: Programming and Extending SSIS

685

foreach (IDTSOutputColumn100 col in output.OutputColumnCollection)
{

 if (col.ExternalMetadataColumnID == 0)
 {
 rtnVal = false;
 }
...

 If all output columns have a nonzero ExternalMetadataColumnID , then you move on to the second test:

mdc = output.ExternalMetadataColumnCollection.GetObjectByID
 (col.ExternalMetadataColumnID);

if (mdc.DataType != col.DataType || mdc.Length != col.Length || mdc.Precision !=
 col.Precision || mdc.Scale != col.Scale || mdc.CodePage != col.CodePage)
{
 rtnVal = false;
}

 In this part of the method, you are checking that all attributes of the output column ’ s data type match
those of the corresponding ExternalMetadataColumn . If they do not, then again you return false from
the method, which causes the Validate() method to call ReinitializeMetaData . Notice how you are
using the ID over a Name, since names can be changed by the end user.

 ReinitializeMetaData is where a lot of the work happens in most components. In this component, it
will fix up the output columns and the ExternalMetadataColumns . Here ’ s the method:

public override void ReinitializeMetaData()
{
 IDTSOutput100 _profoutput = ComponentMetaData.OutputCollection[“Component
 Output”];

 if (_profoutput.ExternalMetadataColumnCollection.Count > 0)
 {
 _profoutput.ExternalMetadataColumnCollection.RemoveAll();
 }

 if (_profoutput.OutputColumnCollection.Count > 0)
 {
 _profoutput.OutputColumnCollection.RemoveAll();
 }

 CreateOutputAndMetaDataColumns(_profoutput);

}

 This is a really simple way of doing things. Basically, you are going to remove all the
 ExternalMetaDataColumns and then remove the output columns. You will then add them back using
the CreateOutputAndMetaDataColumns helper method.

c18.indd 685c18.indd 685 8/28/08 12:44:06 PM8/28/08 12:44:06 PM

Chapter 18: Programming and Extending SSIS

686

 As an exercise, you may want to see if you can work out which columns actually need fixing, instead of
just dropping and re - creating them all.

 CreateOutputAndMetaDataColumns is a helper method that creates the output ’ s output columns and
the ExternalMetaData columns to go with them. This implementation is very rigid, and it presumes
that the file you get will be in one format only:

private void CreateOutputAndMetaDataColumns(IDTSOutput100 output)
{
 IDTSOutputColumn100 outName = output.OutputColumnCollection.New();
 outName.Name = “Name”;
 outName.Description = “The Name value retrieved from File”;
 outName.SetDataTypeProperties(DataType.DT_STR, 50, 0, 0, 1252);
 CreateExternalMetaDataColumn(output.ExternalMetadataColumnCollection, outName);

 IDTSOutputColumn100 outAge = output.OutputColumnCollection.New();
 outAge.Name = “Age”;
 outAge.Description = “The Age value retrieved from File”;
 outAge.SetDataTypeProperties(DataType.DT_I4, 0, 0, 0, 0);

 //Create an external metadata column to go alongside with it
 CreateExternalMetaDataColumn(output.ExternalMetadataColumnCollection, outAge);

 IDTSOutputColumn100 outMarried = output.OutputColumnCollection.New();
 outMarried.Name = “Married”;
 outMarried.Description = “The Married value retrieved from File”;
 outMarried.SetDataTypeProperties(DataType.DT_BOOL, 0, 0, 0, 0);

 //Create an external metadata column to go alongside with it
 CreateExternalMetaDataColumn(output.ExternalMetadataColumnCollection,
 outMarried);

 IDTSOutputColumn100 outSalary = output.OutputColumnCollection.New();
 outSalary.Name = “Salary”;
 outSalary.Description = “The Salary value retrieved from File”;
 outSalary.SetDataTypeProperties(DataType.DT_DECIMAL, 0, 0, 10, 0);

 //Create an external metadata column to go alongside with it
 CreateExternalMetaDataColumn(output.ExternalMetadataColumnCollection,
 outSalary);
}

 This code follows the same path for every column you want to create, so you ’ ll just look at one example
here, because the rest are variations of the same code. In CreateOutputAndMetaDataColumns , you first
need to create an output column and add it to the OutputColumnCollection of the output, which is a
parameter to the method. You give the column a name, a description, and a data type along with details
about the data type.

 SetDataTypeProperties takes the name, the length, the precision, the scale, and the code page of
that data type. A list of what is required for these fields can be found in Books Online.

c18.indd 686c18.indd 686 8/28/08 12:44:06 PM8/28/08 12:44:06 PM

Chapter 18: Programming and Extending SSIS

687

IDTSOutputColumn100 outName = output.OutputColumnCollection.New();
outName.Name = “Name”;
outName.Description = “The Name value retrieved from File”;
outName.SetDataTypeProperties(DataType.DT_STR, 50, 0, 0, 1252);

 Note that if you decided to use Unicode data, which does not require a code page, then the same call
would have looked like this:

outName.SetDataTypeProperties(DataType.DT_WSTR, 50, 0, 0, 0);

 You now look to create an ExternalMetaDataColumn for the OutputColumn , and you do that by
calling the helper method called CreateExternalMetaDataColumn . This method takes as parameters
the ExternalMetaDataColumnCollection of the output and the Column for which you want to create
an ExternalMetaDataColumn :

CreateExternalMetaDataColumn(output.ExternalMetadataColumnCollection, outName);

 The first thing you do in the method is create a new ExternalMetaDataColumn in the
 ExternalMetaDataColumnCollection that was passed as a parameter. You then map the properties of
the output column that was passed as a parameter to the new ExternalMetaDataColumn . Finally, you
create the relationship between the two by assigning the ID of the ExternalMetaDataColumn to the
 ExternalMetadataColumnID property of the output column.

IDTSExternalMetadataColumn100 eColumn = externalCollection.New();
eColumn.Name = column.Name;
eColumn.DataType = column.DataType;
eColumn.Precision = column.Precision;
eColumn.Length = column.Length;
eColumn.Scale = column.Scale;
eColumn.CodePage = column.CodePage;
column.ExternalMetadataColumnID = eColumn.ID;

 At this point, the base class will call the MapOutputColumn method. You can choose to override this
method to decide if you want to allow the mapping to occur, but in this case you should choose to leave
the base class to simply carry on.

 Now you will move on to looking at the runtime methods. PreExecute is the usual place to start for
most components, but it is done slightly differently here. Normally you would enumerate the output
columns and enter them into a struct, so you could easily retrieve them later. For illustration purposes,
you ’ re not going to do that here (but you do this in the Destination adapter, so you could port what you
do there into this adapter as well). The only method you are interested in with this adapter is
 PrimeOutput . Here is the method in full:

public override void PrimeOutput(int outputs, int[] outputIDs, PipelineBuffer[]
buffers)
{
 ParseTheFileAndAddToBuffer(_filename, buffers[0]);
 buffers[0].SetEndOfRowset();
}

 On the face of this method, it looks really easy, but as you can see, all the work is being done by the
helper called ParseTheFileAndAddToBuffer method. To that procedure, you need to pass the filename

c18.indd 687c18.indd 687 8/28/08 12:44:06 PM8/28/08 12:44:06 PM

Chapter 18: Programming and Extending SSIS

688

you retrieved in AcquireConnections , and the buffer is buffers[0] , because there is only one buffer
and the collection is zero - based. You ’ ll look at the ParseTheFileAndAddToBuffer method in a
moment, but the last thing you do in this method is call SetEndOfRowset on the buffer. This basically
tells the downstream component that there are no more rows to be had from the adapter. Now you will
look at the ParseTheFileAndAddToBuffer method in a bit more detail:

private void ParseTheFileAndAddToBuffer(string filename, PipelineBuffer buffer)
{
 TextReader tr = File.OpenText(filename);
 IDTSOutput100 output = ComponentMetaData.OutputCollection[“Component Output”];
 IDTSOutputColumnCollection100 cols = output.OutputColumnCollection;
 IDTSOutputColumn100 col;

 string s = tr.ReadLine();
 int i = 0;

 while (s != null)
 {
 if (s.StartsWith(“ < START > ”))
 buffer.AddRow();

 if (s.StartsWith(“Name:”))
 {
 col = cols[“Name”];
 i = BufferManager.FindColumnByLineageID(output.Buffer, col.LineageID);
 string value = s.Substring(5);
 buffer.SetString(i, value);
 }

 if (s.StartsWith(“Age:”))
 {
 col = cols[“Age”];
 i = BufferManager.FindColumnByLineageID(output.Buffer, col.LineageID);
 Int32 value;
 if (s.Substring(4).Trim() == “”)
 value = 0;
 else
 value = Convert.ToInt32(s.Substring(4).Trim());

 buffer.SetInt32(i, value);
 }

 if (s.StartsWith(“Married:”))
 {
 col = cols[“Married”];
 bool value;
 i = BufferManager.FindColumnByLineageID(output.Buffer, col.LineageID);
 if (s.Substring(8).Trim() == “”)
 value = true;
 else
 value = s.Substring(8).Trim() != “1” ? false : true;

 buffer.SetBoolean(i, value);
 }

c18.indd 688c18.indd 688 8/28/08 12:44:07 PM8/28/08 12:44:07 PM

Chapter 18: Programming and Extending SSIS

689

 if (s.StartsWith(“Salary:”))
 {
 col = cols[“Salary”];
 Decimal value;
 i = BufferManager.FindColumnByLineageID(output.Buffer, col.LineageID);

 if (s.Substring(7).Trim() == “”)
 value = 0M;
 else
 value = Convert.ToDecimal(s.Substring(8).Trim());

 buffer.SetDecimal(i, value);
 }
 s = tr.ReadLine();
 }
 tr.Close();
}

 Because this is not a lesson in C# programming, we will simply describe the points relevant to SSIS
programming in this component. You start off by getting references to the output columns collection in
the component:

IDTSOutput100 output = ComponentMetaData.OutputCollection[“Component Output”];
IDTSOutputColumnCollection100 cols = output.OutputColumnCollection;
IDTSOutputColumn100 col;

 The IDTSOutputColumn100 object will be used when you need a reference to particular columns.
Now the problem with the file is that the columns in the file are actually in rows, and so you need to
pivot them into columns. First we read a single line from the file using this code:

 string s = tr.ReadLine();

 For this specific source file format, the way to identify that you need to add a new row to the buffer is if
when reading a line of text from the file it begins with the word < START > . You do that in this code here
(remember that the variable s is assigned a line of text from the file):

if(s.StartsWith(“ < START > ”))
 buffer.AddRow();

 As you can see, you have added a row to the buffer, but the row is empty with no data in it yet. As you
read lines in the file, you test the start of each line. This is important because you need to know this in
order to be able to grab the right column from the output columns collection and assign it the value from
the text file. The first column name you test for is the “ Name ” column:

if (s.StartsWith(“Name:”))
{
 col = cols[“Name”];
 i = BufferManager.FindColumnByLineageID(output.Buffer, col.LineageID);

 string value = s.Substring(5);
 buffer.SetString(i, value);
}

c18.indd 689c18.indd 689 8/28/08 12:44:07 PM8/28/08 12:44:07 PM

Chapter 18: Programming and Extending SSIS

690

 The first thing you do here is to check what the row begins with. In the preceding example, it is
 “ Name: ” . Next, you set the IDTSColumn100 variable column to reference the Name column in the
 OutputColumnCollection . You need to be able to locate the column in the buffer, and to do this you
need to look at the Buffer Manager. This has a method called FindColumnByLineageID , which returns
the integer location of the column. You need this to assign a value to the column.

 To this method, you pass the output ’ s buffer and the column ’ s LineageID. Once you have that, you can
use the SetString method on the buffer object to assign a value to the column by passing in the Buffer
column index and the value you want to set the column to. Now you no longer have an empty row; it
has one column populated with a real data value.

 You pretty much do the same with all the columns you want to set values for. The only variation is
the method you call on the buffer object. The buffer object has a set < datatype > method for each of the
possible data types. In this component, you need a SetInt32 , a SetBoolean , and a SetDecimal
method. They do not differ in structure from the SetString method at all. You can also set the value in
a non type - safe manner by using buffer[i] := value, though as a best practice this is not advised.

 You can now compile the project, and assuming there are no syntax errors, the project should output the
 .dll in the specified folder, and register it in the GAC. We discuss how you integrate the component
into SSIS later on.

 Building the Transform Component
 In this section, you build the transform that is going to take data from the upstream Source adapter.
After reversing the strings, it will pass the data to the downstream component. In this example, the
downstream component will be the Destination adapter, which you ’ ll be writing right after you ’ re done
with the transform. The component will need a few things prepared earlier in order to execute efficiently
during its lifetime.

private ColumnInfo[] _inputColumnInfos;

const string ErrorInvalidUsageType = “Invalid UsageType for column ‘{0}’”;
const string ErrorInvalidDataType = “Invalid DataType for column ‘{0}’”;

CLSCompliant(false)]
public struct ColumnInfo
{
 public int bufferColumnIndex;
 public DTSRowDisposition columnDisposition;
 public int lineageID;
}

 The structure or struct that you create here, called ColumnInfo , is something you use in various guises
time and time again in your components. It is really useful for storing details about columns that you
will need later in the component. In this component, you will store the BufferColumnIndex , which is
basically where the column is in the buffer, so that you can retrieve the data. You ’ ll store how the user
wants the row to be treated in an error, and you ’ ll also store the column ’ s LineageID , which helps to
retrieve the column from the InputColumnCollection .

c18.indd 690c18.indd 690 8/28/08 12:44:07 PM8/28/08 12:44:07 PM

Chapter 18: Programming and Extending SSIS

691

 Logically, it would make sense to code the component beginning with the design - time, followed by the
runtime. The very first thing that happens when your component is dropped into the SSIS Package
Designer surface is that it will make a call to ProvideComponentProperties . In this component, you
want to set up an input and an output, and you also need to tell your component how it is going to
handle data — as in whether it is a synchronous or an asynchronous transformation, as discussed earlier
in the chapter. Just as you did with the Source adapter, we ’ ll look at the whole method first and then
examine parts of the method in greater detail. Here is the method in full:

public override void ProvideComponentProperties()
{
 ComponentMetaData.UsesDispositions = true;

 ReverseStringInput = ComponentMetaData.InputCollection.New();
 ReverseStringInput.Name = “RSin”;

 ReverseStringInput.ErrorRowDisposition = DTSRowDisposition.RD_FailComponent;

 ReverseStringOutput = ComponentMetaData.OutputCollection.New();
 ReverseStringOutput.Name = “RSout”;

 ReverseStringOutput.SynchronousInputID = ReverseStringInput.ID;

 ReverseStringOutput.ExclusionGroup = 1;

 AddErrorOutput(“RSErrors”, ReverseStringInput.ID,
 ReverseStringOutput.ExclusionGroup);

}

 Now to break it down. The very first thing you do is to tell the component to use dispositions:

ComponentMetaData.UsesDispositions = true;

 In this case, this tells your component that it can expect an error output. Now you move on to adding an
input to the component:

// Add a new Input, and name it.
ReverseStringInput = ComponentMetaData.InputCollection.New();
ReverseStringInput.Name = “RSin”;

// If an error occurs during data movement, then the component will fail.
ReverseStringInput.ErrorRowDisposition = DTSRowDisposition.RD_FailComponent;

// Add a new Output, and name it.
ReverseStringOutput = ComponentMetaData.OutputCollection.New();
ReverseStringOutput.Name = “RSout”;

// Link the Input and Output together for a synchronous behavior
ReverseStringOutput.SynchronousInputID = ReverseStringInput.ID;

c18.indd 691c18.indd 691 8/28/08 12:44:08 PM8/28/08 12:44:08 PM

Chapter 18: Programming and Extending SSIS

692

 This isn ’ t too different from adding the input, except that you tell the component that this is a
synchronous component by setting the SynchronousInputID on the output to the ID of the input you
created earlier. If you were creating an asynchronous component, you would set the
 SynchronousInputID of the output to be 0, like this:

ReverseStringOutput.SynchronousInputID = 0

 This tells SSIS to create a buffer for the output that is separate from the input buffer. This is not an
asynchronous component, though; you will revisit some of the subtle differences later.

AddErrorOutput(“RSErrors”,
ReverseStringInput.ID,ReverseStringOutput.ExclusionGroup);

ReverseStringOutput.ExclusionGroup = 1;

 AddErrorOutput creates a new output on the component and tags it as being an error output by setting
the IsErrorOut property to true. To the method, you pass the name of the error output you want, the
input ’ s ID property, and the output ’ s ExclusionGroup . An ExclusionGroup is needed when two
outputs use the same synchronous input. Setting the exclusion group allows you to direct rows to the
correct output later in the component using DirectRow .

 That ’ s it for ProvideComponentProperties . Now you ’ ll move on to the Validate method. As
mentioned earlier, this method is called on numerous occasions, and it is your opportunity within the
component to check whether what has been specified by the user is allowable by the component.

 Here is your completed Validate method:

[CLSCompliant(false)]
public override DTSValidationStatus Validate()
{
 bool Cancel;

 if (ComponentMetaData.AreInputColumnsValid == false)
 return DTSValidationStatus.VS_NEEDSNEWMETADATA;

 foreach (IDTSInputColumn100 inputColumn in
 ComponentMetaData.InputCollection[0].InputColumnCollection)
 {
 if (inputColumn.UsageType != DTSUsageType.UT_READWRITE)
 {
 ComponentMetaData.FireError(0, inputColumn.IdentificationString,
 String.Format(ErrorInvalidUsageType, inputColumn.Name), “”,
 0, out Cancel);
 return DTSValidationStatus.VS_ISBROKEN;
 }

 if (inputColumn.DataType != DataType.DT_STR & & inputColumn.DataType !=
 DataType.DT_WSTR)
 {

c18.indd 692c18.indd 692 8/28/08 12:44:08 PM8/28/08 12:44:08 PM

Chapter 18: Programming and Extending SSIS

693

 ComponentMetaData.FireError(0, inputColumn.IdentificationString,
 String.Format(ErrorInvalidDataType, inputColumn.Name), “”,
 0, out Cancel);
 return DTSValidationStatus.VS_ISBROKEN;
 }
 }

 return base.Validate();
}

 This method will return a validation status to indicate the overall result and may cause subsequent
methods to be called. Refer to the SQL Server documentation for a complete list of values (see
 DTSValidationStatus).

 Now to break down the Validate method. A user can easily add and take away an input from the
component at any stage and add it back. It may be the same one, or it may be a different one, presenting
the component with an issue. When an input is added, the component will store the LineageIDs of the
Input columns. If that input is removed and another is added, those LineageIDs may have changed
because something like the query used to generate those columns may have changed; therefore you are
presented with different columns, so you need to check to see if that has happened, and if it has,
invalidated the LineageIDs. If it has, the component will call ReinitializeMetaData .

if (ComponentMetaData.AreInputColumnsValid == false)
{ return DTSValidationStatus.VS_NEEDSNEWMETADATA; }

 The next thing you should check for is that each of the columns in the InputColumnCollection chosen
for the component has been set to READ WRITE . This is because you will be altering them in place — in
other words, you will read a string from a column, reverse it, then write it back over the old string. If
they are not set to READ WRITE , you need to feed that back by returning VS_ISBROKEN . You can invoke
the FireError method on the component, which will result in a red cross on the component along with
tooltip text indicating the exact error.

if (RSincol.UsageType != DTSUsageType.UT_READWRITE)
{
 ComponentMetaData.FireError(0, inputColumn.IdentificationString,
 String.Format(ErrorInvalidUsageType, inputColumn.Name), “”,
 0, out Cancel);
 return DTSValidationStatus.VS_ISBROKEN;
}

 The last thing you do in Validate is to check that the columns selected for the component have the
correct data types:

if (inputColumn.DataType != DataType.DT_STR & & inputColumn.DataType !=
 DataType.DT_WSTR)
...

 If the data type of the column is not one of those in the list, you again fire an error and set the return
value to VS_ISBROKEN .

c18.indd 693c18.indd 693 8/28/08 12:44:08 PM8/28/08 12:44:08 PM

Chapter 18: Programming and Extending SSIS

694

 Now you will look at the workhorse method of so many of your components: ReinitializeMetaData .
Here is the method in full:

public override void ReinitializeMetaData()
{
 if (!ComponentMetaData.AreInputColumnsValid)
 {
 ComponentMetaData.RemoveInvalidInputColumns();
 }

 base.ReinitializeMetaData();
}

 Remember back in the Validate method mentioned earlier that if Validate returns
VS_NEEDSNEWMETADATA , then the component internally would automatically call
 ReinitializeMetaData . The only time you do that for this component is when you have
detected that the LineageIDs of the input columns are not quite as expected, that is to say, they
do not exist on any upstream column and you want to remove them.

if (!ComponentMetaData.AreInputColumnsValid)
{
 ComponentMetaData.RemoveInvalidInputColumns();
}

 You finish off by calling the base class ’ s ReinitializeMetaData method as well. This method really
can become the workhorse of your component. You can perform all kinds of triage on your component
here and try to rescue the component from an aberrant user.

 The SetUsageType method is called when the user is manipulating how the column on the input will be
used by the component. In this component, this method validates the data type of the column and
whether the user has set the column to be the correct usage type. The method returns an
 IDTSInputColumn , and this is the column being manipulated.

[CLSCompliant(false)]
public override IDTSInputColumn100 SetUsageType(int inputID, IDTSVirtualInput100
virtualInput, int lineageID, DTSUsageType usageType)
{
 IDTSVirtualInputColumn100 virtualInputColumn =
 virtualInput.VirtualInputColumnCollection.GetVirtualInputColumnByLineageID(
 lineageID);

 if (usageType == DTSUsageType.UT_READONLY)
 throw new Exception(String.Format(ErrorInvalidUsageType,
 virtualInputColumn.Name));

 if (usageType == DTSUsageType.UT_READWRITE)
 {
 if (virtualInputColumn.DataType != DataType.DT_STR & &
 virtualInputColumn.DataType != DataType.DT_WSTR)

c18.indd 694c18.indd 694 8/28/08 12:44:09 PM8/28/08 12:44:09 PM

Chapter 18: Programming and Extending SSIS

695

 {
 throw new Exception(String.Format(ErrorInvalidDataType,
 virtualInputColumn.Name));
 }
 }

 return base.SetUsageType(inputID, virtualInput, lineageID, usageType);
}

 The first thing the method does is get a reference to the column being changed, from the virtual input,
which is the list of all upstream columns available.

 You then perform the tests to ensure the column is suitable, before proceeding with the request through
the base class. In this case, you want to ensure that the user only picks columns of type string. Note that
this method looks a lot like the Validate method. The only real difference is that the Validate method
obviously returned a different object but also reported errors back to the component. Validate uses the
 FireError method, but SetUsageType throws an exception; in SetUsageType you are checking
against the VirtualInput , and in Validate() you check against the Input100 . (We used to use
 FireError in here also, but we found that it wasn ’ t as predictable on what got bubbled back to the user,
and we were advised that the correct way would be to throw a new exception.) These are important,
because this is one of the key verification methods you can use, allowing you to validate in real time the
change that is made to your component and prevent it if necessary.

 The InsertOutput method is the next design - time method you ’ ll be looking at, and it is called when
a user attempts to add an output to the component. In your component, you want to prohibit that, so if
the user tries to add an output, you should throw an exception telling them it is not allowed.

[CLSCompliant(false)]
public override IDTSOutput100 InsertOutput(DTSInsertPlacement insertPlacement, int
outputID)
{
 throw new Exception(“You cannot insert an output (“ +
 outputID.ToString() + “)”);
}

 You do the same when the user tries to add an input to your component in the InsertInput method:

[CLSCompliant(false)]
public override IDTSInput100 InsertInput(DTSInsertPlacement insertPlacement, int
inputID)
{
 throw new Exception(“You cannot insert an output (“ +
 outputID.ToString() + “)”);
}

 Notice again how in both methods you throw an exception in order to tell the user that what they
requested is not allowed.

 If the component were asynchronous, you would need to add columns to the output yourself. You have
a choice of methods in which to do this. If you want to add an output column for every input column
selected, then the SetUsageType method is probably the best place to do that. This is something about
which Books Online agrees. Another method for doing this might be the OnInputPathAttached .

c18.indd 695c18.indd 695 8/28/08 12:44:09 PM8/28/08 12:44:09 PM

Chapter 18: Programming and Extending SSIS

696

 The final two methods you ’ ll look at for the design - time methods are the opposite of the previous two.
Instead of users trying to add an output or an input to your component, they are trying to remove one of
them. You do not want to allow this either, so you can use the DeleteOutput and the DeleteInput
methods to tell them. Here are the methods as implemented in your component.

 First the DeleteInput method:

[CLSCompliant(false)]
public override void DeleteInput(int inputID)
{
 throw new Exception(“You cannot delete an input”);
}

 Now the DeleteOutput method:

[CLSCompliant(false)]
public override void DeleteOutput(int outputID)
{
 throw new Exception(“You cannot delete an ouput”);
}

 That concludes the code for the design - time part of your Transformation Component. Now you will move
on to the runtime methods.

 The first runtime method you ’ ll be using is the PreExecute method. As mentioned earlier, this is called
once in your component ’ s life, and it is where you typically do most of your setup using the state -
 holding struct mentioned at the top of this section. It is the first opportunity you get to access the Buffer
Manager, providing access to columns within the buffer, which you will need in ProcessInput as well.
Keep in mind that you will not be getting a call to PrimeOutput , because this is a synchronous
component, and PrimeOutput is not called in a synchronous component. Here is the PreExecute
method in full:

public override void PreExecute()
{
 // Prepare array of column information. Processing requires
 // lineageID so we can do this once in advance.

 IDTSInput100 input = ComponentMetaData.InputCollection[0];
 _inputColumnInfos = new ColumnInfo[input.InputColumnCollection.Count];

 for (int x = 0; x < input.InputColumnCollection.Count; x++)
 {
 IDTSInputColumn100 column = input.InputColumnCollection[x];
 _inputColumnInfos[x] = new ColumnInfo();
 _inputColumnInfos[x].bufferColumnIndex =
 BufferManager.FindColumnByLineageID(input.Buffer, column.LineageID);
 _inputColumnInfos[x].columnDisposition = column.ErrorRowDisposition;
 _inputColumnInfos[x].lineageID = column.LineageID;
 }
}

c18.indd 696c18.indd 696 8/28/08 12:44:09 PM8/28/08 12:44:09 PM

Chapter 18: Programming and Extending SSIS

697

 The first thing this method does is get a reference to the input collection. The collection is zero - based,
and because you have only one input, you have used the indexer and not the name, though you could
have used the name as well.

IDTSInput100 input = ComponentMetaData.InputCollection[0];

 At the start of this section was a list of the things your component would need later. This included a
struct that you were told you would use in various guises, and it also included an array of these structs.
You now need to size the array, which you do next by setting the size of the array to the count of
columns in the InputColumnCollection for your component:

_inputColumnInfos = new ColumnInfo[input.InputColumnCollection.Count];

 Now you loop through the columns in the InputColumnCollection . For each of the columns, you
create a new instance of a column and a new instance of the struct:

IDTSInputColumn100 column = input.InputColumnCollection[x];
_inputColumnInfos[x] = new ColumnInfo();

 You then read from the column the details you require and store them in the ColumnInfo object. The
first thing you want to retrieve is the location of the column in the buffer. You cannot simply do this by
the order that you added them to the buffer. Though this would probably work, it is likely to catch you
out at some point. You can find the column in the buffer by the use of a method called
 FindColumnByLineageID on the BufferManager object. This method takes the buffer and the LineageID
of the column that you wish to find as arguments:

_inputColumnInfos[x].bufferColumnIndex =
BufferManager.FindColumnByLineageID(input.Buffer, column.LineageID);

 You now need only two more details about the input column: the LineageID and the
 ErrorRowDisposition . Remember, ErrorRowDisposition tells the component how to treat an error.

_inputColumnInfos[x].columnDisposition = column.ErrorRowDisposition;
_inputColumnInfos[x].lineageID = column.LineageID;

 When you start to build your own components, you will see that this method really becomes useful. You
can use it to initialize any counters you may need or to open connections to Data Sources as well as
anything else you think of.

 The final method you are going to be looking at for this component is ProcessInput . Remember, this is
a synchronous transform as dictated in ProvideComponentProperties , and this is the method in
which the data is moved and manipulated. This method contains a lot of information that will help you
understand the buffer and what to do with the columns in it when you receive them. It is called once for
every buffer passed.

c18.indd 697c18.indd 697 8/28/08 12:44:09 PM8/28/08 12:44:09 PM

Chapter 18: Programming and Extending SSIS

698

 Here is the method in full:

public override void ProcessInput(int inputID, PipelineBuffer buffer)
{
 int errorOutputID = -1;
 int errorOutputIndex = -1;
 int GoodOutputId = -1;

 IDTSInput100 inp = ComponentMetaData.InputCollection.GetObjectByID(inputID);

 #region Output IDs
 GetErrorOutputInfo(ref errorOutputID, ref errorOutputIndex);
 // There is an error output defined
 errorOutputID = ComponentMetaData.OutputCollection[“RSErrors”].ID;
 GoodOutputId = ComponentMetaData.OutputCollection[“ReverseStringOutput”].ID;
 #endregion

 while (buffer.NextRow())
 {
 // Check if we have columns to process
 if (_inputColumnInfos.Length == 0)
 {
 // We do not have to have columns. This is a Sync component so the
 // rows will flow through regardless. Could expand Validate to check
 // for columns in the InputColumnCollection
 buffer.DirectRow(GoodOutputId);
 }
 else
 {
 try
 {
 for (int x = 0; x < _inputColumnInfos.Length; x++)
 {
 ColumnInfo columnInfo = _inputColumnInfos[x];

 if (!buffer.IsNull(columnInfo.bufferColumnIndex))
 {
 // Get value as character array
 char[] chars =
 buffer.GetString(columnInfo.bufferColumnIndex)
 .ToString().ToCharArray();

 // Reverse order of characters in array
 Array.Reverse(chars);

 // Reassemble reversed value as string
 string s = new string(chars);

 // Set output value in buffer
 buffer.SetString(columnInfo.bufferColumnIndex, s);
 }
 }
 buffer.DirectRow(GoodOutputId);
 }

c18.indd 698c18.indd 698 8/28/08 12:44:10 PM8/28/08 12:44:10 PM

Chapter 18: Programming and Extending SSIS

699

 catch(Exception ex)
 {
 switch (inp.ErrorRowDisposition)
 {
 case DTSRowDisposition.RD_RedirectRow:
 buffer.DirectErrorRow(errorOutputID, 0, buffer.CurrentRow);
 break;
 case DTSRowDisposition.RD_FailComponent:
 throw new Exception(“Error processing “ + ex.Message);
 case DTSRowDisposition.RD_IgnoreFailure:
 buffer.DirectRow(GoodOutputId);
 break;
 }
 }
 }
 }
}

 There is a lot going on in this method, so we ’ ll break it down to make it more manageable. The first thing
you want to do is find out from the component the location of the error output, as shown here:

int errorOutputID = -1;
int errorOutputIndex = -1;
int GoodOutputId = -1;
#region Output IDs
GetErrorOutputInfo(ref errorOutputID, ref errorOutputIndex);

errorOutputID = ComponentMetaData.OutputCollection[“RSErrors”].ID;
GoodOutputId = ComponentMetaData.OutputCollection[“ReverseStringOutput”].ID;
#endregion

 The method GetErrorOutput returns the output ID and the Index of the error output. Remember that
you defined the error output in ProvideComponentProperties .

 Because you could have many inputs to a component, you want to isolate the input for this component.
You can do that by finding the output that is passed in to the method:

IDTSInput100 inp = ComponentMetaData.InputCollection.GetObjectByID(inputID);

 You need this because you want to know what to do with the row if you encounter an issue. You gave a
default value for the ErrorRowDisposition property of the input in ProvideComponentProperties ,
but this can be overridden in the UI.

 The next thing you want to do is check that the upstream buffer has not called SetEndOfRowset , which
would mean that it has no more rows to send after the current buffer; however, the current buffer might
still contain rows. You then loop through the rows in the buffer like this:

while (buffer.NextRow())
...

c18.indd 699c18.indd 699 8/28/08 12:44:10 PM8/28/08 12:44:10 PM

Chapter 18: Programming and Extending SSIS

700

 You then check to see if the user asked for any columns to be manipulated. Remember, this is a
synchronous component, so all columns and rows are going to flow through even if you do not specify
any columns for this component. Therefore, you tell the component that if there are no input columns
selected, the row should be passed to the normal output. You do this by looking at the size of the array
that holds the collection of ColumnInfo struct objects:

if (_inputColumnInfos.Length == 0)
{
 buffer.DirectRow(GoodOutputId);
}

 If the length of the array is not zero, the user has asked the component to perform an operation on the
column. In turn, you need to grab each of the ColumnInfo objects from the array so you can look at
the data. Here you begin your loop through the columns, and for each column you create a new instance
of the ColumnInfo struct:

for (int x = 0; x < _inputColumnInfos.Length; x++)
{
 ColumnInfo columnInfo = _inputColumnInfos[x];
...

 You now have a reference to that column and are ready to start manipulating it. You first convert the
column ’ s data into an array of chars:

char[] chars =
buffer.GetString(columnInfo.bufferColumnIndex).ToString().ToCharArray();

 The interesting part of this line is the method GetString() on the buffer object. It returns the string data
of the column and accepts as an argument the index of the column in the buffer. This is really easy,
because you stored that reference earlier in the PreExecute method.

 Now that you have the char array, you can perform some operations on the data. In this case, you want
to reverse the string. This code is not particular to SSIS, and it a trivial example of string manipulation,
but you can imagine doing something more useful here such an encryption, cleaning or formatting.

Array.Reverse(chars);
string s = new string(chars);

 Now you will move on to where you reassign the changed data back to the column using the
 SetString() method on the buffer:

buffer.SetString(columnInfo.bufferColumnIndex, s);

 Again this method takes as one of the arguments the index of the column in the buffer. It also takes the
string you want to assign to that column. You can see now why it was important to make sure that this
column was read/write. If there was no error, you point the row to the good output buffer:

buffer.DirectRow(GoodOutputId);

c18.indd 700c18.indd 700 8/28/08 12:44:10 PM8/28/08 12:44:10 PM

Chapter 18: Programming and Extending SSIS

701

 If you encounter an error, you want to redirect this row to the correct output or alternatively throw an
error. You do that in the catch block like this:

catch(Exception ex)
{
 switch (inp.ErrorRowDisposition)
 {

 case DTSRowDisposition.RD_RedirectRow:
 buffer.DirectErrorRow(errorOutputID, 0, buffer.CurrentRow);
 break;
 case DTSRowDisposition.RD_FailComponent:
 throw new Exception(“Error processing “ + ex.Message);
 case DTSRowDisposition.RD_IgnoreFailure:
 buffer.DirectRow(GoodOutputId);
 break;
 }
}

 The code is pretty self - explanatory. If the input was configured by the user to redirect the row to the
error output, then you do that. If it was told to either fail the component, or the user did not specify
anything, then you throw an exception. Otherwise the component is asked to just ignore the errors and
allow the error row to flow down the normal output.

 Now how would this have looked had it been an asynchronous transform? You would get a buffer from
both PrimeOutput and ProcessInput . The ProcessInput method would contain the data and
structure that came into the component, and PrimeOutput would contain the structure that the
component expects to pass on. The trick here is to get the data from one buffer into the other. Here is one
way you can approach it.

 At the class level, create a variable of type PipelineBuffer , something like this:

PipelineBuffer _pipelinebuffer;

 Now in PrimeOutput , assign the output buffer to this buffer:

public override void PrimeOutput(int outputs, int[] outputIDs, PipelineBuffer[]
buffers)
{
 _pipelinebuffer = buffers[0];
}

 You now have a cached version of the buffer from PrimeOutput , and you can go straight over to
 ProcessInput and use it. Books Online has a great example of doing this in an asynchronous
component: navigate to “ asynchronous outputs. ”

 Do not be afraid to look through Books Online. Microsoft has done a fantastic job of including
content that helps with good, solid examples. Also search for the SSIS component samples on
msdn.microsoft.com .

c18.indd 701c18.indd 701 8/28/08 12:44:11 PM8/28/08 12:44:11 PM

Chapter 18: Programming and Extending SSIS

702

 Building the Destination Adapter
 The requirement for the Destination adapter is that it accepts an input from an upstream component of
any description and converts it to a format similar to that seen in the Source adapter. The component will
use a FILE Connection Manager, and as you have seen in earlier components, this involves a significant
amount of validation. You also need to validate whether the component is structurally correct, and if it
isn ’ t, you need to correct things. The first thing you always need to do is declare some variables that will
be used throughout the component. You also need to create the very valuable state - information struct
that is going to store the details of the columns, which will be needed in PreExecute and
 ProcessInput .

#region Variables
private ArrayList _columnInfos = new ArrayList();
private Microsoft.SqlServer.Dts.Runtime.DTSFileConnectionUsageType _fil;
private string _filename;
FileStream _fs;
StreamWriter _sw;
#endregion

 You should quickly run through the meaning of these variables and when they will be needed.
The _columnInfos variable will be used to store ColumnInfo objects, which describe the columns
in the InputColumnCollection . The _fil variable will be used to validate the type of FILE
Connection Manager the user has assigned to your component. _filename stores the name of the file
that is retrieved from the FILE Connection Manager. The final two variables, _fs and _sw , are used
when you write to the text file in ProcessInput . Now take a look at the ColumnInfo struct:

#region ColumnInfo
private struct ColumnInfo
{
 public int BufferColumnIndex;
 public string ColumnName;
}
#endregion

 The struct will be used to store the index number of the column in the buffer and also to store the name
of the column.

 You will now move on to looking at the ProvideComponentProperties method, which is where you
set up the component and prepare it for use by an SSIS package, as in the other two components. Here ’ s
the method in full:

public override void ProvideComponentProperties()
{
 ComponentMetaData.RuntimeConnectionCollection.RemoveAll();
 RemoveAllInputsOutputsAndCustomProperties();

 ComponentMetaData.Name = “Professional SSIS Destination Adapter”;
 ComponentMetaData.Description = “Our first Destination Adapter”;
 ComponentMetaData.ContactInfo = “www.Konesans.com”;

 IDTSRuntimeConnection100 rtc =
 ComponentMetaData.RuntimeConnectionCollection.New();
 rtc.Name = “File To Write”;

c18.indd 702c18.indd 702 8/28/08 12:44:11 PM8/28/08 12:44:11 PM

Chapter 18: Programming and Extending SSIS

703

 rtc.Description = “This is the file to which we want to write”;

 IDTSInput100 input = ComponentMetaData.InputCollection.New();
 input.Name = “Component Input”;
 input.Description = “This is what we see from the upstream component”;
 input.HasSideEffects = true;
}

 The first part of the method gets rid of any runtime Connection Managers that the component may have
and removes any custom properties, inputs, and outputs that the component has. This makes the
component a clean slate to which you can now add back anything it may need.

ComponentMetaData.RuntimeConnectionCollection.RemoveAll();
RemoveAllInputsOutputsAndCustomProperties();

 The component requires one connection, as defined as follows:

IDTSRuntimeConnection100 rtc = ComponentMetaData.RuntimeConnectionCollection.New();
rtc.Name = “File To Write”;
rtc.Description = “This is the file to which we want to write”;

 This piece of code gives the user the opportunity to specify a Connection Manager for the
component. This will be the file to which you write the data from upstream.

IDTSInput100 input = ComponentMetaData.InputCollection.New();
input.Name = “Component Input”;
input.Description = “This is what we see from the upstream component”;

 The next thing you do is add back the input. This is what the upstream component will connect to,
and through which you will receive the data from the previous component. Now you need to make sure
that the IDTSInput100 object of the component remains in the execution plan, regardless of whether it
is attached, by making the HasSideEffects property true . What this means is that at runtime the SSIS
execution engine is smart enough to “ prune ” components from the package that are not actually doing
any work. You need to explicitly tell SSIS that this component is doing work (external file writes) by
setting this property.

input.HasSideEffects = true;

 Having finished with the ProvideComponentProperties method, you now move on to the
 AcquireConnections method. This method is not really any different from the AcquireConnections
method you saw in the Source adapter; the method is shown in full but is not described in detail. If you
need to get the line - by - line details of what ’ s happening, you can look back to the Source adapter. The
tasks this method accomplishes are the following:

 Check that the user has supplied a Connection Manager to the component.

 Check that the Connection Manager is a FILE Connection Manager.

 Make sure that the FILE Connection Manager has a FileUsageType property value of
 DTSFileConnectionUsageType.CreateFile . (This is different from the Source, which
required an existing file.)

 Get the filename from the Connection Manager.

❑

❑

❑

❑

c18.indd 703c18.indd 703 8/28/08 12:44:11 PM8/28/08 12:44:11 PM

Chapter 18: Programming and Extending SSIS

704

public override void AcquireConnections(object transaction)
{
 bool pbCancel = false;

 if (ComponentMetaData.RuntimeConnectionCollection[“File To
Write”].ConnectionManager != null)
 {
 ConnectionManager cm =
 Microsoft.SqlServer.Dts.Runtime.DtsConvert.GetWrapper(
 ComponentMetaData.RuntimeConnectionCollection[“File To Write”]
 .ConnectionManager);

 if (cm.CreationName != “FILE”)
 {
 ComponentMetaData.FireError(0, “Acquire Connections”, “The Connection
 Manager is not a FILE Connection Manager”, “”, 0, out pbCancel);
 throw new Exception(“The Connection Manager is not a FILE Connection
 Manager”);
 }
 else
 {
 _fil = (DTSFileConnectionUsageType)cm.Properties[“FileUsageType”]
 .GetValue(cm);

 if (_fil != DTSFileConnectionUsageType.CreateFile)
 {
 ComponentMetaData.FireError(0, “Acquire Connections”,
 “The type of FILE connection manager must be Create File”, “”,
 0, out pbCancel);
 throw new Exception(“The type of FILE connection manager must be
 Create File”);

 }
 else
 {
 _filename = ComponentMetaData.RuntimeConnectionCollection
 [“File To Read”].ConnectionManager.AcquireConnection(transaction)
 .ToString();

 if (_filename == null || _filename.Length == 0)
 {
 ComponentMetaData.FireError(0, “Acquire Connections”, “Nothing
 returned when grabbing the filename”, “”, 0, out pbCancel);
 throw new Exception(“Nothing returned when grabbing the filename”);
 }
 }
 }
 }
}

 There is a lot of ground covered in the AcquireConnections method. A lot of this code is covered again
in the Validate method, which you will visit now. The Validate method is also concerned that the
input to the component is correct, and if it isn ’ t, you ’ ll try to fix what is wrong by calling
 ReinitializeMetaData . Here is the Validate method:

c18.indd 704c18.indd 704 8/28/08 12:44:12 PM8/28/08 12:44:12 PM

Chapter 18: Programming and Extending SSIS

705

[CLSCompliant(false)]
public override DTSValidationStatus Validate()
{
 bool pbCancel = false;

 if (ComponentMetaData.OutputCollection.Count != 0)
 {
 ComponentMetaData.FireError(0, ComponentMetaData.Name, “Unexpected Output
 Found. Destination components do not support outputs.”, “”,
 0, out pbCancel);
 return DTSValidationStatus.VS_ISCORRUPT;
 }

 if (ComponentMetaData.RuntimeConnectionCollection[“File To Write”]
 .ConnectionManager == null)
 {
 ComponentMetaData.FireError(0, “Validate”, “No Connection Manager returned”,
 “”, 0, out pbCancel);
 return DTSValidationStatus.VS_ISCORRUPT;
 }

 if (ComponentMetaData.AreInputColumnsValid == false)
 {
 ComponentMetaData.InputCollection[“Component Input”]
 .InputColumnCollection.RemoveAll();
 return DTSValidationStatus.VS_NEEDSNEWMETADATA;
 }

 return base.Validate();
}

 The first check you do in the method is to make sure that the component has no outputs:

bool pbCancel = false;

if (ComponentMetaData.OutputCollection.Count != 0)
{
 ComponentMetaData.FireError(0, ComponentMetaData.Name, “Unexpected Output found.
 Destination components do not support outputs.”, “”, 0, out pbCancel);
 return DTSValidationStatus.VS_ISCORRUPT;
}

 You now want to check to make sure the user specified a Connection Manager. Remember that you are
only validating the fact that a Connection Manager is specified, not whether it is a valid type. The
extensive checking of the Connection Manager is done in AcquireConnections() .

if (ComponentMetaData.RuntimeConnectionCollection[“File To
Write”].ConnectionManager == null)
{
 ComponentMetaData.FireError(0, “Validate”, “No Connection Manager returned”, “”,
 0, out pbCancel);
 return DTSValidationStatus.VS_ISCORRUPT;
}

c18.indd 705c18.indd 705 8/28/08 12:44:12 PM8/28/08 12:44:12 PM

Chapter 18: Programming and Extending SSIS

706

 The final thing you do in this method is to check that the input columns are valid. Valid in this instance
means that the columns in the input collection reference existing columns in the upstream component.
If this is not the case, you call the trusty ReinitializeMetaData method.

if (ComponentMetaData.AreInputColumnsValid == false)
{
 ComponentMetaData.InputCollection[“Component Input”]
 .InputColumnCollection.RemoveAll();
 return DTSValidationStatus.VS_NEEDSNEWMETADATA;
}

 The return value DTSValidationStatus.VS_NEEDSNEWMETADATA means that the component will
now call ReinitializeMetaData to try to sort out the problems with the component. Here is that
method in full:

public override void ReinitializeMetaData()
{
 IDTSInput100 _profinput = ComponentMetaData.InputCollection[“Component Input”];
 _profinput.InputColumnCollection.RemoveAll();
 IDTSVirtualInput100 vInput = _profinput.GetVirtualInput();
 foreach (IDTSVirtualInputColumn100 vCol in vInput.VirtualInputColumnCollection)
 {
 this.SetUsageType(_profinput.ID, vInput, vCol.LineageID,
 DTSUsageType.UT_READONLY);

 }
}

 You will notice that the columns are blown away in ReinitializeMetaData and built again from
scratch. A better solution is to test what the invalid columns are and try to fix them. If you cannot fix
them, you could remove them, and then the user could reselect at leisure. Books Online has an example
of doing this.

 The IDTSVirtualInput and IDTSVirtualInputColumnCollection in this component need a little
explanation. There is a subtle difference between these two objects and their input equivalents. The
 “ virtual ” objects are what your component could have as inputs — that is to say, they are upstream
inputs and columns that present themselves as available to your component. The inputs themselves are
what you have chosen for your component to have as inputs from the virtual object. In the
 Reinitialize method, you start by removing all existing input columns:

IDTSInput100 _profinput = ComponentMetaData.InputCollection[“Component Input”];
_profinput.InputColumnCollection.RemoveAll();

 You then get a reference to the input ’ s virtual input:

IDTSVirtualInput100 vInput = _profinput.GetVirtualInput();

c18.indd 706c18.indd 706 8/28/08 12:44:12 PM8/28/08 12:44:12 PM

Chapter 18: Programming and Extending SSIS

707

 Now that you have the virtual input, you can add an input column to the component for every virtual
input column you find:

foreach (IDTSVirtualInputColumn100 vCol in vInput.VirtualInputColumnCollection)
{
 this.SetUsageType(_profinput.ID, vInput, vCol.LineageID,
 DTSUsageType.UT_READONLY);
}

 The SetUsageType method simply adds an input column to the input column collection of the
component, or removes it depending on what your UsageType value is. When a user adds a connector
from an upstream component that contains its output to this component and attaches it to this component ’ s
input, then the OnInputAttached is called. This method has been overridden in the component herein:

public override void OnInputPathAttached(int inputID)
{
 IDTSInput100 input = ComponentMetaData.InputCollection.GetObjectByID(inputID);
 IDTSVirtualInput100 vInput = input.GetVirtualInput();
 foreach (IDTSVirtualInputColumn100 vCol in vInput.VirtualInputColumnCollection)
 {
 this.SetUsageType(inputID, vInput, vCol.LineageID, DTSUsageType.UT_READONLY);
 }
}

 This method is the same as the ReinitializeMetaData method except that you do not need to remove
the input columns from the collection. This is because if the input is not mapped to the output of an
upstream component, there can be no input columns.

 You have now finished with the design - time methods for your component and can now move on to look at
the runtime methods. You are going to be looking at only two methods: PreExecute and ProcessInput .

 PreExecute is executed once and once only in this component, so you want to do as much preparation
work as you can in this method. It is also the first opportunity in the component to access the Buffer
Manager, which contains the columns. In this component, you use it for two things: getting the
information about the component ’ s input columns and storing essential details about them.

public override void PreExecute()
{
 IDTSInput100 input = ComponentMetaData.InputCollection[“Component Input”];

 foreach (IDTSInputColumn100 inCol in input.InputColumnCollection)
 {
 ColumnInfo ci = new ColumnInfo();
 ci.BufferColumnIndex = BufferManager.FindColumnByLineageID(input.Buffer,
 inCol.LineageID);
 ci.ColumnName = inCol.Name;
 _columnInfos.Add(ci);
 }

 // Open the file
 _fs = new FileStream(_filename, FileMode.OpenOrCreate, FileAccess.Write);
 _sw = new StreamWriter(_fs);
}

c18.indd 707c18.indd 707 8/28/08 12:44:12 PM8/28/08 12:44:12 PM

Chapter 18: Programming and Extending SSIS

708

 First, you get a reference to the component ’ s input:

IDTSInput100 input = ComponentMetaData.InputCollection[“Component Input”];

 You now loop through the input ’ s InputColumnCollection :

foreach (IDTSInputColumn100 inCol in input.InputColumnCollection)
{

 For each input column you find, you need to create a new instance of the ColumnInfo struct. You
then assign to the struct, values you can retrieve from the input column itself, as well as the Buffer
Manager. You assign these values to the struct and finally add them to the array that is holding all the
 ColumnInfo objects:

ColumnInfo ci = new ColumnInfo();
ci.BufferColumnIndex = BufferManager.FindColumnByLineageID(input.Buffer,
 inCol.LineageID);
ci.ColumnName = inCol.Name;
_columnInfos.Add(ci);

 Doing things this way will allow you to move more quickly through the ProcessInput method. The
last thing you do in the PreExecute method is to get a reference to the file you want to write to:

_fs = new FileStream(_filename, FileMode.OpenOrCreate, FileAccess.Write);
_sw = new StreamWriter(_fs);

 You will use this in the next method, ProcessInput . ProcessInput is where you are going to keep
reading the rows that are coming from the upstream component. While there are rows, you will write
those values to a file. This is a very simplistic view of what needs to be done, so you should have a look
at how to make that happen.

public override void ProcessInput(int inputID, PipelineBuffer buffer)
{
 while (buffer.NextRow())
 {
 _sw.WriteLine(“ < START > ”);
 for (int i = 0; i < _columnInfos.Count; i++)
 {
 ColumnInfo ci = (ColumnInfo)_columnInfos[i];

 if (buffer.IsNull(ci.BufferColumnIndex))
 {
 _sw.WriteLine(ci.ColumnName + “:”);
 }
 else
 {
 _sw.WriteLine(ci.ColumnName + “:” +
 buffer[ci.BufferColumnIndex].ToString());
 }
 }
 _sw.WriteLine(“ < END > ”);
 }
 if (buffer.EndOfRowset) _sw.Close();
}

c18.indd 708c18.indd 708 8/28/08 12:44:13 PM8/28/08 12:44:13 PM

Chapter 18: Programming and Extending SSIS

709

 The first thing you do is check that there are still rows in the buffer:

while (buffer.NextRow())
{
...

 You now need to loop through the array that is holding the collection of ColumnInfo objects that were
populated in the preExecute method:

for (int i = 0; i < _columnInfos.Count; i++)

 For each iteration, you create a new instance of the ColumnInfo object:

ColumnInfo ci = (ColumnInfo)_columnInfos[i];

 You now need to retrieve from the buffer object the value of the column whose index you will pass in
from the ColumnInfo object. If the value is not null, you write the value of the column and the column
name to the text file. If the value is null, you write just the column name to the text file. Again, because
you took the time to store these details in a ColumnInfo object earlier, the retrieval of these properties
is easy.

if (buffer.IsNull(ci.BufferColumnIndex))
{
 _sw.WriteLine(ci.ColumnName + “:”);
}
else
{
 _sw.WriteLine(ci.ColumnName + “:” + buffer[ci.BufferColumnIndex].ToString());
}

 Finally you check if the upstream component has called SetEndOfRowset ; if so, you close the file stream:

if (buffer.EndOfRowset) _sw.Close();

 That concludes your look at the Destination adapter. You are now going to look at how you get SSIS to
recognize your components and what properties you need to assign to your components.

 Using the Components
 In this section you install the components you have created into the SSIS design environment so you can
use them to build packages. You then learn how to debug the components so you can troubleshoot any
coding issues in them.

c18.indd 709c18.indd 709 8/28/08 12:44:13 PM8/28/08 12:44:13 PM

Chapter 18: Programming and Extending SSIS

710

 Installing the Components
 To add a component to the SSIS Toolbox, open BIDS and then create or open an SSIS solution. Create a
new Data Flow Task and then double - click it in order to enter the Data Flow panel. Right - click on the
Toolbox and select Choose Items from the context menu. When the Choose Toolbox Items dialog box
appears, click the SSIS Data Flow Items tab and scroll down until you see the component. Check your
new component and click OK. When you go back to the Toolbox, you should see your new component.

 Debugging Components
 Debugging components is a really great feature of SSIS. If you are a Visual Studio .NET developer, you
should easily recognize the interface. If you ’ re not familiar with Visual Studio, hopefully this section will
allow you to become proficient in debugging your components.

 There are two phases for debugging. The design - time can be debugged only while you ’ re developing
your package, so it makes sense that you will need to use BIDS to do this. The second experience, which
is the runtime experience, is slightly different. You can still use BIDS, though, and when your package
runs, the component will stop at breakpoints you designate. You need to set up a few things first,
though. You can also use DTExec to fire the package straight from Visual Studio. The latter method saves
you the cost of invoking another instance of Visual Studio.

 The component you are going to debug is the Reverse String Transform.

 Design - Time
 You will now jump straight in and start to debug the component at design - time. Open the Visual Studio
Reverse String C# project and set a C# breakpoint at ProvideComponentProperties (SSIS also has
breakpoints, they are discussed further in Chapter 17). Now create a new SSIS project in BIDS. In the
package, add a Data Flow Task and double - click it. If your component is not in the Toolbox already,
add it now.

 You need to create a full pipeline in this package because you ’ ll be using it later on when you debug the
runtime, so get an OLE DB or ADO.NET Connection Manager and point it to the AdventureWorks2008
database. Now add an OLE DB or ADO.NET Source adapter to the design surface and configure it to
use the Connection Manager you just created. Point the source to one of the tables in
AdventureWorks2008 — perhaps Person.Person — and select the columns you want to use.

 It ’ s now time to add your new components to the designer. However, before you do that, you need to
tell the component ’ s design project to attach to the devenv.exe process you ’ re working in, so that it can
receive the component ’ s methods being fired. The way you do that is as follows. In the Visual Studio
Reverse String C# project, select Debug Attach to Process. The Attach to Process dialog box opens
(see Figure 18 - 7), which allows you to choose what you want to debug as well as which process.

c18.indd 710c18.indd 710 8/28/08 12:44:13 PM8/28/08 12:44:13 PM

Chapter 18: Programming and Extending SSIS

711

 The process you ’ re interested in is the package you ’ re currently building. This shows up in the Available
Processes list as Integration Services Project 1 – Microsoft Visual Studio (the name you see may differ).
You can see just above this window a small box containing the words “ Managed Code. ” This tells the
debugger what you want to debug in the component. There are a number of options available, and if
you click the Select button to the right of the label, you ’ ll be able to see them. They are Managed, Native,
and Script.

 Highlight the process for your package and click Attach. If you look down now at the status bar in your
component ’ s design project, you should see a variety of debug symbols being loaded. Go back to the
SSIS package and drop the ReverseString Transform onto the design surface. Because one of the very
first things a component does when it gets dropped into a package is call ProvideComponentProperties ,
you should immediately see your component break into the code in its design project, as shown in
Figure 18 - 8 .

Figure 18-7

c18.indd 711c18.indd 711 8/28/08 12:44:14 PM8/28/08 12:44:14 PM

Chapter 18: Programming and Extending SSIS

712

 As you can see, the breakpoint on ProvideComponentProperties in the component ’ s design project
has been hit. This is indicated by a yellow arrow inside the breakpoint red circle. You are now free to
debug the component as you would with any other piece of managed code in Visual Studio.NET. If
you ’ re familiar with debugging, a number of windows appear at this point at the bottom of the IDE,
things like “ Locals, ” “ Autos, ” and “ Call Stack. ” These can help you get to the root of any debugging
problems, but you do not need to use them now.

 To leave debugging mode, go back into Visual Studio and on the menu choose Debug Stop
Debugging.

 Building the Complete Package
 Since the package already has a source and Transformation Component on it, you just need to add a
destination. First make sure you have configured the ReverseString Transform to reverse some of the
columns by double - clicking it and selected the required columns in the custom UI (or the Advanced UI if
you have not built the custom UI yet, which is discussed in Chapter 19).

 In the SSIS Connections pane, create a new File Connection Manager, setting the Usage Type to Create
File. Enter a filename in a location of your choice, and then close the Connection Manager dialog.

 Drop the Destination Component you have just built onto the design surface and connect the output of
the ReverseString Transform to the input of the destination. Open the destination ’ s editor and on the
first tab of the Advanced Editor, set the “ File to Write ” property value to the name of the connection
you just created. Flip over to the Input Columns tab in the editor, and select which columns you want
to write to the output file.

Figure 18-8

c18.indd 712c18.indd 712 8/28/08 12:44:14 PM8/28/08 12:44:14 PM

Chapter 18: Programming and Extending SSIS

713

 Runtime Debugging
 As promised, in this section you are going to look at two ways of debugging. As with design - time
debugging, the first is through the BIDS designer. The other is by using DTExec and the package
properties. Using BIDS is similar to the design - time method with a subtle variation.

 You should now have a complete pipeline with the ReverseString Transform in the middle. If you don ’ t,
quickly make up a pipeline like in Figure 18 - 9 .

Figure 18-9

 Instead of a real destination that writes to a file or database, it is often useful to write to a so - called trash
destination. You can use a Row Count Transformation or Union All Transformation for this purpose.

 You then need to add a breakpoint to the Data Flow Task that is hit when the Data Flow Task hits the
 OnPreExecute event. You need to do this so that you can attach your debugger to the correct process at
runtime. Right - click the Data Flow Task itself and select Edit Breakpoints. The Set Breakpoints dialog
box will appear, as shown in Figure 18 - 10 .

Figure 18-10

c18.indd 713c18.indd 713 8/28/08 12:44:14 PM8/28/08 12:44:14 PM

Chapter 18: Programming and Extending SSIS

714

 You are now ready to execute your package. Press F5 to start executing the SSIS package, and allow the
breakpoint in the Data Flow Task to be hit. When you hit the breakpoint, switch back to the component ’ s
design process and follow the steps detailed earlier when debugging the design - time in order to get to
the screen where you chose what process to debug.

 When you execute a package in the designer, it is not really the designer that is doing the work. It hands
off the execution to a process called DtsDebugHost.exe . This is the package that you want to attach to,
as shown in Figure 18 - 11 . You will probably see two of these processes listed, the one you want has
 “ Managed ” listed under the Type column (don ’ t attach to the process showing “ x86 ” as the Type).

Figure 18-11

 Click Attach and watch the debug symbols being loaded by the project. Before returning to the SSIS
package, you need to set a breakpoint on one of the runtime methods used by your component, such as
 PreExecute . Now return to the SSIS project and press F5 again. This will release the package from
its suspended state and allow the package to flow on. Now when the ReverseString Component hits its
 PreExecute method, you should be able to debug what it is doing. In Figure 18 - 12 , the user is checking
to make sure that the LineageID of a column is being retrieved correctly and is ready to be used in the
 ProcessInput method that follows.

c18.indd 714c18.indd 714 8/28/08 12:44:14 PM8/28/08 12:44:14 PM

Chapter 18: Programming and Extending SSIS

715

 That concludes your look at the first method for debugging the runtime. The second method involves
BIDS indirectly because you need to create a package like this one that you can call later. After that, you
do not need BIDS at all. You do, however, still need the component ’ s design project open. Open your
Visual Studio Reverse String C# project ’ s properties and look at the Debug tab on the left, which should
look similar to Figure 18 - 13 .

Figure 18-12

Figure 18-13

c18.indd 715c18.indd 715 8/28/08 12:44:15 PM8/28/08 12:44:15 PM

Chapter 18: Programming and Extending SSIS

716

 As you can see, you have said that you want to start an external program to debug. That program is
 DTExec , which is the new and more powerful version of DTSRun . On the command line, you will pass a
parameter /FILE to DTExec . This tells DTExec the name and location of the package you just built. Make
sure the file path to your package is valid. Make sure you still have a C# breakpoint set on PreExecute ,
and press F5 in your project. A DOS window will appear and you will see some messages fly past, which
are the same messages you would see in the designer. Eventually you will get to your breakpoint, and it
will break in exactly the same way as it did when you were using BIDS. So, why might you use one over
the other? The most obvious answer is speed. It is much faster to get to where you want to debug your
component using DTExec than it is doing the same in BIDS. The other advantage is that you do not need
to have two tools open at the same time. You can focus on your component ’ s design project and not
have to worry about BIDS at all.

 Upgrading to SQL 2008
 If you already built components in SQL 2005 and you want to use them in SQL 2008, you will have to
update the code and recompile them. This is because Microsoft updated the interface names and some of
the underlying functionality. However, this is not a difficult problem — simply open your old project in
Visual Studio 2005 or Visual Studio 2008 and do a search and replace to rename the interfaces from
IDTS*90 to IDTS*100. There are also one or two methods that have changed; however, the compiler will
warn you of any problems.

 You will also have to update the project references. In the Solution Explorer, open the References Node
and delete any references showing an error icon. Add back the references discussed earlier in this
chapter (such as Microsoft.SqlServer.DTSPipelineWrap), making sure to select the ones marked as
version 10.0 (SQL Server 2008), not the ones marked version 9.0 (SQL Server 2005).

 Everything should now compile, and you should be able to run your components in the SQL 2008 BIDS
environment.

 Summary
 In this chapter, you have built Pipeline Components. Although designing your own components isn ’ t
exactly like falling off a log, once you get a handle on what methods do what, when they are called, and
what you can possibly use them for, you can certainly create new components with only a moderate
amount of knowledge in programming. Once you have the basic patterns right, it is simple to develop
your second, third, and tenth components. The components you have designed are certainly very simple
in nature, but hopefully this chapter will give you the confidence to experiment with some of your own
unique requirements. In Chapter 19 , you learn how to create custom user interfaces for your
components. While this is not a necessary step (since SSIS provides a default UI for custom components)
it can make your components more user - friendly, especially if they are tricky to configure.

c18.indd 716c18.indd 716 8/28/08 12:44:15 PM8/28/08 12:44:15 PM

 Adding a User Interface to
Your Component

 Now that you ’ ve learned how to extend the pipeline with your own custom components, the next
step is to improve the user experience and efficiency, by adding a user interface. This will be
demonstrated using the ReverseString example from the previous chapter.

 Pipeline Components do not require the developer to provide a user interface, because the
components ship with a default interface called the Advanced Editor. Although this saves time and
resources, the overall user experience can be poor. It can increase the package development time
and requires the user to have an intimate knowledge of the component to be able to correctly set
the required columns and properties. It is also dangerous and open to data integrity problems,
because the more complex the configuration required, the more acute the lack of suitable prompts
and real - time validation becomes, making configuration tedious and error - prone. For complex
components with multiple inputs, the Advanced Editor will not be suitable. For simple
components, however, the built - in Advanced Editor, as used by several stock components, is
perfectly acceptable. If you want to add that extra style and guidance for the end user, though, this
chapter is for you.

 You will learn how to add a user interface to a component and look in detail at each of the
stages. You will then be able to apply these techniques to your own components. It is worth noting
that this chapter deals exclusively with managed components.

 Three Key Steps
 There are three steps in adding a user interface (UI) to any component, and each will be examined
in detail. However, it is essential that you build the actual component first; get the functionality
working properly, iron out any problems, tweak the performance, and make sure it installs

c19.indd 717c19.indd 717 8/28/08 12:44:43 PM8/28/08 12:44:43 PM

Chapter 19: Adding a User Interface to Your Component

718

properly. Once those core tasks are complete, you can add the polish to the solution by designing the UI.
If you try to build anything other than a simple UI at the same time you are building the component, you
may find it creates overhead in keeping the two projects working well in tandem.

 With that said, here ’ s a summary of each of the three key UI steps.

 The first step is to add a class that implements the IDtsComponentUI interface. This defines the
methods needed for the designer to interact with your user interface class. This class is not the visible UI
itself; rather it provides a way for the designer to ask for what it needs when it needs it, as well as
exposing several methods that allow you to hook into the life cycle of your UI. For example, you have a
 New method, which is called when a component is first added to a package, and an Edit method, called
when you open an existing component inside your package. The interface will be expanded on in the
following paragraphs.

 The second step is to actually build the visible interface, normally a Windows Form. The form is invoked
from the IDtsComponentUI.Edit method, and by customizing the constructor, you can pass through
references to the base component and supporting services. The form then displays details such as
component properties or data - handling options including inputs, outputs, and columns within each.

 The final stage is to update the component itself to tell the designer that you have provided a user
interface and where to find it, or specifically where to find the IDtsComponentUI implementation. You
do this through the UITypeName property of the DtsPipelineComponent attribute, which decorates the
component, your existing PipelineComponent inheriting class. The UITypeName is the fully qualified
name of the class implementing your user interface, allowing the designer to find the assembly and class
to invoke the user interface when required through the interface methods mentioned previously.

 In summary, you need a known interface with which the designer can interact, and a form that you
display to the user through the relevant interface method, and the component needs to advertise that it
has a user interface and offer instructions of where to find the UI when required.

 Building the User Interface
 Now that the key stages have been explained, you can examine each of them in detail. This guidance
makes very few assumptions, explaining all the actions required; so as long as you can open Visual
Studio on your own, you should be able to follow these steps, and perhaps, more importantly,
understand why.

c19.indd 718c19.indd 718 8/28/08 12:44:44 PM8/28/08 12:44:44 PM

Chapter 19: Adding a User Interface to Your Component

719

 Adding the Project
 If you followed the example in the previous chapter, you currently have an existing solution in Visual
Studio 2008 that contains the Pipeline Component project (ReverseString). Therefore, your first step is to
add a new Class Library project to host the UI, as shown in Figure 19 - 1 . Although the UI can be
implemented within the Pipeline Component project, for performance reasons this is not the
recommended approach. Because SSIS has distinct runtime versus design - time elements, the
combination of the two functions leads to a larger assembly, which requires more memory and
consequently lower runtime performance. When you deploy your components in production, the
component UI would never be shown, so it is important that your components can operate without a UI.
To support this use, the core component code should not have any dependencies on UI code. The
separate - project design practice also allows for easier code development and maintenance, reducing
confusion and conflicts within the areas of code.

Figure 19-1

 Starting with the empty project, the first task is to configure any project properties, so you need to set the
Assembly Name and Default Namespace to be consistent with your development practices, as shown in
Figure 19 - 2 .

c19.indd 719c19.indd 719 8/28/08 12:44:44 PM8/28/08 12:44:44 PM

Chapter 19: Adding a User Interface to Your Component

720

 The user interface assembly does not need to be placed in a defined location like tasks and
components (%Program Files%\Microsoft SQL Server\100\DTS\PipelineComponents or
 %Program Files%\Microsoft SQL Server\100\DTS\Tasks), but it does need to be installed within
the global assembly cache (GAC). So within the project properties, you can leave the build output path
location as the default value, but for ease of development you can add a post - build event command on
the Build Events page, as shown in Figure 19 - 3 . Refer to Chapter 18 for more details on what this
command should look like.

Figure 19-3

Figure 19-2

c19.indd 720c19.indd 720 8/28/08 12:44:44 PM8/28/08 12:44:44 PM

Chapter 19: Adding a User Interface to Your Component

721

 Because the assembly will be installed in the GAC, you will need to sign the assembly using a strong
name key, which can be configured from the Signing page, as shown in Figure 19 - 4 . For more
information about strong names and their importance in .NET, see “ Security Briefs: Strong Names and
Security in the .NET Framework ” :

 http://msdn.microsoft.com/en - us/library/aa302416.aspx

Figure 19-4

 Although most assembly attributes can now be set through the Assembly Information dialog box
accessed from the Application page of Project Properties, you still next need to manually edit
 AssemblyInfo.cs , adding the CLSCompliant attribute, as described in Chapter 18 and as shown here:

#region Using directives
using System;
using System.Security.Permissions;
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
#endregion

[assembly: AssemblyTitle(“ReverseStringUI”)]
[assembly: AssemblyDescription(“Reversing String Transformation UI for SQL Server
Integration Services”)]
[assembly: AssemblyConfiguration(“”)]
[assembly: AssemblyProduct(“Reverse String Transformation”)]
[assembly: AssemblyTrademark(“”)]
[assembly: AssemblyCulture(“”)]

c19.indd 721c19.indd 721 8/28/08 12:44:45 PM8/28/08 12:44:45 PM

Chapter 19: Adding a User Interface to Your Component

722

[assembly: AssemblyVersion(“2.0.0.0”)]
[assembly: AssemblyFileVersion(“2.0.0.0”)]
[assembly: CLSCompliant(true)]
[assembly: PermissionSet(SecurityAction.RequestMinimum)]
[assembly: ComVisible(false)]

 The AssemblyVersion will form part of the UITypeName property described later in the chapter;
therefore, it is important that this is not allowed to auto - increment using the * token, because this will
break the linkage between the component and its user interface.

 You also require a Windows Form to actually display your component ’ s interface to the user in addition
to the default class you have in your project, so one can be added at this stage.

 The final preparatory task is to add some additional references to your project. The recommended three
are listed here:

 Microsoft.SqlServer.Dts.Design

 Microsoft.SqlServer.DTSPipelineWrap

 Microsoft.SQLServer.ManagedDTS

 Implementing IDtsComponentUI
 You now have the empty framework for the UI assembly, and you can start coding. The first step is to
implement the Microsoft.SqlServer.Dts.Pipeline.Design IDtsComponentUI interface. Using
the default class in the project, you can add the interface declaration and take advantage of the new
Visual Studio context menu features, as well as use the Implement Interface command to quickly
generate the five method stubs, saving you from manually typing them out.

 The methods are documented in detail in the following sections; however, it is useful to understand the
scenarios in which each method is called, highlighting how the Initialize method is usually called
before the real action method:

 Adding a new component to the package:

❑ Initialize

❑ New

 Editing the component, either through a double - click or by selecting Edit from the context
menu:

❑ Initialize

❑ Edit

 Deleting the component, through the Delete key or by selecting Delete from the context menu:

❑ Delete

 You will now look at the methods in more detail and examine how they are implemented in the example.

❑

❑

❑

❑

❑

❑

c19.indd 722c19.indd 722 8/28/08 12:44:45 PM8/28/08 12:44:45 PM

Chapter 19: Adding a User Interface to Your Component

723

 IDtsComponentUI.Delete
 The Delete method is called when a component is deleted from the SSIS designer. It allows you to
perform any cleaning operations that may be required or warn users of the consequences. This is not
normally required, because the consequences should be fairly obvious, but the opportunity is available.

 For this example, simply remove the placeholder exception, leaving an empty method.

 IDtsComponentUI.Help
 The Help method has not been implemented in SQL Server 2008. For this example, simply remove the
placeholder exception. The method will not be called, but this should prevent any surprises in case of a
service pack introducing the functionality, although this is unlikely.

 IDtsComponentUI.New
 The New method is called when a component is first added to your package through the SSIS designer.
Use this method to display a user interface specific to configuring the component for the first time, such
as a wizard to help configure the component, or an option dialog box that gathers some information that
will influence the overall use of the component. The Script Transformation uses this method to display a
dialog box asking you to specify the type, source, destination, or transformation.

 The New method is not widely used, because configuration of the component usually requires you to
have wired up the Data Flow paths for the component. In addition, most people start by laying out the
package and adding most or all of the components together, allowing them to visualize and validate
their overall Data Flow design, before configuring each component in detail, but in specialized
circumstances you have this option.

 For this example, simply remove the placeholder exception, leaving an empty method.

 IDtsComponentUI.Initialize
 Initialize is the first method to be called when adding or editing a component, and although you do
not actually perform any actions at this stage, the parameters provided are normally stored in private
member variables for later use. At a minimum, you will store the IDTSComponentMetaData100
reference, because a UI will always need to interact with the underlying component, and this is done
through the IDTSComponentMetaData100 reference.

 For components that use connections or variables, you would also store a reference to
 IServiceProvider . This allows you to access useful services, like the connection service
(IDtsConnectionService) and the variable service (IDtsVariableService). These designer services
allow you to create new connections and variables, respectively. For connections, the service will invoke
the Connection Manager user interface, provided by the connection author, and for variables you use the
dialog box built into the SSIS designer. This is a good example of how Microsoft has made life easier for
component developers, offering access to these services, saving you time and effort. There are two other
services available, the IErrorCollectionService for retrieving error and warning event messages,
and IDtsClipboardService , which allows component developers to determine if a component was
created by a copy - and - paste operation.

 In the ReverseString example, these services are not required, but you would follow the same pattern as
you do with IDTSComponentMetaData100 here.

c19.indd 723c19.indd 723 8/28/08 12:44:46 PM8/28/08 12:44:46 PM

Chapter 19: Adding a User Interface to Your Component

724

private IDTSComponentMetaData100 _dtsComponentMetaData;

[CLSCompliant(false)]
public void Initialize(IDTSComponentMetaData100 dtsComponentMetadata,
IServiceProvider serviceProvider)
{
// Store ComponentMetaData for later use
_dtsComponentMetaData = dtsComponentMetadata;
}

 IDtsComponentUI.Edit
 The Edit method is called by the designer when you edit the component, and this is the place where
you actually display the visible window or form of the user interface component. The purpose of the
 Edit method is to display the form, passing through any references you need, stored in private variables
during Initialize . The Edit method also has a Boolean return value that notifies the designer
whether changes have been made.

 This is perhaps one of the most useful features of the component UI pattern, as it allows you to make
changes directly to the component, but they are persisted only if the return value is true. In other words,
the users can make as many changes as they want in the custom UI, but none of those changes are saved
into the component unless the return value is true. You get commit or rollback functionality for free,
rather than having to write additional code to cache changes within the UI, and only apply them when a
user clicks the OK button.

 It also allows you to benefit from validation routines you have written into the component itself. For
example, the ReverseString.SetUsageType method checks data types and the UsageType property
for the column being selected, because this component supports only string types. Putting the validation
into the component, rather than the UI, ensures that if a user bypasses your UI and uses the built - in
Advanced Editor or the Visual Studio Properties instead, the same validation takes place.

 Therefore, your UI should focus on the display side and leave as much validation as possible to the
component. Inevitably, some validation will be implemented in the UI, but always bear in mind that you
can use the existing component code in a modularized manner, saving time and simplifying
maintenance through reuse.

 For ease of implementation, you can use the DialogResult functionality of the form to indicate the
return value for the form. This is illustrated in the example implementation of Edit :

public bool Edit(IWin32Window parentWindow, Variables variables, Connections
connections)
{
 try
 {
 // Create UI form and display
 ReverseStringUIForm ui = new ReverseStringUIForm(_dtsComponentMetaData);
 DialogResult result = ui.ShowDialog(parentWindow);

 // Set return value to represent DialogResult. This tells the
 // managed wrapper to persist any changes made
 // on the component input and/or output, or properties.
 if (result == DialogResult.OK)
 {

c19.indd 724c19.indd 724 8/28/08 12:44:46 PM8/28/08 12:44:46 PM

Chapter 19: Adding a User Interface to Your Component

725

 return true;
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 return false;
}

 The Edit method also provides references to the Variables and Connections collections. You can use
these collections to list the available variables and connections. The Variables collection is already
limited to those in scope for the current Data Flow Task.

 If your component uses connections or variables, you would modify the form constructor to accept
these, as well as the System.IServiceProvider reference you captured during Initialize . This
allows you to offer the option of selecting an existing item or creating a new one as required. These are
not required for the Reverse String Component, but an example of an Edit method implementation
using them is shown here:

public bool Edit(IWin32Window parentWindow, Variables variables, Connections
connections)
{
 try
{
 TraceSourceUIForm ui = new TraceSourceUIForm(_dtsComponentMetaData,
 variables, connections, _serviceProvider);
 DialogResult result = ui.ShowDialog(parentWindow);
 if (result == DialogResult.OK)
 {
 return true;
 }
 }
 catch (Exception ex)
 {
 Konesans.Dts.Design.ExceptionDialog.Show(ex);
 }
 return false;
}

 Setting the UITypeName
 This section deals with changes to the Reverse String Component itself, rather than the user interface
project. This is listed as the last of the three key steps for providing a user interface, but it is generally
done fairly early on, because once it ’ s complete, you can actually test your UI in the designer itself.

 You need to tell the designer that your component has a user interface, in effect overriding the Advanced
Editor dialog box provided by default. To do this, set the UITypeName property of the

c19.indd 725c19.indd 725 8/28/08 12:44:46 PM8/28/08 12:44:46 PM

Chapter 19: Adding a User Interface to Your Component

726

 DtsPipelineComponentAttribute , which already decorates the component class in the
transformation project. The required format of the property value is as follows:

 < Full Class Name > ,
 < Assembly Name > ,
Version= < Version > ,
PublicKeyToken= < Token >

 You may recognize the format as being very similar to an assembly strong name, because apart from the
additional < Full Class Name > at the beginning, it is the assembly strong name. Using the strong
name, the designer can find and load the assembly, and then using the class name, it knows exactly
where to go for its entry point, the IDTSComponentUI implementation.

 Setting this property often causes developers problems, but if you know where to look, it is quite easy:

...
namespace Konesans.Dts.Pipeline.ReverseStringUI
{
 public class ReverseStringUI : IDtsComponentUI
 {
...

 This code snippet from the main UI class file shows the namespace and the class name, so the first token
on the UITypeName is Konesans.Dts.Pipeline.ReverseStringUI.ReverseStringUI .

 The remainder is just the strong name of the assembly. The simplest way to obtain this is to compile the
project, and if you set the post - build events as described previously, your assembly will have been
installed in the GAC. Open the assembly viewer (C:\WINDOWS\assembly) and locate your assembly.
The tooltip for an assembly will show the string name, as shown in Figure 19 - 5 .

Figure 19-5

 The individual tokens are shown again in the Properties dialog box, and there you can highlight the text
for copy - and - paste operations to save typing mistakes, particularly with the public key token.

c19.indd 726c19.indd 726 8/28/08 12:44:47 PM8/28/08 12:44:47 PM

Chapter 19: Adding a User Interface to Your Component

727

 If you make a mistake in setting this property, you will get an error such as this one when you to use the
component UI:

Could not load file or assembly ‘Konesans.Dts.Pipeline.TrashDestination,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b8351fe7752642cc’ or one of its
dependencies. The system cannot find the file specified. (mscorlib)

 The completed attribute for the ReverseString Component, referencing the ReverseStringUI
assembly, is illustrated as follows:

[DtsPipelineComponent(
 DisplayName = “ReverseString”,
 ComponentType = ComponentType.Transform,
 IconResource = “Konesans.Dts.Pipeline.ReverseString.ReverseString.ico”,
 UITypeName = “Konesans.Dts.Pipeline.ReverseStringUI.ReverseStringUI,
 Konesans.Dts.Pipeline.ReverseStringUI, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=7b20fe705a17bed2”)]
public class ReverseString : PipelineComponent
...

 Building the Form
 The final stage of the development is to build the form itself, allowing it to capture the user input and
apply the selections to the component. You are about to start building the form, but before you do,
review the following summary of the progress so far.

 You have implemented IDTSComponentUI , providing the methods required by the designer to support a
custom user interface. The IDTSComponentUI.Edit method is used to display the form, passing
through a reference to the base component (IDTSComponentMetaData100). This was gained using the
 IDTSComponentUI.Initialize method and stored in a private class - level variable.

 Finally, you have updated the component itself to include the UITypeName property for the
 DtsPipelineComponentAttribute . This allows the designer to detect and then find your user
interface class, thereby calling the IDTSComponentUI methods you have now implemented, leading to
the display of the form.

 The sample form for the user interface is shown in Figure 19 - 6 .

Figure 19-6

c19.indd 727c19.indd 727 8/28/08 12:44:47 PM8/28/08 12:44:47 PM

Chapter 19: Adding a User Interface to Your Component

728

 Form Constructor
 As previously mentioned, the default form constructor is modified to accept the references you will
need, such as the component and support objects, variables, and connections. For this example, you just
have the component reference, IDTSComponentMetaData100 . You should store these constructor
parameters in private member variables for later use elsewhere in the form, as well as using them
directly in the constructor itself.

 The commit and rollback feature discussed in the “ IDtsComponentUI.Edit ” section has one specific
requirement. Any changes made must be done through a wrapper class, rather than applied directly to
the IDTSComponentMetaData100 reference. This wrapper, the IDTSDesigntimeComponent100 design -
 time interface, is created within the constructor and stored in a private member variable for later use.

 Changes can be made directly to IDTSComponentMetaData100 , but they will be permanent, so even if
you return false from IDtsComponentUI.Edit , the changes will persist. Users like recognizable and
intuitive user interfaces, and the ability to recover from a mistake using the Cancel button is one of those
design patterns that all users have been grateful for on numerous occasions. Writing code to implement
this yourself would be a considerable amount of work, so make sure you issue changes only through the
design - time interface.

 The complete form constructor is shown as follows, including the call to the
 SetInputVirtualInputColumns method, covered later in the chapter:

private IDTSComponentMetaData100 _dtsComponentMetaData;
private IDTSDesigntimeComponent100 _designTimeComponent;
private IDTSInput100 _input;

public ReverseStringUIForm(IDTSComponentMetaData100 dtsComponentMetaData)
{
 InitializeComponent();

 // Store constructor parameters for later
 _dtsComponentMetaData = dtsComponentMetaData;

 // Get design-time interface for changes and validation
 _designTimeComponent = _dtsComponentMetaData.Instantiate();

 // Get Input
 _input = _dtsComponentMetaData.InputCollection[0];

 // Set any form controls that host component properties or connections here
 // None required for ReverseString component

 // Populate DataGridView with columns
 SetInputVirtualInputColumns();
}

 Column Display
 Once all of the constructor parameters have been stored and the initial preparation is complete, you can
begin to interrogate the component and other objects that may have been supplied on the constructor to
populate the form controls.

c19.indd 728c19.indd 728 8/28/08 12:44:47 PM8/28/08 12:44:47 PM

Chapter 19: Adding a User Interface to Your Component

729

 The Reverse String Transformation will operate on any column the user selects, so the user interface will
simply consist of a way to allow columns to be selected. For this example, you should use a
 DataGridView control. Using the control designer, you ’ ll pre - configure two columns: a checkbox
column for the selection state (DataGridViewCheckBoxColumn) and a text column for the column name
(DataGridViewTextBoxColumn). The individual form controls are not covered in detail; rather the
focus will be on their use and interaction with the component, because the choice of control is entirely up
to you as the user interface developer. To see exactly how the controls have been configured, review the
completed project available at www.wrox.com .

 Because you allow users to select columns, the initial requirement is to enumerate the columns and
determine their current selection state. To find out how to do this, you need to understand the
architecture of a component in relation to data movement. For a simple synchronous transformation
such as this one, you have a single input. The input has a collection of input columns, which at runtime
hold the data provided in the pipeline buffer, so the transformation itself operates on these columns.

 For more detail on pipeline architecture, see Chapter 14 .

 In the Reverse String Component, the presence of an input column means that the user wants the
operation to be performed on that column. By default, the input will contain no columns, because no
columns have been selected for transformation. To select a column, you set the column usage type to
something other than DTSUsageType.UT_IGNORED . For this component, because you do an in - place
transformation on the column value, you require both read and write access as indicated by
 DTSUsageType.UT_READWRITE . This allows you to read the column value and reverse it before writing
it back into the buffer.

 It is important that you select only columns that are required for any transformation and minimize
excess columns through all stages of the pipeline for performance reasons. The designer will display a
warning like this when it detects unused columns:

[DTS.Pipeline] Warning: The output column “ProductPrice” (36) on output “OLE DB
Source Output” (10) and component “Products” (1) is not subsequently used in the
Data Flow task. Removing this unused output column can increase Data Flow task
performance .

 Because the input column collection is empty by default, you actually work on the virtual input column
collection instead. The virtual input represents all the upstream columns available to the transformation,
allowing you to enumerate columns, as well as interrogating the virtual input column ’ s UsageType
property.

 Calling GetVirtualInput to get the collection of virtual columns is a potentially expensive operation,
depending on the number of upstream columns. You should therefore call it only once, and cache the
result for later use in other methods. You should also be aware that since a virtual input is very much a
snapshot of current state, it can become invalid. Simple changes to the current component do not affect
the virtual columns, but deeper changes like ReinitializeMetaData can invalidate it. You should
therefore plan the lifetime of the cached reference and periodically refresh it after major changes.

 The use of the virtual input and the column usage type is the basis for the
 SetInputVirtualInputColumns helper method included in the form. This populates the
 DataGridView with a list of columns and their current selection state. This method is the final call in the
form constructor and completes the initialization of the form. As a separate exercise you may wish to

c19.indd 729c19.indd 729 8/28/08 12:44:48 PM8/28/08 12:44:48 PM

Chapter 19: Adding a User Interface to Your Component

730

augment this procedure with logic to hide (or grey - out) non - string columns, so that the user does not
inadvertently try to reverse numeric values.

private void SetInputVirtualInputColumns()
{

 _virtualInput = _input.GetVirtualInput();

 IDTSVirtualInputColumnCollection100 virtualInputColumnCollection =
 _virtualInput.VirtualInputColumnCollection;

 IDTSInputColumnCollection100 inputColumns = _input.InputColumnCollection;

 int columnCount = virtualInputColumnCollection.Count;
 for (int i = 0; i < columnCount; i++)
 {
 IDTSVirtualInputColumn100 virtualColumn = virtualInputColumnCollection[i];
 int row;

 if (virtualColumn.UsageType == DTSUsageType.UT_READONLY ||
 virtualColumn.UsageType == DTSUsageType.UT_READWRITE)
 {
 row = this.dgColumns.Rows.Add(new object[]
 { CheckState.Checked, “ “ + virtualColumn.Name });
 }
 else
 {
 row = this.dgColumns.Rows.Add(new object[]
 { CheckState.Unchecked, “ “ + virtualColumn.Name });
 }

 this.dgColumns.Rows[rowIndex].Tag = i;

 DataGridViewCheckBoxCell cell =
 (DataGridViewCheckBoxCell)dgColumns.Rows[row].Cells[0];
 cell.ThreeState = false;
 }
}

 The pipeline engine is implemented in native code for performance, so calls to pipeline objects normally
use a wrapper class and incur the overhead of COM Interop. You should therefore minimize such calls
through efficient coding practices. In the preceding example, the count from the virtual input column
collection is retrieved only once, as opposed to being interrogated within the for loop test itself.

 Column Selection
 The next stage of the user interface is to react to user input and reflect any changes back to the
component. In this example, the only choice offered is the selection of columns, made through the
 DataGridView , as captured through the CellContentClick event. You use this event rather than one
of the others available such as CellValueChanged , because this is raised immediately and you can give
timely feedback to the user.

 Through the DataGridViewCellEventArgs , you can obtain the row and column indices for the cell.
This is first used to validate that the row exists and that the column is the first column, because this

c19.indd 730c19.indd 730 8/28/08 12:44:48 PM8/28/08 12:44:48 PM

Chapter 19: Adding a User Interface to Your Component

731

column contains the checkboxes used for managing selection. You then use the virtual input again and
set the usage type as indicated by the checkbox or cell value.

 Because the example component includes validation within the overridden SetUsageType method, you
need to ensure that you catch any exceptions thrown, and can react and feedback to the component user
as shown here:

private void dgColumns_CellContentClick(object sender, DataGridViewCellEventArgs e)
{
 if (e.ColumnIndex == 0 & & e.RowIndex > = 0)
 {
 // Get current value and flip boolean to get new value
 bool newValue = !Convert.ToBoolean(dgColumns.CurrentCell.Value);

 // Get the virtual column to work with
 IDTSVirtualInputColumn100 virtualColumn =
 _virtualInput.VirtualInputColumnCollection[e.RowIndex];

 try
 {
 // Set the column UsageType to indicate the column is selected or not
 if (newValue)
 _designTimeComponent.SetUsageType(_input.ID, _virtualInput,
 virtualColumn.LineageID, DTSUsageType.UT_READWRITE);
 else
 _designTimeComponent.SetUsageType(_input.ID, _virtualInput,
 virtualColumn.LineageID, DTSUsageType.UT_IGNORED);
 }
 catch(Exception ex)
 {
 // Catch any error from base class SetUsageType here.
 // Display simple error message from exception
 MessageBox.Show(ex.Message, “Invalid Column”, MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Rollback UI selection
 dgColumns.CancelEdit();
 }
 }
}

 To complete the description of the user interface example, there are two button controls on the form,
named OK and Cancel, each with their respective DialogResult property values set. By using the
dialog results in this way, you do not need any event handler bound to the click event, and no
additional code is required to close the form. The dialog result is then used within IDTSComponentUI
.Edit to commit or roll back any changes made to the component wrapper, as shown previously.

 This concludes the example, and if you have been building as you read, all that remains is to compile the
project. If you configured the build events that were described at the beginning, the assemblies should be
in the correct locations ready for use.

 You will need to start a new instance of Visual Studio and open an SSIS project. Before you can use
the component, it needs to be added to the Toolbox. To add a component to the Toolbox, right - click the

c19.indd 731c19.indd 731 8/28/08 12:44:48 PM8/28/08 12:44:48 PM

Chapter 19: Adding a User Interface to Your Component

732

Toolbox and select Choose Items from the context menu. When the Choose Toolbox Items dialog
appears, click the SSIS Data Flow Items tab and scroll down until you see the component. Check your
new component and click OK. When you go back to the Toolbox, you should see your new component.
Another method is to select Reset Toolbox from the context menu instead.

 The completed example is available for download from www.wrox.com .

 Fur ther Development
 The simple component that was used lacks some of the other features you may require. For example,
components can use runtime connections or have properties. These would generally be represented
through additional form controls, and their values would be interrogated, and controls initialized in the
form constructor. You will now look at these other methods in greater detail.

 Runtime Connections
 As previously discussed, components can use connections, and the System.IServiceProvider from
 IDtsComponentUI.Initialize , and the Connections collection from IDtsComponentUI.Edit ,
allow you to provide meaningful UI functions around them. Examples have been given of passing these
as far as the form constructor, so now you will be shown what you then do with them. This example
shows a modified constructor that accepts the additional connection - related parameters, performs some
basic initialization, and stores them for later use. You would perform any column - or property - related
work as shown in the previous examples, but for clarity none is included here. The final task is to
initialize the connection - related control.

 For this example, you will presume that the component accepts one connection, which would have been
defined in the ProvidedComponentProperties method of the component. You will use a ComboBox
control to offer the selection options, as well as the ability to create a new connection through the
 IDtsConnectionService . The component expects an ADO.NET SqlClient connection, so the list will be
restricted to this, and the current connection, if any, will be preselected in the list. The preparatory work
for this is all shown here:

private IDTSComponentMetaData100 _dtsComponentMetaData;
private IDTSDesigntimeComponent100 _designTimeComponent;
private IDtsConnectionService _dtsConnectionService;
private Microsoft.SqlServer.Dts.Runtime.Connections _connections;

// Constant to define the type of connection we support and wish to work with.
private const string Connection_Type =
 “ADO.NET:System.Data.SqlClient.SqlConnection, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089”;

public ConnectionDemoUIForm(IDTSComponentMetaData100 dtsComponentMetaData,
 IServiceProvider serviceProvider, Connections connections)
{
 InitializeComponent();

 // Store constructor parameters for later.
 _dtsComponentMetaData = dtsComponentMetaData;
 _connections = connections;

c19.indd 732c19.indd 732 8/28/08 12:44:49 PM8/28/08 12:44:49 PM

Chapter 19: Adding a User Interface to Your Component

733

 // Get IDtsConnectionService and store.
 IDtsConnectionService dtsConnectionService =
 serviceProvider.GetService(typeof(IDtsConnectionService))
 as IDtsConnectionService;
 _dtsConnectionService = dtsConnectionService;

 // Get design-time interface for changes and validation.
 _designTimeComponent = _dtsComponentMetaData.Instantiate();

 // Perform any other actions, such as column population or
 // component property work.

 // Get Connections collection, and get name of currently selected connection.
 string connectionName = “”;
 if (_dtsComponentMetaData.RuntimeConnectionCollection[0] != null)
 {
 IDTSRuntimeConnection100 runtimeConnection =
 _dtsComponentMetaData.RuntimeConnectionCollection[0];
 if (runtimeConnection != null
 & & runtimeConnection.ConnectionManagerID.Length > 0
 & & _connections.Contains(runtimeConnection.ConnectionManagerID))
 {
 connectionName = _connections[runtimeConnection.ConnectionManagerID].Name;
 }
 }

 // Populate connections combo.
 PopulateConnectionsCombo(this.cmbSqlConnections, Connection_Type,
 connectionName);
}

 The final command in the constructor is to call your helper function, PopulateConnectionsCombo , to
populate the combo box. The parameters for this are quite simple: the combo box to populate, the type of
connection you wish to list, and the name of the currently selected connection. Using these three items,
you can successfully populate the combo as shown here:

private void PopulateConnectionsCombo(ComboBox comboBox,
 string connectionType, string selectedItem)
{
 // Prepare combo box by clearing, and adding the new connection item.
 comboBox.Items.Clear();
 comboBox.Items.Add(“ < New connection... > ”);

 // Enumerate connections, but for type supported.
 foreach (ConnectionManager connectionManager in
 _dtsConnectionService.GetConnectionsOfType(connectionType))
 {
 comboBox.Items.Add(connectionManager.Name);
 }

 // Set currently selected connection
 comboBox.SelectedItem = selectedItem;
}

c19.indd 733c19.indd 733 8/28/08 12:44:49 PM8/28/08 12:44:49 PM

Chapter 19: Adding a User Interface to Your Component

734

 The ADO.NET connection is slightly different from most connections in that it has what can be thought
of as subtypes. Because you need a specific subtype, the System.Data.SqlClient.SqlConnection ,
you need to use the full name of the connection, as opposed to the shorter creation name moniker,
ADO.NET, which you may see elsewhere and which is the pattern used for other simpler types of
Connection Managers.

 If you have any problems with this sample code, perhaps because you have different versions of SQL
Server on the same box, then change the relevant line of the preceding code to the following. This
alternative code lists any Connection Manager in the combo.

// Enumerate connections, but for any connection type.
 foreach (ConnectionManager connectionManager in
 _dtsConnectionService.GetConnections())
 {
 comboBox.Items.Add(connectionManager.Name);
 }

 Now that you have populated the combo box, you need to handle the selection of an existing connection
or the creation of a new connection. When you author a Connection Manager yourself, you can provide a
user interface by implementing the IDtsConnectionManagerUI , which is analogous to the way you
have implemented IDtsComponentUI to provide a user interface for your component. The connection
service will then display this user interface when you call the CreateConnection method.

 The following example is the event handler for the connections combo box, which supports new
connections and existing connections, and ensures that the selection is passed down to the component:

private void cmbSqlConnections_SelectedValueChanged(object sender, EventArgs e)
{
 ComboBox comboxBox = (ComboBox)sender;

 // Check for index 0 and < New Item... >
 if (comboxBox.SelectedIndex == 0)
 {
 // Use connection service to create a new connection.
 ArrayList newConns = _dtsConnectionService.CreateConnection(Connection_Type);
 if (newConns.Count > 0)
 {
 // A new connection has been created, so populate and select
 ConnectionManager newConn = (ConnectionManager)newConns[0];
 PopulateConnectionsCombo(comboxBox, Connection_Type, newConn.Name);
 }
 else
 {
 // Create connection has been cancelled
 comboxBox.SelectedIndex = -1;
 }
 }

 // An connection has been selected. Verify it exists and update component.
 if (_connections.Contains(comboxBox.Text))
 {
 // Get the selected connection
 ConnectionManager connectionManager = _connections[comboxBox.Text];

c19.indd 734c19.indd 734 8/28/08 12:44:49 PM8/28/08 12:44:49 PM

Chapter 19: Adding a User Interface to Your Component

735

 // Save selected connection
 _dtsComponentMetaData.RuntimeConnectionCollection[0].ConnectionManagerID =
 _connections[comboxBox.Text].ID;
 _dtsComponentMetaData.RuntimeConnectionCollection[0].ConnectionManager =
 DtsConvert.ToConnectionManager100(_connections[comboxBox.Text]);
 }
}

 By following the examples shown here, you can manage connections from within your user interface,
allowing the user to create a new connection or select an existing one, and ensure that the selection is
persisted through to the component ’ s RuntimeConnectionCollection , thereby setting the connection.

 You can also use variables within your UI. Normally the selected variable is stored in a component
property, so by combining the property access code from the Component Properties section and
following the pattern for Runtime Connections, substituting the IDtsVariableService instead, you
can see how this can be done.

 Component Properties
 As an example of displaying and setting component - level properties, you may have a string property
that is displayed in a simple text box control and an enumeration value that is used to set the selected
index for a combo box control. The following example assumes that the two component properties,
 StringProp and EnumProp , have been defined in the overridden ProvideComponentProperties
method of your component class. You would then extend the form constructor to include some code to
retrieve the property values and display them in the form controls. This assumes that you have added
two new form controls, a TextBox control called MyStringTextBox , and a ComboBox called
 MyEnumValComboBox . An example of the additional form constructor code is shown here:

MyStringTextBox.Text =
_dtsComponentMetaData.CustomPropertyCollection[“StringProp”].Value.ToString();

MyEnumValComboBox.SelectedIndex =
Convert.ToInt32(_dtsComponentMetaData.CustomPropertyCollection[“EnumProp”].Value);

 The appropriate events for each control would then be used to set the property value of the component,
ensuring that this is done through the design - time interface. A variety of events could be used to capture
the value change within the Windows Form control, and this may depend on the level of validation you
wish to apply within the form, or if you wish to rely solely on validation routines within an overridden
 SetComponentProperty method in your component class. Capturing these within the control ’ s
validating event would then allow you to cancel the change in the form, as well as displaying
information to the user. A simple example is shown here for the two properties:

private void MyStringTextBox_Validating(object sender, CancelEventArgs e)
{
 // Set the property, and capture any validation errors
 // thrown in SetComponentProperty
 try
 {
 _designTimeComponent.SetComponentProperty(“StringProp”,
 MyStringTextBox.Text);

c19.indd 735c19.indd 735 8/28/08 12:44:50 PM8/28/08 12:44:50 PM

Chapter 19: Adding a User Interface to Your Component

736

 }
 catch(Exception ex)
 {
 // Display exception message
 MessageBox.Show(ex.Message);

 // Cancel event due to error
 e.Cancel = true;
}

private void MyEnumValComboBox_SelectedIndexChanged(object sender, EventArgs e)
{
 try
 {
 _designTimeComponent.SetComponentProperty(“EnumProp “,
 ((ComboBox)sender).SelectedIndex);
 }
 catch(Exception ex)
 {
 // Display exception message
 MessageBox.Show(ex.Message);

 // Cancel event due to error
 e.Cancel = true;
 }
}

 Providing an overridden SetComponentProperty is a common requirement. The most obvious reason
is that component properties are stored through the object type, but you may require a specific type,
such as integer, so the type validation code would be included in SetComponentProperty . A simple
example of this is shown here, where the property named IntProp is validated to ensure that it is an
integer:

public override IDTSCustomProperty100 SetComponentProperty(string propertyName,
object propertyValue)
{
 int result;
 if (propertyName == “IntProp” & &
 int.TryParse(propertyValue.ToString(), out result) == false)
 {
 bool cancel;
 ComponentMetaData.FireError(0, ComponentMetaData.Name, “The IntProp property
 is required to be a valid integer.”, “”, 0, out cancel);
 throw new ArgumentException(“The value you have specified for IntProp is not
 a numeric value”);
 }

 return base.SetComponentProperty(propertyName, propertyValue);
}

 You build on this example and learn how to handle the exceptions and events in the following section.

c19.indd 736c19.indd 736 8/28/08 12:44:50 PM8/28/08 12:44:50 PM

Chapter 19: Adding a User Interface to Your Component

737

 Handling Errors and Warnings
 The previous example and the column selection method in the main example, both demonstrated how
you can catch exceptions thrown from the base component when you apply settings. Although it is
recommended that you use managed exceptions for this type of validation and feedback, you may also
wish to use the component events such as FireError or FireWarning . Usually, these would be called
immediately prior to the exception and used to provide additional information in support of the
exception. Alternatively, you could use them to provide the detail and only throw the exception as a
means of indicating that an event has been raised. To capture the event information, you can use the
 IErrorCollectionService . This service can be obtained through System.IServiceProvider , and
the preparatory handling is identical to that of IDtsConnectionService as illustrated in the previous
example. For the following examples, you will assume that a class - level variable containing the
 IErrorCollectionService has been declared, _ errorCollectionService , and populated through
in the form constructor.

 The following example demonstrates how you can use the GetErrorMessage method of the
 IErrorCollectionService to retrieve details of an event. This will also include details of any
exception thrown as well. The validating method of a text box control is illustrated, and
 SetComponentProperty is based on the overridden example shown previously, to validate that the
property value is an integer:

private void txtIntPropMessage_Validating(object sender, CancelEventArgs e)
{
 // Clear any existing errors in preparation for setting property
 _errorCollectionService.ClearErrors();

 try
 {
 // Set property through IDTSDesigntimeComponent100
 _designTimeComponent.SetComponentProperty(“IntProp”,
 this.txtIntPropMessage.Text);
 }
 catch
 {
 // Display message
 MessageBox.Show(_errorCollectionService.GetErrorMessage());

 // Cancel event due to error
 e.Cancel = true;
 }
}

 If a non - integer value is entered, the following message is displayed:

Error at Data Flow Task [ReverseString]: The IntProp property is required to be a
valid integer.
Error at Data Flow Task [ReverseString [84]]: System.ArgumentException: The value
you have specified for IntProp is not a numeric value
 at Konesans.Dts.Pipeline.ReverseString.ReverseString.SetComponentProperty(String
propertyName, Object propertyValue)
 at
Microsoft.SqlServer.Dts.Pipeline.ManagedComponentHost.HostSetComponentProperty(
IDTSDesigntimeComponent100 wrapper, String propertyName, Object propertyValue)

c19.indd 737c19.indd 737 8/28/08 12:44:50 PM8/28/08 12:44:50 PM

Chapter 19: Adding a User Interface to Your Component

738

 This second example demonstrates the GetErrors method and how to enumerate through the errors
captured by the service individually:

private void txtIntPropErrors_Validating(object sender, CancelEventArgs e)
{
 // Clear any existing errors in preparation for setting property
 _errorCollectionService.ClearErrors();

 try
 {
 // Set property through IDTSDesigntimeComponent100
 _designTimeComponent.SetComponentProperty(“IntProp”,
 this.txtIntPropErrors.Text);
 }
 catch
 {
 // Get ICollection of IComponentErrorInfo and cast into
 // IList for accessibility
 IList < IComponentErrorInfo > errors =
 _errorCollectionService.GetErrors() as IList < IComponentErrorInfo > ;

 // Loop through errors and process into message
 string message = “”;
 for (int i = 0; i < errors.Count; i++)
 {
 IComponentErrorInfo errorInfo = errors[i] as IComponentErrorInfo;
 message += “Level: “ + errorInfo.Level.ToString() + Environment.NewLine +
 “Description : “ + Environment.NewLine + errorInfo.Description
 + Environment.NewLine + Environment.NewLine;
 }

 // Display message
 MessageBox.Show(message);

 // Cancel event due to error
 e.Cancel = true;
 }
}

 If a non - integer value is entered, the following message is displayed:

Level: Error
Description :
The IntProp property is required to be a valid integer.

Level: Error
Description :
System.ArgumentException: The value you have specified for IntProp is not a numeric
value
 at Konesans.Dts.Pipeline.ReverseString.ReverseString.SetComponentProperty(String
propertyName, Object propertyValue)
 at
Microsoft.SqlServer.Dts.Pipeline.ManagedComponentHost.HostSetComponentProperty(
IDTSDesigntimeComponent100 wrapper, String propertyName, Object propertyValue)

c19.indd 738c19.indd 738 8/28/08 12:44:51 PM8/28/08 12:44:51 PM

Chapter 19: Adding a User Interface to Your Component

739

 As you can see, both the event and exception information are available through the
 IErrorCollectionService . You can also see the use of the Level property in this example, which
may be useful for differentiating between errors and warnings. For a complete list of
 IComponentErrorInfo properties, please refer to the SQL Server documentation.

 Column Properties
 When you require column - level information, beyond the selection state of a column, it is best practice to
store this as a custom property on the column. This applies to all column types. An example of this can
be seen with the stock Character Map Transform. If you select a column and perform an in - place
operation, such as the Lowercase operation, this is stored as a custom property on that input column.
To confirm this, select a column as described and view the component through the Advanced Editor (to
open the Advanced Editor, right - click the Character Map Transform and select Show Advanced Editor).
If you then navigate to the Input and expand to select the column, you will see a custom property called
 MapFlags . This stores the operation enumeration, as shown in Figure 19 - 7 .

Figure 19-7

c19.indd 739c19.indd 739 8/28/08 12:44:51 PM8/28/08 12:44:51 PM

Chapter 19: Adding a User Interface to Your Component

740

 If your component uses custom column properties in this way, these are perhaps the best candidates for
a custom user interface. Using the Advanced Editor to navigate columns and set properties correctly
carries a much higher risk of error and is more time - consuming for the user than a well - designed user
interface. Unfortunately this does raise the complexity of the user interface somewhat, particularly from
the Windows Forms programming perspective, as the effective use of form controls is what will
determine the success of such a UI. However, if you are still reading this chapter, you will probably be
comfortable with such challenges.

 To persist these column - level properties, simply call the appropriate SetColumnTypeProperty method
on the design - time interface, IDTSDesigntimeComponent100 . Obviously, you want to make sure that
you previously created the actual properties. For example, in the following code, a property is being set
on an input column:

_designTimeComponent.SetInputColumnProperty(_input.ID, inputColumn.ID,
 “PropertyName”, propertyValue);

 Other Considerations
 Any good user interface should be designed with usability, accessibility, localization, and other such
principles in mind. That means that the user interface should not require a mouse to be configured — the
user should be able to navigate using just the keyboard just as easily. Descriptions should be clear, and
strings and controls should be tested to ensure that any resizing operation does not truncate them. If the
component is intended to be sold to customers, localization (and globalization) may be something you
want to think about — there is a lot of information on msdn.microsoft.com on these topics, but as a
start you want to make sure that string literals live in resource files, and right - to - left language users are
not confused by the interface.

 Test the component and make sure it does not crash when receiving invalid input, any error messages
are descriptive, and exception recovery is graceful. Also keep in mind that users may intentionally or
mistakenly use the default UI (Advanced Editor) for the component and corrupt the state that may
otherwise have been protected by your UI. If the component is designed right, the validation is
modularized and shared by the component and its UI; however, if this is not possible, then try to ensure
that the UI does not break if the metadata is corrupt.

 Remember that both the component and its UI may need to be deployed together to other machines
(depending on their intended use). If this is the case, consider building an installation script to place the
files in the right folders and install them in the GAC as necessary.

 Summary
 You will now hopefully have a good understanding of what is required to implement your own custom
user interface for a Pipeline Component. We hope that you have understood how to apply this guidance
for yourself and, perhaps more importantly, why certain practices are to be followed, allowing you to go
on and confidently develop your own components. This functionality allows you to really exploit the
power and extensibility of SQL Server Integration Services.

c19.indd 740c19.indd 740 8/28/08 12:44:51 PM8/28/08 12:44:51 PM

 External Management and
WMI Task Implementation

 Throughout this book, you ’ ve been exposed to different ways to manage the development
and administration of SSIS packages using the Visual Studio IDE and the SQL Server Management
Studio. This chapter expands on those operations by providing an overview of the ways in which
you perform these same management and administration functions programmatically through
managed code. You learn how to perform package management operations using the managed
 Application and Package classes exposed in the dynamic - linked library Microsoft
.SQLServer.ManagedDTS.dll by the .NET Microsoft.SqlServer.Dts.Runtime namespace.

 The second half of this chapter details the capabilities of the WMI Data Reader Task and the
WMI Event Watcher Task. These tasks provide access to system information via the Windows
Management Interface model, better known as WMI. Through a query - based language called
WQL, similar to SQL in structure and syntax, you can obtain information about a wide variety
of system resources to assist you in your SQL Server administrative responsibilities. With WMI,
you can mine system - based metrics to look for hardware and operating system trends. In SSIS,
using WMI, you can also work more proactively to monitor a Windows - based system for notable
events that occur in the system, and even trigger responsive actions.

 External Management of SSIS with
Managed Code

 The SSIS development team has exposed a robust architecture to manage SSIS through managed
code. Managed code in this case refers to the use of the .NET Framework Common Language
Runtime that hosts code written in C# or VB.NET.

c20.indd 741c20.indd 741 8/28/08 12:45:53 PM8/28/08 12:45:53 PM

Chapter 20: External Management and WMI Task Implementation

742

 Through a rich object model, you can customize your applications to control almost every aspect of
managing an SSIS package. This section attempts to provide a brief overview of the SSIS programming
model as it applies to externally managing SSIS packages.

 Setting Up a Test SSIS Package for
Demonstration Purposes

 For this chapter, we ’ ll be using a test SSIS package created purely for demonstration purposes. Note that
all the code in this chapter can be downloaded from www.wrox.com . The package you will set up for this
chapter is designed specifically to highlight some of the capabilities of using the managed code libraries.
To start, create a new directory structure for this chapter under c:\ssis\ called extmgt . Then create a
new SSIS package under a subdirectory called testSSISpackage.

 The package needs two variables, both are strings, but one is an expression - based variable. Set up the
variables using this table:

 Variable Name Type Value Expression?

 myExpression String @System::PackageName Yes

 myVariable String Hello World No

 Now drop two Script Tasks on the Control Flow surface and set the ReadOnlyVariables property to the
 myVariable variable. For the first Script Task, set the script language to C# and set the code like this:

C#
 public void Main()
 {
 bool ret = false;
 Dts.Events.FireInformation(0, “TestPackage”,
 “Running C# Script Task to Display Message “ +
 Dts.Variables[0].Value.ToString(), “”, 0, ref ret);

 Dts.TaskResult = (int)ScriptResults.Success;
 }

 Do the exact same thing for the other Script Task, except set the language to VB.NET, and the code
like this:

VB
 Public Sub Main()
 Dim ret As Boolean = False
 Dts.Events.FireInformation(0, “TestPackage”, _
 “Running VB.NET Script Task to Display Message “ + _
 Dts.Variables(0).Value.ToString(), “”, 0, ret)

 Dts.TaskResult = ScriptResults.Success
 End Sub

c20.indd 742c20.indd 742 8/28/08 12:45:54 PM8/28/08 12:45:54 PM

Chapter 20: External Management and WMI Task Implementation

743

 Test the package to make sure that everything is working correctly. You should see results that look like
Figure 20 - 1 .

 Figure 20 - 1

 Now that you have a working test package, we can use it to highlight the management capabilities of the
DTS runtime managed code library.

 The DTS Runtime Managed Code Library
 To continue with the external management examples in this chapter, you need to have SQL Server
installed (with SDK). You ’ ll also need the Visual Studio project templates for developing Console and
Web applications. The code will be simple enough to follow along, and as always you can download the
code for this chapter from www.wrox.com . If you have installed the SQL Server SDK, you will find a DLL
registered in the global assembly cache named Microsoft.SQLServer.ManagedDTS.dll . In this DLL
is a namespace called Microsoft.SqlServer.Dts.Runtime . To access the classes in this namespace,
you must first create a project in Visual Studio and then add a reference to the namespace for
 Microsoft.SQLServer.ManagedDTS.dll . To keep from having to type the full namespace reference,
you ’ ll want to add either an Imports or Using statement to include the namespace in your code classes
like this:

C#
using Microsoft.SqlServer.Dts.Runtime;
VB
Imports Microsoft.SqlServer.Dts.Runtime

 Once the reference is added to your project, you can investigate the encapsulated classes using the Object
Browser. (Ctrl+Alt+J or View Object Browser). The most important classes for external management of
SSIS packages are the Application and Package objects. You ’ ll work with these classes and their
methods in many of the examples in this chapter.

c20.indd 743c20.indd 743 8/28/08 12:45:55 PM8/28/08 12:45:55 PM

Chapter 20: External Management and WMI Task Implementation

744

 The Application object is the core class that exposes methods used to connect to and interface with
an SSIS service instance. The following are typical management operations that can be performed
using this class:

 Load, save, and delete SSIS packages on the Windows files system, SQL Server, or Integration
Services repository .

 Construct and execute packages either from a storage facility or in memory .

 Add, remove, and rename folders in SQL Server or Integration Services repository folders .

 Control package permissions stored within a SQL Server .

 Obtain state information and status regarding the execution of packages in SQL Server or the
SSIS package repository .

 The Package object represents an instance of a single SSIS package. Although this object exposes many
methods that allow you to control every aspect of a package, this chapter will only deal with
functionality that applies to maintenance - type operations. Here are the maintenance - based operations
that the Package object exposes:

 Configure Log Providers .

 Manage Package Configurations .

 Manage Connection Managers in SQL Server and Integration Services .

 Now that you have an overview of the managed class library for DTS runtime, let ’ s dig deeper into each
of the primary classes and get into some useful examples.

 Application Object Maintenance Operations
 SSIS packages can be stored on either the Windows file system, the SSIS package store, or within SQL
Server. The methods of the Application object allow you to manage SSIS packages in each of these
storage scenarios including management of packages in other server instances. Once the package is
loaded or constructed in the Application object, it may be run or executed. The flexibility to store,
load, and run packages in separate machine spaces expands the scaling capabilities of SSIS packages.

 The convention that the SSIS team chose to employ in naming the methods on this Application class is
to use DtsServer in their names when the operation applies to packages in the SSIS package store, and
 SqlServer in their names when storage is in SQL Server. If you don ’ t see either in the method name,
typically, this will mean that the operation is for packages stored in the file system.

 In terms of the operations that the application object supports, you ’ ll find methods for general package,
folder, and role maintenance.

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 744c20.indd 744 8/28/08 12:45:55 PM8/28/08 12:45:55 PM

Chapter 20: External Management and WMI Task Implementation

745

 Package Maintenance Operations
 The Application object exposes the following methods to manage packages in the Windows file
system, the SSIS package store, and SQL Server database instance:

 LoadPackage : Loads a package from the file system .

 LoadFromDtsServer: Loads a package from the specified SSIS package store .

 LoadFromSqlServer : Loads a package to the specified SQL Server instance .

 LoadFromSqlServer2: Loads a package to the specified SQL Server instance by supplying a
valid connection object .

 SaveToXML : Saves a package object to the file system with a dtsx file extension .

 SaveToDtsServer: Saves a package to the SSIS package store .

 SaveToSqlServer: Saves a package to the specified SQL Server instance .

 SaveToSqlServerAs: Saves a package as a different name to the specified SQL Server instance .

 RemoveFromDtsServer : Removes a package from the SSIS package store .

 RemoveFromSqlServer: Removes a package from the specified SQL Server instance .

 ExistsOnDtsServer: Indicates whether a specified package already exists in the SSIS package
store at the specified path .

 ExistsOnSqlServer : Indicates whether a specified package already exists on a specified
SQL Server .

 Now armed with the basic capabilities of the application class, let ’ s get some real - world examples put
together. First, you ’ ll put together an example that examines the variables in a package, and then we ’ ll
look at how you can programmatically deploy packages to a DTS package store.

 A Package Maintenance Example
 At the most basic level you need to understand how to access a package programmatically to examine
the internals. This is where the Package object class is used. This class mirrors the structure of the SSIS
packages and allows them to be loaded into a navigable object model. Once the package is deep copied
into this Package structure, you can look at anything in the package. The following C# code snippet is
just a partial demonstration of how to load your demonstration package into a Package object variable
from the file system. Notice that because the package exists on the file system, you are using the
 LoadPackage method of the application object instead of the methods that apply to DTS or SQL Server
package stores. Note that this snippet assumes you have the references to Microsoft.SQLServer
.ManagedDTS.dll .

C#
using Microsoft.SqlServer.Dts.Runtime;
public void LoadPackage()
{
 Application dtsApp = new Application();
 string TestPackageFullPath =
 “C:\\SSIS\\extmgt\\TestSSISPackage\\TestSSISPackage\\Package.dtsx”;

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 745c20.indd 745 8/28/08 12:45:55 PM8/28/08 12:45:55 PM

Chapter 20: External Management and WMI Task Implementation

746

 Package pac = dtsApp.LoadPackage(TestPackageFullPath, null);
 . . .
}

VB
Imports Microsoft.SqlServer.Dts.Runtime
Public Sub LoadPackage()
 Dim dtsApp as new Application()
 Dim TestPackageFullPath as String = _
 “C:\\SSIS\\extmgt\\TestSSISPackage\\TestSSISPackage\\Package.dtsx”
 Dim package As Package = dtsApp.LoadPackage(TestPackageFullPath, Nothing)
 . . .
End Sub

 Once the application class is created and the package object is loaded, you can interrogate the package
object to perform many different tasks. A useful example involves examining the variables within a
package. You can do this easily by iterating the variables collection to look for user variables or system
variables. The following code snippet is in the form of a function that you can add to your solution to
perform this task:

C#
 private static void DisplayFilePackageVariables(string FullPath,
 bool ShowOnlyUserVariables)
 {
 Application app = new Application();
 Package package = app.LoadPackage(FullPath, null);
 string sMsg = “Variable:[{0}] Type:{1} Default Value:{2}
 IsExpression?:{3}\n”;

 foreach(Variable var in package.Variables)
 {
 if ((var.Namespace != “System”) & &
 ShowOnlyUserVariables) ||
 !ShowOnlyUserVariables)
 {
 Console.WriteLine(String.Format(sMsg, var.Name,
 var.DataType.ToString(),
 var.Value.ToString(),
 var.EvaluateAsExpression.ToString()));
 }
 }
 }

VB
 Private Sub DisplayFilePackageVariables(ByVal FullPath As String, ByVal
 ShowOnlyUserVariables As Boolean)
 Dim app As New Application()
 Dim package As Package = app.LoadPackage(FullPath, Nothing)
 Dim sMsg As String
 sMsg = “Variable:[{0}] Type:{1} Default Value:{2} IsExpression?:{3}”
 + vbCrLf

c20.indd 746c20.indd 746 8/28/08 12:45:56 PM8/28/08 12:45:56 PM

Chapter 20: External Management and WMI Task Implementation

747

 For Each Variable In package.Variables
 If ((Variable.Namespace < > “System” And _
 ShowOnlyUserVariables = True) Or _
 ShowOnlyUserVariables = False) Then

 Console.WriteLine(String.Format(sMsg, Variable.Name, _
 Variable.DataType.ToString(), _
 Variable.Value.ToString(), _
 Variable.EvaluateAsExpression.ToString()))
 End If
 Next
 End Sub

 If you run this code using the full file path of the demonstration SSIS package and set the option to show
only the user variables, the console results will look like Figure 20 - 2 .

 Figure 20 - 2

 You can see in the console that this correctly shows the two user variables that you set up earlier in the
Test SSIS package at the start of this chapter. The results also correctly show that the myExpression
variable is an expression - based variable using the EvaluateAsExpression property. The power of the
application and package objects don ’ t stop there. You can also move packages from one store to another
as you ’ ll see in this next example.

 A Package Transfer Example
 The application object also contains methods that allow you to move SSIS packages from one storage
facility to another. These are very useful for doing things like moving all existing packages on a server to
a file storage location while you rebuild a server, or moving all existing packages from one server to
another. A great use of these methods is to allow the development of programs for auto - deployment of
new SSIS packages.

 Once an SSIS package has been deeply copied or loaded into the package object, method calls on the
application object can save them into a storage medium. You can load and save from any medium giving
you the capability to move the package. The next code snippet is a well - named function that will move
SSIS packages from a file to a DTS storage location. To be able to move a package from the file system,
you need the full file path to the dtsx file. You also need the DTS storage information details like the
server name, the folder on the server, and the resulting package name. Before we go any further, let ’ s
look at the DTS package store on your server.

 The DTS package store is kept in the Integration Server. You log into the Integration Server using the
SSMS tool the same way you would SQL Server, but choose the Integration Server instance instead of
SQL Server. The integration server environment has a different node structure that looks like Figure 20 - 3 .

c20.indd 747c20.indd 747 8/28/08 12:45:56 PM8/28/08 12:45:56 PM

Chapter 20: External Management and WMI Task Implementation

748

 Notice here that the server MyPC has two different connections in the SSMS console. The first is to the
SQL Server services, and the second is to the Integration Services. Underneath the Integration Services
Node, you ’ ll see two nodes, one for the packages that are currently running, and the second for packages
that are stored. We ’ ll look at the running packages later in the complete package management example;
for now, we are focusing on the stored packages. In the Stored Packages Node, you ’ ll see one node for
the File System and one node for the MSDB database. To get the Integration Services to look like
Figure 20 - 3 , we loaded two sample packages created in Chapter 3 using the techniques from Chapter 22
both as file packages and as DTS stored packages.

 Regardless of which node you choose to store the package, you can set up folders to allow you to
organize the packages into function areas. In Figure 20 - 3 , the folders MyFilePackages and MySSPackages
were created prior to loading the packages into them. The MyFilePackages folder represents packages
that are running under the Integration Service, but are deployed (or stored) in the file system. The
MySSPackage folder represents packages that are loaded and run from the MSDB database. In the next
section, we demonstrate how to create these folders programmatically. You could just as easily have
organized these packages by business function, to make it easier to quickly find the packages that affect
your accounting and operational areas.

 The next code snippet demonstrates how to take the Demonstration SSIS package you created at the
beginning of this chapter and move it into the MSDB database on this server. First, the code obtains a
reference to a package object in the file system and loads the package into the package object model.
Then the package is saved into the DTS store under the MySSPackages folder.

C#
 private static void TransferPackageFromFileToDtsServer(
 string FullFilePath,
 string DTSServerPath,
 string Server,
 string SavePackageAsName)
 {
 Application app = new Application();
 Package package = app.LoadPackage(FullFilePath, null);

 if (app.FolderExistsOnDtsServer(DTSServerPath, Server))

Figure 20-3

c20.indd 748c20.indd 748 8/28/08 12:45:56 PM8/28/08 12:45:56 PM

Chapter 20: External Management and WMI Task Implementation

749

 {
 if (!DTSServerPath.EndsWith(“\\”))
 {
 DTSServerPath = DTSServerPath + “\\”;
 }

 Console.WriteLine(“Transferring Package “ +
 package.Name.ToString()
 + “\n”);
 app.SaveToDtsServer(package, null, DTSServerPath +
 SavePackageAsName, Server);
 }
 }

VB
 private sub TransferPackageFromFileToDtsServer(_
 ByVal FullFilePath As String, _
 ByVal DTSServerPath As String, _
 ByVal Server As String, _
 ByVal SavePackageAsName As String)

 Dim app As New Application()
 Dim package = app.LoadPackage(FullFilePath, Nothing)

 If app.ExistsOnDtsServer(DTSServerPath, Server) Then
 If (DTSServerPath.EndsWith(“\”) = False) Then
 DTSServerPath = DTSServerPath + “\”
 End If
 End If

 Console.WriteLine(“Transfering Package “ + _
 package.Name.ToString() + vbCrLf)
 app.SaveToDtsServer(package, Nothing, DTSServerPath + _
 SavePackageAsName, Server)
 End Sub

 On both sides, the package needs to be referred to with the complete path. The helper function allows
the package to be specifically named and removes that implementation detail from the caller. If you run
this function against the demonstration SSIS package using this code (after substituting your server for
MyPC), the package will be copied to the DTS store:

C#
TransferPackageFromFileToDtsServer(TestPackageFullPath, “msdb\\MySSPackages”,
“MyPC”, “MyTestPackage”);

VB
TransferPackageFromFileToDtsServer(TestPackageFullPath, “msdb\MySSPackages”, _
“MyPC”, “MyTestPackage”)

 If you refresh the nodes in the Integration Server, you ’ ll now see the SSIS demonstration package stored
under the MySSPackages Node using the name MyTestPackage. The Integration Server Node should
now look like Figure 20 - 4 .

c20.indd 749c20.indd 749 8/28/08 12:45:57 PM8/28/08 12:45:57 PM

Chapter 20: External Management and WMI Task Implementation

750

 Using this example and building other well - named methods, you can move packages from the DTS store
to the file system, or from the file system to the SQL Server store, or even from server to server. One of
the things we skipped over to show this example was the creation of the folder structures in your SQL
Server or DTS storage location. Let ’ s look at this in the next section.

 Package Folder Maintenance
 On either the DTS or SQL Server package repositories, you can perform all the management operations
of creating, renaming, or deleting folder structures as well as testing for the existence of an expected
folder. To manage storage folders on either the DTS or SQL Server package storage locations, you ’ ll need
to use one of the following methods of the Application object:

 CreateFolderOnDtsServer: Creates a new folder in the “ Stored Packages ” Node of the
application object ’ s server .

 CreateFolderOnSqlServer : Creates a new folder in the specified server ’ s “ Stored Packages ”
Node using the specified user name and password .

 RemoveFolderFromDtsServer : Removes the specified folder from the application object ’ s
server .

 RemoveFolderFromSqlServer : Removes the specified folder from the specified server using
the supplied user name and password .

 RenameFolderOnDtsServer : Renames the specified folder on the application object ’ s server .

 RenameFolderOnSqlServer : Renames the specified folder on the specified server using the
supplied user name and password .

 FolderExistsOnDtsServer : Determines if the specified folder currently exists on the
application object ’ s server .

 FolderExistsOnSqlServer : Determines if the specified folder currently exists on the specified
server using the supplied user name and password .

 To exhibit the use of folder maintenance operations, the following examples show how to employ a
few of these methods. Look at these code snippets that can be used to create a folder in the DTS SSIS
package store:

❑

❑

❑

❑

❑

❑

❑

❑

Figure 20-4

c20.indd 750c20.indd 750 8/28/08 12:45:57 PM8/28/08 12:45:57 PM

Chapter 20: External Management and WMI Task Implementation

751

C#
private static void CreateDtsStoreFolder(string ParentDTSFolder,
 string NewDTSFolder,
 string Server)
{
 Application app = new Application();
 app.CreateFolderOnDtsServer(ParentDTSFolder, NewDTSFolder, Server);

 if (!ParentDTSFolder.EndsWith(“\\”))
 {
 ParentDTSFolder = ParentDTSFolder + “\\”;
 }

 if(app.FolderExistsOnDtsServer(ParentDTSFolder + NewDTSFolder, Server))
 {
 Console.WriteLine(String.Format(“New Folder {0} was created on {1}”,
 NewDTSFolder, Server));
 }
}

VB
Private Sub CreateDtsStoreFolder(ByVal ParentDTSFolder As String, _
 ByVal NewDTSFolder As String, _
 ByVal Server As String)
 Dim app As New Application()
 app.CreateFolderOnDtsServer(ParentDTSFolder, NewDTSFolder, Server)
 If (ParentDTSFolder.EndsWith(“\”) = False) Then
 ParentDTSFolder = ParentDTSFolder + “\”
 End If
 If app.FolderExistsOnDtsServer(_
 ParentDTSFolder + NewDTSFolder, Server) Then
 Console.WriteLine(String.Format(“New Folder {0} was created on {1}”, _
 NewDTSFolder, Server))
 End If
End Sub

 In this example, you ’ ll notice that the method for creating the folder and then the method for checking to
see whether the folder exists have both been used. Because there are separate methods for this
depending upon the SSIS package store, you ’ ll notice that this method is also strongly named. If you run
this code using the existing Integration Server folder we ’ ve been working with so far, “ msdb\
MySSPackages, ” and pass in “ MyOpsPackages ” as the NewDTSFolder , then you ’ ll see the folder created
as in Figure 20 - 5 . You ’ ll be able to see the folder under the MySSPackages folder.

Figure 20-5

c20.indd 751c20.indd 751 8/28/08 12:45:57 PM8/28/08 12:45:57 PM

Chapter 20: External Management and WMI Task Implementation

752

 Folder maintenance allows you to automate your setup processes when moving packages from one
storage location to another. The DTS runtime also enables changing package roles.

 Package Role Maintenance
 The Application object exposes methods that allow for SQL Server roles to be referenced and then
assigned to SSIS packages. These methods are valid only for packages stored in the SQL Server package
store.

 GetPackageRoles : This method takes two string parameters that return the assigned reader
role and writer role for the package.

 SetPackageRoles : This method sets the reader role and writer role for a package.

 Packages installed on an Integration Instance or SQL Server Instance can be assigned roles. The roles in
the Integration Instance are slightly different than the SQL Server roles. Roles allow the assignment of
read or write access to users or processes that will execute the packages. Read access gives the user the
ability to view and run the package. To be able to modify the package, a user must have been assigned
write access. To detail this capability, the following code snippet assigns a role to a package and then
checks to ensure that the assignment is in effect:

C#
private static void AssignRoleReadWriteAccessToPackage(string Server,
 string PackagePath, string RoleToAssign)
{
 Application app = new Application();
 app.LoadFromDtsServer(PackagePath, Server, null);
 string readerRole = string.Empty;
 string writerRole = string.Empty;
 string msg = “Role {0} has Reader Role of {1} and Writer Role of {2} on
 package {3}”;

 app.SetPackageRoles(Server, PackagePath, RoleToAssign, RoleToAssign);
 app.GetPackageRoles(Server, PackagePath, out readerRole, out writerRole);

 Console.WriteLine(String.Format(msg, RoleToAssign, readerRole,
 writerRole, PackagePath));
 Console.Read();
}

VB
Private Sub AssignRoleReadWriteAccessToPackage(ByVal Server As String, _
 ByVal PackagePath As String, _
 ByVal RoleToAssign As String)
 Dim app As New Application()
 app.LoadFromDtsServer(PackagePath, Server, Nothing)
 Dim readerRole As String = String.Empty
 Dim writerRole As String = String.Empty
 Dim msg As String = “Role {0} has Reader Role of {1} and Writer Role of
 {2} on package {3}”

 app.SetPackageRoles(Server, PackagePath, RoleToAssign, RoleToAssign)

❑

❑

c20.indd 752c20.indd 752 8/28/08 12:45:58 PM8/28/08 12:45:58 PM

Chapter 20: External Management and WMI Task Implementation

753

 app.GetPackageRoles(Server, PackagePath, readerRole, writerRole)

 Console.WriteLine(String.Format(msg, RoleToAssign, readerRole, _
 writerRole, PackagePath))
 Console.Read()
End Sub

 Running this code using the role of db_ssisltduser changes the default role assignments on the
package to the specific role that you have designated. Figure 20 - 6 shows how the package role
assignments will change.

Figure 20-6

 Notice that the default roles are removed, so one thing you ’ ll want to do is coding for all the roles when
you update the roles. Besides changing roles on packages, sometimes you just want to monitor packages.
The next section demonstrates how to do this programmatically using the DTS runtime.

 Package Monitoring
 The Application class exposes a method to enumerate all the packages that are currently being
executed on an SSIS server. By accessing a running package, you can view some general properties of
the package ’ s execution status and can even stop a package ’ s execution status. The methods that can be
used are:

 GetRunningPackages : Returns a RunningPackages object that enumerates all the packages
currently running on a server .

 RunningPackages : A collection of RunningPackage objects .

 RunningPackage : An informational object that includes such information as package start time
and current running duration .

❑

❑

❑

c20.indd 753c20.indd 753 8/28/08 12:45:58 PM8/28/08 12:45:58 PM

Chapter 20: External Management and WMI Task Implementation

754

 The following code uses the GetRunningPackage object to enumerate information about each running
package, such as the package ’ s start time and running duration. You can see the Running Packages
folder back in Figure 20 - 3 of this chapter. This folder shows the current running packages using the
SSMS console. Another way to do this programmatically is to use this code:

C#
private static void GetRunningPackageInformation(string Server)
{
 Application app = new Application();
 RunningPackages runPkgs = app.GetRunningPackages(Server);

 Console.WriteLine(“Running Packages Count is {0}”, runPkgs.Count);
 foreach(RunningPackage pkg in runPkgs)
 {
 Console.WriteLine(“Instance ID: {0}”, pkg.InstanceID);
 Console.WriteLine(“Package ID: {0}”, pkg.PackageID);
 Console.WriteLine(“Package Name: {0}”, pkg.PackageName);
 Console.WriteLine(“User Name Running Package: {0}”, pkg.UserName);
 Console.WriteLine(“Execution Start Time: {0}”,
 pkg.ExecutionStartTime.ToString());
 Console.WriteLine(“Execution Duration: {0} secs”,
 pkg.ExecutionDuration.ToString());
 }
}

VB
Private Sub GetRunningPackageInformation(ByVal Server As String)
 Dim app As New Application()
 Dim runPkgs As RunningPackages = app.GetRunningPackages(Server)

 Console.WriteLine(“Running Packages Count is {0}”, runPkgs.Count)
 For Each RunningPackage In runPkgs
 Console.WriteLine(“Instance ID: {0}”, RunningPackage.InstanceID)
 Console.WriteLine(“Package ID: {0}”, RunningPackage.PackageID)
 Console.WriteLine(“Package Name: {0}”, RunningPackage.PackageName)
 Console.WriteLine(“User Name Running Package: {0}”, _
 RunningPackage.UserName)
 Console.WriteLine(“Execution Start Time: {0}”, _
 RunningPackage.ExecutionStartTime.ToString())
 Console.WriteLine(“Execution Duration: {0} secs”, _
 RunningPackage.ExecutionDuration.ToString())
 Next
End Sub

 To see this in action, run your SSIS package, and then run this code to see any package that is currently
running. This type of code can be useful to monitor your server to see if any packages are running prior
to shutting down the server. You may have a need to get an inventory of the packages on a server. In this
case, you ’ ll want to review the next section, which shows you how to do this programmatically.

c20.indd 754c20.indd 754 8/28/08 12:45:58 PM8/28/08 12:45:58 PM

Chapter 20: External Management and WMI Task Implementation

755

 Package Listing
 When you just want to get an inventory of the packages that exist in a particular SSIS storage location, DTS
runtime has a solution for this as well. The PackageInfos collection of the Application object returns
an enumeration of all the packages stored in an SSIS package store. This is useful for taking an inventory
of all the packages that exist on a server. Here is the code that will do this for a DTS package store:

C#
private static void IterateDTSStorePackagesAndPrintInfo(string Path,
 string Server)
{
 Application app = new Application();
 string sMsg = “Package [{0}] found. “ +
 “Version {1}.{2}.{3} “ +
 “Creation Date {2}\n”;

 Console.WriteLine(“Enumerating packages on Server [“ + Server + “]”);
 Console.WriteLine(“Folder = “ + Path);

 if(app.FolderExistsOnDtsServer(Path, Server))
 {
 Console.WriteLine(“Folder Verified\n”);
 PackageInfos pInfos = app.GetDtsServerPackageInfos(Path, Server);
 foreach(PackageInfo pInfo in pInfos)
 {
 Console.WriteLine(String.Format(sMsg, pInfo.Name,
 pInfo.VersionMajor.ToString(),
 pInfo.VersionMinor.ToString(),
 pInfo.VersionBuild.ToString(),
 pInfo.CreationDate.ToLongDateString().ToString()));
 }
 }
 else
 {
 Console.WriteLine(“Folder Not Found”);
 }
}

VB
Private Sub IterateDTSStorePackagesAndPrintInfo(ByVal Path As String, _
 ByVal Server As String)
 Dim app As New Application()
 Dim pInfos As PackageInfos
 Dim pInfo As PackageInfo
 Dim sFolder As String = “msdb\mySSPackages”
 Dim sMsg As String = String.Empty
 sMsg = “Package [{0}] found. “ + _
 “Version {1}.{2}.{3} “ + _
 “Creation Date {2}” + vbCrLf

 Console.WriteLine(“Enumerating packages on Server [“ + Server + “]”)
 Console.WriteLine(“Folder = “ + Path)

c20.indd 755c20.indd 755 8/28/08 12:45:59 PM8/28/08 12:45:59 PM

Chapter 20: External Management and WMI Task Implementation

756

 If (app.FolderExistsOnDtsServer(Path, Server)) Then
 Console.WriteLine(“Folder Verified” + vbCrLf)
 pInfos = app.GetDtsServerPackageInfos(Path, Server)
 For Each pInfo In pInfos
 Console.WriteLine(String.Format(sMsg, pInfo.Name, _
 pInfo.VersionMajor.ToString(), _
 pInfo.VersionMinor.ToString(), _
 pInfo.VersionBuild.ToString(), _
 pInfo.CreationDate.ToLongDateString))
 Next
 Else
 Console.WriteLine(“Folder Not Found”)
 End If
End Sub

 Call this code against your Integration Server like this:

C#
IterateDTSStorePackagesAndPrintInfo(“msdb\\mySSPackages”, “.”)
VB
IterateDTSStorePackagesAndPrintInfo(“msdb\mySSPackages”, “.”)

 The result is that the code will stream information about the packages stored on the server instance like
Figure 20 - 7 .

Figure 20-7

 This is only the tip of the iceberg when it comes to what you can do with the DTS runtime libraries.
To get an idea of what you can do using this library, in the next section you build a simple UI that will
enable you to use some of the code techniques described so far.

 A Package Management Example
 The following example demonstrates how to incorporate package management operations in a
web - based application. This example demonstrates how to enumerate the folder structure of a SQL
Server SSIS package store, enumerate the packages that are contained in a selected folder, and allows
you to execute a package from the web page itself. In this chapter, we ’ ll demonstrate with a C# version of
the project. However, you can download a VB.NET version of the project as well as the source you ’ ll see
in this chapter from www.wrox.com .

c20.indd 756c20.indd 756 8/28/08 12:45:59 PM8/28/08 12:45:59 PM

Chapter 20: External Management and WMI Task Implementation

757

 To start, first create a new web project in Visual Studio. Launch Visual Studio and select File New
Web Site. In the New Web Site dialog (see Figure 20 - 8), choose Visual C# or Visual Basic as the language.
Leave the rest of the fields as they are.

Figure 20-8

 Click the OK button and the Web Site project will be initialized. By default, the Default.aspx page is
created and displayed automatically. Now you ’ ll start building the page that will display the information
you want. First, you must add the web controls to the page.

 To do this, select the Design view from the bottom - left corner of the Default.aspx tab. This puts the
interface into graphics designer mode. From the Toolbox on the left - hand side of the window, drag a
TreeView control onto the page. The TreeView control is in the Navigation group of the Toolbox. Now
drag a GridView control onto the page. The GridView is located in the Data group of the Toolbox. And
finally drag over a Button control from the Toolbox. The Button control can be found in the Standard
group. Click the Button control and in the Properties tab change the Text property to the word “ Refresh. ”

 Now you need to add some supporting HTML in the source view of the page to configure the columns
of the GridView control. To do so, click the Source button on the bottom left of the Default.aspx page
tab. This switches the view to show you the HTML code that defines this page. Add the following HTML
code between the < asp:GridView1 > elements. The < asp:BoundField > elements you ’ re adding
configure the GridView to display three data columns and a button column. You could do this through
the Design interface, but this is a bit quicker for your purposes:

 < Columns >
 < asp:BoundField DataField=”PackageName” HeaderText=”Name” / >
 < asp:BoundField DataField=”PackageFolder” HeaderText=”Folder” / >
 < asp:BoundField DataField=”Status” HeaderText=”Status” / >
 < asp:ButtonField Text=”Execute” ButtonType=Button/ >
 < /Columns >

c20.indd 757c20.indd 757 8/28/08 12:45:59 PM8/28/08 12:45:59 PM

Chapter 20: External Management and WMI Task Implementation

758

 The page should now look like Figure 20 - 9 .

Figure 20-9

 Before you leave this screen, you need to create a few event handlers on these controls. To do this, select
the TreeView control. Go to the Properties tab in the bottom right of the Visual Studio IDE. On the
toolbar of the Properties window, select the lightning bolt symbol that signifies the Events view. The
Events view allows you to configure what event handlers you will need to handle for this page. With the
TreeView selected and the Events view shown in the Properties window, double - click in the
 SelectedNodeChanged event in the Behavior group. Notice that the Default.aspx.cs code - behind
page is automatically loaded, and the event handler code for the SelectedNodeChanged event is
automatically created. Switch back to the Default.apsx tab and do the same thing for the TreeView
Load event. Now repeat the same process for the GridView RowCommand event and the Button Click
events. To view a description of what these events do, you can search for the event name in the Help
screen.

 The full HTML code of the page should now look something like this:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
Inherits=”_Default2” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Untitled Page < /title >
 < /head >
 < body >

c20.indd 758c20.indd 758 8/28/08 12:46:00 PM8/28/08 12:46:00 PM

Chapter 20: External Management and WMI Task Implementation

759

 < form id=”form1” runat=”server” >
 < div >
 < asp:TreeView ID=”TreeView1” runat=”server” ShowLines=”True”
 OnLoad=”TreeView1_Load” OnSelectedNodeChanged=
 “TreeView1_SelectedNodeChanged” >

 < /asp:TreeView >
 < br / >
 < asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=False
 OnRowCommand=”GridView1_RowCommand” >
 < Columns >
 < asp:BoundField DataField=”PackageName” HeaderText=”Name” / >
 < asp:BoundField DataField=”PackageFolder” HeaderText=”Folder”
 / >
 < asp:BoundField DataField=”Status” HeaderText=”Status” / >
 < asp:ButtonField Text=”Execute” ButtonType=Button/ >
 < /Columns >
 < /asp:GridView >
 & nbsp; < br / >
 < asp:Button ID=”Button1” runat=”server” OnClick=”Button1_Click”
 Text=”Refresh” / > < /div >
 < /form >
 < /body >
 < /html >

 Now you need to start adding the code behind the page that makes this page work. For this example,
you will be creating a few custom classes to support code you will be writing in the code - behind page
of the Web Form. First, you need to add two new class files. To do this, select File New File from
the main menu. In the Add New File dialog box that appears, select a new Class object and name it
 PackageGroup.cs . The PackageGroup object will be used to wrap a PackageInfo object and enhance
its functionality. Next, add another Class object and call this one PackageGroupCollection.cs . Notice
that these two files have been added to the App_Code directory of the solution. In Visual Studio, your
code external modules are stored in the App_Code directory. Add a reference in your project to the
 Microsoft.SQLServer.ManagedDTS.dll . Next, open the PackageGroup.cs file and add the
following code to the file. You can overwrite the code that was automatically generated with this code.

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using Microsoft.SqlServer.Dts.Runtime;

/// < summary >
/// Summary description for PackageGroup
/// < /summary >
///

c20.indd 759c20.indd 759 8/28/08 12:46:00 PM8/28/08 12:46:00 PM

Chapter 20: External Management and WMI Task Implementation

760

public class PackageGroup
{
 Application dtsapp;

 public PackageGroup(PackageInfo packageInfo, string server)
 {
 dtsapp= new Application();
 _packageinfo = packageInfo;
 _server = server;
 }

 private PackageInfo _packageinfo;
 private string _server;

 public string PackageName
 {
 get { return _packageinfo.Name;}
 }

 public string PackageFolder
 {
 get{return _packageinfo.Folder;}
 }

 public string Status
 {
 get { return GetPackageStatus(); }
 }

 public void ExecPackage()
 {
 Package p = dtsapp.LoadFromSqlServer(string.Concat(_packageinfo.Folder +
 “\\” + _ packageinfo.Name) , _server, null, null, null);
 p.Execute();
 }

 private string GetPackageStatus()
 {
 RunningPackages rps= dtsapp.GetRunningPackages(_server);
 foreach(RunningPackage rp in rps)
 {
 if (rp.PackageID == new Guid(_packageinfo.PackageGuid))
 {
 return “Executing”;
 }
 }
 return “Sleeping”;
 }
}

c20.indd 760c20.indd 760 8/28/08 12:46:00 PM8/28/08 12:46:00 PM

Chapter 20: External Management and WMI Task Implementation

761

 As you can see, this object wraps a PackageInfo object. You could just link the PackageInfo objects to
the GridView, but this method codes a wrapper with additional functionality to determine a package ’ s
execution status and execute a package. The ExecutePackage method can be called to execute the
package, and the GetPackageStatus method searches the currently running packages on the server
and returns an execution status to the calling object.

 To store information about multiple packages, you need to roll all the PackageGroup objects
you create into a collection object. To do this, you created a strongly typed collection class
called PackageGroupCollection to house very concrete PackageGroup objects. Open the
 PackageGroupCollection file and add the following code. Once again, you can overwrite the code
that was automatically created when the file was created with this example code.

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

/// < summary >
/// Summary description for PackageGroupCollection
/// < /summary >
///

public class PackageGroupCollection : System.Collections.CollectionBase
{
 public PackageGroupCollection()
 {
 }

 public void Add(PackageGroup aPackageGroup)
 {
 List.Add(aPackageGroup);
 }

 public void Remove(int index)
 {
 if (index > Count - 1 || index < 0)
 {
 throw new Exception(“Index not valid!”);
 }
 else

c20.indd 761c20.indd 761 8/28/08 12:46:00 PM8/28/08 12:46:00 PM

Chapter 20: External Management and WMI Task Implementation

762

 {
 List.RemoveAt(index);
 }
 }

 public PackageGroup Item(int Index)
 {
 return (PackageGroup)List[Index];
 }
}

 This class simply inherits from the System.CollectionBase class to implement a basic IList
interface. To learn more about strongly typed collections and the CollectionBase class, search the Help
files. Next you will add the code - behind page of the Default.aspx page. Select the Default.aspx.cs
tab and add the following code to this page:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Threading;
using Microsoft.SqlServer.Dts.Runtime;

public partial class _Default : System.Web.UI.Page
{
 Application dtsapp;
 PackageGroupCollection pgc;

 protected void Page_Load(object sender, EventArgs e)
 {
 //Initialize Application object
 dtsapp = new Application();
 }

 protected void TreeView1_Load(object sender, EventArgs e)
 {
 //Clear TreeView and Load root node
 //Load the SqlServer SSIS folder structure into tree view and show all
 //nodes
 TreeView1.Nodes.Clear();
 TreeView1.Nodes.Add(new TreeNode(“MSDB”, @”\”));
 LoadTreeView(dtsapp.GetPackageInfos(@”\”, “localhost”, null, null));
 TreeView1.ExpandAll();
 }

 protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)
 {

c20.indd 762c20.indd 762 8/28/08 12:46:01 PM8/28/08 12:46:01 PM

Chapter 20: External Management and WMI Task Implementation

763

 //Build Collection of PackageGroups
 pgc = BuildPackageGroupCollection(dtsapp.GetPackageInfos(
 TreeView1.SelectedNode.ValuePath.Replace(‘/’, ‘\\’),
 “localhost”, null, null));
 //Rebind the GridView to load Package Group Collection
 LoadGridView(pgc);
 //Store the Package Group Collection is Session State
 Session.Add(“pgc”, pgc);
 }

 protected void GridView1_RowCommand(object sender,
 GridViewCommandEventArgs e)
 {
 if (((Button)e.CommandSource).Text.ToString() == “Execute”)
 {
 pgc = (PackageGroupCollection)Session[“pgc”];
 PackageGroup pg = pgc.Item(Convert.ToInt32(e.CommandArgument));
 Thread oThread = new System.Threading.Thread(new
 System.Threading.ThreadStart(pg.ExecPackage));
 oThread.Start();
 LoadGridView(pgc);
 }
 }

 protected void LoadTreeView(PackageInfos pis)
 {
 foreach (PackageInfo p in pis)
 {
 if (p.Flags == DTSPackageInfoFlags.Folder)
 {
 TreeNode n = TreeView1.FindNode(p.Folder);
 n.ChildNodes.Add(new TreeNode(p.Name));
 LoadTreeView(dtsapp.GetPackageInfos(p.Folder + ‘/’ + p.Name,
 “localhost”, null, null));
 }
 }
 }

 protected void LoadGridView(PackageGroupCollection pgc)
 {
 GridView1.DataSource = pgc;
 GridView1.DataBind();
 }

 protected PackageGroupCollection BuildPackageGroupCollection(PackageInfos
 packageInfos)
 {
 PackageGroupCollection pgc = new PackageGroupCollection();
 foreach (PackageInfo p in packageInfos)
 {
 if (p.Flags == DTSPackageInfoFlags.Package)
 {

c20.indd 763c20.indd 763 8/28/08 12:46:01 PM8/28/08 12:46:01 PM

Chapter 20: External Management and WMI Task Implementation

764

 PackageGroup pg = new PackageGroup(p, “localhost”);
 pgc.Add(pg);
 }
 }
 return pgc;
 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 LoadGridView((PackageGroupCollection)Session[“pgc”]);
 }
}

 The preceding code handles the execution of the page request. First is the Page_Load method that is run
every time the asp worker process loads the page to be processed. In this method, an Application
object is loaded for use during the processing of the page.

 When the page is processed, there are several additional methods that are called. The TreeView_Load
method is called. This method in turn calls the LoadTreeView method that accepts a PackageInfos
collection. This collection of PackageInfo objects is processed one by one, and the information is loaded
into the TreeView according to the hierarchy of the SQL Server SSIS package folders. When the page is
first loaded, just the TreeView is displayed. By selecting a folder in the TreeView, the page is posted back
to the server, and the TreeView1_SelectedNodeChanged method is called. This method calls another
method in this page called BuildPackageGroupCollection , which accepts a PackageInfos
collection. The PackageInfos collection is processed to look for valid package objects only. To
determine this, the PackageInfo class exposes a Flag property that identifies the PackageInfo object
as a Folder or a Package object. Once the collection is built, the LoadGridView method is called to link
the PackageGroupCollection to the GridView. In the LoadGridView method, the collection is bound
to the GridView object. This action automatically loads all the objects in the PackageGroupCollection
into the GridView.

 So how does the GridView know which columns to display? Remember back in the beginning of this
example when you added the < asp:BoundColumn > elements to the GridView object. Notice that the
 DataField attributes are set to the properties of the PackageGroup objects in the
 PackageGroupCollection object. So in your walk - through of the code, the page is basically finished
processing and the results would be displayed to the user in the web page. So try it and inspect what
you have so far. Go ahead and build and then run the project. Figure 20 - 10 shows a sample of what you
may see when you run the web page. Your results may vary depending on the folders and packages you
have configured in your server.

 You ’ ll need to click on the MySSPackages Node to see the packages in the grid.

 So now take a look at how the status field and Execute button work. When the GridView is loaded
with PackageGroup objects, the status property of the PackageGroup class is called. Look in the
 PackageGroup.cs file and you will see that when the status property is called, a collection of
 RunningPackages is created. By iterating through all the RunningPackage objects, if the GUID of
the package in question matches the GUID of a running package, a result of Executing is returned
to the GridView. Otherwise, the Sleeping status result is returned. The Execute button works in a
similar fashion.

c20.indd 764c20.indd 764 8/28/08 12:46:01 PM8/28/08 12:46:01 PM

Chapter 20: External Management and WMI Task Implementation

765

 When the Execute button is clicked, the GridView1_RowCommand method is called in the page ’ s
code - behind file. This method re - instantiates the PackageGroup object from the page ’ s viewstate
cache. When found, the package is executed by calling the Execute method of the PackageGroup object.
Notice that this call is being done in a newly created thread. By design, a web page is processed
synchronously. This means that if the package was executed in the same thread, the Execute method
would not return until the package was finished executing. So by starting the package in a new thread,
the page can return, and the status of the package can be displayed in the GridView. So give it a try. Make
sure your package runs long enough for you to refresh the web page and see the status value change.

 That ’ s just a basic implementation of some of the functionality exposed by the Microsoft.SqlServer
.Dts.Runtime namespace to manage your SSIS packages through managed code. You saw how to
obtain a collection of PackageInfo objects and how to leverage the functionality of the objects in an
application. In addition, you learned how to run a package and determine which packages are currently
running. Obviously, this is a simple application and could stand to be greatly improved with error
handling and additional functionality. For example, you could add functionality to cancel a package ’ s
execution, load or delete package files to SQL Server through the website, or modify the code to support
the viewing of packages in the SSIS file storage hierarchy.

 Package Log Providers
 Log providers are used to define the destination for the log information that is generated when a
package executes. For instance, if you require a record of the execution of your package, a log provider
could persist the events and actions that had transpired into a log file, recording not only the execution
but also, if required, the values and results of the execution. Defining what should be logged during a
package ’ s execution is a two - step process. First, you must define which log providers to use. You can
define multiple providers in a single package. The second step is to define what information should be
sent to the defined log providers.

Figure 20-10

c20.indd 765c20.indd 765 8/28/08 12:46:02 PM8/28/08 12:46:02 PM

Chapter 20: External Management and WMI Task Implementation

766

 To demonstrate how you would do this using the UI, configure logging for the test SSIS package by
selecting select SSIS Logging from the menu. The Configure SSIS Logs dialog box that is displayed
shows all the containers that currently exist in the package. The first step is completed by configuring
SSIS Log Providers on the Providers and Logs tab, shown in Figure 20 - 11 .

Figure 20-11

 SQL Server Integration Services includes several default log providers. These providers are selected in
the Provider Type combo box and are defined as follows:

 SSIS Log Provider for Text Files: This provider is used to store log information to a CSV file on
the file system. This provider requires you to configure a File Connection object that defines the
location of the file. Storing log information in a text file is the easiest way to persist a package ’ s
execution. Text files are portable and the CSV format is a simple - to - use industry - wide standard.

 SSIS Log Provider for SQL Profiler: This provider produces a SQL Provider trace file. The file
must be specified with a trc file extension so that you can open it using the SQL Profiler
diagnostic tool. Using SQL Profiler trace files is an easy way for DBAs to view log information.
Using Profiler, you could view the execution of the package step - by - step, even replaying the
steps in a test environment.

 SSIS Log Provider for SQL Server: This provider sends package log events to a table in the
specified SQL Server database. The database is defined using an OLE DB Connection. The first
time this package is executed, a table called sysssislog will be created automatically. Storing log
information in a SQL Server database inherits the benefits of persisting information in a
relational database system. You could easily retrieve log information for analysis across multiple
package executions.

❑

❑

❑

c20.indd 766c20.indd 766 8/28/08 12:46:02 PM8/28/08 12:46:02 PM

Chapter 20: External Management and WMI Task Implementation

767

 SSIS Log Provider for Windows Event Log: This provider sends log information to the
Application event store. The entries created will be under the Source name SQLISPackage. No
additional configuration is required for this provider. Logging package execution to the
Windows Event Log is possibly the easiest way to store log events. The Windows Event Log is
easy to view and can be viewed remotely if required.

 SSIS Log Provider for XML Files: This provider stores log information in a specified XML file
on the file system. The file is specified through a File Connection object. Make sure you save the
file with an xml file extension. Logging events to XML inherits the advantages of the XML
specification. XML files are very portable across systems and can be validated against a Schema
definition.

 Specifying Events to Log
 Once you have configured the log providers you wish to employ, you must define what events in the
package to log. This is done in the Details tab of Log Configuration dialog box, as shown in Figure 20 - 12 .
To enable an event to be logged, check the box next to its name. For instance, in Figure 20 - 12 , the
OnError event for the package has been selected to be logged. By selecting other containers on the left -
 hand side of the dialog box, additional events can be selected down to an individual task or Data Flow
event level. To select all events at once, check the box in the header row of the table. By selecting
individual containers in the tree view on the left, you can configure the logging of events on an
individual task level. By configuring logging at the task level, the special events exposed by a task can
additionally be included in the log.

❑

❑

Figure 20-12

c20.indd 767c20.indd 767 8/28/08 12:46:03 PM8/28/08 12:46:03 PM

Chapter 20: External Management and WMI Task Implementation

768

 This is the way to set up a log file using the UI. To learn how to examine log providers programmatically,
continue on to the next section.

 Programming to Log Providers
 The package object exposes the LogProviders collection object, which contains the configured log
providers in a package. The LogProvider object encapsulates a provider ’ s configuration information.

 The LogProvider object exposes the following key properties:

 Name : A descriptive name for the log provider.

 ConfigString : The name of a valid Connection object within the package that contains
information on how to connect to the destination store.

 CreationName : The ProgID of the log provider. This value is used in the creation of log
providers dynamically.

 Description : Describes the type of provider and optionally the destination to which it points.

 The next two examples enumerate all the log providers that have been configured in a package and
write the results to the console window. To get extra mileage out of these examples, the C# version loads
the package from a file and the VB.NET version loads the package from an Integration Server:

C#
private static void GetPackageLogsForPackage(string PackagePath)
{
 Application dtsapp = new Application();
 Package p = dtsapp.LoadPackage(PackagePath, null);
 Console.WriteLine(“Executing Package {0}”, PackagePath);
 p.Execute();

 Console.WriteLine(“Package Execution Complete”);
 Console.WriteLine(“LogProviders”);
 LogProviders logProviders = p.LogProviders;
 Console.WriteLine(“LogProviders Count: {0}”, logProviders.Count);
 LogProviderEnumerator logProvidersEnum = logProviders.GetEnumerator();

 while (logProvidersEnum.MoveNext())
 {
 LogProvider logProv = logProvidersEnum.Current;
 Console.WriteLine(“ConfigString: {0}”, logProv.ConfigString);
 Console.WriteLine(“CreationName {0}”, logProv.CreationName);
 Console.WriteLine(“DelayValidation {0}”, logProv.DelayValidation);
 Console.WriteLine(“Description {0}”, logProv.Description);
 Console.WriteLine(“HostType {0}”, logProv.HostType);
 Console.WriteLine(“ID {0}”, logProv.ID);
 Console.WriteLine(“InnerObject {0}”, logProv.InnerObject);
 Console.WriteLine(“Name {0}”, logProv.Name);
 Console.WriteLine(“-----------------”);
 }

❑

❑

❑

❑

c20.indd 768c20.indd 768 8/28/08 12:46:03 PM8/28/08 12:46:03 PM

Chapter 20: External Management and WMI Task Implementation

769

}

VB
Private Sub GetPackageLogsForPackage(ByVal PackagePath As String, ByVal Server
 As String)
 Dim app As New Application()
 Dim p As Package = app.LoadFromDtsServer(PackagePath, Server, Nothing)
 Console.WriteLine(“Executing Package {0}”, PackagePath)
 p.Execute()

 Console.WriteLine(“Package Execution Complete”)
 Console.WriteLine(“LogProviders”)
 Dim logProviders As LogProviders = p.LogProviders()
 Console.WriteLine(“LogProviders Count: {0}”, logProviders.Count)

 Dim logProvidersEnum As LogProviderEnumerator = _
 logProviders.GetEnumerator()

 While (logProvidersEnum.MoveNext())
 Dim logProv As LogProvider = logProvidersEnum.Current
 Console.WriteLine(“ConfigString: {0}”, logProv.ConfigString)
 Console.WriteLine(“CreationName {0}”, logProv.CreationName)
 Console.WriteLine(“DelayValidation {0}”, logProv.DelayValidation)
 Console.WriteLine(“Description {0}”, logProv.Description)
 Console.WriteLine(“HostType {0}”, logProv.HostType)
 Console.WriteLine(“ID {0}”, logProv.ID)
 Console.WriteLine(“InnerObject {0}”, logProv.InnerObject)
 Console.WriteLine(“Name {0}”, logProv.Name)
 Console.WriteLine(“-----------------”)
 End While
End Sub

 You can of course dynamically configure a package ’ s log providers. To do so, a valid connection must
initially be created to support the communications to the database. In the following code, you ’ ll see that
first a package is loaded into memory. Then the connection is created for the mytext.xml file and
named. This name is used later as the ConfigString for the log provider to connect the output to the
file Connection Manager.

C#
public static void CreatePackageLogProvider(string PackagePath, string Server)
{
 Application dtsapp = new Application();
 Package p = dtsapp.LoadFromDtsServer(PackagePath, Server, null);

 ConnectionManager myConnMgr = p.Connections.Add(“FILE”);
 myConnMgr.Name = “mytest.xml”;
 myConnMgr.ConnectionString = “c:\\ssis\\mytest.xml”;

 LogProvider logProvider = p.LogProviders.Add(“DTS.LogProviderXMLFile.2”);
 logProvider.ConfigString = “mytest.xml”;

 p.LoggingOptions.SelectedLogProviders.Add(logProvider);
 p.LoggingOptions.EventFilterKind = DTSEventFilterKind.Inclusion;

c20.indd 769c20.indd 769 8/28/08 12:46:03 PM8/28/08 12:46:03 PM

Chapter 20: External Management and WMI Task Implementation

770

 p.LoggingOptions.EventFilter = new string[] { “OnError”, “OnWarning”,
 “OnInformation” };
 p.LoggingMode = DTSLoggingMode.Enabled;
 logProvider.OpenLog();
 p.Execute();
}

VB
Public Sub CreatePackageLogProvider(ByVal PackagePath As String, ByVal Server
 As String)
 Dim dtsapp As New Application()
 Dim p As Package = dtsapp.LoadFromDtsServer(PackagePath, Server, Nothing)

 Dim myConnMgr As ConnectionManager = p.Connections.Add(“FILE”)
 myConnMgr.Name = “mytest.xml”
 myConnMgr.ConnectionString = “c:\ssis\mytest.xml”

 Dim logProvider As LogProvider =
 p.LogProviders.Add(“DTS.LogProviderXMLFile.2”)
 logProvider.ConfigString = “mytest.xml”
 p.LoggingOptions.SelectedLogProviders.Add(logProvider)
 p.LoggingOptions.EventFilterKind = DTSEventFilterKind.Inclusion
 p.LoggingOptions.EventFilter = New String() {“OnError”, “OnWarning”,
 “OnInformation”}
 p.LoggingMode = DTSLoggingMode.Enabled
 logProvider.OpenLog()
 p.Execute()
End Sub

 Next, the log provider is instantiated by passing the ProgID of the provider you wish to create. The
following is a list of the ProgID s for each type of log provider available:

 Notice that the ProgIDs have changed from SSIS 2005 with the switch from “ 1 ” to “ 2 ” .

 Text File Log Provider: DTS.LogProviderTextFile.2

 SQL Profiler Log Provider: DTS.LogProviderSQLProfiler.2

 SQL Server Log Provider: DTS.LogProviderSQLServer.2

 Windows Event Log Provider: DTS.LogProviderEventLog.2

 XML File Log Provider: DTS.LogProviderXMLFile.2

❑

❑

❑

❑

❑

c20.indd 770c20.indd 770 8/28/08 12:46:04 PM8/28/08 12:46:04 PM

Chapter 20: External Management and WMI Task Implementation

771

 Package Configurations
 Package configurations are a flexible method of dynamically configuring a package at runtime. This
allows you a high degree of flexibility in the execution of SSIS packages. This allows you to design
the package to run in different environments without having to modify the package file itself. When a
package is written, not all operational parameters may be known, such as the location of a file or the
value of a variable. By supplying this information at runtime, the user does not have to hard - code these
values into a package. When a package is run, the values stored in the specified configuration store are
loaded for use during the package ’ s execution. The configuration capabilities of SSIS support the storage
of data in five different data stores. The following list describes each type of data store and its
capabilities:

 XML File Configuration: The XML File Configuration option stores package information in an
XML file on the file system. This configuration provider lets you store multiple configuration
settings in a single file. As an alternative to hard - coding the path to the XML file, the path can be
stored in a user - defined environment variable. This option allows you to modify the XML file
easily and distribute the configuration easily with the package.

 Environment Variable: The Environment Variable option allows you to store a configuration
value in an environment variable. This option will only allow you to save a single configuration
parameter. By specifying an environment variable that is available on each machine the package
will run on, you can be sure that the package configuration will be valid for each environment.
Also, the setup of the environment variable can be done once during initial setup of package ’ s
environment.

 Registry Entry: The Registry Entry option allows you to store a configuration value in a registry
value. Only a single value can be specified. Optionally, you can specify an environment variable
that contains a registry key where the value is stored. Configuration entries in the registry are a
secure and reliable way to store configuration values.

 Parent Package Variable: The Parent Package Variable option allows you to specify a fully
qualified variable in a different package as the source for the configuration value. Only a single
value can be stored in a specified configuration store. This is a good way to link packages and
pass values between packages at runtime. If one package depends on the results from another
package, this option is perfect.

 SQL Server: The SQL Server option creates an SSIS Configuration table in a database that you
specify. Because this table could hold the configurations for multiple packages, a configuration
filter value should be specified to allow the system to return the correct configuration values.
This option allows you to specify multiple configuration values that will be stored under the
filter name specified. Optionally, you can specify the database, table, and filter in an
environment variable in the following format:

 < database connection > ; < configuration table > ; < filter > ;

 For example:

VSTSB2.WroxTestDB;[dbo].[SSIS Configurations];Package1;

❑

❑

❑

❑

❑

c20.indd 771c20.indd 771 8/28/08 12:46:04 PM8/28/08 12:46:04 PM

Chapter 20: External Management and WMI Task Implementation

772

 Creating a Configuration
 To create a configuration for a package, select the menu options SSIS Package Configurations. In the
dialog that is displayed, select the “ Enable package configurations ” checkbox. From here, you must
define which package configuration provider to use. This can be accomplished through the Package
Configuration Wizard that is started when you click the Add button.

 On the first page of the wizard, shown in Figure 20 - 13 , you must decide which configuration provider
you wish to use to store the configuration information. For this example, choose the XML File
Configuration option. Now specify the path where the configuration file will reside. Having a standard
location to store your configuration files will help ensure that as a package is moved from environment
to environment, the links to the configuration will not be broken. If the path to the configuration is not
standard, you can store the path to the configuration file in an environment variable and reference the
environment variable in the package wizard. Remember, if you have recently added the environment
variable to your system, you may need to reboot for it to be available for use in your package.

Figure 20-13

 Once you ’ ve chosen a configuration storage provider, the next step is to specify the properties to save in
the configuration store, as shown in Figure 20 - 14 . You can either select a single value from the property
tree view or select multiple values at one time. Because you selected the XML File Configuration
provider, you can select multiple values to store.

c20.indd 772c20.indd 772 8/28/08 12:46:04 PM8/28/08 12:46:04 PM

Chapter 20: External Management and WMI Task Implementation

773

 Notice that not only can you store default values to load at the time the package is executed, but you can
also load entire object definitions at runtime. This is useful if you just want to load a variable ’ s value or
actually specify an entire variable configuration at runtime. This would be useful if you wanted to
configure the actual properties of a variable. Almost every aspect of a package can be persisted to a
configuration store. These include package properties, configured values in defined tasks, configuration
information for log providers, and Connection Manager information. About the only thing you can ’ t
store in a package configuration store is specific data about the package configurations.

 Once finished, the package configuration information is stored in the package. When the package is
executed, the configuration providers will load the values from the specified data stores and substitute
the values found for the default values saved in the package.

 Programming the Configuration Object
 You can also programmatically configure a package ’ s configuration through the Configuration object.
This is useful if you would like to configure a package through managed code as shown at the beginning
of this chapter. All package configurations can be accessed through the Configurations collection of
the package object.

 The Configuration object exposes functionality to dynamically configure a package ’ s configuration
settings. This allows you to programmatically configure a package based on the environment in which it
will run. Because a package can contain multiple configuration sources, you can discover all the
configurations in a package by enumerating the configuration objects in the Configuration object.

Figure 20-14

c20.indd 773c20.indd 773 8/28/08 12:46:05 PM8/28/08 12:46:05 PM

Chapter 20: External Management and WMI Task Implementation

774

 Configuration Object
 The Configuration object exposes the following members:

 ConfigurationString : The path describing where the physical configuration store is located.

 ConfigurationType : Sets the configuration provider to be used to interface to the
configuration data store. The configuration type is referenced in from the
 DTSConfigurationType enumeration. Note that a DTSConfigurationType that starts with an
 “ I ” denotes that the configurationstring is stored in an environment variable.

 Name : The unique name for the configuration object in the package.

 PackagePath : Defines the path of the actual data that is being accessed.

 The following example details how to add an existing configuration store to a package. First, the
 EnableConfiguration property is set to true. Then, an empty configuration object is added to
the package. The configuration object is then set to the Config File type, which directs the configuration
to expect a valid dtsconfig file to be specified in the configurationstring property. Finally, the
path to the configuration information is supplied and the package ’ s path is stored. The package is then
saved, thus persisting the configuration setup to the package file.

C#
private static void CreatePackageConfig(string PackagePath)
{
 Application app = new Application();
 Package pkg = app.LoadPackage(PackagePath, null);
 Variable var = pkg.Variables.Add(“myConfigVar”, false, “”, “Test”);
 string packagePathToVariable = var.GetPackagePath();

 pkg.EnableConfigurations = true;

 Configuration config = pkg.Configurations.Add();
 config.ConfigurationString = “ConfigureMyConfigVar”;
 config.ConfigurationType = DTSConfigurationType.EnvVariable;
 config.Name = “ConfigureMyConfigVar”;
 config.PackagePath = packagePathToVariable;
 app.SaveToXml(@”C:\SSIS\extmgt\TestSSISPackage\TestSSISPackage\” +
 “myTestSSISPackageConfig.xml”, pkg, null);
 Console.WriteLine(“Configuration Created and Saved”);
}

VB
Private Sub CreatePackageConfig(ByVal PackagePath As String)
 Dim app As New Application()
 Dim pkg As Package = app.LoadPackage(PackagePath, Nothing)

 Dim var As Variable = pkg.Variables.Add(“myConfigVar”, False, “”, “Test”)
 Dim packagePathToVariable As String = var.GetPackagePath()

 pkg.EnableConfigurations = True

❑

❑

❑

❑

c20.indd 774c20.indd 774 8/28/08 12:46:05 PM8/28/08 12:46:05 PM

Chapter 20: External Management and WMI Task Implementation

775

 Dim config As Configuration = pkg.Configurations.Add()
 config.ConfigurationString = “ConfigureMyConfigVar”
 config.ConfigurationType = DTSConfigurationType.EnvVariable
 config.Name = “ConfigureMyConfigVar”
 config.PackagePath = packagePathToVariable
 app.SaveToXml(“C:\SSIS\extmgt\TestSSISPackage\TestSSISPackage\” _ _
 myTestSSISPackageConfig.xml”, _
 pkg, Nothing)
 Console.WriteLine(“Configuration Created and Saved”)
End Sub

 If you run this code against the Test SSIS package for this chapter, you ’ ll see a new
 myTestSSISPackageConfig.xml file in the TestSSISPackage directory with the additional variable that
was added and a configuration for the variable.

 This section has described how you can use the DTS runtime code library to perform many of your
mundane administrative tasks programmatically. Let ’ s look now at another feature of SSIS that you can
use in your administrative Toolbox — the WMI.

 Windows Management
Instrumentation Tasks

 SSIS includes two special tasks that allow you to query system information and monitor system events.
These tasks are the WMI Data Reader Task and the WMI Event Watcher Task. These tasks are especially
useful for system management tasks, as you will discover with examples later in this chapter. WMI uses
a specialized query language known as WQL, which is similar to SQL, to obtain information about a
Windows system. There are many features and capabilities of WMI. We won ’ t be able to cover all of
them, but here are a few common uses:

 You can get information on files and directories, such as file size, or enumerate the files in a
folder. You can also monitor the file system for events, such as whether a file has been modified
recently. This could be required in a package if your package is importing data from a CSV or
XML file. A change in the file could trigger tasks to fire in your package.

 You can find out if an application is currently running. In addition, you can find out how much
memory that application is using or how much processor time it has used. This would be useful
if your package needed to know if a companion process was running before creating some sort
of output result.

 You can obtain information about users in Active Directory, such as whether a user is active or if
they have certain permissions on a resource. This would be useful in a package if information
about a user or machine on the network is required for your package ’ s execution.

 You can control services that are running on a computer system and actually start and stop them
as required. This would be useful if your package needed to stop a service during a data
transfer.

 This is just a small sample of the information you can glean from a computer system. You can obtain
information not only on the current system but also on remote systems. As you can see, this gives you

❑

❑

❑

❑

c20.indd 775c20.indd 775 8/28/08 12:46:05 PM8/28/08 12:46:05 PM

Chapter 20: External Management and WMI Task Implementation

776

access to a great deal of information that could be used in the execution of an SSIS package. For example,
you could determine if enough disk space existed on a drive before copying a backup file from a remote
system to the current system. You could also monitor a file for updates and automatically import the
changes into a database table. Later in this chapter you see how to actually implement these two
examples.

 WMI Reader Task Explained
 The WMI Data Reader Task has the following parameters that must be configured properly for the task
object to work:

 WmiConnection : A configured WMI Connection Object.

 WqlQuerySourceType : This setting specifies where the WQL query is referenced. The query can
be manually typed in or can be stored in a file or a variable.

 WqlQuerySource : This field sets the actual source of the WQL Query Source selected in the
 WqlQuerySourceType .

 OutputType : This parameter sets the structure that the results of the WQL query are stored in
when executed.

 Overwrite Destination : This parameter determines if the previous results are retained or
overwritten when the task is executed.

 Destination Type : This allows you to specify how the results will be stored.

 Destination : This parameter allows you to specify the location of the destination type.

 To start configuration of the WMI Data Reader Task, you must first create a WMI Connection Manager
object. The WMI Connection Manager specifies the WMI namespace that the query will run against.
The WMI class used in the query must be contained within that namespace. The standard namespace
for most machines is the \root\cimv2 namespace. This namespace contains the majority of WMI
classes that can be called to get system information. The connection object specifies the target computer
system that the query will be run against. By default, the SSIS WMI Connection points to the localhost
machine, but remote systems can be specified as well by using the NetBIOS, IP address, or DNS name
of the remote machine. Because security is always an issue, the WMI Connection Object specifies
the user that the query will be run against. Whether it is Windows Authentication or a specified user, the
user must have permissions to query the WMI repository on the system for it to work.

 Next, the WQL query must be designed. Because WMI is so expansive a subject, this chapter couldn ’ t
possibly start to explain the intricacies of the model. We suggest that you locate a good book on WMI
scripting to learn the details of how WMI works. Another resource for free WMI tools is the MSDN
downloads site. Two applications that are helpful for WQL query generation are the Scriptomatic V2
application, which allows you to browse the classes in WMI namespace and generate WMI queries
in several different scripting formats, and the WMI Administrative tools package. This package includes
several sample apps to enumerate the classes in various namespaces and monitor WMI filter events,
among other useful features. These two tools can help you derive WMI queries quickly and easily.

 Once you have figured out the structure of your query, you must decide into which object type to store
your query results. The WMI Data Reader Task Object gives you basically two choices, a String or a Data
Table. Either object can be stored in a user - defined variable or in a file on the file system. When storing

❑

❑

❑

❑

❑

❑

❑

c20.indd 776c20.indd 776 8/28/08 12:46:06 PM8/28/08 12:46:06 PM

Chapter 20: External Management and WMI Task Implementation

777

the result in a user - defined variable, the variable must be defined as a String data type or Object
data type. This means that when you ’ re obtaining numeric information from the system, you must
convert the resultant string to the appropriate data type for use in a mathematical expression. The file
transfer example will suggest one way to accomplish this transformation, but this is not the only way.
When storing a Data Table to file, the result is a basic comma - separated file with the properties listed in
the first row and the actual values returned in the second row.

 WMI Data Reader Example
 The best way to explain the WMI Data Reader Task is to see an example of it in action. The idea of this
example is to query the file system for the size of a database file and for the amount of free space on a
drive. With this information, you can then determine if the drive has enough space to handle the new
file. For simplicity, this example will copy from directories on the same drive. At the end of the example,
you will learn how to modify the WMI queries to query the same information from remote systems.

 To set up this example, you must first create a file you would like to copy. This example uses a backup of
the AdventureWorks2008 database (but any large file will do). If you don ’ t know how to create a backup
of the AdventureWorks2008 database, you can create any large file or use a file from one of many
examples in this book. If you do use the AdventureWorks2008 backup, it will tie into the WMI Event
Watcher Task example later in this chapter. As always, you can also download the complete samples for
this chapter from www.wrox.com .

 Now, open a new Integration Services Project and call it WMI_DataReader. Drag a new WMI Data
Reader Task object from the Toolbox to the Control Flow page of the package. First, give this task a
unique name; call it “ WMI Data Reader Task - Read Free Space on C. ” Now, right - click the task and
select Edit from the pop - up menu to bring up the WMI Data Reader Task Editor. Click the WMI Options
tab to render the editor as shown in Figure 20 - 15 .

Figure 20-15

c20.indd 777c20.indd 777 8/28/08 12:46:06 PM8/28/08 12:46:06 PM

Chapter 20: External Management and WMI Task Implementation

778

 Click in the WmiConnection parameter field and select the button to the right. Select < New WMI
Connection ... > from the drop - down list. The dialog box shown in Figure 20 - 16 will be displayed.

Figure 20-16

 Give the new WMI connection a name and enter a description. Here ’ s where you can also enter the
computer system you wish to query. Leave the server name set to the default of \\LocalHost to query
the local computer, and leave the default namespace as \root\cimv2. The setting of cimv2 is the main
WMI repository that contains the core WMI classes to access information on the system. Finally, check
the box to use Windows Authentication or enter a user name and password that has rights to query the
CIM repository on this computer. Click the Test button to verify the settings, and then click OK to close
the dialog box. This will complete the WMI connection and add it automatically to the WMIConnection
property in the editor.

 Back in the WMI Data Reader Task Editor dialog box, leave the WqlQuerySourceType as DirectInput.
Next, select the WqlQuerySource field and click the ellipsis button on the right - hand side. In the dialog
box that appears, enter the following WQL query in the WqlQuerySource window:

SELECT FreeSpace FROM Win32_LogicalDisk Where DeviceID =’C:’

 This query will return the amount of free space that exists on drive C. Next, change the OutputType to
Property Value and leave the OverwriteDestination field set to Overwrite Destination. Set the
DestinationType property to Variable. Click in the Destination field and choose the ellipsis button to the
right and select < New variable... > . In the Add Variable dialog box that appears (shown in Figure 20 - 17),
enter FreeSpaceOnC in the Name field, set the data type to string, and give the variable a default of zero.
Leave the rest of the fields at their default values and click OK to close the dialog box. We ’ ll explain the
string data type in a minute.

c20.indd 778c20.indd 778 8/28/08 12:46:06 PM8/28/08 12:46:06 PM

Chapter 20: External Management and WMI Task Implementation

779

 Now, you ’ ll add another WMI Data Reader Task and configure it to return the size of the
AdventureWorks2008 backup file. Call this task “ WMI Data Reader Task - Read DB File Size. ” Open the
WMI Data Reader Task dialog box for this new task. Click in the WMI Connector field and choose
the WMI Connection Manager connection. Because the CIM class you will be using to obtain the file size
of the backup file is in the same CIM namespace, you can reuse the same WMI Connection Object.

 Leave the WqlQuerySourceType as DirectInput. Now, click the SqlQuerySource field and click the
ellipsis to the right to open the query editor dialog box. Enter the following query:

Select FileSize FROM CIM_Datafile WHERE Name =
“C:\\SSIS\\EXTMGT\\WMI_DataReader\\AdventureWorks2008.bak”

 In the OutputType field, choose Property Value. In the DestinationType, choose Variable, and then
click in the Destination field and choose < New variable... > . Call the new variable DBBackupFileSize,
with a data type of string and an initial value set to zero (0).

 That ’ s all there is to configuring the tasks themselves. Hook them together so that you can add some
logic to handle the data the WQL query will return. It was stated previously that the WMI Data Reader
could only write to strings and Data Table objects. Well, when a string is returned, it has several
extraneous characters at the end that will cause a data conversion from String to Integer to fail. You can
see these characters by setting a breakpoint on the PostExecute event of one of the WMI Data Reader
Tasks and running the package. When the task turns green, go to the Variables tab and look at the data in
the two user - defined variables. The value looks like this: “ FileSize\r\n45516800\r\n ” .

 To massage this data into a usable form suitable for conversion to an Integer data type, you will create a
Script Task to strip the extra characters from the string, leaving just numeric digits in the string. To start,
click the Event Handler tab of the package. In the Executables drop - down box, choose the WMI Data
Reader Task called “ WMI Data Reader Task - Read Free Space on C. ” Now select the OnPostExecute
event handler and click the hyperlink in the middle of the page to create the event. Drag a Script Task
object from the Toolbox and drag it onto the page. Change the name of the object to “ FileSizeOnC Data
Massage. ” Right - click the task and select Edit from the pop - up menu. On the left - hand side of the Script
Editor dialog box, choose the Script page. In the ReadWriteVariables property, select the variable User::
FreeSpaceOnC. This will give you read/write access to the variable from within the VB.NET script.

Figure 20-17

c20.indd 779c20.indd 779 8/28/08 12:46:06 PM8/28/08 12:46:06 PM

Chapter 20: External Management and WMI Task Implementation

780

Now, click the Edit Script button in the bottom - right corner of the window. In the Script Host editor that
appears, add the following code immediately after the start of the Main subroutine:

C#
string s = System.Convert.ToString(Dts.Variables[“User::FreeSpaceOnC”].Value);
s = System.Text.RegularExpressions.Regex.Replace(s, “\\D”, “”);
Dts.Variables[“User::FreeSpaceOnC”].Value = Int64.Parse(s);

VB
Dim s As String
s = CType(Dts.Variables(“User::FreeSpaceOnC”).Value, String)
s = System.Text.RegularExpressions.Regex.Replace(s, “\\D”, “”)
Dts.Variables(“User::FreeSpaceOnC”).Value = Int64.Parse(s).ToString()

 As you can see, this code parses the string and uses the RegularExpressions library to strip the
characters from the returned value. Then the cleaned up string is cast to return an Int64 value as a string.
In short, this code will strip all the extraneous characters from the string and return a numerical result
into the same variable. The result is that the contents of the string are ready to be used in a mathematical
expression. To finish, close the Script Host windows and hit OK to close the Script Task Editor dialog
box. Repeat this same setup for the ReadDBFileSize Task, making sure to change the variable references
to the appropriate variable names.

 You ’ re now in the home stretch of this example. The final steps to complete are to set up the file transfer
and add the precedence constraint that will ensure that you have enough space on the drive before you
initiate the transfer. First drag a File System Task onto the Control Flow page. Name this task “ Copy Db
File. ” Right - click the task and click Edit in the pop - up menu. In the File System Task Editor, set the
following properties as shown in Figure 20 - 18 .

Figure 20-18

c20.indd 780c20.indd 780 8/28/08 12:46:07 PM8/28/08 12:46:07 PM

Chapter 20: External Management and WMI Task Implementation

781

 In the Source and Destination variable fields, create two variables called DBFile_Source and
DBFile_Destination as string variables. In the default field of the DBFile_Source variable, enter the
full path to the AdventureWorks2008 backup file. If you are using the file structure from the download
files, this will be c:\ssis\extmgt\WMI_DataReader\AdventureWorks2008.bak . In the DBFile_
Destination variable, enter the back up folder or c:\ssis\extmgt\WMI_DataReader\Backup. Click OK
to close the dialog box. If you are not using the download sample files, make sure you create the directory
in which you intend to back up the file. The File System Task will not create the directory automatically.

 The final step is to link these tasks with precedence constraints. Link the tasks as shown in Figure 20 - 19 .

Figure 20-19

 After adding the links, right - click the constraint between the Read DB File Size Task and the Copy Db
File Task. Click the Edit option in the pop - up menu to open the Precedence Constraint Editor. Set the
Evaluation option to Expression and Constraint and then enter the following line of code in the
Expression field:

(DT_I8)@FreeSpaceOnC > (DT_I8)@DBBackupFileSize

 As you can see, this is where the massaging of the data in the Script Task pays off. If you had not
stripped the extraneous characters from the string, then the cast from String data type to the Integer data
type would fail. Click OK to close the Precedence Constraint Editor dialog box.

 Now you are ready for the moment of truth: running the package. If all went well, all the tasks should
green up and the file should have been copied to the backup directory. That is assuming you had enough
space available on the drive.

 We mentioned earlier about ways you could improve this example. It seems a waste that you have to
hard - code the WQL query with the path to the file being checked for size, especially since the path to the
file is already stored in the DBFile_Source variable. One option is to build the WQL query on the fly
with a Script Task. This would allow you to construct the path in the WQL in the proper format, namely
changing the single backslash in the path to double backslashes. Also, in a more advanced scenario, the
file could be located on another computer system. This could easily be handled by creating a separate
WMI Connection Object pointing to the second system and assigning it to the WmiConnection property
in the WMI Data Reader Task - Read DB File Size Task. For remote machines use the NetBIOS name, the
IP address, or the DNS name in the ServerName property instead of the \\localhost default setting.

c20.indd 781c20.indd 781 8/28/08 12:46:07 PM8/28/08 12:46:07 PM

Chapter 20: External Management and WMI Task Implementation

782

 WMI Event Watcher Task
 As outlined earlier, not only can WMI obtain information about a computer system, but it can also
monitor that system for certain events to occur. This capability could allow you to monitor the file
system for a change in a file or monitor the Windows system for the start of an application. The WMI
Event Watch Task has the following options to configure:

 WmiConnection : This is a configured WMI Connection Manager.

 WqlQuerySourceType : This setting specifies where the WQL query is referenced. The query can
be manually typed in or can be stored in a file or a variable.

 WqlQuerySource : This field sets the actual source of the WQL Query Source selected in the
 WqlQuerySourceType .

 ActionAtEvent : This option sets the actions that are to occur when the WMI event being
monitored occurs. This option has two settings, Log the Event and Fire the SSIS Event, or just
Log the Event.

 AfterEvent : This field is used to determine what should happen after the WMI event occurs.
This setting could be Return with Success, Return with Failure, or Watch for the Event Again.

 ActionAtTimeout : This defines the action that should be taken if the task times - out waiting for
the WMI event to occur. This could be Log the Time - Out and Fire the SSIS event, or just Log the
Time - Out.

 AfterTimeout : This defines the action that should be taken after the task times - out. This option
sets what should happen after the ActionAtTimeout occurs. This could be Return with Failure,
Return with Success, or Watch for the Event Again.

 NumberOfEvents : This option specifies how many events must occur before the specified action
is taken.

 Timeout : This sets how long the task should wait, in seconds, before the specified time - out
action is taken. A setting of zero (0) denotes that the task will never time - out.

 The WMI Event Watcher Task is similar to the WMI Data Reader Task in that the basic query setup is the
same in both cases. You must define a WMI Connection Object and create a WMI query to monitor for an
event. The specific options available in this task define how the task will react when the event occurs.

 There are two basic types of actions: What should happen when the event actually occurs, and what
should happen if the event does not occur within a specified time. Both these actions can either log the
event to the package log or, in addition to logging the event, fire an event that can be used to perform
additional specified tasks. Also, both actions can dictate what happens after the event occurs or the task
times out. These after - events can be to pass to subsequent tasks a success or failure of the WMI Event
Watcher Task or simply to continue to monitor for the event to occur again.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 782c20.indd 782 8/28/08 12:46:07 PM8/28/08 12:46:07 PM

Chapter 20: External Management and WMI Task Implementation

783

 WMI Event Watcher Task Example
 In the WMI Data Reader example, you used WMI to check the size of a file before you copied it to the
drive. You ’ d most likely perform this type of task after some other process had created the backup of the
database. In some cases, you can execute the package manually when you are ready to perform the
actions in the package. However, if you need certain tasks to be performed in response to an event like
the backup file being created, then use the WMI Event Watcher Task. This task can monitor any system
event including the creation of a file like the backup file we used in the WMI reader example. In this
example, you ’ ll use the WMI Event Watcher Task to look for the file, and then kick off the WMI Data
Reader package created earlier. You could also use this example to look for incoming data files that need
to be processed. There is an example of this use of the WMI Task in Chapter 3 .

 To use this task to determine when the backup has completed from our first WMI example, create a new
SSIS package called WMI Event Watcher Package. Now add a WMI Event Watcher Task to the Control
Flow page of the package. Name this task “ WMI Event Watcher Task - Monitor DB File. ” Right - click the
task and select Edit from the pop - up menu. You are now presented with the WMI Event Watcher Task
Editor. Select WMI Option from the listbox and configure the properties as outlined in the following.

 First, create a WmiConnection pointing to the machine where the backup file would normally be
created. In this example that will be in the root directory of the WMI_DataReader project. You can use
the same connection properties as outlined in the previous example. Next, enter the WqlQuerySource
that will monitor the file system for changes to the AdventureWorks2008.bak file.

Select * from __InstanceModificationEvent within 30 where targetinstance isa
“CIM_DataFile” and targetinstance.name =
“C:\\SSIS\\extmgt\\WMI_DataReader\\AdventureWorks2008.bak”

 As you can see, this query monitors the AdventureWorks2008.bak file for changes every 30 seconds.

 The rest of the properties are specific to the WMI Event Watcher task. Set the ActionAtEvent property to
Log the Event and Fire the SSIS Event. As you ’ ll see in a moment, this event will be used to launch the
 “ Db Data File Copy ” package created in the previous example. Next, set the AfterEvent property to
Watch for this Event Again. This setting will essentially set up a monitoring loop that will perpetually
monitor the file for changes as long as the package is running. Because you do not care if the task times
out, leave the time - out settings at their default values. The editor should look like Figure 20 - 20 . Click the
OK button to close the dialog box.

c20.indd 783c20.indd 783 8/28/08 12:46:08 PM8/28/08 12:46:08 PM

Chapter 20: External Management and WMI Task Implementation

784

 Now that the task is configured, you need to configure the event handler that will be fired when a file
change is detected. Click the Event Handler tab and select the WMI Event Watcher Task - Monitor DB
File in the executable combo box, and then the WMIEventWatcherEventOccurred in the Event Handlers
combo box. Click the hyperlink in the middle of the page to create this event. Now drag an Execute
Package Task from the Toolbox to the event page. Rename this task as Execute WMI Data Reader
Package. The Execute Package Task event handler should look like Figure 20 - 21 .

Figure 20-20

Figure 20-21

c20.indd 784c20.indd 784 8/28/08 12:46:08 PM8/28/08 12:46:08 PM

Chapter 20: External Management and WMI Task Implementation

785

 Right - click the task and select Edit from the pop - up menu. In the execute Package Task Editor dialog
box, click the Package item in the listbox. For this example, you will be referencing the package via the
file system, but in real life you would probably be calling a package that had been deployed to a SQL
Server instance. For demonstration purposes, the WMI Data Reader Package file will be referenced so
that you can see the package execute in the Visual Studio IDE. So in the Location property, choose File
System. In the Connection property, create a new file connection pointing to the WMI Data Reader
 Package.dtsx file. Leave the rest of the properties at their default values. The Execute Package editor
should look like Figure 20 - 22 . Click OK to finish configuration of this example.

Figure 20-22

 Now test out your new package by first removing the AdventureWorks2008.bak backup file from the
 c:\ssis\extmgt\WMI_DataReader directory. Then run the WMI Event Watcher Package. The WMI
Event Watcher Task should turn yellow. The WMI Event Watcher is now monitoring the file location
where it expects to find the AdventureWorks2008.bak file for changes. Now copy the
 AdventureWorks2008.bak file into the root WMI_DataReader directory to simulate the SQL Server
process of creating a backup of the AdventureWorks2008 database. In fact, you can also test this package
by going into SSMS and creating a backup in this root directory. At some point during the backup
process, you should see the WMI Data Reader Package kick off and copy the backup file to the
c:\ssis\extmgt\WMI_DataReader\Backup directory.

 When the copy is complete, the package will continue to monitor the backup file for change. So when the
next backup is found in the root WMI_DataReader directory, the package will initiate another file copy
of the backup. The package is responding to WMI events that will detect the change to the directory to
copy the file. As you can see, these WMI features are an extremely powerful capability that SSIS does a
great job of abstracting for you in these WMI Tasks.

c20.indd 785c20.indd 785 8/28/08 12:46:08 PM8/28/08 12:46:08 PM

Chapter 20: External Management and WMI Task Implementation

786

 Summary
 This chapter has provided you with the basic information to manage and administer your SSIS packages.
You were exposed to the DTS runtime libraries. You have seen how easy it is to manipulate package
information, make changes programmatically, and transfer packages between your environments.
You ’ ve also seen how to create and maintain package configurations to customize packages at runtime.
In addition, you ’ ve seen how to configure log providers, which allow you to apply logging to existing
packages at runtime for diagnostic purposes.

 In the second half of the chapter, you saw how to use the WMI Reader Task and WMI Event Watcher
Task in your packages. Using these two tasks, you discovered how you can gain access to a huge amount
of system information to use in your packages. With the WMI Event Watcher, you learned how to
monitor the system for events to occur and perform actions in your SSIS package in response. With both
the DTS runtime libraries and the WMI Tasks, you should be able to enhance your system administration
capabilities working with SSIS. Later in Chapter 22 , you ’ ll learn more about Administering SSIS
packages, but next you ’ ll be looking at some examples of using SSIS in external applications.

c20.indd 786c20.indd 786 8/28/08 12:46:09 PM8/28/08 12:46:09 PM

 Using SSIS with External
Applications

 SQL Server 2008 Integration Services accepts data from nearly any source and presents output,
including ADO.NET datasets and SSIS data readers that are consumable by external applications.
These features allow SSIS to sink and source external applications with ease. In this chapter,
you take a look at three examples of external applications that utilize SSIS. This chapter is not
intended to exhaust all possible combinations of external interface with SSIS, but rather to provide
a sampling of some available functionality.

 SSIS is flexible and configurable, so there are many ways to approach interaction with external
applications. This book is rife with examples, including the following:

 Sources and Destinations: Implicit objects inside SSIS that provide connectivity to Data
Sources and Destinations. New in 2008 are two new sources called the ADO.NET Source
and the Performance Counters Source. The ADO.NET Source uses the .NET provider to
access the data being sourced. The Performance Counters Source extracts performance
measures from the operating system. There are also two new destinations added in 2008,
one being the ADO.NET Destination, which loads data using the .NET provider, and the
SQL Server Compact Edition Destination, which loads data into, well, the Compact
Edition of SQL Server.

 Scripting: Arguably provides the most flexibility when interacting with external
applications. Similar to Integration Services 2005, the Script Component still comes in
three flavors: Source, Destination, or Transformation. The exciting enhancement in this
version is the option to use C# as well as VB.NET. The .NET Framework version for
developing in this component is 3.5. We know plenty of developers will cheer about this
enhancement! See Chapter 9 for an example and more information.

❑

❑

c21.indd 787c21.indd 787 8/28/08 12:46:36 PM8/28/08 12:46:36 PM

Chapter 21: Using SSIS with External Applications

788

 Because interface scenarios can vary, it is difficult to define best practices. That said, generally accepted
software development practices apply, including the following:

 Employ a methodology: Chapter 15 provides an introduction to Software Development Life
Cycles (SDLCs). A development methodology is not a prescribed recipe; it is a framework that
assists you in creating the proper recipe for your software development project.

 Debug: Execute your SSIS package in debug mode in either the Business Intelligence Developer
Studio or the Visual Studio Integrated Development Environment (IDE). You may also find that
using breakpoints in conjunction with the watch window helps greatly during your
development cycle and is a highly recommended best practice. Another great tip is to group
similar tasks in containers (preferably a Sequence Container) and execute just the container you
choose to test. This technique will allow you to do unit - type testing without having to run the
entire package to avoid the “ all or nothing ” approach to package development.

 Test: Whenever possible, obtain a sample of actual (“ live ”) data and execute your package
against this data. This will ensure that the business logic implemented in your packages are
fine - tuned and will validate the correctness of your package logic. In the absence of access to a
copy of live data, populate tables with dummy data based on the business rules embedded in
the tables of the production data, and execute your package against them. When populating
your tables with dummy data, it is very important that you fully understand the semantics of
the production data and be sure to mirror those as accurately as possible. This will prevent you
from developing logic that may work on test data, but raises problems during production.

 In the first example, SSIS will read data from a Microsoft Office InfoPath document and perform a
Sorting Transform on the data and write the data out to a flat file for the destination. The key concept
behind this exercise is to demonstrate how Integration Services can easily source and transform data
from an XML document.

 InfoPath Documents
 This example demonstrates the ability of SSIS to interact with an external Microsoft Office application,
namely InfoPath

 Microsoft InfoPath is a desktop forms client that provides a rich interface to XML - based documents. For
more information about Microsoft InfoPath, see Professional InfoPath 2003 by Ian Williams and
Pierre Greborio (Wiley, 2004).

 Using a document created from the Timecard template supplied with InfoPath 2003, you will import
portions of data stored in an InfoPath document and output the results to a comma - delimited flat file.

❑

❑

❑

c21.indd 788c21.indd 788 8/28/08 12:46:37 PM8/28/08 12:46:37 PM

Chapter 21: Using SSIS with External Applications

789

 Portions of imported data in this demonstration appear disconnected in the Data Flow Task. This
example demonstrates an SSIS method to join disconnected data. This example also covers some
troubleshooting.

 Many thanks to Wenyang Hu for permission to reuse some elegant XSL!

 Create a new Integration Services project in SSIS. Drag an XML Task onto the Control Flow. Double - click
the XML Task to open the editor. Configure the XML Task as follows:

 Operation Type: XSLT.

 Source Type: File Connection.

 Source: New File Connection. Configure the New File Connection as follows:

 ❑ Usage Type: Existing File.

❑ File: Click Browse to locate and select an InfoPath timecard directory and file. The
timecard file may be generated using the InfoPath 2003 Timecard template, or you can get
the Timecard_ARay.xml file from the Resources available for this book at www.wrox.com .

 Save Operation Result: True.

 Overwrite Destination: True.

 Destination Type: File Connection.

 Destination: New File Connection. Configure the New File Connection as follows:

❑ Usage Type: Create File.

❑ File: Use the same InfoPath directory containing the Timecard files. Filename:
TimecardResult.xml .

 Second Operand Type: File Connection.

 Second Operand: New File Connection. Configure the New File Connection as follows:

❑ Usage Type: Existing File.

❑ File: SSISInfoPath.xsl (Wenyang Hu ’ s XSL file — see Resources).

 Why transform the Timecard XML file? Because the SSIS XML Task does not support multiple
namespaces.

 When you ’ re done, the Task Editor should look like Figure 21 - 1 . Click OK to proceed.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c21.indd 789c21.indd 789 8/28/08 12:46:37 PM8/28/08 12:46:37 PM

Chapter 21: Using SSIS with External Applications

790

 Now take a brief look at some XML Task properties before moving on.

 The top property of the task, OperationType , determines the remaining properties. The XML Task
Editor changes to present different properties for different OperationTypes . There are six
 OperationTypes :

 Diff: Creates a Diffgram (an XML document consisting of the differences between two XML
documents) XML document from the differences between the XML defined in the Source
property and the XML defined in the SecondOperand property.

 Merge: Adds XML defined in the SecondOperand property to the XML defined in the Source
property. This operation type is useful if you are continuously adding XML fragments to a
master XML document, for example.

 Patch: Adds a Diffgram defined in the SecondOperand property to the XML defined in the
 Source property. This operation can occur after another Diff operation is executed in a previous
XML Task, for example.

❑

❑

❑

Figure 21-1

c21.indd 790c21.indd 790 8/28/08 12:46:38 PM8/28/08 12:46:38 PM

Chapter 21: Using SSIS with External Applications

791

 Validate: Validates the XML defined in the Source property by the XML Schema Definition
(XSD) or Document Type Definition (DTD) defined in the SecondOperand property.

 XPath: Specifies an XPath query in the SecondOperand property executed against the XML
defined in the Source property to evaluate or aggregate or to return a node or value list. The
XPath operation is useful when you are only interested in certain portions of your XML
document. For more information about using XPath, see XPath 2.0 Programmer ’ s Reference , 3rd
Edition, by Michael Kay (Wiley, 2004).

 XSLT: Applies XML Stylesheet Language (XSL) documents defined in the SecondOperand
property to the XML defined in the Source property. An XSLT document essentially acts like a
template for rendering or transforming your XML documents in a form more suitable for end -
 user consumption. For more information about XSLT, see XSLT 2.0 Programmer ’ s Reference, 3rd
Edition, by Michael Kay (Wiley, 2004).

 The OperationResult property defines the output of the XML Task. The DestinationType property
can be set to File Connection or Variable, requiring a corresponding Connection Manager or Variable,
respectively, to be assigned to the Destination property.

 To generate the TimecardResult.xml file, you must execute this task.

 This is also a good development practice: Create a task and then test it before moving on. You may find
that you cannot accomplish what you wish with this type of task, and this discovery may impact
downstream development decisions.

 Right - click the XML Task and click Execute Task. You may receive a validation error in the Errors
window — especially on the first execution of the task. If everything is configured properly, however, the
task will succeed and the TimecardResult.xml file will be created in the Timecards directory.

 Drag a Data Flow Task onto the Control Flow. Connect the XML Task to the Data Flow Task using the
available precedence constraint (the green arrow on the XML Task). Double - click the Data Flow Task to
proceed. Drag an XML Source onto the Data Flow and double - click it to edit. Browse to the location of
 TimecardResult.xml — generated in a previous step — to configure the XML Location parameter.
Click the Generate XSD button to automatically generate a schema definition for the file (this is such a
time - saver!) as shown in Figure 21 - 2 . Click OK to proceed.

 If you receive the error “ Unable to infer the XSD from the XML file. The XML contains multiple
namespaces ” while stepping through this example, make sure you are using the SSISInfoPath.xsl
file supplied in Resources. If you are adapting this example, make sure your transformation eliminates
multiple namespaces from your source XML.

❑

❑

❑

c21.indd 791c21.indd 791 8/28/08 12:46:38 PM8/28/08 12:46:38 PM

Chapter 21: Using SSIS with External Applications

792

 In order to join the disconnected data, the Merge Join needs a field upon which to join. To create this
field, drag two Derived Column Transformations onto the Data Flow. Connect the XML Source to one of
the Derived Column Transformations. Select timecard_employee_name from the Output drop - down list
on the Input Output Selection dialog box. Connect the XML Source to the other Derived Column
Transformation, and select Week as the Derived Column input. Double - click each Derived Column in
turn to open their respective editors. Configure the same Derived Column for each as follows (as shown
in Figure 21 - 3):

Figure 21-2

 Drag a Merge Join Transform onto the Data Flow. Merge Joins, discussed in Chapter 5 , are designed to
join rows of data from disparate sources. This example uses them to join disconnected data from the
same source: the same XML file. The desired result is one row from the file containing the employee
name and information about the work week.

 This merge could be accomplished many other ways; this is an example of the flexibility of SSIS.

c21.indd 792c21.indd 792 8/28/08 12:46:38 PM8/28/08 12:46:38 PM

Chapter 21: Using SSIS with External Applications

793

 Click OK to proceed. You can now connect the outputs of the Derived Column Transformations to the
Merge Join Transformation, except for one thing: The Merge Join requires the input data to be sorted. So
drag and drop two Sort Transformations onto the Data Flow. Connect the output of each Derived
Column Transformation to a respective Sort Transformation. Double - click each Sort Transformation to
configure it. Select the JoinID for each Sort, allowing all other columns to pass through the
transformation, as shown in Figure 21 - 4 .

Figure 21-3

 Derived Column: < add as new column >

 Derived Column Name: JoinID

 Expression: 1

 Data Type: 4 - byte signed integer [DT_I4]

 Notice that the value for the Expression property is a literal number (1). This may look a bit confusing
because you may expect a snippet of code to be placed there. In this case, you are simply providing the
value in place of an actual expression.

❑

❑

❑

❑

c21.indd 793c21.indd 793 8/28/08 12:46:39 PM8/28/08 12:46:39 PM

Chapter 21: Using SSIS with External Applications

794

 Connect the outputs of each Sort to the Merge Join Transformation. Assign the output of the first Sort
Transformation to the Merge Join. When prompted, select Merge Join Left Input as the input for the first
Sort output — the second will connect by default to the remaining available input. Double - click the
Merge Join Transformation to edit it. Make sure that Inner Join is selected in the Join Type drop - down
list, and that the Join Key checkbox for each JoinID field is checked in the Available Columns tables.
Check the Select checkbox for the JoinID columns in the join, as well as other columns you wish to add
to the pipeline as shown in Figure 21 - 5 . By checking the columns you wish to add, the pipeline will
allow these columns to be included as input columns in the Flat File Destination in the next step. Click
OK to close the editor.

Figure 21-4

c21.indd 794c21.indd 794 8/28/08 12:46:39 PM8/28/08 12:46:39 PM

Chapter 21: Using SSIS with External Applications

795

 Add a Flat File Destination to the Data Flow and connect the Merge Join to it. Double - click the Flat File
Destination to configure it. Click the new Flat File Connector to configure a new file destination named
TimeCardOutput. Select Delimited as the Flat File Type. The Flat File Connection will be created, and the
Flat File Connection Manager Editor will display. Click Browse to choose a filename and enter
 TimecardOutput.csv . Click OK to return to the Flat File Destination Editor. Click the Mappings item to
generate the column mappings as shown in Figure 21 - 6 , and then click OK to close the editor.

Figure 21-5

c21.indd 795c21.indd 795 8/28/08 12:46:39 PM8/28/08 12:46:39 PM

Chapter 21: Using SSIS with External Applications

796

 Right - click each Sort output, respectively, and click Data Viewers. Make sure Data Viewers is selected in
the left pane of the Data Flow Path Editor, and then click the Add button. Accept the default name of the
Data Viewer and make sure Grid is selected on the General tab of the Configure Data Viewer Wizard.
Click OK to add a Data Viewer to the Sort output. Add another Grid Data Viewer to the output of the
Merge Join. Test the Data Flow by clicking the Play button and observing the results. View the line item
produced in the Data Viewer in Figure 21 - 7 .

Figure 21-6

c21.indd 796c21.indd 796 8/28/08 12:46:39 PM8/28/08 12:46:39 PM

Chapter 21: Using SSIS with External Applications

797

 This example demonstrated some techniques for importing and filtering a subset of data from an XML
document. You used an InfoPath - generated XML document as the source, but the approach to the
solution is valid for loading any XML document into SSIS.

 ASP.NET Applications
 The first example in this chapter demonstrated the XML Task in SSIS, which adds flexibility to SSIS by
providing a mechanism for working with XML data. In the first example, an InfoPath document was
consumed by the XML Task. This example demonstrates the capability of SSIS to interact with custom
external applications by interfacing with a simple ASP.NET application.

 This example application is written in C# 2005 and displays the output from an SSIS package in an
ASP.NET GridView control. Thanks to Ashvini Sharma and Ranjeeta Nanda for technical support!

 In BIDS, create a new Integration Services project. Drag a Data Flow Task onto the Control Flow and
double - click it to open the Data Flow tab. Drag an OLE DB Source onto the Data Flow and double - click
to edit. Configure the OLE DB Source as follows (shown in Figures 21 - 8 and 21 - 9):

 The AdventureWorks database no longer comes with the SQL Server install in 2008, but can be downloaded
separately from the CodePlex site located here: http://www.codeplex.com/MSFTDBProdSamples .

 OLE DB Connection Manager: Click New to open the Configure OLE DB Connection Manager
dialog box, and then click New to open the Connection Manager dialog box. Configure the
connection as follows:

❑ Server Name: [Your server name]

❑ Log on to the server: Use Windows Authentication

❑ Select or enter a database name: AdventureWorks2008

 Click the Test Connection button to confirm connectivity, as shown in Figure 21 - 8 , and then click
OK to proceed.

 Data Access Mode: SQL Command

 SQL Command Text:

SELECT Title, FileName FROM Production.[Document]

❑

❑

❑

❑

Figure 21-7

c21.indd 797c21.indd 797 8/28/08 12:46:40 PM8/28/08 12:46:40 PM

Chapter 21: Using SSIS with External Applications

798

Figure 21-8

Figure 21-9

c21.indd 798c21.indd 798 8/28/08 12:46:40 PM8/28/08 12:46:40 PM

Chapter 21: Using SSIS with External Applications

799

 Select the fields you wish to return by clicking Columns in the listbox and checking the Title and
Filename checkboxes. Click OK to close the editor.

 Drag a DataReader Destination onto the Data Flow and supply a meaningful name. The naming
convention is important when referencing this component from your ASP.NET page. The DataReader
Destination name will be used to set the CommandName property when using the SqlClient .NET
namespace in the code - behind. Connect the output of the OLE DB Source to the DataReader Destination
and double - click the DataReader Destination to begin editing. Click the Input Columns tab on the
Advanced Editor for the DataReaderDest dialog. Select the Title and Filename fields (selected earlier in
the OLE DB Source) for the DataReader and click OK to close the editor. Test the SSIS functionality
before proceeding.

 Open a new instance of Visual Studio to create a new Web Site or add a new Web Site to your current
SSIS project by selecting File Add New Web Site Name the Web project ASP_Feed_Web. Set the
Location to File System and select C# as the Language as shown in Figure 21 - 10 .

Figure 21-10

 Now that you have created a new project, you need to include a couple of .NET class libraries that will
first connect to the SSIS package you just created and secondly display the data in a GridView ASP.NET
control. You include these class libraries by adding a “ Reference ” to the project. In Solution Explorer,
right - click the Web Site project and click Add Reference. If Microsoft.SqlServer.Dts.DtsClient
appears in the list of References on the .NET tab, double - click it to add a reference to the project. If not,
click the Browse tab and navigate to %Program Files%\Microsoft SQL Server\100\DTS\Binn\
Microsoft.SqlServer.Dts.DtsClient.dll and click OK.

c21.indd 799c21.indd 799 8/28/08 12:46:41 PM8/28/08 12:46:41 PM

Chapter 21: Using SSIS with External Applications

800

 The DTSClient DLL contains interfaces to SSIS connection and command objects. See Books Online
and MSDN for more information about this library.

 Right - click the Default.aspx object and click View Designer. The ASP.NET control you will use to display
the data from the SSIS package is called a GridView . It will display the data in a table - like format and
render the column names automatically by default. Drag a GridView control from the Toolbox onto the
web page. Double - click the page to open the code viewer. Add the following code at the top of the page:

using System.Data.SqlClient;
using Microsoft.SqlServer.Dts.DtsClient;

 In the Page_Load subroutine, add the following line of code, replacing [your package directory] with the
actual name of the directory containing your SSIS package:

connectToSSISPackage(“[your package directory]\Package.dtsx”)

 Add the following function to the _Default partial class:

 protected void connectoToSSISPackage(string packagePath)
 {
 // Create the DTS connection object
 DtsConnection oConn = new DtsConnection();

 // Set the ConnectionString Property to the path of the package
 oConn.ConnectionString = String.Format(“-f {0}”, packagePath);

 // Open the Connection to the package
 oConn.Open();

 // Create a new DTSCommand object
 DtsCommand oCmd = new DtsCommand(oConn);

 // Set the CommandText Property to the Name of the Data Reader Task in
 // your SSIS package
 oCmd.CommandText = “DataReaderDest”;

 // Declare a DataReader variable
 IDataReader dr;

 // Create a new DataSet object
 DataSet ds = new DataSet();

 // Execute the Command object calling the SSIS package
 // and return a DataReader object
 dr = oCmd.ExecuteReader(CommandBehavior.Default);

 // Load the DataReader object into the DataSet

c21.indd 800c21.indd 800 8/28/08 12:46:41 PM8/28/08 12:46:41 PM

Chapter 21: Using SSIS with External Applications

801

 ds.Load(dr, LoadOption.OverwriteChanges,
 dr.GetSchemaTable().TableName);

 // Set the GridView’s DataSource property to the DataSet
 grid1.DataSource = ds;

 // Bind the data to the GridView
 grid1.DataBind();

 // Close the Connection
 oConn.Close();

 }
 protected void Page_Load(object sender, EventArgs e)
 {
 connectoToSSISPackage(@”C:\SQL08\ASPSSIS\ASPSSIS\DataReaderASP.dtsx”);
 }

 The connectToSSISPackage function receives a path to an SSIS package through the “ path ” argument.
As a reminder, the “ path ” argument is the fully qualified path and filename of the location of the SSIS
package on your local file system. A new SSIS connection (of DTSConnection type) called oConn is
created, which will connect to the SSIS package specified in the “ path ” argument of the method.

 If your environment does not recognize the DTSConnection data type, make sure you have a reference
properly defined and have included the Imports Microsoft.SqlServer.Dts.DtsClient
statement at the beginning of your code.

 The path argument is the connection string for the SSIS connection. After the SSIS connection is opened,
a new SSIS command (of DTSCommand type) is created and assigned to the SSIS connection. The
 CommandText property of the SSIS command object is set to the name of the DataReader Destination in
the SSIS package.

 Next, a DataReader object is defined and populated with the results of the SSIS command ’ s execution.
A dataset is created and filled with the DataReader ’ s data. The GridView ’ s DataSource property is
assigned to the dataset and the GridView is refreshed with a call to DataBind . Finally, the SSIS
connection is closed.

 Click the Play button to test. A list of document names and file paths should populate the grid as shown
in Figure 21 - 11 .

c21.indd 801c21.indd 801 8/28/08 12:46:41 PM8/28/08 12:46:41 PM

Chapter 21: Using SSIS with External Applications

802

 This example demonstrates a simple yet powerful feature of SSIS — the ability to expose output directly
to ASP.NET applications. The DataReader Destination provides a flexible interface for SSIS package
output.

 Winform . NET Applications
 The previous example in this chapter showed you how to consume data in an ASP.NET GridView
control through a DataReader in an external SSIS package. In a sense, the SSIS package was supplying
the data in a “ push ” format using the DataReader Destination. What if you wanted to interact with your
packages in a more dynamic way? What if your requirement was to supply information to your package
at runtime through a user interface? This next example shows you how to do just that.

 This example includes two new projects, an Integration Services project and a Visual C# Windows
Application. Special thanks to Nayan Patel for technical support.

Figure 21-11

c21.indd 802c21.indd 802 8/28/08 12:46:42 PM8/28/08 12:46:42 PM

Chapter 21: Using SSIS with External Applications

803

 The goal of this exercise is to dynamically set a variable inside an SSIS package from a Windows
interface and execute the package. The package itself will take the value of the variable and insert it into
a table, which you will have to create.

 Open SQL Server Management Studio and create a new table in the AdventureWorks2008 database
called SSIStest. The following is the defined structure for the table:

 Column Name DataType

 id int (set as an identity column)

 description varchar(50)

 Save the table and name it SSIStest.

 Create a new Integration Services project in BIDS. Rename the default starter package to
Package1.dtsx . Create a new Data Source and point to the AdventureWorks2008 database. You will
also need to create a Connection Manager as well. Right - click in the Connection Manager pane and
choose New Connection From Data Source. Select the dsAdventureWorks2008 Data Source and click OK.

 You now need to create a package - level variable that will be used by the Windows interface to be set
dynamically. Click in the designer so that you can be sure you are at the package level. Right - click in the
designer and select Variables. In the Variables pane, click the icon to create a new variable. The new
variable will be defined as shown here:

 Name Scope Datatype Value

 myvar Package1 String oldvalue

 Drag an Execute SQL Task from the Toolbox onto the designer. Double - click the task to configure its
properties as shown in Figure 21 - 12 .

c21.indd 803c21.indd 803 8/28/08 12:46:42 PM8/28/08 12:46:42 PM

Chapter 21: Using SSIS with External Applications

804

 Set the Connection to the dsAdventureWorks Connection Manager. Type the following query into the
SQLStatement property:

Insert SSIStest (description) values (?)

 The question mark in the query will be the placeholder for the input parameter. Click the Parameter
Mapping menu item and configure the parameter as shown in Figure 21 - 13 :

 Variable Name Direction Data Type Parameter Name Value

 User::myvar Input VARCHAR 0 old_value

Figure 21-12

c21.indd 804c21.indd 804 8/28/08 12:46:42 PM8/28/08 12:46:42 PM

Chapter 21: Using SSIS with External Applications

805

 Click OK when you ’ re finished to return to the designer. Save your project and make a special note
where the package resides on the file system. When you create the user interface to interact with this
package, you will need to point to the package located on the file system like you did in the previous
exercise.

 In Visual Studio 2005, create a new Visual C# Windows Application Project. Once the project is open, a
reference to a .NET class library is necessary to interact with the Integration Services package. Right - click
the References folder and select Add Reference as displayed in Figure 21 - 14 . Under the .NET tab find
and select the Microsoft.SQLServer.ManagedDTS reference (Figure 21 - 15) from the list and click OK.
You ’ re now ready to start designing the interface to this project.

Figure 21-13

Figure 21-14

c21.indd 805c21.indd 805 8/28/08 12:46:42 PM8/28/08 12:46:42 PM

Chapter 21: Using SSIS with External Applications

806

 Drag a TextBox control and a Button control on the form designer like displayed in Figure 21 - 16 . The
look and feel of the UI is not important here; we are mostly concerned about the functionality behind the
scenes, so don ’ t be too concerned about the appearance at this point.

Figure 21-15

Figure 21-16

 The TextBox you placed on the form will allow the user to enter a value that you will use to dynamically
set the variable in the package. The Button control will actually execute the operation. Double - click the
Button control to open the code window and stub out the Click event for that control.

c21.indd 806c21.indd 806 8/28/08 12:46:43 PM8/28/08 12:46:43 PM

Chapter 21: Using SSIS with External Applications

807

 Before you get started writing the code, you need to add a reference to another class library. At the very
top of your code, type the following reference:

using SSIS_Runtime = Microsoft.SqlServer.Dts.Runtime;

 The SSIS_Runtime declaration is an alias to the .NET reference. This coding technique comes in handy
when referencing long namespaces as well as definitively using the intended classes during
development.

 In the Form1 class, you will create the ExecutePackage method. This method will create the necessary
objects to load your package, set the variable at runtime, and then execute the package. Type the
following lines of code into the class file:

 public void ExecutePackage()
 {
 // Create a string variable to hold the location of our SSIS package
 string strPackagePath = @”C:\Documents and Settings\Administrator\My
Documents\Visual Studio 2008\Projects\Integration Services Project2\Integration
Services Project2\Package1.dtsx”;

 // Create a new Application class object
 SSIS_Runtime.Application oApp = new SSIS_Runtime.Application();

 // Create a new Package class object
 SSIS_Runtime.Package oPackage = new SSIS_Runtime.Package();

 // Load the SSIS package
 oPackage = oApp.LoadPackage(strPackagePath, null);

 // Set the myvar variable in the package to the value of the textbox
 oPackage.Variables[“myvar”].Value = textBox1.Text.Trim();

 // Execute the package
 oPackage.Execute();
 }

 Now that the ExecutePackage method has been created, you need to call this method once the button
on your form is clicked. In the Click event method for your button type the following piece of code:

 private void button1_Click(object sender, EventArgs e)
 {
 ExecutePackage();
 }

 That ’ s it! If you don ’ t happen to see the button1_Click method stubbed out already for you, switch to
the designer and double - click the button. This action will create the Click event method and allow you
to provide the actual implementation.

c21.indd 807c21.indd 807 8/28/08 12:46:43 PM8/28/08 12:46:43 PM

Chapter 21: Using SSIS with External Applications

808

 Now run the project. You will then be presented with the form that you just created. Enter a bit of text
into the textbox and click the button. Open Management Studio and expand the AdventureWorks2008
database. Start a new query and type the following line of SQL:

Select * From SSIStest

 You should now see a new record in the table with the text you entered through the Windows
application. This simple, yet powerful example demonstrates how you can dynamically set properties in
an Integration Services package programmatically. This can be useful in a variety of ways if your
environment requires frequent changes to SSIS packages at the time of execution, such as variables, task
properties, and even Data Sources.

 Summary
 This chapter presented three examples that demonstrate how SSIS relates to external applications — as
both a source to external applications and a method for reading external sources.

 The examples covered three interfaces with external applications:

 An InfoPath 2003 Data Source

 An output to ASP.NET

 A dynamic property assignment through a Winform application

 In these three examples, only one used the database — and that was a source of sample data. SSIS is
designed to interface with the world beyond SQL Server — what ’ s more, this enterprise development
tool ships with this functionality “ off the shelf. ”

 The good folks at Microsoft have delivered a powerful enterprise development solution that reaches well
beyond the SQL Server database.

 Learn more by participating in the Developer Community. A good place to start is the Microsoft TechNet
website for SQL Server at: http://technet.microsoft.com/en - us/sqlserver/bb671048
.aspx?wt.svl=leftnav .

❑

❑

❑

c21.indd 808c21.indd 808 8/28/08 12:46:43 PM8/28/08 12:46:43 PM

 Administering SSIS

 So you have a set of packages and are ready to run the package in production. This chapter focuses
on how to administer packages after you ’ ve deployed them to production. Specifically, we cover
how to configure, deploy, and then administer the SSIS service. We also cover how to create a
stand - alone ETL server and some of the command - line utilities you can use to make your job
easier. After this chapter, you ’ ll be able to create a package that will not require any effort to
migrate from development to production after the first deployment.

 Package Configuration
 Now that you have a set of packages complete, the challenge is trying to migrate those packages to
your testing environment or production without having to manually configure the packages for
that environment. For example, your production server may not have the same directory to pull
extract files from or the same user name to use to connect to the database. Configuration files help
you make the migrations seamless and the configuration automated to reduce your risk of errors.
In this section and the next, you ’ ll see two different methods for configuration. One is to create a
configuration repository and the other is to create your own repository, which mimics
configuration files but gives you more flexibility.

 The SSIS Package Configuration option allows you to write any SSIS property for the package,
connection, container, variable, or any task into an XML file or a table, for example, and then read
the setting at runtime. You could deploy the configuration file to multiple servers and point the
setting inside the file to a new SQL Server database on the second server, and when the package
runs, it will shift its connection to the new database automatically. They also come in handy later
when you deploy the packages to production using the deployment utility.

 Let ’ s do a quick example to show you the strengths and weaknesses of package configurations. In
this example, you ’ re going to create a simple package with a Script Task that will pop up a
message with the configuration value instead of its normal, hard - coded value. You ’ ll then create
multiple configuration files and you ’ ll see which configuration file wins.

c22.indd 809c22.indd 809 8/28/08 12:47:12 PM8/28/08 12:47:12 PM

Chapter 22: Administering SSIS

810

 First, create a new package called ConfigFiles.dtsx . Drag over a new Script Task onto the Control
Flow tab in the newly created package and name the task Popup Value. Next, create a new string
variable called strMessage that is scoped to the package and not the Script Task. Seed a default value of
 “ Hard Coded Value ” for the string variable.

 Double - click the Script Task to configure it. In the Script page, type strMessage for the
ReadOnlyVariables property. Change the ScriptLanguage property to Microsoft Visual Basic 2008.
Click Edit Script to add your code to the task. Double - click the ScriptMain.vb file in the Project
Explorer window if it ’ s not already open. The code you ’ re going to add will pop up the value from the
 strMessage variable by using the following code in the Main() subroutine:

Public Sub Main()
 ‘
 ‘ Add your code here
 MsgBox(Dts.Variables(“strMessage”).Value)
 Dts.TaskResult = ScriptResults.Success
End Sub

 For more information about the Script Task, see Chapter 9 . Close the task. If you execute the package at
this point, you should see the pop - up dialog box that states “ Hard Coded Value ” . If you see that value,
you ’ re now ready to set this variable from a configuration file instead.

 Select Package Configurations from the SSIS menu, or by right - clicking in the background of the Control
Flow tab. This opens the Package Configurations Organizer where you will create and arrange the
priority of your package configurations. Click Enable Package Configurations to enable this feature.

 To add your first package configuration, click Add. This will take you to the Package Configuration
Wizard. You can set your package configuration to use an XML file, SQL Server table, environment
variable, registry setting, or to read a variable from a parent package. Most people choose to use XML
files or a SQL Server table. XML files are generally easier to implement because the files will be portable
and easy to transport from environment to environment. In this example, you ’ ll use an XML file. Type
 c:\Projects\configuration.xml for the Configuration File name property. The default extension for the
configuration XML files is .dtsConfig , but we prefer to use an XML extension so it is easily registered
to most XML editors.

 You can even make the path and filename of the XML file dynamic by reading it from an environment
variable. Otherwise, the file must be in the C:\Projects folder on each server that you wish to deploy
the package to, which may not be allowed in your production environment. You can also change this
later during deployment, but that is discussed in a moment in the “ Deployment Utility ” section.

 Click Next to go to the Properties to Export screen in the wizard. If the c:\Projects\configuration
.xml file had already existed on your server, you would be prompted whether you wish to reuse the
existing file or overwrite the file. If you had chosen to reuse an existing file, the next screen would be the
final summary screen. This option is fantastic if you wish to have all of your packages in your project
reuse the same configuration file, but to do this the property names have to exactly match.

 Back in the Properties to Export screen, you can check any property that you wish to have read from the
configuration file. In this case, you want to drill down to Variables strMessage Properties and finally
check the Value option (as shown in Figure 22 - 1). Click Next to proceed to the next screen.

c22.indd 810c22.indd 810 8/28/08 12:47:13 PM8/28/08 12:47:13 PM

Chapter 22: Administering SSIS

811

 You are then taken to the summary screen where you should name the configuration “ Variable File ” and
click Finish, which takes you back to the Package Configurations Organizer. Click Close to exit the
organizer and execute the package. If you run the package again, you ’ ll notice that the popup should still
have the same old message. The configuration file now has been created after you close the wizard.

 Open the configuration.xml file in your favorite XML editor or Notepad, and replace the old variable
value of “ Hard Coded Value ” with a new value of “ Config File Changed Value ” as shown below in the
following code. The other pieces of the configuration file contain lots of metadata about who created the
configuration file and from what package.

 < ?xml version=”1.0” ? >
- < DTSConfiguration >
- < DTSConfigurationHeading >
 < DTSConfigurationFileInfo GeneratedBy=”pragmaticpc\pragmaticworks”
GeneratedFromPackageName=”ConfigFiles” GeneratedFromPackageID=
“{75B381D2-1617-4A4C-8F57-D61A14CFB379}” GeneratedDate=”3/5/2008 10:54:48 PM” / >
 < /DTSConfigurationHeading >
- < Configuration ConfiguredType=”Property”
Path=”\Package.Variables[User::strMessage].Properties[Value]” ValueType=”String” >
 < ConfiguredValue > Hard Coded Value < /ConfiguredValue >
 < /Configuration >
 < /DTSConfiguration >

 When you execute the package again, notice this time the message has changed.

 Figure 22 - 1

c22.indd 811c22.indd 811 8/28/08 12:47:13 PM8/28/08 12:47:13 PM

Chapter 22: Administering SSIS

812

 You can also create multiple configuration files. For example, you may want a configuration file that
contains your corporate logging database for all of your packages to use and then another configuration
file for the individual package. As you add more package configurations, they stack onto each other in
the Configurations Organizer screen. At runtime, if there is a conflict between two configurations, the
last configuration on the bottom will win.

 To demonstrate this, create one additional configuration. This time, when you ’ re asked for the
configuration type, select SQL Server. For the Connection property, select New and point the connection
to the AdventureWorks database, which will create a Connection Manager. Lastly, click New for the
Configuration Table property. The table can be called whatever you ’ d like as long as you have the core
four columns. Name the table ctrlConfigurations , as shown in the following script:

CREATE TABLE [dbo].[ctrlConfigurations]
(
 ConfigurationFilter NVARCHAR(255) NOT NULL,
 ConfiguredValue NVARCHAR(255) NULL,
 PackagePath NVARCHAR(255) NOT NULL,
 ConfiguredValueType NVARCHAR(20) NOT NULL
)

 Type Development for the Configuration Filter. When the package reads from the
 ctrlConfigurations table, it will read all the properties where the ConfigurationFilter column is equal
to “ Development, ” as shown in Figure 22 - 2 . Typically, you ’ d want to have this filter set to either the
package name or group of packages that you wish to share the same configuration settings. This is
because all configurations in SQL Server are stored in the same table.

 Figure 22 - 2

c22.indd 812c22.indd 812 8/28/08 12:47:13 PM8/28/08 12:47:13 PM

Chapter 22: Administering SSIS

813

 Click Next to go to the next screen and name this configuration “ SQL Server Config ” . You should now
have two package configurations as shown in Figure 22 - 3 . Set the variable ’ s value by going to the
ctrlConfigurations table in the AdventureWorks2008 database and setting the ConfiguredValue column
to “ SQL Server Config Value ” as shown in the following query:

Update ctrlConfigurations
SET ConfiguredValue = ‘SQL Server Config Value’
 where ConfiguredValue = ‘Hard Coded Value’

 When you execute the package, notice that now the value that pops up is “ SQL Server Config Value ” .
This is because there were two configurations that set the same variable but the one at the bottom
(see Figure 22 - 3) will set the value last.

 Figure 22 - 3

 Package configuration files make it easy to migrate a package from environment to environment. For the
most part, it ’ s going to be easier to store your configurations in the SQL Server because you can write
some sort of front - end to modify the settings, and you can create reports to view the settings. The main
problem with package configurations is that data is not encrypted, so you should not store anything that
should be secure inside package configurations.

 There are a few methodologies you can employ when you use configuration files. One is to group all the
like configuration properties together into files or with filters if you choose to store the settings in a table.
The other option, which many prefer, is to store each property in its own file or with its own filter. If you
choose the latter option, it ’ s higher maintenance in creating your package because you may have to
create dozens of files, but it allows you to pick which settings you ’ d like and reuse the settings over and
over again.

c22.indd 813c22.indd 813 8/28/08 12:47:14 PM8/28/08 12:47:14 PM

Chapter 22: Administering SSIS

814

 Deployment Utility
 In SSIS, you can create a deployment utility that will help a user install your project of packages
and any dependencies. This deployment utility is like creating a program like InstallShield, and
is perfect for times where you want to pass a set of packages to a customer or a production DBA that
may not know how to install SSIS packages the manual way. When you create a deployment utility,
all the files that are necessary to install the project are copied into a centralized directory, and an
 .SSISDeploymentManifest file is created for the installer to run, which opens the Package Installation
Wizard.

 Creating the Deployment Manifest
 To create a deployment utility, simply right - click the SSIS project in BIDS and select
Properties. In the Property Pages dialog box, go to the Deployment Utility page and change the
CreateDeploymentUtility property to True, as shown in Figure 22 - 4 . This is set to False by default.
The AllowConfigurationChanges property is a key setting as well, and when set to True will prompt the
installer if he ’ d like to change any settings that may be exposed via a configuration file at installation
time. The DeploymentOutputPath property shows you where the deployment utility will be outputted
to underneath the project folder.

Figure 22-4

 Next, under the Build menu, select Build < Project Name > , where < Project Name > represents your
project ’ s name. This will open each package and build the package. If there are any errors in the package,
then you will see them at this point. As it builds the project, each package, and the project ’ s
. SSISDeploymentManifest file, is validated then outputted into the \bin\deployment directory
under your project ’ s folder.

c22.indd 814c22.indd 814 8/28/08 12:47:14 PM8/28/08 12:47:14 PM

Chapter 22: Administering SSIS

815

 After building the deployment utility, you will want to change the CreateDeploymentUtility to False
again. Otherwise, each time you click the Play button to execute the package, each package will be
validated and executed, which may take an enormous amount of time for a large project.

 The Package Deployment Wizard
 Now that you have created a deployment .SSISDeploymentManifest file, you ’ re now ready to send
the contents of the < project location > \bin\deployment folder to the installation person. The
installation person would then need to copy the contents of the folder to the server he wishes to deploy
to and double - click the .SSISDeploymentManifest file. The installer could also run it remotely, but it
is preferred to run it on the same server as the target deployment server to simplify the installation. You
can also modify the .SSISDeploymentManifest file in your favorite XML editor to modify which
packages are deployed.

 After skipping over the introduction screen, you are asked where you want to deploy the packages, as
shown in Figure 22 - 5 . You can either choose a File System Deployment or a SQL Server Deployment. A
File System Deployment just copies the files to a directory on the server. A SQL Server Deployment
stores the packages in the msdb database on the target server. Later in this chapter (in the “ File System or
the MSDB Deployment ” section), we cover the pros and cons to each option here but for the time being,
just select the SQL Server Deployment. You can also have the wizard validate each package after you
install the package. This ensures the package that was delivered to you is valid on your machine,
including the Data Sources.

Figure 22-5

c22.indd 815c22.indd 815 8/28/08 12:47:15 PM8/28/08 12:47:15 PM

Chapter 22: Administering SSIS

816

 If you ’ re following this example, select SQL Server Deployment and click Next. If you select SQL Server
Deployment, the next screen prompts you for which SQL Server 2008 instance you wish to deploy the
packages. Additionally type “ / ” (without the quotes) for the Package Path property. This specifies that
the packages will be installed into the root path. If you had selected a File System Deployment, the next
screen prompts you for which file path you wish for the packages to be deployed. The last option in the
SQL Server Deployment screen is to specify if you wish to rely on the SQL Server for protecting
the package by encrypting the package. This is the preferred option and will change the ProtectionLevel
package property to ServerStorage as it installs each package. We talk more about the ProtectionLevel
property later in this chapter.

 Even though you have selected a SQL Server Deployment, there may still be files that must be deployed
like configuration files and readme files. The next screen prompts you for where you ’ d like to put these
files. Generally, they ’ ll go under a folder named after the project under the C:\Program Files\
Microsoft SQL Server\100\DTS\Packages folder.

 After you click Next, the packages will be installed in the package store on the server. After the packages
are installed, if the developer selected True to the AllowConfigurationChanges in BIDS (shown in
Figure 22 - 6), then you will receive an additional screen giving you, as an installer, a chance to edit the
values in the configuration file at deployment time. This can be seen in Figure 22 - 4 , and you can pull
down the drop - down box to see multiple configuration files. Unfortunately, it does not show which
packages these files are tied to.

Figure 22-6

c22.indd 816c22.indd 816 8/28/08 12:47:15 PM8/28/08 12:47:15 PM

Chapter 22: Administering SSIS

817

 There are other ways to deploy packages that we ’ ll show later in this chapter, but this is a great way to
deploy packages in bulk. If you wish to deploy a package in Management Studio, as you ’ ll see later in
this chapter, you have to do it one package at a time. The file system, however, is much easier. With this
method of storage, you can just copy the .dtsx and supporting files manually into a directory that ’ s
being monitored by the SSIS service, and the packages will be seen from Management Studio
immediately.

 The main thing to remember about the deployment utility is that when it is used, every package and
project dependencies are deployed. If you do not want to deploy this many packages, you can edit the
 .SSISDeploymentManifest file in a text editor to remove any extra files you do not wish to migrate.
Some find it useful to create a project in the same project solution that contains a subset of the packages
that they wish to deploy, if this is too aggressive for them.

 The only other additional screen you would see is a popup if there was a user password on any package.

 After the packages have been deployed, they are validated, as shown in Figure 22 - 7 . If there is a
problem, you would see it in the Packages Validation screen, and you can redeploy once the problem is
corrected. The last screen is a summary screen to complete the wizard.

Figure 22-7

c22.indd 817c22.indd 817 8/28/08 12:47:15 PM8/28/08 12:47:15 PM

Chapter 22: Administering SSIS

818

 If you did want to edit the .SSISDeploymentManifest XML file before sending the folder to a client,
you could just remove one of the < Package > lines as shown in the following XML example. You can also
see in the file who created the deployment tool for you and when, in the header of the XML. This
information will be useful for tracking down who to ask questions to later if the project doesn ’ t install
appropriately. If you do not wish to deploy a configuration file with the wizard, you can remove the
 < ConfigurationFile > line in order to prevent the configuration file from overwriting the older that
may already be on the server file.

 < ?xml version=”1.0” ? >
 < DTSDeploymentManifest GeneratedBy=” BRIANKNIGHT\bknight ”
GeneratedFromProjectName=” Pro SSIS ”
GeneratedDate=” 2008-01-15T23:39:54.7343750-05:00 ”
AllowConfigurationChanges=” true ” >
 < Package > EventHandler.dtsx < /Package >
 < Package > Package1.dtsx < /Package >
 < Package > Restartability.dtsx < /Package >
 < Package > ConfigFiles.dtsx < /Package >
 < Package > Chapter1.dtsx < /Package >
 < Package > RawFile.dtsx < /Package >
 < Package > DBSnapshots.dtsx < /Package >
 < Package > Logging.dtsx < /Package >
 < Package > FileWatcher.dtsx < /Package >
 < Package > ConfigRepository.dtsx < /Package >
 < ConfigurationFile > configuration.xml < /ConfigurationFile >
 < /DTSDeploymentManifest >

 The Package Store
 When you deploy your packages, they are stored into what is called the SSIS Package Store. The Package
Store in some cases will actually physically store the package, such as the msdb database option. If
you ’ re using file system storage, the Package Store just keeps a pointer to the top - level directory and just
enumerates through the packages stored underneath that directory. In order to connect to the Package
Store, the SSIS Service must be running. This service is called SQL Server Integration Services, or
MSDTSServer100. There is only one instance of the service per machine or per set of clustered machines.

 You can configure the SSIS service in the Services applet in Control Panel Administrative Tools.
Double - click SQL Server Integration Services. As you can see, the service is set to automatically start by
default, and starts under the NT AUTHORITY\NetworkService account. In the Recovery tab, you may
decide that you want the service to automatically start up again in the event of a failure. In the Recovery
tab, you can specify how to react if the service fails the first, second, and subsequent times. As you can
see in Figure 22 - 8 , the service has been changed to restart if a failure occurs two times. The failure count
is also reset after 2 days in this figure.

c22.indd 818c22.indd 818 8/28/08 12:47:15 PM8/28/08 12:47:15 PM

Chapter 22: Administering SSIS

819

 While you can run and stop packages programmatically without the service, the service makes
running packages more manageable. For example, if you have the service run the package, it tracks that
the package is executing and people with the proper permission can interrogate the service, to find out
which packages are running. Those that are in the Windows Administrators group can stop all running
packages. Otherwise, you can only stop packages that you have started. It can also aid in importing and
exporting packages into the Package Store. We cover other uses for the service throughout this chapter,
but one last great use for the service is to enable you to create a centralized ETL server to handle the
execution of your packages throughout your enterprise.

 The MSDTSServer100 service is configured through an XML file that is located by default in the
following path: C:\Program Files\Microsoft SQL Server\100\DTS\Binn\MsDtsSrvr.ini.xml .
This path will vary if you ’ re in a cluster. If you cannot find the path, go to the HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\100\SSIS\ServiceConfigFile registry key in
the registry. By default, the XML file should look like the following file:

 < ?xml version=”1.0” encoding=”utf-8” ? >
- < DtsServiceConfiguration xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >
 < StopExecutingPackagesOnShutdown > true < /StopExecutingPackagesOnShutdown >
- < TopLevelFolders >
- < Folder xsi:type=”SqlServerFolder” >
 < Name > MSDB < /Name >
 < ServerName > . < /ServerName >
 < /Folder >
- < Folder xsi:type=”FileSystemFolder” >
 < Name > File System < /Name >
 < StorePath > ..\Packages < /StorePath >
 < /Folder >
 < /TopLevelFolders >
 < /DtsServiceConfiguration >

Figure 22-8

c22.indd 819c22.indd 819 8/28/08 12:47:16 PM8/28/08 12:47:16 PM

Chapter 22: Administering SSIS

820

 There isn ’ t a lot to really configure in this file, but it does have some interesting uses. The first
configuration line tells the packages how to react if the service is stopped. By default, packages that the
service is running will stop if the service stops or fails over. You could also configure the packages to
continue to run until they complete after the service is stopped by changing the
 StopExecutingPackagesOnShutdown property to False as shown here:

 < StopExecutingPackagesOnShutdown > false < /StopExecutingPackagesOnShutdown >

 The next configuration sections are the most important. They specify which paths and servers the
MSDTSServer100 service will read from. Whenever the service starts, it reads this file to determine
where the packages are stored. In the default file, you will have a single entry for a SQL Server that looks
like the following SqlServerFolder example:

 < Folder xsi:type=” SqlServerFolder ” >
 < Name > MSDB < /Name >
 < ServerName > . < /ServerName >
 < /Folder >

 The < Name > line represents how the name will appear in Management Studio for this set of
packages. The < ServerName > line represents where the connection will point to. There is a problem,
however: If your SQL Server is on a named instance, this file will still point to the default non - named
instance (.). If you do have a named instance, simply replace the period with your instance name.

 The next section shows you where your File System packages will be stored. The < StorePath > property
shows the folder where all packages will be enumerated from. The default path is C:\program files\
microsoft sql server\100\dts\Packages , which is represented as ..\Packages in the default
code that follows. The part of the statement goes one directory below the SSIS service file and then into
the Packages folder.

 < Folder xsi:type=” FileSystemFolder ” >
< Name > File System < /Name >
 < StorePath > ..\Packages < /StorePath >
 < /Folder >

 Everything in the Packages folder, and below that folder, will be enumerated. You can create
subdirectories under this folder and they will immediately show up in Management Studio without
having to modify the service ’ s configuration file. Each time you make a change to the MsDtsSrvr.ini
.xml file, you must stop and start the MSDTSServer100 service.

 Creating a Central SSIS Server
 Many enterprise companies have so many packages, they decide to separate the service from SQL Server
and place it on its own server. When you do this, you must still license the server just as if it ’ s running
SQL Server. The advantage of this is that your SSIS packages will not suffocate the SQL Server ’ s memory
during a large load, and you have a central spot to manage. The disadvantage of this is that now you
must license the server separately and you add an added layer of complexity when you ’ re debugging
packages. When you do this you create a fantastic way to easily scale packages by adding more memory
to your central server, but you also create an added performance hit because all remote data must be
copied over the network before entering the Data Flow buffer.

c22.indd 820c22.indd 820 8/28/08 12:47:16 PM8/28/08 12:47:16 PM

Chapter 22: Administering SSIS

821

 To create a centralized SSIS hub, you must only modify the MsDtsSrvr.ini.xml file and restart
the service. The service can read a UNC path like \\ServerName\Share , and it can point to multiple
remote servers. In the below example, the service will enumerate packages from three servers, one that is
local and another that is a named instance. After restarting the service, you will see a total of six folders
to expand in Management Studio. We cover the Management Studio aspect of SSIS in much more detail
later in this chapter.

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < DtsServiceConfiguration xmlns:xsd=” http://www.w3.org/2001/XMLSchema ”
xmlns:xsi=” http://www.w3.org/2001/XMLSchema-instance ” >
 < StopExecutingPackagesOnShutdown > true < /StopExecutingPackagesOnShutdown >
 < TopLevelFolders >
 < Folder xsi:type=” SqlServerFolder ” >
 < Name > Server A MSDB < /Name >
 < ServerName > localhost < /ServerName >
 < /Folder >
 < Name > Server B MSDB < /Name >
 < ServerName > SQLServerB < /ServerName >
 < /Folder >
 < Name > Server C MSDB < /Name >
 < ServerName > SQLServerC\NamedInstance < /ServerName >
 < /Folder >
 < Folder xsi:type=” FileSystemFolder ” >
 < Name > Server A File System < /Name >
 < StorePath > P:\ Packages < /StorePath >
 < /Folder >
 < Folder xsi:type=” FileSystemFolder ” >
 < Name > Server B File System < /Name >
 < StorePath > \\SQLServerB \Packages < /StorePath >
 < /Folder >
 < Folder xsi:type=” FileSystemFolder ” >
 < Name > Server C File System < /Name >
 < StorePath > \\SQLServerC \Packages < /StorePath >
 < /Folder >
 < /TopLevelFolders >
 < /DtsServiceConfiguration >

 Your next issue is how to schedule packages when using a centralized SSIS hub like this example. You
can schedule your packages through SQL Server Agent or through a scheduling system like Task
Scheduler from Windows. Because you ’ re already paying for a license of SQL Server, it ’ s better to install
SQL Server on your server and use Agent since it gives you much more flexibility, as you will see in a
later section. Keep in mind that packages run from the machine that executes the package. So if you have
a package stored on Server A but execute it from Server B, it will use Server B ’ s resource. You can also
store configuration tables and logging tables on this SQL Server to centralize its processing as well. Both
scheduling mechanisms are covered in a later section in this chapter.

c22.indd 821c22.indd 821 8/28/08 12:47:17 PM8/28/08 12:47:17 PM

Chapter 22: Administering SSIS

822

 Clustering SSIS
 The unfortunate news is that SSIS is not a clustered service by default. Microsoft does not recommend
that you cluster SSIS, because it could lead to unpredictable results. For example, if you place SSIS in the
same Cluster Group as SQL Server, and if SQL Server were to fail over, it would cause SSIS to fail over as
well. Even though it does not cluster in the main SQL Server setup, it can still be clustered manually
through a series of relatively easy steps. If you feel you must cluster SSIS, this section walks you through
those steps, but makes the assumption that you already know how to use Windows clustering and
know the basic clustering architecture. Essentially, the steps to setting up SSIS as a clustered service are:

 1. Install SSIS on the other nodes that can own the service.

 2. Create a new cluster group (optionally).

 3. If you created a new group, create a virtual IP, name, and drive as clustered resources.

 4. Copy over the MsDtsSrvr.ini.xml file to the clustered drive.

 5. Modify the MsDtsSrvr.ini.xml file to change the location of the packages.

 6. Change the registry setting to point to the MsDtsSrvr.ini.xml file.

 7. Cluster the MSDTSServer100 service as a generic service.

 First, we must discuss a minor decision you ’ ll have to make prior to clustering. You can choose to cluster
the MSDTSServer100 service in the main SQL Server cluster group for a given instance or you can create
its own cluster group. You will find that while it ’ s easier to piggyback the main SQL Server service, it
adds complexity to management.

 The SSIS service only has a single instance in the entire Windows cluster. If you have a four - instance SQL
Server cluster, where would you place the SSIS service then? This is one reason why it makes the most
sense to move the SSIS service into its own group. The main reason, though, is a manageability one. If
you decide that you need to fail over the SSIS service to another node, you would have to fail over the
SQL Server as well if they shared a cluster group, which would cause an outage. Moving the SSIS service
into its own cluster group ensures that only the SSIS service fails over and does not cause a wider
outage.

 Placing the service in its own group comes at a price, though. The service will now need a virtual IP
address, its own drive, and a name on the network. Once you have those requirements, you ’ re all ready
to go ahead and cluster. If you decided to place SSIS into its own group, you would not need the drive,
IP, or name.

 The first step to cluster is to install SSIS on all nodes in the Windows cluster. If you installed SSIS as part
of your SQL Server install, you ’ ll see that SSIS installed only on the primary node. You ’ ll now need to
install it manually on the other nodes in the cluster. Make sure you make the installation simple and
install SSIS on the same folder on each node.

c22.indd 822c22.indd 822 8/28/08 12:47:17 PM8/28/08 12:47:17 PM

Chapter 22: Administering SSIS

823

 If you want to have the SSIS service in a different group as the database engine, you ’ ll first have to create
a new group called SSIS in Cluster Administrator for the purpose of this example (although it can be
called something else). This group will need to be shared by whichever nodes you would like to
participate in the cluster. Then, add to the group a physical drive that is clustered, an IP address, and a
network name. The IP address and network name are virtual names and IPs.

 From whichever node owns the SSIS group, copy the MsDtsSrvr.ini.xml file to the clustered physical
drive that ’ s in the SSIS cluster group. We generally create a directory called
< Clustered Drive Letter > \SSISSetup to place the file. Make a note of wherever you placed the file
for a later configuration step. You ’ ll also want to create a folder called Packages on the same clustered
drive for your packages to be stored. This directory will store any packages and configuration files that
will be stored on the file system instead of the msdb database.

 Next, open the Registry editing tool and change the HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Microsoft SQL Server\100\SSIS\ServiceConfigFile key to point to the new location (including
the filename) for the MsDtsSrvr.ini.xml file. Make sure you backup the registry before making this
change.

 After this change, you ’ re now ready to cluster the MSDTSServer100 service. Open Cluster Administrator
again and right - click the SSIS cluster group (if you ’ re creating it in its own group) and select New
Resource. This will open the Resource Wizard, which clusters nearly any service in Windows. On the
first screen type Integration Services for the name of the clustered resource and select Generic Service.
This name is a logical name that is only going to be meaningful to the administrator and you.

 Next, on the Possible Owner screen, add any node that you wish to potentially own the SSIS service. On
the Dependencies page, add the group ’ s Network Name, IP Address, and Drive as dependencies. This
will ensure that the SSIS service will not come online before the name and drives are online. Also, if the
drive fails, the SSIS service will also fail.

 The next screen is the Generic Service Parameters, where you will want to type MSDTSServer100 for the
service to cluster. The last screen in the wizard is the Registry Replication screen, where you will want to
ensure that the SOFTWARE\Microsoft\Microsoft SQL Server\100\SSIS\ServiceConfigFile key is
replicated. If a change is made to this registry key, it will be replicated to all other nodes. After you finish
the wizard, the SSIS service will be almost ready to come online and be clustered.

 The final step is to move any packages that were stored on the file system over to the clustered drive in
the Packages folder. The next time you open Management Studio, you should be able to see all the
packages and folders. You ’ ll also need to edit the MsDtsSrvr.ini.xml file to change the SQL Server to
point to SQL Server ’ s virtual name and not the physical name, which will allow failovers of the database
engine. In the same file, you will need to change the path in the StorePath to point to the
< Clustered Drive > :\Packages folder you created earlier as well. After this, you ’ re ready to bring the
service online in Cluster Administrator.

 Now that your SSIS service is clustered, you will no longer connect to the physical machine name to
manage the packages in Management Studio. You will now connect to the network name that you
created in Cluster Administrator. If you added SSIS as a clustered resource in the same group as SQL
Server, you would connect to the SQL Server ’ s virtual network name.

c22.indd 823c22.indd 823 8/28/08 12:47:17 PM8/28/08 12:47:17 PM

Chapter 22: Administering SSIS

824

 File System or the MSDB Deployment
 As was discussed earlier, there are two places you can store your packages: on the file system or in the
msdb database. During development, packages are all stored as .DTSX files on the file system or in your
source control system. Each storage option has its own pros and cons, and which option you choose will
be based on what is more important to you. We cover these pros and cons in much depth in this section
but to summarize, the following table gives you a high - level idea of which storage option is best, based
on what functionality you ’ re most interested in. Just because a given storage option is not checked, does
not mean it doesn ’ t have that functionality. The ones checked are just most optimized for the given
functionality.

 Functionality Best in File System Best in MSDB

 Security @@ch

 Backup and recovery @@ch

 Deployment @@ch

 Troubleshooting @@ch

 Availability @@ch

 Execution Speed @@ch @@ch

 If security concerns you greatly, you may want to consider placing your packages in the msdb database.
To secure your packages on the file system, you could have multiple layers of security by using the
Windows Active Directory security on the folder on the file system where the packages are at. You could
also then place a password on the packages to keep users who may have administrator rights to your
machine from executing the package. This does add extra complexity to your package deployments in
some cases. If you store your packages in the msdb database, you can assign package roles to each
package to designate who can see or execute the package. The packages can also be encrypted in the
msdb database, which strengthens your security even more. We cover this in much more depth later in
this chapter.

 Backup and recovery is simpler when you store your packages in the msdb database. If you store
your packages in the msdb database, then you must only wrap the msdb database into your regular
maintenance plan to back up all the packages. As packages are added, they are wrapped into
the maintenance plan. The problem with this is that you cannot restore a single package using this
mechanism. You ’ d have to restore all the packages to a point in time, and that would also restore the jobs
and history. The other option is a file system backup, which would just use your favorite backup
software to backup the folders and files. However, you must rely on your Backup Operator to do this for
you, which makes some uneasy. You could at that point restore individual packages to a point in time. In
reality, you may just go ahead and redeploy the packages from SourceSafe if you couldn ’ t retrieve a
backup file.

c22.indd 824c22.indd 824 8/28/08 12:47:18 PM8/28/08 12:47:18 PM

Chapter 22: Administering SSIS

825

 File system deployments are much simpler but less sophisticated. To deploy packages onto the file
system, you must only copy them into the directory for the package store. You can create subdirectories
under the parent directory to subdivide it easily. You can also copy a single package over easily as well,
in case you need to make a package change. To import a package into the package store using the msdb
database, you must use Management Studio (or a command - line tool called dtutil.exe) and import
them package by package. To do a bulk migration, you could use the deployment utility we discussed in
the last chapter.

 Along the same lines as deployment is troubleshooting. If something were to go bump in the night and
you wanted to see if the packages in production were the same release as the packages you thought you
had deployed, you only need to copy the files down to your machine and perform a comparison using
SourceSafe or another similar tool. If the files were stored in the msdb database, you would have to
right - click each package in Management Studio and select Export. If the same packages were stored in
the file system, you must only copy the files to your machine.

 Availability of your packages is always on the top of the list for DBAs. If you store the packages in the
msdb database and the database engine goes down, the packages are unavailable. If they were stored in
the file system, then your packages would be available for execution. Of course, if the database engine is
down, then probably one of your key Data Sources would also be down at the time.

 The good news is no matter what storage option you choose, the performance will be the same. As you
can see, there are many pros and cons to each storage option and neither overwhelmingly wins. The
main reason that we choose to use the file system generally is for simplicity of deployment.

 Management Studio
 In SSIS, there ’ s delineation between development and administration. This makes the development
model much more like developing a regular C# program. In a web application, you would never make a
code change to the C# application on the production server. Instead, if you wanted to make a change,
you would check it out of Source Control, make the change, and then redeploy. The same C# model
applies to SSIS.

 When you open Management Studio, select the Connect drop - down box in the Object Explorer window
and select Integration Services. Once you connect, you will see all the different stores that are available
for you to explore. Figure 22 - 9 shows the results of the configuration change we made to the
 MsDtsSrvr.ini.xml file. As you can see, there are two stores that this SSIS service is controlling.

 A connection to that store isn ’ t made until you expand one of the folders as shown with the File System
store in Figure 22 - 9 (your list of packages may vary from mine). At that point, you may experience a
timeout if you ’ re trying to connect to an msdb database that isn ’ t online, or where the server is offline.
Otherwise, when you expand the folder, you will see a list of folders and packages that are stored in that
particular store.

c22.indd 825c22.indd 825 8/28/08 12:47:18 PM8/28/08 12:47:18 PM

Chapter 22: Administering SSIS

826

 You can also access all the packages that are running, if you ’ re an Administrator, or packages that you
started under the Running Packages folder. From here, you can stop packages that are running too long
by right - clicking the package and selecting Stop. You can also right - click the folder and select Reports
General to see a report of all the packages running and for how long. In Figure 22 - 10 , you can see that
there are two instantiations of the Package1 package. Both were executed by the Administrator account,
and the Execution duration is the amount of milliseconds since the start time.

Figure 22-10

Figure 22-9

 You can right - click any item or folder in the tree to produce item - specific reports. At a package level, you
can see all the details for the package that the designer has exposed in BIDS. At the folder level, you can
see all the packages in the folder and their build numbers.

 Running Packages with DTExecUI
 The primary way to execute a package is with DTExecUI.exe . This utility is a graphical wrapper for
 DTExec.exe , and provides an easier way to produce the necessary switches to execute the package.
Nearly all the same tabs and options you see in DTExecUI.exe will be available also when you schedule
the package. The quickest way to open the utility is from within Management Studio. To open it from
there, right - click any package that you wish to execute and select Run. You can also open the utility by
selecting Start Run and typing DTExecui.exe .

c22.indd 826c22.indd 826 8/28/08 12:47:18 PM8/28/08 12:47:18 PM

Chapter 22: Administering SSIS

827

 Before we begin with this utility, it ’ s important to note that it ’ s a 32 - bit utility. The utility will run on a
64 - bit machine; however, it will wrap the 32 - bit version of DTExec.exe . In a later section of this chapter,
we cover some tricks to use to run the package in 64 - bit mode.

 When you right - click a package in Management Studio and select Run, the first screen in DTExecUI is
filled out for you automatically. This page, shown in Figure 22 - 11 , points to the package you wish to
execute and where the package is located. If you select the Package Store to connect to from the Package
Source drop - down box, you ’ ll be able to see all the packages stored on the server no matter where they
are stored. Your other options are SQL Server or the File System. With the SQL Server option, you will
only see packages stored in the msdb of that server that you name. The File System option allows you to
point to a .dtsx file to execute.

Figure 22-11

 The next page in the Execute Package Utility is the Configurations page. In this page, you can select
additional configuration files that you wish to use for this execution of the package. If you do not select
an additional configuration file, any configuration files that are already on the server will be used. You
will not be able to see existing configuration files that are being used in the package.

 The Command Files page provides links to files that contain a series of additional switches you can use
during execution. Remember, this tool wraps DTExec, which is a command - line utility. With a command
file, you can place part of the standard DTExec switches in a file and the reuse them over and over again
for every package.

c22.indd 827c22.indd 827 8/28/08 12:47:19 PM8/28/08 12:47:19 PM

Chapter 22: Administering SSIS

828

 The Connection Managers page shows the power of Connection Managers. This page allows you to
change the Connection Manager settings at runtime to a different setting than what the developer had
originally intended. For example, perhaps you ’ d like to move the destination connection for a package to
a production server instead of a QA server (shown in Figure 22 - 12). Another typical example is when
you don ’ t have the same drive structure in production as they had in development and you need to
move the Connection Manager to a different directory.

Figure 22-12

 The Execution Options page (shown in Figure 22 - 13) gives you advanced settings for the package
execution. For example, you can force the package to fail upon the first package warning, which would
normally be ignored. You can also simply validate the package without executing the package. An
especially powerful setting in this page is the Maximum Concurrent Executables option. This option
simply controls how many concurrent tasks will run in parallel. Often times, you may migrate the
package to a different environment with less processors and it could cause performance issues until you
lower this setting. The setting of - 1 means that two tasks plus the number of CPUs will run concurrently.
The last set of options on this page allows you to enable checkpoints on the package, if they are not
already enabled, by checking the Enable Package Checkpoints option and specifying a name.

c22.indd 828c22.indd 828 8/28/08 12:47:19 PM8/28/08 12:47:19 PM

Chapter 22: Administering SSIS

829

 The Reporting page (shown in Figure 22 - 14) controls what type of detail will be shown in the
console. The default option is Verbose, which may be too detailed for you. You may decide that you ’ d
rather only show Errors and Warnings, which would perform slightly better than the verbose message.
You can also control which columns will show in the console.

Figure 22-13

Figure 22-14

c22.indd 829c22.indd 829 8/28/08 12:47:20 PM8/28/08 12:47:20 PM

Chapter 22: Administering SSIS

830

 Another powerful page is the Set Values page (shown in Figure 22 - 15). This page allows you to override
nearly any property you wish by typing the property path for the property. The most common use
for this would be to set the value of a variable. To do this, you would use a property path that looked
like this: \Package.Variables[VariableName].Value, then type the value for the variable in the next
column. This page is also a way to work around some properties that can ’ t be set through expressions.
With those properties, you generally can access them through the property path.

Figure 22-15

 In the Verification page (shown in Figure 22 - 16), you can ensure that you only execute packages that
meet your criteria. For example, you may want to make sure you only execute signed packages or
packages of a certain build number. This may be handy for Sarbanes - Oxley compliance, where you must
guarantee you don ’ t execute a rogue package.

c22.indd 830c22.indd 830 8/28/08 12:47:20 PM8/28/08 12:47:20 PM

Chapter 22: Administering SSIS

831

 The Command Line page (shown in Figure 22 - 17) is one of the most important ones. This page shows
you the exact DTExec.exe command that will be executing. You can also edit the command here as well.
After the command is how you ’ d like it, you can copy and paste it in a command prompt after the
command DTexec.exe . We cover DTexec.exe in a later section, but this page can save you from having
to learn how to use that utility. It is also sometimes the only way execute the package in 64 - bit mode.

Figure 22-16

Figure 22-17

c22.indd 831c22.indd 831 8/28/08 12:47:20 PM8/28/08 12:47:20 PM

Chapter 22: Administering SSIS

832

 You can also execute the package by clicking the Execute button at any time from any page. After you
click the Execute button, you will see the Package Execution Progress window, which will show you any
warnings, errors, and informational messages, as shown in Figure 22 - 18 . You ’ ll only see a fraction of the
message in some cases and you can hover over the message to see the full message.

Figure 22-18

 Security
 The only login option for connecting to the SSIS service is to use your Active Directory account. Once
you connect, you ’ ll only see packages that you are allowed to see. This protection is accomplished based
on package roles. Package roles are only available on packages stored in the msdb database. Packages
stored on the file system must be protected with a password.

 Package roles can be accessed in Management Studio by right - clicking a package that you wish to
protect and selecting Package Roles. The Package Role dialog box shown in Figure 22 - 19 allows you to
choose the MSDB role that will be in the writer role and reader role. The writer role can perform
administration - type functions like overwrite a package with a new version, delete a package, manage
security, and stop the package from running. The reader role can execute and view the package. The role
can also export the package from Management Studio.

Figure 22-19

c22.indd 832c22.indd 832 8/28/08 12:47:21 PM8/28/08 12:47:21 PM

Chapter 22: Administering SSIS

833

 Package roles use database roles from the msdb database. By default, people who are in the db_
dtsadmin, db_dtsoperator database roles or the creator of the package can be a reader. The writer role is
held by members of the db_dtsadmin database role, or the creator of the package by default. When you
select the drop - down box in the Package Roles dialog box, you can change the package role from the
default one to another customized role from the msdb database.

 You may want to customize a group of people as the only ones who can execute the accounting set of
packages. Let ’ s do a quick example together to secure a package to a role called Accounting for the
writer and reader package role. First, open Management Studio and connect to your development or
local database engine instance. Then, expand System Databases msdb Security and right - click Roles,
selecting New Role. This opens the New Database Role dialog box (shown in Figure 22 - 20). You will of
course need the appropriate security to create a new database role.

 Name the role AccountingRole and make your own login a member of the role by clicking the Add
button. Additionally, make your own user an owner of the role. You may have to add your login as a
user to the msdb database prior to adding the role if it ’ s not there already.

Figure 22-20

c22.indd 833c22.indd 833 8/28/08 12:47:21 PM8/28/08 12:47:21 PM

Chapter 22: Administering SSIS

834

 You ’ re now ready to tie this role to a package. In Management Studio, connect to Integration Services.
Right - click any package stored in the msdb database and select Package Role to secure the package.
For the writer and reader roles, select the newly created AccountingRole role and click OK. Now,
packages of the AccountingRole role will be able to perform actions to the package. If you ’ re a member
of the sysadmin role for the server, you will be able to perform all functions in SSIS like execute and
update any package and bypass the package role.

 If your packages are stored on the file system, you must set a package password on the package to truly
secure it. You can also enforce security as well, by protecting the directory with Windows Active
Directory security on the file or folder where your packages are stored. To set a package password in
BIDS, you can set the ProtectionLevel property to EncryptSensitiveWithPassword and type a password
for the PackagePassword property. You can also set a package password using a utility called DTutil.exe,
which we cover in a later section in this chapter.

 To connect to a package store, the SSIS service must be started on the given server. Additionally, you
must have TCP/IP port 135 open between your machine and the server. This is a common port used for
DCOM, and many network administrators will not have this open by default. You ’ ll also need to have
the SQL Server database engine port open (generally TCP/IP port 1433) to connect to the package store
in the msdb database.

 Command - Line Utilities
 We ’ ve spent the bulk of this chapter focusing on the GUI tools you can use to administer SSIS. There are
also a series of tools that you can use from a command line that act as a Swiss Army knife to an SSIS
administrator. The two tools that you ’ ll use are DTExec.exe and DTUtil.exe . DTExec is a tool you ’ ll
use to execute your packages from a command line, and DTUtil.exe can help you migrate a package or
change the security of a package, just to name a few of its functions.

 DTExec
 You ’ ve already seen the power of DTExecUI for executing your packages. That tool wraps the command -
 line utility DTExec. A shortcut here is to use DTExecUI to create the command for you. You can see the
full list of switches for this utility by typing:

dtexec.exe /?

 For example, to execute a package that is stored in the msdb database on your localhost, you could use
the following command. This command is more verbose than is required. In reality, you only need to
type the /DTS and /SERVER switches to find and execute the package.

DTExec.exe /DTS “\MSDB\DBSnapshots” /SERVER localhost /MAXCONCURRENT “ -1 “
/CHECKPOINTING OFF /REPORTING V

 In Windows Task Manager, you can kill the instantiation of DTExec in order to stop a runaway package
that refuses to stop through normal means.

c22.indd 834c22.indd 834 8/28/08 12:47:21 PM8/28/08 12:47:21 PM

Chapter 22: Administering SSIS

835

 DTUtil
 One of the best undiscovered command - line tools in your administrator kit is DTUtil.exe. This is also a
good tool for developers as well. The tool performs a number of functions, including moving packages,
renumbering the PackageID, re - encrypting a package, and digitally signing a package. To see everything
this tool can do, you can type the following command from a command prompt:

DTUtil.exe /?

 Essentially, this tool can be used to do many of the things that you do in Management Studio and to a
lesser extent, BIDS. The next few sections show you a few creative ways to use DTUtil.exe.

 Re - Encrypting All Packages in a Directory
 By default, SSIS files in development are encrypted to prevent an unauthorized person from seeing your
SSIS package. The type of encryption is seamless behind the scenes, and is at a workstation and user
level. Earlier in development you can set the ProtectionLevel property to EncryptSensitiveWithUserKey
(default option) to lock down password information in Connection Managers. You can also set a
password on the package by changing the ProtectionLevel property to EncryptSensitiveWithPassword.

 By default, if you were to send a package that you ’ re developing to another developer on your team, he
would not be able to open it. The same would apply if you logged in with a different user. You would
receive the following error:

There were errors while the package was being loaded.
The package might be corrupted.
See the Error List for details.

 The error is very misleading. In truth, you can ’ t open the package because the originating user encrypted
the package whether on purpose or not. To fix this, the owner of the package can open the package and
select a different option in the Properties pane (like a package password) for the ProtectionLevel option.
The default option is EncryptSensitiveWithUserKey. To protect the entire package with a password,
select the EncryptAllWithPassword option.

 An option that we like is that an SSIS designer encrypts all packages with the default option, and when
he ’ s ready to send to production, he can develop a batch file to loop through a directory ’ s .dtsx file and
set a password. The batch file would use DTUtil.exe and look like this:

for %%f in (*.dtsx) do Dtutil.exe /file %%f /encrypt file;%%f;3;newpassword

 This would loop through each .dtsx file in your directory and assign the password of newpassword.
The production support group could then use the same batch file to reset the password to a production
password. The number 3 prior to the word newpassword sets the ProtectionLevel property of the
package to EncryptAllWithPassword.

 Handling a Corrupt Package
 Occasionally when you copy objects in and out of a container, you may corrupt a given task in
the package. In that example, you can ’ t delete the task or move it outside the container or link it in the
container. This doesn ’ t happen often, but when you suspect you have a corrupt package or object,

c22.indd 835c22.indd 835 8/28/08 12:47:22 PM8/28/08 12:47:22 PM

Chapter 22: Administering SSIS

836

you can use DTUtil.exe to re - generate the package ’ s XML. To do this, you can use the – I switch to
generate a new PackageID and regenerate the XML, like this:

DTUtil.exe -I -File dbsnapshots.dtsx

 Once you do this, the package may look different when you open it because the XML has been
regenerated. For example, some of your containers may be smaller than original and placed in areas they
weren ’ t originally in. You can also use this command to generate a new PackageID when the developer
copied and pasted the package in BIDS.

 You can also create a batch file to loop through the directory and regenerate the ID for every package in
the directory. The batch file will loop through every .dtsx file and execute DTUtil.exe. The batch file
would look like this:

for %%f in (*.dtsx) do dtutil.exe /I /FILE “%%f”

 Scheduling a Package
 The primary way to schedule packages in SSIS is with SQL Server Agent, which ships with the SQL
Server database engine. If you don ’ t have a database engine in your environment, then you must use
something like Task Scheduler, which ships with Windows. Scheduling a package with SQL Server
Agent is much simpler and gives you much more flexibility.

 The first step to scheduling a package is to connect to the database engine. Ensure that the SQL Server
Agent service is started. Right - click Jobs under the SQL Server Agent tree and select New Job. The New
Job dialog box will open.

 In the General page, type the name of your job as Execute Package . In the Steps page, click New, which
opens the New Job Step dialog box. Type Execute Sample Package for the Step Name property in the
General page as shown in Figure 22 - 21 . Then, select SQL Server Integration Services Package as the type
of step. For the time being, use the default SQL Agent Service Account as the Run As account. This
means that the account that starts SQL Server Agent will execute the package, and sources and
destinations in your package will use Windows Authentication with that account if they ’ re set up to use
Windows Authentication.

 For the Package Source, select the SSIS Package Store and point to a valid SSIS service location. Pick any
test package that won ’ t have production impact by clicking the ellipsis button. When you click the
ellipsis button, you ’ ll see all the folders in the package store, and whether they are in the msdb database
on the file system.

c22.indd 836c22.indd 836 8/28/08 12:47:22 PM8/28/08 12:47:22 PM

Chapter 22: Administering SSIS

837

 The rest of the options resemble exactly what you saw earlier in DTExecUI.exe, with the exception of the
Reporting tab because there is no console to report to from a job. You can also optionally go to the
Advanced page to set the Include Step Output in History to get more information about the job when it
succeeds or fails. Click OK to go back to the New Job dialog box. You can then go to the Schedules page
to configure when you ’ d like the job to run. Click OK again to go back to the main Management Studio
interface.

 With the job now scheduled, right - click the newly created job and select Start Job at Step. You will then
see a status box open that starts the job. After you see a success, it does not mean the job passed or failed.
Instead it just means that the job was started successfully. You can right - click the job and select View
History to see if it was successful. This opens the Log File Viewer, which shows you each execution of
the package. You can drill into each execution to see more details about the step below. The information
this step gives you is adequate to help you diagnose a problem, but you may need package logs to truly
diagnose the problem.

Figure 22-21

c22.indd 837c22.indd 837 8/28/08 12:47:22 PM8/28/08 12:47:22 PM

Chapter 22: Administering SSIS

838

 Proxy Accounts
 A classic problem in SSIS and DTS is that a package may work in the design environment but not work
once scheduled. Typically, this is because you have connections that use Windows Authentication. At
design time, the package uses your credentials, and when you schedule the package, it uses the SQL
Server Agent service account by default. This account may not have access to a file share or database
server that is necessary to successfully run the package. Proxy accounts in SQL Server 2008 allow you to
circumvent this problem.

 With a proxy account, you can assign a job to use an account other than the SQL Server Agent account,
as shown in Figure 22 - 22 . Creating a proxy account is a two - step process. First, you must create a
credential that will allow a user to use an Active Directory account that is not their own, Then, you
specify how that account may be used.

 To first create a credential, open Management Studio and right - click Credentials under the Security tree
and select New Credential (shown in Figure 22 - 22). For this example, you ’ ll create a credential called
Admin Access. The credential will allow users to temporarily gain administrator access. For the Identity
property, type the name of an administrator account or an account with higher rights. Lastly, type the
password for the Windows account, and click OK.

 As you can imagine, because you ’ re typing a password here, be careful of your company ’ s password
expiry policies. Credential accounts should be treated as service accounts.

Figure 22-22

c22.indd 838c22.indd 838 8/28/08 12:47:23 PM8/28/08 12:47:23 PM

Chapter 22: Administering SSIS

839

 The next step is to specify how the credential can be used. Under the SQL Server Agent tree, right - click
Proxies and select New Proxy, which opens the New Proxy Account dialog box (shown in Figure 22 - 23).
Type Admin Access Proxy for the Proxy Name property, and Admin Access as the Credential Name.
Check SQL Server Integration Services Package for the subsystem type allowed to use this proxy.

Figure 22-23

 Optionally, you can go to the Principals page in the New Proxy Account dialog box to state which roles
or accounts can use your proxy from SSIS. You can explicitly grant server roles, specific logins, or
members of given msdb roles rights to your proxy. Click Add to grant rights to the proxy one at a time.

 You can now click OK to save the proxy. Now if you create a new SSIS job step as was shown earlier,
you ’ ll be able to use the new proxy by selecting the Admin Access Proxy from the Run As drop - down
box. Any connections that use Windows Authentication will then use the proxy account instead of the
standard account.

 64 - Bit Issues
 As we mentioned before, DTExecUI.exe is a 32 - bit application. Because of this, whenever you execute a
package from DTExecUI.exe, it will execute in 32 - bit mode and potentially take longer to execute than if
you were executing it on your development machine. Much of this is because data must be marshaled
back and forth between 32 - bit mode and 64 - bit mode. To get around this problem, you can go to the

c22.indd 839c22.indd 839 8/28/08 12:47:23 PM8/28/08 12:47:23 PM

Chapter 22: Administering SSIS

840

Command Line page of this tool and copy the command out of the window, and paste it into a command
prompt, prefixing dtexec.exe in front of it.

 DTExec comes in two flavors: 32 - bit and 64 - bit. The 32 - bit version is stored in the
\Program Files (x86) directory and the 64 - bit version is stored in the main \Program Files
directory. Occasionally, we have seen issues where the environment variables have issues and point to
the wrong C:\Program Files\Microsoft SQL Server\100\DTS\Binn\ directory. You can fix this
issue by right - clicking My Computer from your desktop and selecting Properties. Go to the Advanced
tab and select Environment Variables. From the System Variables window, select the Path variable and
click Edit. In that window, you will see the path to the Binn directory. Ensure here that the path is set to
 \Program Files and not \Program Files (x86) , and click OK. After that, you can go to a command
prompt, type DTExec , and know that you ’ re executing the 64 - bit version (the version is of DTExec
shown in the first few lines of executing a package). It ’ s important to note that this only applies to
64 - bit machines.

 A particularly annoying quirk is that (at the time of this publication) there is no MDAC driver for the
64 - bit architecture. The impact of this is that you can ’ t execute packages in 64 - bit mode if they refer to
anything that uses Jet in particular (Access and Excel). If you need to do this, you can execute the
package using the 32 - bit version of DTExec.exe. Another option in BIDS is to right - click the project, select
Properties, and set the Run64BitRuntime to false in the Debugging page. This will set packages inside
the project to run in 32 - bit mode when debugging.

 We ’ ve listed a few quirks of the 64 - bit architecture and SSIS here, but the benefits are incredible. Keep in
mind that SSIS is very memory intensive. If you ’ re able to scale up the memory on demand with a 64 - bit
architecture, there ’ s a truly compelling reason to upgrade. Even though tools like DTExecUI are not
64 - bit ready, packages that are scheduled will run under 64 - bit mode. If you wish for a package to run
under 32 - bit mode, you ’ ll have to schedule the step to run the 32 - bit DTExec from the scheduled job by
going to the runtime option in the Execution Options tab in SQL Server Agent.

 Performance Counters
 There are a few key performance counters to watch when you ’ re trying to monitor performance of your
SSIS package. These counters will greatly help you troubleshoot, if you have memory contention or if
you need to tweak your SSIS settings. Inside the System Monitor (also known to old - school
administrators as perfmon) is a Performance Object called SQLServer: SSIS Pipeline. There are quite a
few other objects as well but they ’ re not useful enough to describe here.

 If you ’ re trying to benchmark how many rows are being read and written, you can use the Rows Read
and Rows Written counters. These counters show you the number of rows since you starting monitoring
the packages. It sums all rows in total across all packages, and does not allow you to narrow down to a
single package.

c22.indd 840c22.indd 840 8/28/08 12:47:23 PM8/28/08 12:47:23 PM

Chapter 22: Administering SSIS

841

 The most important counters are the buffer counters. The Buffer Memory counter shows you the amount
of memory, in total, being used by all the packages. The Buffers In Use shows you how many buffers are
actually in use. The critical counter here, though, is Buffers Spooled. This shows you how many buffers
have been written from memory to disk. This is critical for the performance of your system. If you have
buffers being spooled, you have a potential memory contention, and you may want to consider
increasing the memory or changing your buffer settings in your package. We talked more about this in
Chapter 14 but for the time being, know that you should never see this number creep above a 5, if not 0.

 Summary
 In this chapter, you ’ ve been shown how to administer SQL Server Integration Services. We showed you
how to run and schedule your packages from Management Studio or how to use some of the more
advanced command - line tools to perform the same functions. Lastly, you were shown some of the key
performance counters in SSIS to watch for performance issues. In the next chapter, you will see a case
study to tie the entire book ’ s concepts together.

c22.indd 841c22.indd 841 8/28/08 12:47:24 PM8/28/08 12:47:24 PM

 Case Study:
A Programmatic Example

 Typically a book like this has to cover so much material that there is not enough space to really dig
into some of the typical issues that you run into when you put the book down and start putting
together your first solution. You end up coming back to the book to flip through all of the one - off
examples, but they just don ’ t seem to provide any insight or applicability to your current project or
deadline. The case study is your best chance to get specific, to get into the ring, to take a business
issue and run with it. Hopefully you ’ ll be the beneficiary of this.

 You will use the SSIS environment to solve a payment processing problem with payment data of
varying levels of quality that has to be validated against corporate billing records. This example is
a little different from the typical data - warehouse - type ETL case study; it ’ s a little more
programmatic. Not to say that there is not any ETL. You ’ ll need to import three heterogeneous
data formats, but the interesting part is the use of the SSIS Data Flow Transforms that allow for the
development of smart validation and matching programming logic. This will all combine into a
solid learning opportunity that showcases the real capabilities of SSIS.

 What You Will Take Away
 The principal advantages of this case study are multiple opportunities to highlight specific
techniques and use - cases that you can take away and add to your SSIS toolkit. Specifically, you ’ ll
get examples of:

 How to use expressions in variables to create uniquely named files.

 How to use expressions in package properties.

 How to use expressions in variables to dynamically configure OLD DB Connections.

 How to set variables from Control Flow Script Tasks and Data Flow Script Components.

❑

❑

❑

❑

c23.indd 843c23.indd 843 8/28/08 12:48:04 PM8/28/08 12:48:04 PM

Chapter 23: Case Study: A Programmatic Example

844

 How to retrieve and set variables in Control Flow with Execute SQL Task with Output
Parameters and result sets for both OLE DB and .NET Connections.

 How to create conditional workflows with expressions and precedence constraints.

 How to retrieve Currency amounts from a database into a Double variable data type within an
Execute SQL Control Flow.

 How to retrieve row counts using Aggregate Count and Row Count Transforms.

 How to iterate through a set of XML files and import using the Data Flow XML Source.

 How to use the Import Column Transform to save complete files into a database.

 How to create a parent package to manage child packages.

 How to use the Lookup and Fuzzy Lookup Transforms to match data elements.

 If any of these takeaways sound like a problem that you are dealing with, then dive in and let ’ s
get started.

 Background
 Company ABC is a small benefits company that sells several niche products to other small business
owners. They offer these products directly to the employees of the small businesses, but the employers
are billed, not the employees. Company ABC considers the employers to be their customers and creates
monthly invoices for the employee - selected services. Each invoice contains an invoice number for
reference purposes. Company ABC ’ s customers deduct the cost of the products from the employee
paychecks. These payments are then submitted back to Company ABC in a lump sum, but because of
timing issues and ever - changing worker populations, the payment doesn ’ t always match the billed
amount. Customers have the option of paying invoices using one of the following payment methods:

 Pay by using PayPal or an email payment service. These services directly credit a corporate bank
account and typically provide a small description of the service being paid, the amount, and an
email address or other type of surrogate user identity. These entries are downloaded daily from
an online bank account and are available within an OLE DB – compliant Data Source.

 Pay by check. The customer sends a copy of the invoice and a check in the mail to a special
address that is serviced by a bank. The invoice could match fully, partially, or not even be
provided with the payment. The bank credits the account for each check received and provides
an output file containing as much data as practicable from the supporting material to help the
company identify and apply the payment. A payment that is serviced like this is commonly
known as a lockbox .

 Pay by wire. Payments can be made by direct debit of customer bank accounts or direct credit to
the corporate account. These payments are known as wires. This type of payment entry
provided through a large bank or an automated clearinghouse is also known as ACH
processing.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c23.indd 844c23.indd 844 8/28/08 12:48:05 PM8/28/08 12:48:05 PM

Chapter 23: Case Study: A Programmatic Example

845

 Business Problem
 Just working with the low - quality payment data involves a significant amount of manual lookup to
match payments to customers and invoices. Because Company ABC is growing, the volume of payments
is exceeding their capacity to continue to process payments manually. If the invoice number was always
received with the payment, an automated process could easily identify the customer from the invoice
and make some decisions about the payment by comparing the paid and billed amounts. So far, attempts
at automating even the paper invoice through the mail have failed because customers don ’ t always send
in copies of invoices, or they resend in old, outdated invoices. Using a bank lockbox has helped ease the
burden of getting the deposits processed, but the bank makes mistakes too, truncating and transposing
customer name or invoice data. Opening up the company to wires and PayPal accounts has really
complicated matters, because very little corroborating data is provided in these transactions.

 Approximately 60% of the incoming payments can ’ t be automatically identified using a strict compare of
invoice number and payment amount. The good news is that they can almost all be manually identified
by a small group of subject matter experts (SMEs) who really understand the process and know how to
use the corporate data. The bad news is that once a customer and invoice are identified by the SMEs, the
method of making the match is not recorded. The next month the process of identification starts all over
again. Company ABC needs a way to wade as far as possible through the payments automatically to
take the place of the SMEs. This process should match items by invoice number, name, and email
address with some measurable certainty and leave only the most troublesome payments for research
activity. They need a solution that runs continuously to meet the demands of a 24 - hour turnaround
standard for their industry.

 Solution Summary
 Company ABC has made the need to resolve this payment - processing hurdle their top priority. They
already have a custom software application that gives users the ability to break the bulk payments down
to an employee level, but the application requires that the customer and invoice be identified. The
solution is to use SSIS to develop a package that can process data from these heterogeneous Data Sources.
This solution should require no human intervention on items that can be identified as paid - as - billed
items. The solution should be as “ smart ” as possible and be able to identify bank items that have been
manually identified before. Items that can ’ t be identified will still need to be processed manually, but it is
expected that this number should drop 20 to 40 percent.

 In preparation for the design of the SSIS package, specification documents for the two input files, ACH
and Lockbox, have been gathered. Each file provided by the bank contains a batch of multiple payment
transactions. These files can be sent by either the bank or ACH clearinghouse to specific folders. The
process should be able to access these folders and continuously look for new files to process. When a file
is located in the input folder, it needs to be validated for proper format, for previous processing, so a
file is not processed more than once, and for each payment to summarize and balance to the total
deposit. Files not meeting these criteria will be rejected. Once a file is verified, each payment in the file
should be examined for matches to existing invoices. If no match is found, the data should be examined
against previously matched data. Matched data will flow into a completed queue to be broken into
employee - level charges by another piece of software. Unmatched data will flow into a working queue
that will require user intervention. Successful customer matches will be stored for future matching.
Finally, statistics will be created for the input for reporting purposes. Figure 23 - 1 is a diagram of the
business solution.

c23.indd 845c23.indd 845 8/28/08 12:48:05 PM8/28/08 12:48:05 PM

Chapter 23: Case Study: A Programmatic Example

846

 Solution Architecture
 Before you jump into building this integration service, we should lay out the big picture of what we are
to accomplish. You have two sets of tasks: first, to import files of three different formats, to validate the
data, and to load them into your data structures; and second, to process the payments to find customer
and invoice matches. Figure 23 - 2 shows a design where the importing logic is divided into three
packages, each one specific to the type of file that you need to process. We ’ ve learned that breaking
SSIS packages into service - oriented units simplifies the maintenance and troubleshooting, so we ’ ll
demonstrate this method here. Another benefit of this architecture is that it makes it easier for you to
choose just one of these three packages to create and still follow along with the case study. Don ’ t worry
about creating these packages at this point; just get the big picture about where we are going. You can
either create the packages for this solution one at a time, as you walk through the case study instructions,
or alternatively, download the complete solution from www.wrox.com .

 Because the main job of the first core task is to load, it makes sense to name the three separate packages:
CaseStudy_Load_Bank, CaseStudy_Load_ACH, and CaseStudy_Load_Email, respectively. This allows
us to separate the load processes from the identification processes. The identification logic to apply to
each transaction in the payment data is universal, so it makes sense to put this logic into a separate
package. You can name this package CaseStudy_Process. This will make the final package, named
CaseStudy_Driver, the master package that will coordinate the running of each of these processes using
precedence constraints.

$

Bank

$

Bank

$

Bank

Server XML Batch File

Internet Accounting
Database CaseStudy

Database
Application Interfaces

Automated Process
that Identifies and

Matches
Incoming Payments

ACH Payments

E-mail Based
Payments

Paper Based
Lockbox

Payments

Mainframe

Flat File

Client
 Company ABC

Prepared by
 Joe Programmer

Page 1 of 1

Process
 Automated Payment Processing

Approved by
 Mark De Manager

Figure 23-1

c23.indd 846c23.indd 846 8/28/08 12:48:05 PM8/28/08 12:48:05 PM

Chapter 23: Case Study: A Programmatic Example

847

 When you are building packages that have external dependencies on things such as file hierarchies, it is
a good idea to programmatically validate the locations for existence before processing. You ’ ll check for
default paths and create them if they don ’ t exist. If files for the Lockbox or ACH processes exist, you
should read the files, parse the transaction information, validate totals against a control record in the file,
and then persist the information from the file into permanent storage. The toughest part of this
processing logic is that the validation routines have to validate file formats, proper data types, and file
balances and check for file duplication. When processing any flat file from an external source, be aware
of how that import file was generated, and what you might find in it. Don ’ t be surprised to find that
some systems allow a date of 02/30/2008 or amount fields with data like .0023E2.

 The downloaded bank transactions for the PayPal or E - Pay transactions will be easier to process — at
least from an import standpoint. You only need to read information from a table in another OLE DB –
 compliant Data Source. You ’ ll be creating a batch from the transactions, so balancing also shouldn ’ t be an
issue. The hardest part will be identifying these payments, because usually only an amount and an email
address are embedded in the transaction. All this information can be summarized in a flowchart like the
one in Figure 23 - 3 .

ACH XML File

Bank Flat File
CaseStudy_DriverCaseStudy_Load_Bank

CaseStudy_Load_ACH

CaseStudy_Load_Email

CaseStudy_Process

Email Payment
Data

Payment Matching
Process

Data ETL Processes

Case Study Package Structure

Figure 23-2

c23.indd 847c23.indd 847 8/28/08 12:48:06 PM8/28/08 12:48:06 PM

Chapter 23: Case Study: A Programmatic Example

848

 In the CaseStudy_Process package, you are required to complete a matching process of the payment
information to find customers and invoices. You ’ ll first attempt a high - confidence match using an exact
match to the invoice number. If a match is not made, you ’ ll move to a fuzzy lookup on the invoice number.
If a match is still not made, you ’ ll keep moving down to lower - confidence - level matches until you can
retrieve an invoice or at least customer identification. Transactions identifiable only by customer will be
checked against available invoices for a match within a billed - to - paid tolerance of 5 percent. Transactions
that simply don ’ t have enough certainty to be identified will be left at this point to subject - matter experts,
who will individually review and research the transactions to identify the customer or refund the
payment. Research can be saved via software outside this SSIS project into the CustomerLookup table. A
summary flowchart for the CaseStudy_Process package is shown in Figure 23 - 4 .

Look up
Unmatched
Payments by

Invoice Number

Look up
Unmatched
Payments by

Customer Account
 Number

Look up
Unmatched
Payments by

Customer Account
Number

Look up
Unmatched
Payments by

Customer Email
Address

Use Customer
Lookup to Lookup

Unmatched
Payments

Create Lookup
Entries on High

Frequency Matches

Send Confirmation
to Customer if
Processed and

Matched

Read File

Validate and parse
out header and detail

from format

Create Batch Header

Create Batch Details

Store File (audit)

Match payments

Balance Batch

Send confirmation to
the bank

Does File Exist?

Create Batch Header

Create Details

Match Payments

Balance Batch

Any OLE DB
Transactions?

OLE DB Logic

For transactions in
accounting database

For each File

File-Based Logic

XML Lockbox Files
& ACH Flat Files

YY

Figure 23-3

c23.indd 848c23.indd 848 8/28/08 12:48:06 PM8/28/08 12:48:06 PM

Chapter 23: Case Study: A Programmatic Example

849

 Naming Conventions and Tips
 There ’ s nothing like opening up a package that fails in production and seeing tasks named Execute SQL
Task, Execute SQL Task1, and Execute SQL Task2. What do they do? There is also something to be said
when there is so much annotation that it is a nightmare to maintain. The balance depends on your
philosophy and your team, but for now, the following rules seem to make sense in your SSIS
development processes:

 Name the package. Name it something other than package.dtsx. This matters later when you
deploy the packages.

 Name packages with ETL verb extensions: < Package Name > _Extract, < Package Name > _
Transform, or < Package Name > _Load. The extension _Process seems to be explicit enough for
those packages that don ’ t fall into the other three categories.

❑

❑

Look up Unmatched
Payments by Exact
Match to Invoice

Number

Look up Unmatched
Payments by Fuzzy
Match to Invoice

Number

Look up Unmatched
Payments by

Customer Email
Address

Look up Unmatched
Payments by

Customer and Amount
within 5% of Billed

Update Payment with
Invoice and

Customer IDs. Mark
as Processed.

Send Confirmation to
Customer if Processed

and Customer
Requests an Email

Look up Unmatched
Payments by

Customer Name

Look up Unmatched
Payments by

Stored Matches

Try Fuzzy Lookup on
Email Address

Try Fuzzy Lookup on
Customer Name

Leave Transaction
for Subject Matter
Experts to Identify

Found
Match?

Found
Match?

Found
Match?

Found
Match?

Found
Match?

Found
Match?

Found
Match?

N

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

Y

Figure 23-4

c23.indd 849c23.indd 849 8/28/08 12:48:07 PM8/28/08 12:48:07 PM

Chapter 23: Case Study: A Programmatic Example

850

 Provide some brief annotation about what the package does, where it gets inputs and outputs,
and what to do if it fails. Can it be rerun again? Is it part of a larger set of packages? Should it be
restarted on checkpoints?

 Add short descriptive words to SSIS tasks and transforms, but don ’ t alter the name altogether.
For example, change an Execute SQL Task to Execute SQL Task to Retrieve Invoice ID. Use the
description field on the object to provide the detailed information. (You ’ ll see this info in a
tooltip when the mouse hovers over the object.) It is important to document, but completely
changing the name of an Execute SQL Task to Retrieve Invoice ID obscures information about
the “ how ” that is embedded with the knowledge that the task is an Execute SQL Task. You could
of course learn the pictures or use abbreviations, but our stance is that you need to worry about
the guy coming behind you, who has to maintain your package.

 Additional SSIS Tips Before You Start a Large Project
 This whole solution has many parts, so don ’ t get overwhelmed if you are creating them from scratch or
attempting to troubleshoot something. Here are some additional tips for this Case Study and SSIS
package development in general:

 Packages save themselves when you run them, so just be aware.

 Packages don ’ t save themselves as you are working, so save periodically as you work on these
large development packages. There is a nice recovery feature that sometimes will save you —
 don ’ t depend on it.

 Data Viewers are your friends. They are like grid message boxes. Add them in temporarily to see
what is in your transformation stream.

 Default data types aren ’ t your friend. If your tables don ’ t use Unicode text fields, watch your
settings when you are adding columns or source data.

 If you are at a point where you want to experiment, either use source control, or stop and save a
copy of the SSIS project directory for the package you are working on. Experiment with the copy
until you figure out what is wrong. Go back to the original project folder, make your corrections,
and continue. There is no undo in SSIS after you run the package if you aren ’ t using source
control.

 Disable tasks or groups of tasks as you work through large packages to focus only on specific
functional areas until they work. To disable a task, right - click it and select Disable from the
pop - up menu. (Note, however, that you can ’ t disable a transform in the Data Flow.)

 Data Architecture
 This section details the Data Sources both in SQL Server and in the format of each of the input files. First,
create default locations to simulate your receiving area for the external files, and then you ’ ll take a closer
look at each of the input files that are part of the business requirements. All the sample data and
complete set of scripts for this step can be downloaded from www.wrox.com . When you unzip the
sample files for this chapter to your c:\ drive, a directory structure will be created starting with the
parent directory c:\CaseStudy . Underneath are folders containing Database Scripts, sample import
files, and all of the packages. There are two downloads for this chapter, one where all Script Tasks are
done in VB.NET, and another for C#, so you can follow along with the .NET language of your choice.

❑

❑

❑

❑

❑

❑

❑

❑

c23.indd 850c23.indd 850 8/28/08 12:48:07 PM8/28/08 12:48:07 PM

Chapter 23: Case Study: A Programmatic Example

851

You ’ ll need to run the database scripts to create a database called CaseStudy, the table structures, procs
and other database objects, and specific customer and invoice data. The downloaded zip file also puts all
the sample import files into the directories so that you can follow along. So if you like, you can follow
along and piece this solution together, or download the packages and explore.

 File Storage Location Setup
 Create a base directory or use the download files at www.wrox.com to store the file - based imports to this
project. Throughout the case study, the base location will be referred to as C:\casestudy\ . In the base
directory, you ’ ll need two subdirectories: ACH\ and LOCKBOX\ . You will use these locations to store the
files you ’ ll create in the next few sections.

 Bank ACH Payments
 Customers make payments within their own banks or electronic payment systems to Company ABC
through an automated clearinghouse. The automated clearinghouse bundles up all the payments for the
day and sends one XML file through an encrypted VPN connection to an encrypted folder. The bank
wires contain only a minimum amount of information at the transactional level. Each XML file does
contain a header row with a unique ID that identifies the file transmission. The header also contains a
total deposit amount and a transaction count that can be used to further verify the file transmission.
Each transactional detail row represents a deposit and contains two date fields: the date the deposit item
was received, and the date the deposit item was posted to Company ABC ’ s deposit account. Each
payment contains the amount of the deposit and a free - form field that could contain the customer ’ s
name on a bank account, an email address, or anything the customer adds to the wire. More commonly,
the description contains the name on the customer ’ s bank account — which is often very different from
the name in Company ABC ’ s customer data. To make the sample ACH file, and for each file in this
example, you ’ ll need to re - create these files manually or download the files from this book ’ s page at
 www.wrox.com . The bank ACH file looks like the following:

 < BATCH >
 < HEADER > < ID > AAS22119289 < /ID >
 < TOTALDEPOSIT > 180553.00 < /TOTALDEPOSIT >
 < DEPOSITDATE > 07/15/2008 < /DEPOSITDATE >
 < TOTALTRANS > 6 < /TOTALTRANS >
 < /HEADER >
 < DETAIL > < AMOUNT > 23318.00 < /AMOUNT >
 < DESC > Complete Enterprises < /DESC >
 < RECEIVEDDATE > 07/15/2008 < /RECEIVEDDATE >
 < POSTEDDATE > 07/15/2008 < /POSTEDDATE > < /DETAIL >
 < DETAIL > < AMOUNT > 37054.00 < /AMOUNT >
 < DESC > Premier Sport < /DESC >
 < RECEIVEDDATE > 07/15/2008 < /RECEIVEDDATE >
 < POSTEDDATE > 07/15/2008 < /POSTEDDATE > < /DETAIL >
 < DETAIL > < AMOUNT > 34953.00 < /AMOUNT >
 < DESC > Intl Sports Association < /DESC >
 < RECEIVEDDATE > 07/15/2008 < /RECEIVEDDATE >
 < POSTEDDATE > 07/15/2008 < /POSTEDDATE > < /DETAIL >
 < DETAIL > < AMOUNT > 22660.00 < /AMOUNT >
 < DESC > Arthur Datum < /DESC >

c23.indd 851c23.indd 851 8/28/08 12:48:07 PM8/28/08 12:48:07 PM

Chapter 23: Case Study: A Programmatic Example

852

 < RECEIVEDDATE > 07/15/2008 < /RECEIVEDDATE >
 < POSTEDDATE > 07/15/2008 < /POSTEDDATE > < /DETAIL >
 < DETAIL > < AMOUNT > 24759.00 < /AMOUNT >
 < DESC > Northwind Traders < /DESC >
 < RECEIVEDDATE > 07/15/2008 < /RECEIVEDDATE >
 < POSTEDDATE > 07/15/2008 < /POSTEDDATE > < /DETAIL >
 < DETAIL > < AMOUNT > 37809.00 < /AMOUNT >
 < DESC > Wood Fitness < /DESC >
 < RECEIVEDDATE > 07/15/2008 < /RECEIVEDDATE >
 < POSTEDDATE > 07/15/2008 < /POSTEDDATE > < /DETAIL >
 < /BATCH >

 Lockbox Files
 Company ABC has starting using a lockbox service that their bank provides for a nominal fee. This
service images all check and invoice stubs sent to a specific address that the bank monitors. The bank
provides a data file containing the following data attributes for each deposit item: the amount, a
reference number for the invoice, and an image key that can be used to review the images of the item
online. The terms of the service dictate that if the bank can ’ t determine the invoice number because of
legibility issues or if the invoice is not sent in with the deposit item, either a customer account number or
a customer name might be used in place of the invoice number. Periodically during the day, the bank
will batch a series of payments into one file containing a header that includes a batch number, the posted
deposit date for all deposit items, and an expected total for the batch.

 The structure of the file from the bank is as follows:

HEADER:
TYPE 1A TYPE OF LINE H-HEADER
POSTDATE 6A DATE DEPOSIT POSTED
FILLER 1A SPACE(1)
BATCHID 12A UNIQUE BATCH NBR

DETAIL (TYPE I):
TYPE 1A TYPE OF LINE I-INVOICE
IMGID 10A IMAGE LOOK UP ID (2-6 IS ID)
DESC 25A INVOICE OR DESC INFO

DETAIL (TYPE C)
TYPE 1A TYPE OF LINE C-CHECK
IMGID 10A IMAGE LOOK UP ID (2-6 IS ID)
DESC 8S 2 CHECK AMOUNT

 Download or create, using the following data, a file named c:\casestudy\lockbox\samplelockbox
.txt to simulate the Lockbox transmission in this example:

H080108 B1239-99Z-99 0058730760
I4001010003 181INTERNAT
C4001010004 01844400
I4002020005 151METROSPOOO1
C4002020006 02331800

c23.indd 852c23.indd 852 8/28/08 12:48:08 PM8/28/08 12:48:08 PM

Chapter 23: Case Study: A Programmatic Example

853

I4003030009 MAGIC CYCLES
C4003030010 02697000
I4004040013 LINDELL
C4004040014 02131800
I4005040017 151GMASKI0001
C4005040019 01938800

 PayPal or Direct Credits to Corporate Account
 Company ABC has started a pilot program to allow customers to make payments using PayPal and other
similar online electronic payment services. Customers like this option because it is easy to use. However,
these payments are difficult to process for the Accounting group, because not all email addresses have
been collected for the customers, and that is the most common description on the transactions.
Accounting personnel have to do some research in their CRM solution to determine who the customer is
and to release the deposit to the payment systems. Once they ’ ve matched the customer to the transaction
description (email address), they would like to be able to save the matching criteria as data to be used in
future processing. Currently the accounting department uses a data synch process in their accounting
software to download these transactions directly from a special bank account, periodically, during the
day. This information is available through a read - only view in the database called
[vCorpDirectAcctTrans]. Figure 23 - 5 shows the structure of this view.

Figure 23-5

 Case Study Database Model
 The case study database model (see Figure 23 - 6) is limited to only the information relevant to the case
study. The core entities are the following:

 Customer: An entity that utilizes products and services from Company ABC. To keep it simple,
only the customer name, account number, and email address attributes are represented in the
table.

 Invoice: A monthly listing of total billed products and services for each customer. Each invoice
is represented by a unique invoice number. Invoice details are not shown in the case study data
model for simplicity.

❑

❑

c23.indd 853c23.indd 853 8/28/08 12:48:08 PM8/28/08 12:48:08 PM

Chapter 23: Case Study: A Programmatic Example

854

 BankBatch: Any set of transactions from a bank or deposit institution that is combined.
Auditable information expected for the exchange of monetary data is a major part of this entity.
Files, or batches, of transactions must be validated in terms of the number of transaction lines,
and most importantly, by amount. Care must be taken not to load a batch more than once.
Recording the bank batch number or BankBatchNbr field and comparing incoming batches
should allow you to keep this from happening.

 BankBatchDetail: Each bank batch will be composed of many transactions that break down into
essentially a check and an invoice. You could receive as much as both pieces of information or as
little as none of this information. For auditing purposes, you should record exactly what you
received from the input source. You ’ ll also store in this table logically determined foreign keys
for the customer and invoice dimension.

 CustomerLookUp: This lookup table will be populated by your SSIS package and an external
application. This will allow users to store matching information to identify customers for future
processing. This will allow the data import processes to “ learn ” good matches from bad data.

❑

❑

❑

Figure 23-6

 Database Setup
 To get started, you need to set up the database named CaseStudy. The database and all objects in it will
become the basis for your solution to this business issue. Of course, as mentioned earlier, all input files
and scripts are available from the www.wrox.com website. This database is not a consistent data model
in the strictest sense. There are places where NVARCHAR and VARCHAR data fields are being used for
demonstration purposes, and we ’ ll point these out as you work through this case study. Working with

c23.indd 854c23.indd 854 8/28/08 12:48:08 PM8/28/08 12:48:08 PM

Chapter 23: Case Study: A Programmatic Example

855

 NVARCHAR and VARCHAR fields was mentioned as one of the difficulties that new SSIS developers
struggled with, so you ’ ll get to experience how to deal with this issue in this case study. There are two
ways to create a new database. Use the Microsoft SQL Server Management Studio to connect to a server
or database engine of your choice. On the Databases Node, right - click and select the pop - up menu option
New Database. In the New Database editor, provide the database name as CaseStudy. Click OK to accept
the other defaults. The second easy option is to run the following SQL script in a new query editor:

USE [master]
GO
CREATE DATABASE [CaseStudy] ON PRIMARY
(NAME = N’CaseStudy’, FILENAME = N’C:\Program Files\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\CaseStudy.mdf’ , SIZE = 3072KB , MAXSIZE =
 UNLIMITED,
FILEGROWTH = 1024KB)
 LOG ON
(NAME = N’CaseStudy_log’, FILENAME = N’C:\Program Files\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\CaseStudy_log.ldf’ , SIZE = 1024KB , MAXSIZE =
 2048GB ,
FILEGROWTH = 10%)
 COLLATE Latin1_General_CI_AI
GO
EXEC dbo.sp_dbcmptlevel @dbname=N’CaseStudy’, @new_cmptlevel=90
GO

 Customer
 The Customer table can be created in the Microsoft SQL Server Management Studio. Click the New
Query button in the toolbar to open a New Query window. Run the following SQL statement in the
window:

use casestudy
GO
CREATE TABLE [dbo].[Customer](
 [CustomerID] [int] IDENTITY(1,1) NOT NULL,
 [AccountNbr] [char](15) NOT NULL,
 [Name] [varchar](50) NOT NULL,
 [Email] [varchar](50) NULL,
 [SendEmailConfirm] [bit] NOT NULL CONSTRAINT [DF_Customer_SendEmailConfirm]
DEFAULT ((0)),
 CONSTRAINT [PK_Customer] PRIMARY KEY CLUSTERED
(
 [CustomerID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

 To fill the table with potential customers, we ’ ll manufacture some data using the AdventureWorks2008
database. Don ’ t worry; you don ’ t have to have AW installed. Use the script “ Step 2. Create Customer
Table and Data.sql ” from the downloaded zip file to populate the Customer table. This script doesn ’ t

c23.indd 855c23.indd 855 8/28/08 12:48:09 PM8/28/08 12:48:09 PM

Chapter 23: Case Study: A Programmatic Example

856

need access to the AW database to load the customer data into the database using a script. Here is a
partial listing of the full script:

--NOTE: THIS IS ONLY A PARTIAL LISTING
--THERE ARE 104 CUSTOMERS TO ENTER. EITHER DOWNLOAD THE FULL SCRIPT OR
--FOLLOW ALONG TO GENERATE THE CUSTOMER DATA FROM ADVENTUREWORKS2008 DATA
INSERT INTO CaseStudy..Customer(AccountNbr, [Name], email, SendEmailConfirm)
SELECT ‘INTERNAT0001’, ‘International’, ‘GAchong@International.com’,1
INSERT INTO CaseStudy..Customer(AccountNbr, [Name], email, SendEmailConfirm)
SELECT ‘ELECTRON0002’, ‘Electronic Bike Repair & Supplies’, ‘CAbel@msn.com’,1
INSERT INTO CaseStudy..Customer(AccountNbr, [Name], email, SendEmailConfirm)
SELECT ‘PREMIER0001’, ‘Premier Sport, Inc.’, NULL, 0
INSERT INTO CaseStudy..Customer(AccountNbr, [Name], email, SendEmailConfirm)
SELECT ‘COMFORT0001’, ‘Comfort Road Bicycles’, NULL, 0

 If you are curious, the queries that generated this data from the AW database are commented out at the
bottom of the script file.

 Invoice
 To create the Invoice table, run the following SQL statement:

USE [CaseStudy]
GO
CREATE TABLE [dbo].[Invoice](
 [InvoiceID] [int] IDENTITY(1,1) NOT NULL,
 [InvoiceNbr] [varchar](50) NOT NULL,
 [CustomerID] [int] NOT NULL,
 [TotalBilledAmt] [money] NOT NULL,
 [BilledDate] [datetime] NOT NULL,
 [PaidFlag] [smallint] NOT NULL CONSTRAINT [DF_Invoice_PaidFlag] DEFAULT
((0)),
 CONSTRAINT [PK_Invoice] PRIMARY KEY CLUSTERED
(
 [InvoiceID] ASC
) ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Invoice] WITH NOCHECK ADD CONSTRAINT
[FK_Invoice_CustomerID]
FOREIGN KEY([CustomerID])
REFERENCES [dbo].[Customer] ([CustomerID])
GO
ALTER TABLE [dbo].[Invoice] CHECK CONSTRAINT [FK_Invoice_CustomerID]

 You will use the Customer table to generate three months ’ worth of invoice data. In doing so, you are
creating invoice numbers with the customer account number embedded in the invoice number.
Companies commonly do this because it provides an extra piece of identification as a cross - check in an

c23.indd 856c23.indd 856 8/28/08 12:48:09 PM8/28/08 12:48:09 PM

Chapter 23: Case Study: A Programmatic Example

857

environment where there is very limited data. Use the following SQL snippet to simulate and create a set
of invoice entries or use the downloaded script “ Step 3. Create Invoice Table and Data.sql ” to load this
data in statically:

INSERT INTO Invoice(InvoiceNbr, CustomerID, TotalBilledAmt, BilledDate,
PaidFlag)
SELECT InvoiceNbr = ‘151’ + Accountnbr,
 CustomerID,
 TotalBilledAmt = cast(131 * (ascii(left(name, 1)) +
ascii(substring(name,
 2, 1))) as money),
 BilledDate = ‘06/01/2008 00:00:00’,
 PaidFlag = 0
FROM customer
UNION
SELECT InvoiceNbr = ‘181’ + Accountnbr,
 CustomerID,
 TotalBilledAmt = case
 when left(Accountnbr, 1) in (‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’)
 then cast(131 * (ascii(left(name, 1)) + ascii(substring(name,
 2, 1)))
 as money)
 else
 cast(191 * (ascii(left(name, 1)) + ascii(substring(name,
 2, 1)))
 as money)
 end,
 BilledDate = ‘07/01/2008 00:00:00’,
 PaidFlag = 0
FROM customer
UNION
SELECT InvoiceNbr = ‘212’ + Accountnbr,
 CustomerID,
 TotalBilledAmt = case
 when left(Accountnbr, 1) in (‘A’, ‘F’, ‘G’)
 then cast(132 * (ascii(left(name, 1)) + ascii(substring(name, 2,
 1)))
 as money)
 else
 cast(155 * (ascii(left(name, 1)) + ascii(substring(name, 2,
 1)))
 as money)
 end,
 BilledDate = ‘08/01/2008 00:00:00’,
 PaidFlag = 0
FROM customer
GO
UPDATE invoice set totalbilledamt = 18444.00
WHERE invoicenbr = ‘151INTERNAT0002’ and totalbilledamt = 23973

c23.indd 857c23.indd 857 8/28/08 12:48:09 PM8/28/08 12:48:09 PM

Chapter 23: Case Study: A Programmatic Example

858

 CustomerLookUp
 The CustomerLookUp table will be used to store resolutions of bad customer identification data that
continues to be sent through the accounting feeds. Data that the auto - processes can ’ t match would be
matched manually, and the bad data string for an existing customer can be stored for each import type
for future matching purposes. The structure can be created using the following SQL script:

USE [CaseStudy]
GO
CREATE TABLE [dbo].[CustomerLookUp](
 [RawDataToMatch] [varchar](50) NOT NULL,
 [ImportType] [char](10) NOT NULL,
 [CustomerID] [int] NOT NULL,
 CONSTRAINT [PK_CustomerLookUp] PRIMARY KEY CLUSTERED
(
 [RawDataToMatch] ASC,
 [ImportType] ASC
) ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[CustomerLookUp] WITH NOCHECK ADD CONSTRAINT
[FK_CustomerLookUp_CustomerID] FOREIGN KEY([CustomerID])
REFERENCES [dbo].[Customer] ([CustomerID])
GO
ALTER TABLE [dbo].[CustomerLookUp] CHECK CONSTRAINT [FK_CustomerLookUp_CustomerID]

 BankBatch
 The BankBatch table will not only store the summary data from the batch file but also store the file itself
in the BatchFile field. This table can be created using the following SQL statement:

USE [CaseStudy]
GO
CREATE TABLE [dbo].[BankBatch](
 [BankBatchID] [int] IDENTITY(1,1) NOT NULL,
 [BankBatchNbr] [nvarchar](50) NULL,
 [DepositDate] [datetime] NULL,
 [ReceivedDate] [datetime] NULL,
 [BalancedDate] [datetime] NULL,
 [PostedDate] [datetime] NULL,
 [BatchTotal] [money] NULL,
 [BatchItems] [int] NULL,
 [BatchItemsComplete] [int] NULL,
 [FileBytes] [int] NULL,
 [FullFilePath] [nvarchar](1080) NULL,
 [ImportType] [char](10) NULL,
 [ErrMsg] [varchar](1080) NULL,
 [BatchFile] [ntext] NULL,
 CONSTRAINT [PK_BankBatch] PRIMARY KEY CLUSTERED
(
 [BankBatchID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,

c23.indd 858c23.indd 858 8/28/08 12:48:10 PM8/28/08 12:48:10 PM

Chapter 23: Case Study: A Programmatic Example

859

 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]
GO
CREATE NONCLUSTERED INDEX [IX_BatchNumber_ImportType] ON [dbo].[BankBatch]
(
 [BankBatchNbr] ASC,
 [ImportType] ASC
)
GO

 BankBatchDetail
 The detail to the BankBatch table can be created using the following SQL script:

USE [CaseStudy]
GO
CREATE TABLE [dbo].[BankBatchDetail](
 [BankBatchDtlID] [int] IDENTITY(1,1) NOT NULL,
 [BankBatchID] [int] NOT NULL,
 [RawInvoiceNbr] [nvarchar](50) NULL,
 [RawAccountNbr] [nvarchar](50) NULL,
 [ReferenceData1] [nvarchar](50) NULL,
 [ReferenceData2] [nvarchar](50) NULL,
 [MatchedInvoiceID] [int] NULL,
 [MatchedCustomerID] [int] NULL,
 [MatchedDate] [datetime] NULL,
 [PaymentAmount] [money] NULL,
 CONSTRAINT [PK_BankBatchDtlID] PRIMARY KEY CLUSTERED
(
 [BankBatchDtlID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

ALTER TABLE [dbo].[BankBatchDetail] WITH NOCHECK ADD CONSTRAINT
[FK_BankBatchDetail_BankBatchID] FOREIGN KEY([BankBatchID])
REFERENCES [dbo].[BankBatch] ([BankBatchID])
GO
ALTER TABLE [dbo].[BankBatchDetail] CHECK CONSTRAINT
[FK_BankBatchDetail_BankBatchID]
GO
ALTER TABLE [dbo].[BankBatchDetail] WITH CHECK ADD CONSTRAINT
[FK_BankBatchDetail_CustomerID] FOREIGN KEY([MatchedCustomerID])
REFERENCES [dbo].[Customer] ([CustomerID])
GO
ALTER TABLE [dbo].[BankBatchDetail] WITH CHECK ADD CONSTRAINT
[FK_BankBatchDetail_InvoiceID] FOREIGN KEY([MatchedInvoiceID])
REFERENCES [dbo].[Invoice] ([InvoiceID])

c23.indd 859c23.indd 859 8/28/08 12:48:10 PM8/28/08 12:48:10 PM

Chapter 23: Case Study: A Programmatic Example

860

 Corporate Ledger Data
 To simulate a view into your Direct Credits to the Corporate Account, you need to create the
GLAccountData structure and your view [vCorpDirectAcctTrans]. Run the following SQL to create the
physical table:

USE [CaseStudy]

GO
CREATE TABLE [dbo].[GLAccountData](
 [TransID] [int] IDENTITY(1,1) NOT NULL,
 [PostDate] [datetime] NULL,
 [ProcessDate] [datetime] NULL,
 [DepositAmount] [money] NULL,
 [TransDesc] [varchar](50) NULL,
 [GLAccount] [char](10) NULL,
 CONSTRAINT [PK_GLAccountData] PRIMARY KEY CLUSTERED
(
 [TransID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

 Run the following SQL to create the logical view to this data:

USE [CaseStudy]
GO
CREATE VIEW dbo.vCorpDirectAcctTrans
AS
SELECT TransID, PostDate, ProcessDate, DepositAmount, TransDesc
FROM dbo.GLAccountData

 Run this SQL batch to load the GLAccountData with some sample deposit transactions from the direct -
 pay customers:

INSERT INTO GLACCOUNTDATA(postdate, processdate, depositamount, transdesc,
glaccount)
SELECT ‘08/09/08’, ‘08/10/08’, 22794.00, ‘PAYPAL*MBlack@Marsh.com’, ‘BANK’
UNION
SELECT ‘08/09/08’, ‘08/10/08’, 21484.00, ‘PAYPAL*JBrown@CapitalCycles.com’,
‘BANK’
UNION
SELECT ‘08/09/08’, ‘08/10/08’, 22008.00, ‘PAYPAL*DBlanco@msn.com’, ‘BANK’
UNION
SELECT ‘08/09/08’, ‘08/10/08’, 22794.00, ‘PAYPAL*CBooth@MagicCycle’, ‘BANK’
UNION
SELECT ‘08/09/08’, ‘08/10/08’, 22401.00, ‘PAYPAL*ABaltazar@msn.com’, ‘BANK’

 ErrorDetail
 There are some great new logging options in SSIS, and in this Case Study we ’ ll log detailed errors that
can occur at the column level when processing. This table will allow you to store that information, and
by storing the Execution ID, you can later join the custom - logged error detail with the step - level error
information logged during package execution.

c23.indd 860c23.indd 860 8/28/08 12:48:11 PM8/28/08 12:48:11 PM

Chapter 23: Case Study: A Programmatic Example

861

USE [CaseStudy]
GO
CREATE TABLE [dbo].[ErrorDetail](
 [ExecutionID] [nchar](38) NOT NULL,
 [ErrorEvent] [nchar](20) NULL,
 [ErrorCode] [int] NULL,
 [ErrorColumn] [int] NULL,
 [ErrorDesc] [nvarchar](1048) NULL,
 [ErrorDate] [datetime] NULL,
 [RawData] [varchar](2048) NULL
) ON [PRIMARY]

 Stored Procedure to Add Batches
 Because we are in a rigorous - enterprise financial processing environment, separating the logic that
performs basic data insert and core matching logic provides advantages for audit purposes and allows
for the process of creating new batches to be more modular. The other advantage to using stored
procedures is to deliver higher performance. A stored procedure allows all the TSQL logic to be placed in
one place and can be optimized by the Query Optimizer. A stored procedure can also be placed under
separate execution rights and managed separately, instead of embedding the TSQL into and applying the
rights to the package itself. This first stored procedure will be used to add a new bank batch to the
payment processing system. Run the script to add it to Case Study database:

Use CaseStudy
GO
CREATE PROC usp_BankBatch_Add(
 @BankBatchID int OUTPUT,
 @BankBatchNbr nvarchar(50)=NULL,
 @DepositDate datetime=NULL,
 @ReceivedDate datetime=NULL,
 @BatchTotal money=NULL,
 @BatchItems int=NULL,
 @FileBytes int=NULL,
 @FullFilePath nvarchar(100)=NULL,
 @ImportType char(10)
)
AS
 /*===
 PROC: usp_BankBatch_Add
 PURPOSE: To Add BankBatch Header Basic info
 and to validate that the batch is new.
 OUTPUT: Will return BankBatchID if new or 0 if exists
 HISTORY: 04/01/08 Created
 ===*/
 SET NOCOUNT ON
 If @ReceivedDate is null
 SET @ReceivedDate = getdate()

 IF LEN(@BankBatchNbr) < = 1 OR Exists(Select top 1 *
 FROM BankBatch
 WHERE BankBatchNbr = @BankBatchNbr
 AND ImportType = @ImportType)
 BEGIN

c23.indd 861c23.indd 861 8/28/08 12:48:11 PM8/28/08 12:48:11 PM

Chapter 23: Case Study: A Programmatic Example

862

 SET @BANKBATCHID = 0
 RETURN -1
 END
 ELSE
 BEGIN
 INSERT INTO BankBatch(BankBatchNbr, DepositDate, ReceivedDate,
 BatchTotal, BatchItems, FileBytes, FullFilePath,
 ImportType)
 SELECT UPPER(@BankBatchNbr), @DepositDate, @ReceivedDate,
 @BatchTotal, @BatchItems, @FileBytes,
 UPPER(@FullFilePath),
 UPPER(@ImportType)

 SET @BANKBATCHID = Scope_Identity()
 END

 SET NOCOUNT OFF

GO

 Stored Procedure to Update a Batch with Invoice and Customer Id
 This stored procedure will be used to update a payment with a matching invoice or customer
identification number relating back to the dimension tables. Run the script to add this procedure to
CaseStudy:

CREATE PROC dbo.usp_BankBatchDetail_Match(
 @BankBatchDtlID int,
 @InvoiceID int=NULL,
 @CustomerID int=NULL)
AS
 /*===
 PROC: usp_BankBatchDetail_Match
 PURPOSE: To update as paid an incoming payment
 with matched invoice and customerid
 HISTORY: 04/01/08 Created
 ===
 */

 SET NOCOUNT ON

 --UPDATE BANKBATCH DETAIL WITH INVOICE AND CUSTOMERID
 --NOTE: IF EITHER IS NULL THEN DON’T UPDATE
 --MATCHED DATE. THIS WILL PUSH THE ITEM INTO A SUBJECT-
 --MATTER-EXPERT’S QUEUE TO IDENTIFY.
 UPDATE BankBatchDetail
 SET MatchedInvoiceID = @InvoiceID,
 MatchedCustomerID = @CustomerID,
 MatchedDate = case when @InvoiceID is NULL or @CustomerID is NULL then
 NULL
 else getdate() end
 WHERE BankBatchDtlID = @BankBatchDtlID

 SET NOCOUNT OFF

c23.indd 862c23.indd 862 8/28/08 12:48:11 PM8/28/08 12:48:11 PM

Chapter 23: Case Study: A Programmatic Example

863

 Stored Procedure to Balance a Batch
 This stored procedure is used to examine all payments in a batch and to mark the batch as complete
when all payments have been identified with an invoice and a customer. Again, we are using a stored
procedure for all the reasons explained previously for auditing, modularity, and performance:

GO
CREATE PROC usp_BankBatch_Balance
AS
 /*==
 PROC: usp_BankBatch_Balance
 PURPOSE: To update batchdetails when they are matched
 Then keep BankBatches balanced by matching all
 line items
 ===
 */
 UPDATE bankbatchdetail
 SET MatchedDate = GetDate()
 where (matchedinvoiceid is not null
 and matchedcustomerid is not null)
 and (matchedinvoiceid < > 0
 and matchedcustomerid < > 0)

 UPDATE BANKBATCH
 SET BatchItemsComplete = BatchItems - b.NotComplete
 FROM BANKBATCH A
 INNER JOIN (
 select bankbatchid, count(*) as NotComplete
 from bankbatchdetail
 where
 (matchedinvoiceid is null
 OR matchedcustomerid is null
 OR matcheddate is null)
 group by bankbatchid
) B
 on A.BankBatchID = B.BankBatchID

 UPDATE BankBatch
 SET BalancedDate = getdate()
 WHERE BalancedDate IS NULL
 and BatchItems = BatchItemsComplete

 Case Study Load Packages
 The import integration process, as discussed earlier, will contain three distinct packages (of the four) that
need to be built. To keep this from becoming a 100 - step process, you ’ ll put each together separately, and
then within each package we ’ ll break up the setup into several sections: Package Setup and File System
Tasks, Control Flow Processing, Data Flow Validation, and Data Flow ETL. Each step will be explained
in detail the first time, and as things become repetitive, we ’ ll drop some detail on the screenshots, so
you ’ ll pick up some speed. You can also walk through just one of these load packages and then
download the complete solution from www.wrox.com to see and explore the final result.

c23.indd 863c23.indd 863 8/28/08 12:48:11 PM8/28/08 12:48:11 PM

Chapter 23: Case Study: A Programmatic Example

864

 Bank File Load Package
 The bank - batch load package will be set up to look in specific file directories for Lockbox flat files.
External dependencies like file folders can be a headache during package deployment if you hard - code
them, because you ’ ll have to remember to have them set up identically in each environment. Instead, you
are going to build-in the ability of your package to get these paths from variables and build them as
needed. You can then use configuration files to set up the package in each environment without any
further intervention. However, you could still have some issues if the directories that you provide are
not created, so you need to consider this as you set up the precedence and control of flow in your
package. It means adding a few extra steps, but it will allow your package to adjust during initial
deployment and any future changes to these file locations.

 Bank File Package and Variable Setup Tasks
 To get started, you need to create a new SSIS project. Create a package named CaseStudy_Load_Bank in
 c:\casestudy\casestudy_load_bank\ . When the project is built, go to the Solution Explorer and
click the Package.dtsx file. In the Property window, find the Name property and change the name
from package.dtsx to casestudy_load_Bank.dtsx. Answer Yes to change the name of the package object
as well.

 Use the menu SSIS Variables to access the Variables editor and add the variables as shown in the
following table. We are using all - caps here because variables are case - sensitive and while you are new to
SSIS, this keeps you from some frustration if you are not used to case sensitivity. Variable names with
all - caps are not required for SSIS package development. Most of these values will be set automatically
to default values within each load package, so values are here to aid in understanding with the
exception of LBBASEFILEPATH . This variable value can be set manually, but most likely would be set
in a configuration file for the package. Because all the other file paths and filenames for processed
files are based on this variable, the package can be easily configured for different server
environments.

c23.indd 864c23.indd 864 8/28/08 12:48:12 PM8/28/08 12:48:12 PM

Chapter 23: Case Study: A Programmatic Example

865

 Variable Name Scope Data Type Value

 BANKBATCHID CaseStudy_Loa.. Int32 0

 BANKBATCHNBR CaseStudy_Loa.. String

 BATCHITEMS CaseStudy_Loa.. Int64 0

 BATCHTOTAL CaseStudy_Loa.. Double 0

 DEPOSITDATE CaseStudy_Loa.. DateTime 12/30/1899

 FILEBYTES CaseStudy_Loa.. Int64 0

 LBBASEFILEPATH CaseStudy_Loa.. String c:\casestudy\lockbox

 LBCURRENTFILE CaseStudy_Loa.. String c:\casestudy\lockbox\
samplelockbox.txt

 LBERRORFILE CaseStudy_Loa.. String

 LBERRORFILEPATH CaseStudy_Loa.. String

 LBIMPORTTYPE CaseStudy_Loa.. String LOCKBOX

 LBPROCESSEDFILE CaseStudy_Loa.. String

 LBPROCESSEDFILEPATH CaseStudy_Loa.. String

 OLEDBCONNECTSTRING CaseStudy_Loa.. String Data Source=.Initial;
Catalog=CaseStudy;

Provider=SQLNCLI10.1;

Integrated Security=SSPI;

Auto Translate=False;

 Because the File System Tasks only allow the source and destination properties to be set to variables —
 not expressions derived from variable values — you are going to have to create a few variables that “ go
the other way ” and instead are derived from expressions.

 The variables @LBPROCESSEDFILEPATH and @LBERRORFILEPATH need to retrieve their values relative to
the base file paths. For example, the variable @LBPROCESSEDFILEPATH should be set up relative to the
base Lockbox file path in a subdirectory called processed\ . To do this, you ’ ll use an expression to
generate the value of the variable. Click the variable in the Variables Editor. In the Property window, set
the EvaluateAsExpression property to True. In the Expression property, add the expression to match
Figure 23 - 7 . The \\ is required as an escape sequence for the backslash in the Expressions Editor. Set
both variables up to be evaluated as expressions the same way. Notice in the Variables Editor, and as
shown in Figure 23 - 8 , the values change immediately.

 For Variable Name Set Expression To

 LBERRORFILEPATH @LBBASEFILEPATH + “ \\error “

 LBPROCESSEDFILEPATH @LBBASEFILEPATH + “ \\processed “

c23.indd 865c23.indd 865 8/28/08 12:48:12 PM8/28/08 12:48:12 PM

Chapter 23: Case Study: A Programmatic Example

866

 The variables for specific processed and error versions of the current file being processed need to
retrieve a unique value that can be used to rename the file into its respective destination file path. Set up
the @LBERRORFILE and @LBPROCESSEDFILE variables to be evaluated using expressions similar to the
following formula:

@LBERRORFILEPATH + “\\” + REPLACE(REPLACE(REPLACE(REPLACE((DT_WSTR,
50)GETUTCDATE(),”-”,””),” “, “”),”.”, “”),”:”, “”) + (DT_WSTR, 50)@FILEBYTES +
“.txt”

 This formula will generate a name similar to 200808160552080160000000.txt for the file to be moved into
an off - line storage area.

 In the Connection Managers tab, add an OLE DB Connection to connect to the CaseStudy database.
Name the connection CaseStudy.OLEDB. You ’ ll use this connection for all control and Data Flow
activities that interact with the database. To enable this connection to be configurable during runtime,

Figure 23-7

Figure 23-8

c23.indd 866c23.indd 866 8/28/08 12:48:12 PM8/28/08 12:48:12 PM

Chapter 23: Case Study: A Programmatic Example

867

set the connect string property of the connection to the variable @OLEDBCONNECTSTRING using the
Expressions collection on the Connection Properties window. Notice earlier that this variable was set to
the default instance using this connection string value:

Data Source=.;Initial Catalog=CaseStudy;Provider=SQLNCLI10.1;Integrated
Security=SSPI;Auto Translate=False;

 You may need to specifically name your server instance instead of using the “ . ” identifier. Figure 23 - 9
shows how the connection should appear when complete.

Figure 23-9

 Finally, add a New Flat File Connection in the Connection Managers tab. Configure the properties in the
following table on the connection. You ’ ll notice that instead of parsing out each individual column in
the file, here you are bringing the whole 80 - character line into the data stream so that you can parse out
each data element later. The reason for doing this is that the lockbox flat file will attempt to cast parsed
text values into specific data types, resulting in import errors if there are unexpected non - ASCII
characters or non - valid elements like 00000000 for dates. By bringing in the whole line, you ’ ll be able to
parse and test each element allowing for more control in your ETL process. This is the preferred ETL
technique if the data quality is found to be poor or inconsistent, or if you are not using a staging table.

c23.indd 867c23.indd 867 8/28/08 12:48:13 PM8/28/08 12:48:13 PM

Chapter 23: Case Study: A Programmatic Example

868

 Property Setting

 Name Lockbox Flat File

 Description Flat File for Lockbox processing

 File Name c:\casestudy\lockbox\samplelockbox.txt

 Format Ragged right

 Advanced:OutputColumnWidth 80

 Advanced:DataType string[DT_STR]

 Advanced:Name line (case is important)

 The only problem with the previous step is that you had to set a filename to a literal in order to set
up the connection. However, at runtime you ’ ll want to retrieve the filename that you ’ ll be processing
from your variable LBCURRENTFILE . Save the Flat File Connection, and then access the expressions
collection in the Properties tab. Use the expression editor just like you did for the OLE DB Connection to
set the ConnectionString property to @LBCURRENTFILE .

 At this point, you should be looking at a package named CaseStudy_Load_Bank with two connections
and a bunch of variables. In the next section, you ’ ll start adding the Control Flow.

 Bank File Control Flow Processing
 You want the CaseStudy_Load_Bank package to process these flat files streaming in from the bank, but
before you start, you need to ensure that the directories needed for your load package exist. You ’ ll use a
File System Task to do this because it can perform the operation of checking for and creating a directory.
One nifty thing that it will do by default is to create all the subdirectories in the hierarchy down to the
last subdirectory when you create a directory. This is why you ’ ll set up a File System Task to check for
and create a directory using lowest subdirectory path values — LBPROCESSEDFILEPATH and
 LBERRORFILEPATH . You won ’ t need to create a path explicitly for the variable LBBASEFILEPATH . You ’ ll
get this for free, when you check for and create the subdirectories. We ’ ll use this to get started on laying
out the Control Flow for our package.

Bank File Control Flow File Loop
 Add two File System Tasks to the Control Flow design surface of the package, one for checking and
adding the lockbox processed file path, and another for the lockbox error - file path. These two paths are
where the package will move incoming lockbox files depending upon how they are processed. Change
the name and description properties to the following:

 Name Description

 File System Task Folder LB Processed Folder Ensures that the LB Processed Folder exists

 File System Task Folder LB Error Folder Ensures that the LB Error Folder exists

c23.indd 868c23.indd 868 8/28/08 12:48:13 PM8/28/08 12:48:13 PM

Chapter 23: Case Study: A Programmatic Example

869

 For each File System Task set the following properties.

 Property Setting

 Operation Create Directory

 UseDirectoryIfExists True

 IsSourcePathVariable True

 SourceVariable Choose the corresponding variable for each task. (Notice
how easy this is when the task is named properly?)

 Now connect the two lockbox File System Tasks together by setting a precedence constraint between the
File System Task Folder LB Processed Folder Task and the File System Task Folder LB Error Folder Task.
The precedence constraint should automatically be set to Success. If you run the package now, you
should see a file hierarchy created on your machine resembling Figure 23 - 10 .

Figure 23-10

 Drop a Sequence Container on the Control Flow design surface. Change the Name property to Sequence
of Lockbox Processing. Connect the precedence from the last Lockbox File System Task to the Sequence
Container so that the Sequence Container is not executed unless the File System Task completes
successfully.

 Add a Foreach Loop Container inside the Sequence Container. Change the Name property to For Each
Lockbox File. The Foreach Loop is expecting a literal path to poll. You want the loop to rely on a variable,
so you ’ ll have to use an expression. This task object is a little confusing because there are actually two
sets of expression collections: One set in the left tab is for the container; the second set appears only
when the Collections tab is selected. The second set of expressions is the collection of properties for the
Foreach Enumerator. It is this second set of expressions that you want to alter. Click the ellipsis to the
right of this Expressions collection.

 In the Expressions Editor, the property folder doesn ’ t exist with this name. Unfortunately, it is named
Directory. Select the Directory property and set its value to the variable LBBASEFILEPATH . Evaluate the
expression to ensure that it matches the base lockbox path. Close the Expressions Editor. Set the property

c23.indd 869c23.indd 869 8/28/08 12:48:14 PM8/28/08 12:48:14 PM

Chapter 23: Case Study: A Programmatic Example

870

Files to “ *.txt ” . Leave the Retrieve File value as Name Fully Qualified. The collections tab of the Foreach
Loop Container should look like Figure 23 - 11 .

Figure 23-11

 @LBBASEFILEPATH and @[User::LBBASEFILEPATH] are the same thing since they are both in the
same namespace.

 To store the name of the file you are processing into a variable, click the Variable Mappings tab on the
left side of the Foreach Loop Container. Select the variable named LBCURRENTFILE to retrieve the value
of the Foreach Loop for each file found. Leave the index on the variable mapping set to zero (0). This
represents the first position in a files collection or the filename returned by the loop. Click OK to
complete this task.

Bank File Control Flow Retrieval of File Properties
 One of the things you have to save into the BankBatch data table is the filename and the number of bytes
in the file. The Foreach Loop Task did the work of storing the filename into the variable LBCURRENTFILE .
Now with the filename it would be easy to retrieve the file size using a Script Task and some VB.NET or
C# code, and then set the value of the variable. We also need to reset the value of some of the other
variables, so this will be a good spot to add this logic as well. For some detailed explanation of setting
variables within Script Tasks, see Chapter 9 .

 Getting back to the Control Flow of the Bank File package, add a Script Task within the Foreach Loop.
Change the name to “ Script LB File Size into Variable. ” Provide the variable LBCURRENTFILE for the
ReadOnlyVariables property. Select the variables BANKBATCHID , BANKBATCHNBR , BATCHITEMS ,

c23.indd 870c23.indd 870 8/28/08 12:48:14 PM8/28/08 12:48:14 PM

Chapter 23: Case Study: A Programmatic Example

871

 BATCHTOTAL , DEPOSITDATE , and FILEBYTES from the drop - down list of variables for the
ReadWriteVariables property. Note if you choose to hand - key variables into this property that when
passing variables into the Script Task, the @ sign should not be used, but you can fully qualify the
variables with the namespace like User::BATCHITEMS .

 Select the Script language of your preference. Click the Edit Script button. This opens up the .NET
development environment. Add either an Imports or using reference to the System.IO namespace
depending upon your selected .NET language and update the script to pull the file bytes from the
filename provided in the DTS object Variables collection. First pull in a reference to the System.IO
library by adding the last reference you see in this code:

C#
using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime;
using System.IO; // < --Added Input/Output library

VB
Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Runtime
Imports System.IO ‘ < --Added Input/Output library

 Then add a VB Sub or C# void function to reset the variables that you can call in the Script Task
Main() function. This separation is only to encourage code separation instead of large procedural code
typically found in the Main() function. Note that the conversion of default values is explicit. This is
required. Simply assigning the value of 0 to one of these variables would not cast properly.

C#
 public void ResetVariables()
 {
 //Resets variables
 Dts.Variables[“BANKBATCHID”].Value = System.Convert.ToInt32(0);
 Dts.Variables[“BANKBATCHNBR”].Value = “”;
 Dts.Variables[“BATCHITEMS”].Value = System.Convert.ToInt64(0);
 Dts.Variables[“BATCHTOTAL”].Value = System.Convert.ToDouble(0);
 Dts.Variables[“DEPOSITDATE”].Value = DateTime.MinValue;
 Dts.Variables[“FILEBYTES”].Value = System.Convert.ToInt64(0);
 }
VB
 Public Sub ResetVariables()
 ‘Resets variables
 Dts.Variables(“BANKBATCHID”).Value = System.Convert.ToInt32(0)
 Dts.Variables(“BANKBATCHNBR”).Value = “”
 Dts.Variables(“BATCHITEMS”).Value = System.Convert.ToInt64(0)
 Dts.Variables(“BATCHTOTAL”).Value = System.Convert.ToDouble(0)
 Dts.Variables(“DEPOSITDATE”).Value = DateTime.MinValue
 Dts.Variables(“FILEBYTES”).Value = System.Convert.ToInt64(0)
 End Sub

c23.indd 871c23.indd 871 8/28/08 12:48:14 PM8/28/08 12:48:14 PM

Chapter 23: Case Study: A Programmatic Example

872

 Then replace the Main() function within the Script Task with this one:

 C#
 public void Main()
 {
 //’**
 //’SCRIPT
 //’PURPOSE: To take file bytes and save to global variable
 //’==
 Int64 lDefault = 0;
 Boolean bVal;

 try
 {
 //Reset Variables
 ResetVariables();

 //Use .Net IO Library to examine file bytes
 FileInfo oFile = new
 FileInfo(Dts.Variables[“LBCURRENTFILE”].Value.ToString());
 Dts.Variables[“FILEBYTES”].Value = oFile.Length;
 Dts.Events.FireInformation(0, “Script Task to Vars”, _
 “File Bytes Found:” +
 Dts.Variables[“FILEBYTES”].Value.ToString(), “”, 0, ref bVal);
 //Alternative Troubleshooter
 //System.Windows.Forms.MessageBox.Show(“File Bytes Found:” +
 //Dts.Variables[“FILEBYTES”].Value.ToString());

 Dts.TaskResult = (int)ScriptResults.Success;
 }
 catch(Exception ex)
 {
 Dts.Events.FireError(0, “Script Task To Vars”, ex.ToString(),
 “”, 0);
 Dts.Variables[“FILEBYTES”].Value = lDefault;
 Dts.TaskResult = (int)ScriptResults.Failure;
 }
 }

VB
 Public Sub Main()
 ‘**
 ‘SCRIPT
 ‘PURPOSE: To take file bytes and save to global variable
 ‘==
 Dim oFile As FileInfo
 Dim lDefault As Int64
 Dim bVal As Boolean
 lDefault = 0
 Try
 ‘Reset Variables
 ResetVariables()

 ‘Use .Net IO Library to examine file bytes

c23.indd 872c23.indd 872 8/28/08 12:48:15 PM8/28/08 12:48:15 PM

Chapter 23: Case Study: A Programmatic Example

873

 oFile = New FileInfo(Dts.Variables(“LBCURRENTFILE”).Value.ToString)
 Dts.Variables(“FILEBYTES”).Value = oFile.Length
 Dts.Events.FireInformation(0, “Script Task to Vars”, _
 “File Bytes Found:” +
 Dts.Variables(“FILEBYTES”).Value.ToString(), _
 “”, 0, bVal)
 ‘Alternative Troubleshooter
 ‘System.Windows.Forms.MessageBox.Show(“File Bytes Found:” _
 ’ + Dts.Variables(“FILEBYTES”).Value.ToString())
 Dts.TaskResult = ScriptResults.Success
 Catch ex As Exception
 Dts.Events.FireError(0, “Script Task To Vars”, ex.ToString(), “”, 0)
 Dts.Variables(“FILEBYTES”).Value = lDefault
 Dts.TaskResult = ScriptResults.Failure
 End Try
End Sub

 Now close the Script editor and save this task. Clicking OK to save is important. If you open up the
script after you edit and have not saved the task, then your earlier script changes are lost. While we are
mentioning tips, another good practice in SSIS is to code and test smaller units of work. Back to the
code, you ’ ll notice the use of the FireInformation method in the script. This method will stream an
informational entry into the Execution Results tab containing the value of file bytes found in the file to
process.

 At this point, you would know the filename and file size. The Foreach Loop stored the filename into a
variable. The Script Task retrieved the file size and stored the data into the FILEBYTES variable. You still
need to figure out whether you have seen this file before. A unique batch number by import type is
embedded in the header of the file. There are a few ways to retrieve that information. One way is to use
the System.IO library in the Script Task you just created to open up and examine the file header row.
Another way is to use a Data Flow Task to open up and examine the file. Although you could do the
same thing in the Script Task, the Data Flow Task allows you to turn the file into a stream to examine the
contents easily. It also provides the added advantage of failure upon encountering a bad format at a
column level. You can then alter your Control Flow to push this file to the error folder.

 To finish out the retrieval Control Flow for now, add a Data Flow Task. Connect the successful
completion of the Script Task to this task. Change the Name property to “ Data Flow Lockbox Validate
File and Header Info. ” This task will parse out the batch header information into variables, validate the
data contents, and then perform a lookup for a similar batch. An existing BankBatchID will be returned
in the BankBatchID variable. You ’ ll come back and configure the Data Flow in the next section, “ Bank
File Data Flow Validation. ” Disable the Data Flow Task for now by right - clicking the task and selecting
Disable in the pop - up menu. (Follow the same steps later and select Enable to re - enable the task.)

 You should save the entire package and run it to make sure everything is working so far.

Bank File Control Flow Batch Creation
 The last task for the bank - file Control Flow is to lay out the workflow to validate that key values are in
the Batch file and that Batch has not already been processed. This ultimately will be determined by the
Data Flow Task that you added, but have not yet completed. For now, you know that if certain basic
elements in the batch file, such as the batch number, are missing or the batch amount is zero, then the
package should move the file to the error folder.

c23.indd 873c23.indd 873 8/28/08 12:48:15 PM8/28/08 12:48:15 PM

Chapter 23: Case Study: A Programmatic Example

874

 To enable moving the file, add a File System Task named “ File System Task Error Folder. ” Instead of
choosing a move file operation in the File System Task, select the option to rename the file. This may
not be intuitive, but to move the file you need the filename stored separately. Because the variable
@LBERRORFILE is a full file path and a unique filename, it is easier to move the file by simply renaming
it. The File System Task properties should be set to the values shown in the following table:

 Property Value

 IsDestinationPathVariable True

 Destination Variable User::LBERRORFILE

 OverwriteDestination True

 Name File System Task Error Folder

 Description Moves bad files to an error folder

 Operation Rename File

 IsSourcePathVariable True

 SourceVariable User::LBCURRENTFILE

 The File System Task here will complain if the value for User::LBCurrentFile is empty or if it
doesn ’ t have a default value, so make sure you set this up initially as described in the earlier setup
section.

 To connect the Data Flow and File System Task together, add a precedence constraint that looks for the
existence of a Bank Batch Id and amount. On the constraint, select the Multiple constraint option of
Logical OR and set the Evaluation Operation to Expression OR Constraint. Set the Value to Failure and
the Expression to:

@BANKBATCHID!=0 || @BATCHTOTAL == 0.00

 If either Data Flow fails, the Data Flow found an existing BankBatchId, or there is no valid amount in the
amount spot in the bank file, the precedence constraint will send the workflow to the File System Task
that will archive the file in the error folder.

 Now if the elements are all present, and there is no existing bank batch by batch number, the batch
needs to be persisted to the database. To do this, add an Execute SQL Task. This task will use a stored
procedure, usp_BankBatch_Add, to add the parsed information in the Lockbox file as a row in
the BankBatch table to represent a new batch file. The procedure usp_BankBatch_Add will return the
new BankBatchId if it could be successfully added. Because you are using an OLE DB Connection
Manager, set up Execute SQL Task properties like this:

c23.indd 874c23.indd 874 8/28/08 12:48:15 PM8/28/08 12:48:15 PM

Chapter 23: Case Study: A Programmatic Example

875

 Property Value

 Name Execute SQL task to add Bank Batch Hdr

 ConnectionType OLE DB

 Connection CaseStudy.OLEDB

 SQLStatement EXEC dbo.usp_BankBatch_Add ? OUTPUT, ?, ?, ?,
?, ?, ?, ?, ?

 IsQueryStoredProcedure (Will be greyed out)

 When you use the OLE DB provider, the parameters have to be marked as ? because of the different
provider implementations of handling parameters. Map the input parameters to the procedure
parameters on the Parameter Mappings tab. You ’ ll notice that the OLE DB provider uses more generic
variable mapping than what you ’ ll do later with the ADO.NET provider. The finished Execute SQL Task
editor should look like Figure 23 - 12 .

Figure 23-12

 If this Execute SQL Task doesn ’ t return a new BankBatchId indicating that the batch header has been
persisted, you don ’ t want any other tasks connected to it to be executed. Furthermore, the offending file
needs to be moved into an error folder to be examined because something is wrong. Create another
precedence constraint between the Execute SQL Task and the File System Task Error Folder. The Control
Flow should take this path if either the Execute SQL Task fails or the BankBatchId is zero (0). Set up the
Precedence Constraint Editor to look like Figure 23 - 13 .

c23.indd 875c23.indd 875 8/28/08 12:48:16 PM8/28/08 12:48:16 PM

Chapter 23: Case Study: A Programmatic Example

876

 Add a second new Data Flow Task to the Foreach Loop. Change the name property to Data Flow
Lockbox Detail Data Load. You ’ ll come back later to configure the Data Flow in the next section. Connect
the successful completion of the Execute SQL Task to this task. Add an expression to check for a nonzero
BankBatchID, and set the constraint to apply when there is a successful completion and an evaluation of
the constraint as true between the Execute SQL Task and this new Data Flow Task.

 Now if the Data Flow Lockbox Detail Data Load fails to extract, transform, and load the batch details,
you ’ ve still got an issue. Add a simple Failure constraint between the Data Flow Lockbox Detail Data
Load and the previously created File System Task Error Folder.

 If the file is processed successfully in the Data Flow Lockbox Detail Data Load, you need to move it
to the “ processed ” folder. Add another new File System Task and connect it to the successful completion
of the second Data Flow Task. Set up this task just like the Error Folder File System Task but point
everything to the processed folder.

 Property Value

 IsDestinationPathVariable True

 Destination Variable User::LBPROCESSEDFILE

 OverwriteDestination True

 Name File System Task Processed Folder

 Description Moves completed files to an error folder

 Operation Rename File

 IsSourcePathVariable True

 SourceVariable User::LBCURRENTFILE

Figure 23-13

c23.indd 876c23.indd 876 8/28/08 12:48:16 PM8/28/08 12:48:16 PM

Chapter 23: Case Study: A Programmatic Example

877

 You now have the basic structure set up for the Bank File Lockbox Control Flow. You still need to go back
and build your transforms in the Data Flow Tasks, but we ’ ll get to that in the next sections. If you are
following along, go ahead and save the package at this point. If you want to test the package, you can set
up the variables and test the different workflows. Just remember to watch the movement of the sample
file into the processed and error folders, and make sure you put it back after each run. The CaseStudy_
Load_Bank package at this point should look like Figure 23 - 14 .

Figure 23-14

 Bank File Data Flow Validation
 In this section of the package, you are going to fill in the details of the Data Flow Container for validating
the Lockbox file. The strategy will be to open up the Lockbox file and retrieve information from the
header to pass back to the Control Flow via variables. You ’ ll use a Flat File Connection to read the file, a
Conditional Split Transform to separate out the header and the check lines, derived columns to parse out
the header line, and an Aggregate Count Transform to count the check transactions. You ’ ll use Script
Component Transforms to pull this information from the transformation stream and store it in your
variables to return them back to the Control Flow. You ’ ll recall that the Control Flow decides whether the
file is good or not, and either moves the file into an error or a processed folder.

Bank File Data Flow Parsing and Error Handling
 To use the Flat File Connection you defined earlier in the Data Flow, add a Flat File Source to the Data
Flow design surface. Select the Flat File Connection created in the previous step named Lockbox Flat
File. Name this transform source Flat File Lockbox.

c23.indd 877c23.indd 877 8/28/08 12:48:16 PM8/28/08 12:48:16 PM

Chapter 23: Case Study: A Programmatic Example

878

 One of the main purposes of this Data Flow is to perform an extraction of the header information and
then perform a lookup on the batch number. You will use the Lookup Transformation for this task,
and one of the “ gotchas ” to using this task is that it is case - sensitive. Because at this point your source
contains all the data in a single column, it makes sense to go ahead and run the data through a transform
that can convert the data to uppercase in one step. Add a Character Map Transform to the Data Flow.
It should be connected to the output of the Flat File Source and be configured to perform an in - line
change to the incoming data. Select the incoming column named “ line ” and set the Destination to
In - Place Change. Set the operation type to Uppercase and leave the output alias as “ line. ” Save the
Character Map Transform.

 The Lockbox file contains three types of data formats: header, invoice, and check. At this stage, you are
trying to determine whether this batch has been previously processed, so you only need the information
from the header and a count of the check transactions. To split the one - column flat file input, add a
Conditional Split Transform to the Data Flow. Set up the transform to use the leftmost character of the
input stream to split the line into two outputs: Header and Check. The transform should look like
Figure 23 - 15 .

Figure 23-15

c23.indd 878c23.indd 878 8/28/08 12:48:17 PM8/28/08 12:48:17 PM

Chapter 23: Case Study: A Programmatic Example

879

 Wait a minute! These explicit castings of string data could be disastrous. What if the bank provides some
bad data in the Batch Total field? Good question. If you just left the default error handling in place, the
package would fail. You don ’ t want that to happen; you just want to reject the file. To do that, you need
the Control Flow to recognize that something is wrong and divert the file to the error folder. Notice that
we said Control Flow — not Data Flow. This is why the precedence and constraint you set up between
this Data Flow Task and the Execute SQL Task to add a Bank Batch header is set up to reject the file if the
Data Flow Task fails.

 To make sure this happens, click the Configure Error Output button, and make sure that for each derived
column the component is set to fail and redirect row if there are any errors in creating the columns. See
Figure 23 - 17 for the completed error output.

Figure 23-16

 Add a Derived Column Task to the Data Flow. Name it Derived Columns from Header. Connect to the
Header output of the Conditional Split. This task is where the individual data elements are parsed from
the line into the data fields they represent. With the Derived Column Task, you also get the conversion
utilities as an added benefit. Because the import stream is a string type, this is where you have to think
ahead on your conversions. Downstream, if you ultimately want to add a row to the BankBatch table, the
Batch Number you extract from this input stream must be converted into a Unicode variable text field. If
you parse the text string into the data type of [DT_WSTR] at this stage, you will match the destination
field. Paying attention to data types early will save you many headaches further into the package. Set up
the derived columns to match Figure 23 - 16 .

c23.indd 879c23.indd 879 8/28/08 12:48:17 PM8/28/08 12:48:17 PM

Chapter 23: Case Study: A Programmatic Example

880

 There are many different options for handling errors in SSIS. In this Data Flow, if there is an error parsing
the lockbox header, it is probably an invalid format - type error, so you want to be able to capture
information about that error in that column, so the file can be fixed and resubmitted. To do this, add a
Script Component Task to make use of the error stream you created from the Derived Column Task. Set
it up as a transformation. The error stream currently contains your raw data, an error code, and a column
number for each error generated. You can use the Script Component to add the error description to your
stream, and then in another Transform Task you can log the information into your [ErrorDetail] table.
Connect the error output of the Derived Column Task to the Script Component Task to capture the
original input stream. Name this task Script Component Get Error Desc. Open the Script Transformation
Editor and select all the input columns on the Input Columns tab. Then, in the Inputs and Outputs tab,
expand the Output0 collection and add an output column (not an output) named ErrorDesc. Set the type
to [DT_WSTR] with a length of 1048. Open up the design environment for the Script Component.
Change your ProcessInputRow() method to the following:

C#
 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {
 //’Script
 //’Purpose: To retrieve the error description to write to error log
 Row.ErrorDesc = ComponentMetaData.GetErrorDescription(Row.ErrorCode);
 }

VB
 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 ‘SCRIPT
 ‘PURPOSE: To retrieve the error description to write to error log
 Row.ErrorDesc= ComponentMetaData.GetErrorDescription(Row.ErrorCode)
 End Sub

Figure 23-17

c23.indd 880c23.indd 880 8/28/08 12:48:17 PM8/28/08 12:48:17 PM

Chapter 23: Case Study: A Programmatic Example

881

 Close the Script Editor and then the Script Transformation Editor. Now add a Derived Column
Transform and name it Derived Column System Variables. Along with the detailed error message, it will
be helpful to add other information like the ExecutionInstanceGUID to log in to your custom ErrorDetail
table. The ExecutionInstanceGUID is a unique ID given to each run of an SSIS package that will allow
you to combine your custom error logging with other package error logging to give you a complete
picture of what occurred when a package failed. Create the Derived Columns shown in Figure 23 - 18 .

Figure 23-18

 Add an OLE DB Destination to save this data into the ErrorDetail table. Name the transform “ OLE DB
Destination Error Log. ” Set up the OLE DB Connection and the name of the table to ErrorDetail. Map the
columns. Most input columns should match the destination columns in the table. Map the column [Line]
to the [RawData] column. Now you ’ ve handled the worst - case scenario of bad batch header data. Not
only do you store the error of a bad conversion or batch header, but the flow of data will now stop at this
transform. This leaves the value of the BankBatchID to the default of 0, which will cause the Control
Flow to divert the file to the error folder — just what you want.

Bank File Data Flow Validation
 Now, if all the data elements of the Bank Batch file parse correctly, the “ Derived Columns from Header ”
Transform should contain data that was successfully converted to proper data types. You now have to
determine if the BatchNbr parsed from the file has already been processed. This can be accomplished by
checking to see if it matches any existing BatchNbr in the BankBatch table by import type. Add a Lookup
Transformation Task to the flow of the Derived Column. Change the name to Lookup BankBatchID.
Connect the CaseStudy.OLEDB connection. In the Reference tab, select BankBatch table. The Lookup
Transform is case sensitive, and this is why the derived column converted the contents to uppercase.

c23.indd 881c23.indd 881 8/28/08 12:48:18 PM8/28/08 12:48:18 PM

Chapter 23: Case Study: A Programmatic Example

882

 In the Columns tab, connect the BatchNbr input column to the BankBatchNbr column. Connect the
ImportType input column to the ImportType column. This is the equivalent of running a query against
the BankBatch table looking for a matching row ImportType and BatchNbr for each row in the input
stream. In the grid, add a lookup column BankBatchID by selecting the field in the lookup table. The
result of the lookup will be either a NULL value or a retrieved BankBatchID. Because you are expecting
the Lookup Task to return no matches, use the Configure Error Output to set the error output for the
lookup to Ignore Failure. Figure 23 - 19 shows an example of the mapping to retrieve the BankBatchId as a
new column.

Figure 23-19

 To handle the NULL situation and other validations, add a new Script Component Task to the Data Flow
and connect to the successful output stream of the Lookup Task as a destination. Name this task Script
Component to Store Variables. In this task, select the columns Line, BankBatchID, BatchNbr, BatchTotal,
ImportType, and DepositDate from the input stream. They will be added automatically as input columns
and will be available in a row object. Add the matching variables to the ReadWriteVariable property:
 BANKBATCHID , BANKBATCHNBR , DEPOSITDATE , BATCHTOTAL . Remember, variables are case - sensitive and
must be passed as a comma - delimited list. (Thank the SSIS team for the ability to select variables!)

 In the Script Component, use the row object to retrieve the values that are in the input row stream.
Because you are processing the header row, you ’ ll have only one row to process. Accessing the row
values is not a problem. However, saving the value to a package variable is not allowed when
processing at a row level. You can only access package variables in the PostExecute event stub. To
retrieve the values, use variables to capture the values in the row - level event, and then update the
package variables in the PostExecute event. If you have a need to retrieve information from your Data

c23.indd 882c23.indd 882 8/28/08 12:48:19 PM8/28/08 12:48:19 PM

Chapter 23: Case Study: A Programmatic Example

883

Flow into variables, as in this example, this technique will be really useful to you. To continue with this
example, replace the Script Component script with the following code:

C#
using System;
using System.Data;
using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;

[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent
{

 public int LocalBankBatchId = 0;
 public double LocalBatchTotal = 0;
 public string LocalBatchNbr = “”;
 public DateTime LocalDepositDate = DateTime.MinValue;
 public bool bVal;

 public override void PreExecute()
 {
 base.PreExecute();
 /*
 Add your code here for preprocessing or remove if not needed
 */
 }

 public override void PostExecute()
 {
 //’SCRIPT
 //’PURPOSE: To set SSIS variables with values retrieved earlier
 //’==
 try
 {
 //’Attempt to accept the values
 Variables.BANKBATCHID = LocalBankBatchId;
 Variables.BANKBATCHNBR = LocalBatchNbr;
 Variables.DEPOSITDATE = LocalDepositDate;
 Variables.BATCHTOTAL = LocalBatchTotal;
 }
 catch(Exception ex)
 {
 //’If any failure occurs fail the file
 Variables.BANKBATCHID = System.Convert.ToInt32(0);
 Variables.BATCHTOTAL = System.Convert.ToDouble(0);
 ComponentMetaData.FireError(0, “”, ex.Message, “”, 1, out bVal);
 }
 base.PostExecute();

 }

c23.indd 883c23.indd 883 8/28/08 12:48:19 PM8/28/08 12:48:19 PM

Chapter 23: Case Study: A Programmatic Example

884

 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {
 string Msg = string.Empty;
 try
 {
 //’If there is no header metadata then mark for failure
 if(Row.DepositDate_IsNull == true ||
 Row.BatchTotal_IsNull == true ||
 (double)Row.BatchTotal == 0D)
 {
 LocalBankBatchId = 0;
 LocalBatchTotal = 0D;
 }
 else
 {
 //’Retrieve the data from the stream
 if(Row.BankBatchID_IsNull)
 {
 LocalBankBatchId = 0;
 }
 else
 {
 LocalBankBatchId = Row.BankBatchID;
 }
 LocalBatchNbr = Row.BatchNbr;
 LocalDepositDate = Row.DepositDate;
 LocalBatchTotal = (double)Row.BatchTotal
 / System.Convert.ToDouble(100);
 }
 Msg = String.Format(“Variables: BankBatchId={0}, “ +
 “BatchTotal={1}, BatchNbr=[{2}]”, LocalBankBatchId,
 LocalBatchTotal, LocalBatchNbr);
 ComponentMetaData.FireInformation((int)0, ComponentMetaData.Name,
 Msg, “”, (int)0, ref bVal);
 }
 catch(Exception ex)
 {
 ComponentMetaData.FireError(0, “”, ex.Message, “”, 1, out bVal);
 }
 }

}

VB
Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Pipeline.Wrapper
Imports Microsoft.SqlServer.Dts.Runtime.Wrapper

c23.indd 884c23.indd 884 8/28/08 12:48:20 PM8/28/08 12:48:20 PM

Chapter 23: Case Study: A Programmatic Example

885

 < Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute > _
 < CLSCompliant(False) > _
Public Class ScriptMain
 Inherits UserComponent
 Public LocalBankBatchId As Integer = 0
 Public LocalBatchTotal As Double = 0
 Public LocalBatchNbr As String = “”
 Public LocalDepositDate As Date = Date.MinValue
 Public bVal As Boolean

 Public Overrides Sub PreExecute()
 MyBase.PreExecute()
 End Sub

 Public Overrides Sub PostExecute()
 ‘SCRIPT
 ‘PURPOSE: To set SSIS variables with values retrieved earlier
 ‘==
 Try
 ‘Attempt to accept the values
 Variables.BANKBATCHID = LocalBankBatchId
 Variables.BANKBATCHNBR = LocalBatchNbr
 Variables.DEPOSITDATE = LocalDepositDate
 Variables.BATCHTOTAL = LocalBatchTotal
 Catch ex As Exception
 ‘If any failure occurs fail the file
 Variables.BANKBATCHID = 0
 Variables.BATCHTOTAL = 0
 ComponentMetaData.FireError(0, “”, ex.Message, “”, 1, bVal)
 End Try

 MyBase.PostExecute()
 End Sub

 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 ‘SCRIPT
 ‘PURPOSE: This sub will fire for each row processed
 ‘ since we only have one header row we only
 ‘ this sub will fire only one time.
 ‘ Store values in variables
 ‘==
 Dim Msg As String
 Try
 ‘If there is no header metadata then mark for failure
 If Row.DepositDate_IsNull = True Or _
 Row.BatchTotal_IsNull = True Or _
 Row.BatchTotal = 0D Then
 LocalBankBatchId = 0
 LocalBatchTotal = 0D

c23.indd 885c23.indd 885 8/28/08 12:48:20 PM8/28/08 12:48:20 PM

Chapter 23: Case Study: A Programmatic Example

886

 Else
 ‘Retrieve the data from the stream
 If Row.BankBatchID_IsNull Then
 LocalBankBatchId = 0
 Else
 LocalBankBatchId = Row.BankBatchID
 End If
 LocalBatchNbr = Row.BatchNbr
 LocalDepositDate = Row.DepositDate
 LocalBatchTotal = Row.BatchTotal / CDbl(100)
 End If
 Msg = String.Format(“Variables: BankBatchId={0}, “ + _
 “BatchTotal={1}, BatchNbr=[{2}]”, LocalBankBatchId, _
 LocalBatchTotal, LocalBatchNbr)
 ComponentMetaData.FireInformation(0, ComponentMetaData.Name, _
 Msg, “”, 0, bVal)
 Catch ex As Exception
 ComponentMetaData.FireError(0, “”, ex.Message, “”, 1, bVal)
 End Try
 End Sub

End Class

 A few things to note that are going on in this Script Task: First, the NULL possibility is being
checked and converted to a 0 to adhere to the Control Flow rules you ’ ve already set up. Notice as well,
that the BatchTotal is being converted from an implied to an explicit decimal with the calculation
Row.BatchTotal / CDbl(100) . This could have occurred in the Derived Column Transform as well.
There are many different ways to approach these validations. Another technique, if the data quality is
extremely poor, would be to have the Derived Column Transform only return string data, and then this
same Script Transform could validate, cast, and return very specific information about data quality.

Bank File Data Flow Capturing Total Batch Items
 The last variable that you need to retrieve is the number of transactions in the lockbox batch. Recall
earlier that the data stream for the lockbox file was split into the header and detail lines. Now you
are really only interested in the check lines in the file. Add an Aggregation Transformation to the
Conditional Split Transform to count the rows in the separated (Check) output detail data stream. Name
the transform “ Aggregate Check Count. ” Select the line column from the input columns. Set the Output
Alias to BatchItems. Set the operation to Count. This will count the number of checks and put that count
into your Data Flow. The component should look like Figure 23 - 20 . Now you just need to save the
count of the checks into a variable.

c23.indd 886c23.indd 886 8/28/08 12:48:20 PM8/28/08 12:48:20 PM

Chapter 23: Case Study: A Programmatic Example

887

 Add a Destination Script Component Task named “ Script Component Capture BatchItem ” to the Data
Flow and attach the Aggregate output. Select the BatchItems column from the input stream to feed into
the component. Add the variable BATCHITEMS to the ReadWriteVariables property. A common issue at
this point is that the type returned by the Aggregate output is a Unicode Long data type. That ’ s why
your BatchItems variable was preset to INT64. Add the following script to the task in the
ProcessInputRow stub:

C#
[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent
{
 public Int64 LocalBatchItems = 0;
 public override void PostExecute()
 {
 //’Script
 //’Purpose: To Set Value of variable unavailable for writing
 //’ in processInputRow method
 Variables.BATCHITEMS = LocalBatchItems;
 base.PostExecute();
 }

 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {

Figure 23-20

c23.indd 887c23.indd 887 8/28/08 12:48:21 PM8/28/08 12:48:21 PM

Chapter 23: Case Study: A Programmatic Example

888

 //’Script
 //’Purpose: To retrieve the count of rows to process
 bool bval = false;
 try
 {
 if (Row.BatchItems_IsNull)
 {
 LocalBatchItems = (Int64)0;
 }
 else
 {
 LocalBatchItems = (Int64)Row.BatchItems;
 }
 }
 catch (Exception ex)
 {
 LocalBatchItems = (Int64)0;
 this.ComponentMetaData.FireError((int)0,
 ComponentMetaData.Name.ToString(),
 ex.ToString(), “”, (int)0, out bval);
 }
 }
}

VB
Public Class ScriptMain
 Inherits UserComponent
 Public LocalBatchItems As Int64
 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 ‘**
 ‘SCRIPT
 ‘PURPOSE: Attempt to save the value of batch items
 ‘ from aggregation to local variables b/c we
 ‘ can’t set DTS Variables in this sub
 Try
 If Row.BatchItems_IsNull = True Then
 LocalBatchItems = 0
 Else
 LocalBatchItems = Row.BatchItems
 End If
 Catch ex As Exception
 LocalBatchItems = 0
 End Try
 End Sub
 Public Overrides Sub PostExecute()
 ‘**
 ‘SCRIPT
 ‘PURPOSE: Sets the value of DTS variables to
 ‘ local values
 Variables.BATCHITEMS = LocalBatchItems
 MyBase.PostExecute()
 End Sub
End Class

c23.indd 888c23.indd 888 8/28/08 12:48:21 PM8/28/08 12:48:21 PM

Chapter 23: Case Study: A Programmatic Example

889

 This will complete the Bank FileData Flow Validation, which should at this point look like Figure 23 - 21 .
Now you can enable the Data Flow Lockbox Validate File and Header Info in the Control Flow and
disable the Execute SQL Task (to keep from inserting a new batch) to run a test of the package.
Remember that the only purpose of this Data Flow is to determine whether the file is properly formatted,
and whether it is indeed a new file to process. All it will do is open the file and parse the information
from the file. Play around with the header of the file and put in invalid data such as “ 02/31/08 ” . You
should see the transformation move through the error section of the Data Flow and store a row in the
ErrorDetail table. The text file will then be moved into the error folder in the c:\casestudy\lockbox\
error directory.

 This Data Flow is by no means complete and ready for production. The batch lines making up the detail
should also be validated for proper data types using the same techniques in this step. Essentially the
default BANKBATCHID is set to fail prior to this set of transformations. If the transformation flows
completely to the Script Component and stores the batch header information, it will be considered a
success. If not, this step will be considered suspect, and the file will be rejected. This should give you a
good idea of what you can do without having to stage the data before processing it.

Figure 23-21

 Bank File Data Flow Detail Processing ETL
 Once you ’ ve validated your file, loading the detail data into the BankBatchDetail table will be rather
simple. You have all the header - related information. The Execute SQL Task will create a row in the
BankBatch table to store the batch, and you ’ ll store the primary key in the BANKBATCHID variable. You
now need to re - examine the text file in another Data Flow and process the detail transactions. Your
strategy will be to separate the bank batch file again into two parts, the header and detail. The difference

c23.indd 889c23.indd 889 8/28/08 12:48:22 PM8/28/08 12:48:22 PM

Chapter 23: Case Study: A Programmatic Example

890

in this Data Flow is that you ’ ll need to split the detail into two parts: a part containing individual
payment invoice information, and a part containing check lines from the batch file. After validating the
contents, you will recombine the two rows into one. That will give you the ability to do a straight insert
using one row into the BankBatchDetail table.

Processing the Bank File Check and Invoice Detail Lines
 At this point, you should be a little more familiar with setting up Flat File, Character Map, Lookup,
Conditional Split, Script, and Derived Column Transforms. We ’ ll forego some of the details to move
through setting up this Data Flow. To start, enable the Data Flow Lockbox Detail Data Load Task in the
Control Flow. Double - click it to expose the Data Flow design surface. Add a Flat File Source onto the
design surface, and set it up to use the Lockbox Flat File Connection for the Lockbox Flat File that you
set up in the first validation Data Flow. Name it “ Flat File Lockbox Source. ”

 Because the lookup transactions are case - sensitive, it is better to add a Character Map Transform to
convert the stream to uppercase while all the data is in one column. Name the Character Map, and set
the operation to Uppercase and the destination to In - place.

 Add a Conditional Split Transform similar to what you did earlier when validating the batch file. This
time you ’ ll split the file into each of its parts: the header, check, and invoice lines. Set up the transform to
use the leftmost character of the input stream to split the line into three outputs: Header, Check, and
Invoice, based on the characters “ H, ” “ C, ” and “ I, ” respectively.

 Add two Derived Column Transforms to the Data Flow. Attach one to the Checks output of the
Conditional Split Transform. Name it Derived Column Check. Attach the other to the Invoice output of
the Conditional Split Transform. Name it Derived Column Invoice. Don ’ t worry about the header
portion for the moment. Using the business specs, create the following new columns to parse out of each
line type (note two different Derived Column Components).

 Transform Derived Column Expression Data Type

 Invoice RawInvoiceNbr trim(substring(line,13,len([line]) - 13)) [DT_WSTR] 50

 Invoice MatchingKey trim(substring(line,2,4)) [DT_WSTR] 50

 Invoice ReferenceData1 trim(substring(line,2,10)) [DT_WSTR] 50

 Check PaymentAmount ((DT_NUMERIC,11,2)SUBSTRING([line],15,8) /
(DT_NUMERIC,11,2)100.00)

 [DT_CY]

 Check MatchingKey trim(substring(line,2,4)) [DT_WSTR] 50

 Check ReferenceData2 trim(substring(line,2,10)) [DT_WSTR] 50

 Notice that here you don ’ t need the use of an UPPER() expression to make sure that all these parsed
values are uppercase for the future Lookup Task. The CharacterMap Component has already converted
the string to all uppercase. Also, notice that there is an auto conversion to DT_WSTR when you are

c23.indd 890c23.indd 890 8/28/08 12:48:22 PM8/28/08 12:48:22 PM

Chapter 23: Case Study: A Programmatic Example

891

importing a text source. This is worth mentioning here because the default data types and lengths
are inferred from the field from the import source. If you were saving this data to a non - Unicode data
field, it can be annoying that your settings will be overwritten if you change anything in the expression.
However, if you don ’ t get the data type right here, you ’ ll need to add a Data Conversion Transform to
convert the data into a compatible format, or the SSIS validation engines will complain — and may not
compile. The other thing to notice here is the use of TRIM statements. In flat file data, the columns are
tightly defined, but that doesn ’ t mean the data within them lines up exactly to these columns. Use the
 TRIM statements to remove leading and trailing spaces that will affect your lookup processes
downstream.

 Now at this point, you ’ ve got two output streams: one from the invoice lines and one from the check
lines. You want to put them back together into one row. Any transformation you use is going to require
that you sort these outputs and then find something in common to join them together. To put them
together, you have to have some data that matches between the outputs. Luckily, the bank provides the
matching information, and you parsed it out in the Derived Column Task. The column name shared by
both outputs that contains the same data is ReferenceData1. Look at a two - line sample from the Lockbox
file. Columns two through six (2 – 6) contain the string 4001 , which is defined in your business specs as
the lookup key that ties the transaction together. (The entire sequence 4001010003 refers to an image
system lookup ID.)

I 4001 010003 181INTERNAT
C 4001 010004 01844400

 Add two new Sort Transformations to the Data Flow and connect one to each Derived Column output.
Select the field MatchingKey in both sorts and sort ascending. Select all columns for pass - through, except
for the Line column. You will no longer use the line data, so there is no need to continue to drag this data
through your transformation process. Now you are ready to merge the outputs.

 Add a Merge Join Transformation to connect the two outputs to the component. In the editor, select the
RawInvoiceNbr and ReferenceNbr1 columns from the Invoice sort stream. Select the PaymentAmount
and ReferenceData2 columns from the Check sort stream. There is no need to bring the Matching Key
data forward because that information is embedded in the ReferenceData fields. Make sure the JOIN
type is set to INNER Join.

 This stream is now one row per check and invoice combination. You are almost ready to insert the data
into the BankBatchDetail table. All you need now is the Foreign Key for the BankBatch table. Earlier you
stored this information in a global variable. To merge this into your stream, add a Derived Column Task
and add the variable BANKBATCHID to the stream. (You could have done this earlier in either the check or
invoice processing steps as well.) You automatically get all the other fields in the Data Flow as
pass - through.

 Add an OLE DB Destination and connect to the CaseStudy.OLEDB connection. Connect the transform
and select the table BankBatchDetail. Map the columns from the output to the BankBatchDetail table
where the column names match. We still have a little left to do, but the core of the Bank File Data Flow is
shown in Figure 23 - 22 .

c23.indd 891c23.indd 891 8/28/08 12:48:23 PM8/28/08 12:48:23 PM

Chapter 23: Case Study: A Programmatic Example

892

 Saving a Bank File Snapshot in the Database
 You still have one task left to do before closing out this Data Flow, and that is saving a snapshot of the
file contents into the BankBatch row. Everything else you are doing in this Data Flow is saving data at
the payment or detail level. Saving the entire file contents for audit purposes is a batch - level task. To do
this, you ’ ll need to create a separate stream that will use the Header portion of the Conditional stream
you split off early in the Data Flow. Start by adding a Derived Column Task connecting to the header -
 based output; this pushes the identification elements down to a later OLE DB Transform that will update
the batch. Add the following columns to the Derived Column Task:

 Derived Column Expression Data Type

 LBCurrentFile @[User::LBCURRENTFILE] [DT_WSTR] 100

 BankBatchID @[User::BANKBATCHID] [DT_I4]

 Add an Import Column Transformation and connect it to this Header Derived Column Transform. On
the Input Columns tab, select the field that contains the file path in the stream: LBCurrentFile. Then go to
the Advanced Input Output property tab and expand the Import Column Input and Import Column
Output Nodes. Add an output column to the Output Column Node called FileStreamToStore. Set the
DataType property to [DT_NTEXT]. The editor should look similar to Figure 23 - 23 , but the LineageIDs
may be different. Note the LineageID and set the property name FileDataColumnID in the LBCurrentFile
Input Column to that LineageID. Using Figure 23 - 23 , the ID would be 437.

Figure 23-22

c23.indd 892c23.indd 892 8/28/08 12:48:23 PM8/28/08 12:48:23 PM

Chapter 23: Case Study: A Programmatic Example

893

 Add an OLE DB Command Transform to the output of the Header Derived Column Transform.
Set the OLE DB Connection to CaseStudy.OLEDB. Then set the SQL Command to
Update BankBatch Set BatchFile = ? where BankBatchID = ? and click Refresh. In the Mappings
tab, connect the FileStreamToStore to the Destination Column Param_0, which is the [BatchFile] field in
the BankBatch table. Connect the BankBatchID to the Destination column Param_1. Click Refresh
and save.

Figure 23-23

 This completes the Data Flow Task. The task will parse and save the lockbox detail file into your
BankBatchDetail data table. The entire Data Flow should look similar to Figure 23 - 22 . Now would be a
good time to save the package. If you ’ ve run the package up to this point, check to see that a lockbox
sample file exists in the c:\casestudy\lockbox\ folder. Enable the Execute SQL Task and run the
package to watch it execute.

 To run the test file through multiple times, you ’ ll need to reset the database by deleting the contents of
the BankBatch and BatchBatchDetail tables between runs. Otherwise, in subsequent runs, the package
will fail upon finding that the file has been previously processed. Use this script to reset the database for
multiple runs:

DELETE FROM BANKBATCHDETAIL
DELETE FROM BANKBATCH

c23.indd 893c23.indd 893 8/28/08 12:48:24 PM8/28/08 12:48:24 PM

Chapter 23: Case Study: A Programmatic Example

894

 This completes the first third of the ETL processes for the Lockbox Bank Batch payment method. You will
next start to build the two remaining processing options. One is for ACH (which involves processing an
XML file) and the other for email payments that are stored in a database. You can skip ahead to the Case
Study Process package if you want to complete the processing of this Lockbox Bank Batch file or
continue to build the other payment processing methods.

 ACH Load Package
 In the business specs, you have to process ACH files that represent the payment wire detail. The
approach to this problem will resemble closely what you did for the Lockbox, but the XML file format
that is sent for this payment method adds more data consistency and a few new processing tricks. Again,
you can also walk through and create this ACH load package or download the complete solution from
 www.wrox.com to see and explore the final result.

 ACH Package Setup and File System Tasks
 To get started, you need to create a new SSIS package named CaseStudy_Load_ACH in c:\casestudy\
casestudy_load_ACH\ . When the project is built, go to the Solution Explorer and click the Package
.dtsx file. In the Property window, find the Name property and change the name from package.dtsx
to casestudy_load_ACH.dtsx . Answer Yes to change the name of the package object as well.

 Use the menu SSIS Variables to access the Variables editor and add the variables as shown in the
following table:

 Variable Name Scope Data Type Value

 BANKBATCHID CaseStudy_Loa.. Int32 0

 BANKBATCHNBR CaseStudy_Loa.. String

 BATCHITEMS CaseStudy_Loa.. Int64 0

 BATCHTOTAL CaseStudy_Loa.. Double 0

 DEPOSITDATE CaseStudy_Loa.. DateTime 12/30/1899

 FILEBYTES CaseStudy_Loa.. Int64 0

 ACHBASEFILEPATH CaseStudy_Loa.. String c:\casestudy\ach

 ACHCURRENTFILE CaseStudy_Loa.. String c:\casestudy\ach\sampleach.xml

 ACHERRORFILE CaseStudy_Loa.. String

 ACHERRORFILEPATH CaseStudy_Loa.. String

 ACHIMPORTTYPE CaseStudy_Loa.. String ACH

 ACHPROCESSEDFILE CaseStudy_Loa.. String

 ACHPROCESSEDFILEPATH CaseStudy_Loa.. String

c23.indd 894c23.indd 894 8/28/08 12:48:24 PM8/28/08 12:48:24 PM

Chapter 23: Case Study: A Programmatic Example

895

 The variables @ACHPROCESSEDFILEPATH and @ACHERRORFILEPATH need to retrieve their values
relative to the base file paths. For example, the variable @ACHPROCESSEDFILEPATH should be set
up relative to the base Lockbox file path in a subdirectory called processed \ . To do this, you ’ ll use an
expression to generate the value of the variable. Click the variable in the Variables Editor. In the Property
window, set the property EvaluateAsExpression to True. Set these variables up to be evaluated as
expressions like this:

 For Variable Name Set Expression To

 ACHERRORFILEPATH @ACHBASEFILEPATH + “ \\error “

 ACHPROCESSEDFILEPATH @ACHBASEFILEPATH + “ \\processed “

 The variables for specific processed and error versions of the current file being processed need to
retrieve a unique value that can be used to rename the file into its respective destination file path. Set
the @ACHERRORFILE and @ACHPROCESSEDFILE variables up to be evaluated using expressions similar
to the following formula:

@ACHERRORFILEPATH + “\\” + REPLACE(REPLACE(REPLACE(REPLACE((DT_WSTR,
50)GETUTCDATE(),”-”,””),” “, “”),”.”, “”),”:”, “”) + (DT_WSTR, 50)@FILEBYTES +
“.txt”

 This formula will generate a name similar to 200808160552080160000000.xml for the file to be moved
into an off - line storage area.

 In the Connection Managers tab, add an OLE DB Connection to connect to the CaseStudy database.
Name the connection CaseStudy.OLEDB. This package won ’ t use a dynamic connection like the Bank
File package to simplify the example, but feel free to work this out on your own. We do want to add an
additional connection to the package, just to show the difference between using OLE DB and ADO.NET
in the Execute SQL Tasks, so add an ADO.NET Connection that also connects to the CaseStudy database.
Name this connection CaseStudy.ADO.NET.

 ACH Control Flow Processing
 Just like the CaseStudy_Load_Bank package in the previous example, you need to be able to process
many files that are coming in from an ACH institution, but this time the file format is XML. You ’ ll also
notice that there is no XML connector. This presents a new twist that we ’ ll have to resolve in the Data
Flow Tasks later. Otherwise, the basic structure of this package is the same as the Bank File Load
Package.

ACH Control Flow Loop
 Add two File System Tasks to the Control Flow design surface of the package. One task will be used for
checking and adding the ACH processed file path and another for the ACH error - file path. These two

c23.indd 895c23.indd 895 8/28/08 12:48:25 PM8/28/08 12:48:25 PM

Chapter 23: Case Study: A Programmatic Example

896

paths are where the package will move incoming lockbox files depending upon how they are processed.
Change the name and description properties to the following:

 Name Description

 File System Task Folder ACH Processed Folder Ensures that the ACH Processed Folder exists

 File System Task Folder ACH Error Folder Ensures that the ACH Error Folder exists

 For each File System Task, set the following properties:

 Property Setting

 Operation Create Directory

 UseDirectoryIfExists True

 IsSourcePathVariable True

 SourceVariable Choose the corresponding variable for each task.

 Stack the two File System Tasks on top of one another. The precedence constraint should automatically
be set to Success.

 Drop a Sequence Container on the Control Flow design surface. Change the Name property to
 “ Sequence of ACH Processing. ” Connect the precedence from the last Lockbox File Systems Task to the
Sequence Container, so that the Sequence Container is not executed unless the File Systems Task
completes successfully. Minimize the Sequence Loop to give yourself more room to work.

 Add a Foreach Loop Container inside the Sequence Container. Change the Name property to “ For Each
ACH File. ” The Foreach Loop is expecting a literal path to poll. You want the loop to rely on a variable,
so you ’ ll have to use an expression. You did this same thing for the bank file package. Go back and
review if you are unsure. On the Foreach Loop you need to set the Directory property to an expression
that gets its value from the variable ACHBASEFILEPATH . However, if you use the Expressions Tab in the
editor, you will not see a property called Directory. On this task, you ’ ll find the properties for the
Enumerator in the Collection tab at the top of the dialog. You can see this in Figure 23 - 24 . Here you ’ ll
find the Directory property and call set is to the variable ACHBASEFILEPATH . Evaluate the expression to
ensure that it matches the base ACH path. Set the property files to “ *.xml ” . Leave the Retrieve File
value as Name Fully Qualified. The Collection tab of the Foreach Loop Container should look like
Figure 23 - 24 .

c23.indd 896c23.indd 896 8/28/08 12:48:25 PM8/28/08 12:48:25 PM

Chapter 23: Case Study: A Programmatic Example

897

 To store the name of the file you are processing into a variable, click the Variable Mappings tab on the
left side of the Foreach Loop Container. Select the variable named ACHCURRENTFILE to retrieve the value
of the Foreach Loop for each file found. Leave the index on the variable mapping set to zero (0). This
represents the first position in a files collection or the filename returned by the loop. Click OK to
complete this task.

ACH Control Flow Retrieval of XML File Size
 Just like the Bank Batch file, you need to examine the file to retrieve the number of complete bytes. Like
you did before, the variables will need to be reset. The additional issue with processing XML files is that
while you can iterate through a set of XML files, you don ’ t have a control source that you can set with a
variable. The closest thing to it is the Data Flow XML Source Component, but the filename can ’ t be set.

 The workaround that you ’ ll employ is to set up the XML Source with a fixed filename. You ’ ll do that
later, but in this stage, you need to change the name of the iterated file to the filename that will be
plugged into the XML Source later. You ’ ll be able to change the name of each current file in the iterations
to the fixed filename easily inside a Script Task while checking the file size. To get started, add a Script
Task within the Foreach Loop. Change the name to “ Script ACH File Size into Variable. ” Provide the
variable ACHBASEFILEPATH for the ReadOnlyVariables property. Provide the variables BANKBATCHID ,
 BANKBATCHNBR , BATCHITEMS , BATCHTOTAL , DEPOSITDATE , FILEBYTES , and now ACHCURRENTFILE into
the ReadWriteVariables property.

 Select the script language of your preference. Click the Edit Script button. This opens up the .NET
development environment. Add an Imports or Using reference to the System.IO namespace and

Figure 23-24

c23.indd 897c23.indd 897 8/28/08 12:48:28 PM8/28/08 12:48:28 PM

Chapter 23: Case Study: A Programmatic Example

898

update the script to pull the file bytes from the filename provided in the DTS object Variables collection.
First, pull in a reference to the System.IO library by adding the last reference you see in this code:

C#
using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime;
using System.IO; //’ < --Added Input/Output library

VB
Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Runtime
Imports System.IO ‘ < --Added Input/Output library

 Then add a VB Sub or C# void function to reset the variables that you can call in the Script Task Main()
function:

C#
 public void ResetVariables()
 {
 //Resets variables
 Dts.Variables[“BANKBATCHID”].Value = System.Convert.ToInt32(0);
 Dts.Variables[“BANKBATCHNBR”].Value = “”;
 Dts.Variables[“BATCHITEMS”].Value = System.Convert.ToInt64(0);
 Dts.Variables[“BATCHTOTAL”].Value = System.Convert.ToDouble(0);
 Dts.Variables[“DEPOSITDATE”].Value = DateTime.MinValue;
 Dts.Variables[“FILEBYTES”].Value = System.Convert.ToInt64(0);
 }
VB
 Public Sub ResetVariables()
 ‘Resets variables
 Dts.Variables(“BANKBATCHID”).Value = System.Convert.ToInt32(0)
 Dts.Variables(“BANKBATCHNBR”).Value = “”
 Dts.Variables(“BATCHITEMS”).Value = System.Convert.ToInt64(0)
 Dts.Variables(“BATCHTOTAL”).Value = System.Convert.ToDouble(0)
 Dts.Variables(“DEPOSITDATE”).Value = DateTime.MinValue
 Dts.Variables(“FILEBYTES”).Value = System.Convert.ToInt64(0)
 End Sub

 Then replace the Main() function within the Script Task with this one:

C#
 public void Main()
 {
 //’**
 //’SCRIPT
 //’PURPOSE: To take file bytes and save to global variable
 //’===
 Int64 ldefault = 0;
 string sNewFile = string.Empty;
 try

c23.indd 898c23.indd 898 8/28/08 12:48:30 PM8/28/08 12:48:30 PM

Chapter 23: Case Study: A Programmatic Example

899

 {
 //’Reset Variables
 ResetVariables();

 //’Retrieve File Byte Info
 FileInfo oFile = new
FileInfo(Dts.Variables[“User::ACHCURRENTFILE”].Value.ToString());
 //’Because XML Source can’t be set by expression
 //’Use Current file name and change to fixed
 //’SampleACH.xml
 sNewFile = Dts.Variables[“User::ACHBASEFILEPATH”].Value +
 “\\SampleACH.xml”;
 oFile.MoveTo(sNewFile);
 Dts.Variables[“User::ACHCURRENTFILE”].Value = sNewFile;
 Dts.Variables[“User::FILEBYTES”].Value = oFile.Length;

 //’Dts.Events.FireInformation(0, “Script Task to Vars”, _
 //’ “File Bytes Found:” +
 // Dts.Variables(“FILEBYTES”).Value.ToString(), “”, 0, bVal)
 System.Windows.Forms.MessageBox.Show(“File Bytes Found:” +
 Dts.Variables[“FILEBYTES”].Value.ToString());
 Dts.TaskResult = (int)ScriptResults.Success;
 }
 catch (Exception ex)
 {
 Dts.Events.FireError(0, “Script Task To Vars”,
 ex.ToString(), “”, 0);
 Dts.Variables[“FILEBYTES”].Value = ldefault;
 Dts.TaskResult = (int)ScriptResults.Failure;
 }
 }

VB
 Public Sub Main()
 ‘**
 ‘SCRIPT
 ‘PURPOSE: To take file bytes and save to global variable
 ‘==
 Dim oFile As FileInfo
 Dim lDefault As Int64
 Dim sNewFile As String
 lDefault = 0
 Try
 ‘Reset Variables
 ResetVariables()

 ‘Retrieve File Byte Info
 oFile = New
FileInfo(Dts.Variables(“User::ACHCURRENTFILE”).Value.ToString)
 ‘Because XML Source can’t be set by expression
 ‘Use Current file name and change to fixed
 ‘SampleACH.xml

c23.indd 899c23.indd 899 8/28/08 12:48:31 PM8/28/08 12:48:31 PM

Chapter 23: Case Study: A Programmatic Example

900

 sNewFile = Dts.Variables(“User::ACHBASEFILEPATH”).Value + _
 “\SampleACH.xml”
 oFile.MoveTo(sNewFile)
 Dts.Variables(“User::ACHCURRENTFILE”).Value = sNewFile
 Dts.Variables(“User::FILEBYTES”).Value = oFile.Length

 ‘Dts.Events.FireInformation(0, “Script Task to Vars”, _
 ‘ “File Bytes Found:” + _
 ‘Dts.Variables(“FILEBYTES”).Value.ToString(), “”, 0, bVal)

 System.Windows.Forms.MessageBox.Show(“File Bytes Found:” + _
 Dts.Variables(“FILEBYTES”).Value.ToString())
 Dts.TaskResult = ScriptResults.Success
 Catch ex As Exception
 Dts.Events.FireError(0, “Script Task To Vars”, ex.ToString(), _
 “”, 0)
 Dts.Variables(“FILEBYTES”).Value = lDefault
 Dts.TaskResult = ScriptResults.Failure
 End Try
 End Sub

 Notice here that the filename sent into the Script Task is used to retrieve the file bytes, but then the file is
renamed to a static name SampleACH.xml . The name changing is happening in this code:

C#: oFile.MoveTo(sNewFile);
VB: oFile.MoveTo(sNewFile)

 The variable is also updated so that the rest of the process, including the Data Flow XML Source, will
continue to operate on the same fixed filename.

 To finish out the retrieval Control Flow for now, add a Data Flow Task. Connect the successful
completion of the Script Task to this task. Change the Name property to “ Data Flow ACH Validate File
and Header Info. ” You ’ ll come back and configure the Data Flow in the previous section, “ Bank File Data
Flow Validation. ” Disable the task for now. You should save the entire package and run to make sure
everything is working so far.

ACH Control Flow Batch Creation
 The last task for the bank - file Control Flow is to lay out the workflow that validates the existence of key
values in the Batch file and that the Batch itself has not already been processed. To enable moving the file
if there is a problem, add a File System Task named File System Task Error Folder. Instead of choosing a
move file operation in the File System Task, select the option to rename the file. The File System Task
properties should be set to the values shown in the following table:

c23.indd 900c23.indd 900 8/28/08 12:48:31 PM8/28/08 12:48:31 PM

Chapter 23: Case Study: A Programmatic Example

901

 Property Value

 IsDestinationPathVariable True

 Destination Variable User::ACHERRORFILE

 OverwriteDestination True

 Name File System Task Error Folder

 Description Moves bad files to an error folder

 Operation Rename File

 IsSourcePathVariable True

 SourceVariable User::ACHCURRENTFILE

 The File System Task here will complain if the value for User::ACHCurrentFile is empty or if it doesn ’ t
have a default value, so make sure you set this up initially as described in the earlier set up section.

 To connect the Data Flow and File System Task together, add a precedence constraint that looks for the
existence of a Bank Batch Id and amount. On the constraint, select the Multiple Constraint option of
Logical AND and set the Evaluation Operation to Expression And Constraint. Set the Value to Failure
and the Expression to:

@BANKBATCHID!=0

 If the Data Flow fails, or the Data Flow found an existing BankBatchId, the precedence constraint will
send the workflow to the File System Task that will archive the file in the error folder.

 Now if the elements are all present, and there is no existing bank batch by batch number, the batch needs
to be persisted to the database. To do this add an Execute SQL Task. This task will use a stored procedure,
usp_BankBatch_Add, to add the parsed information in the Lockbox file as a row in the BankBatch table
to represent a new batch file. The procedure usp_BankBatch_Add will return the new BankBatchId if it
could be successfully added. This time we ’ ll use an ADO.NET Connection Manager to see the difference
between using the OLE DB Connection Manager; set Execute SQL Task properties up like this:

 Property Value

 Name Execute SQL task to add Bank Batch Hdr

 ConnectionType ADO.NET

 Connection CaseStudy.ADO.NET

 SQLStatement EXEC usp_BankBatch_Add @BankBatchID OUTPUT,
@BankBatchNbr, @DepositDate, @ReceivedDate,
@BatchTotal, @BatchItems, @FileBytes, @FullFilePath,
@ImportType

 IsQueryStoredProcedure False

c23.indd 901c23.indd 901 8/28/08 12:48:31 PM8/28/08 12:48:31 PM

Chapter 23: Case Study: A Programmatic Example

902

 Because you are using an ADO.NET provider now, you ’ ll notice that the parameter data types more
closely match the types of the variables. The finished Execute SQL Task Editor parameter mappings
should look like Figure 23 - 25 .

Figure 23-25

 If the Execute SQL Task finds an existing BankBatchID or fails, you also need to move the file into an
error folder. Connect the Execute SQL Task to the File System Error Folder Task failure precedence and
constraint conditions — except change the expression to apply when the BankBatchID does not equal
zero (0) OR if the Data Flow Task fails. Set the Evaluation Operation to Expression OR Constraint. Set the
Value to Failure and the Expression to @BANKBATCHID = = 0 . Select the Multiple Constraint property to
the option of Logical OR.

 Add a second new Data Flow Task to the Foreach Loop. Change the name property to Data Flow ACH
Detail Data Load. You ’ ll come back later to configure the Data Flow in the next section. Connect the
successful completion of the Execute SQL Task to this task. Add an expression to check for a nonzero
BankBatchID, and set the constraint to successful completion between the Execute SQL Task and this
new Data Flow Task.

 If the Data Flow Lockbox Detail Data Load fails to extract, transform, and load the batch details, you ’ ve
still got an issue. Add a simple Failure constraint between the Data Flow Lockbox Detail Data Load and
the previously created File System Task Error Folder. (You could also use the Event Handler control
surfaces to create actions or workflows to occur upon failures.)

 If the file is processed successfully in the Data Flow Lockbox Detail Data Load, you need to move it to
the “ processed ” folder. Add another new File System Task and connect it to the successful completion
of the second Data Flow Task. Set up this task just like the Error Folder File System Task but point
everything to the processed folder.

c23.indd 902c23.indd 902 8/28/08 12:48:32 PM8/28/08 12:48:32 PM

Chapter 23: Case Study: A Programmatic Example

903

 Property Value

 IsDestinationPathVariable True

 Destination Variable User::ACHPROCESSEDFILE

 OverwriteDestination True

 Name File System Task Processed Folder

 Description Moves completed files to an error folder

 Operation Rename File

 IsSourcePathVariable True

 SourceVariable User::ACHCURRENTFILE

 You now have the basic structure set up for the ACH File Lockbox Control Flow. You still need to go
back and build your transforms in the Data Flow Tasks. You ’ ll get to that in the next sections. If you are
following along, go ahead and save the package at this point. If you want to test the package, you can set
up the variables and test the different workflows. Just remember to watch the movement of the sample
file into the processed and error folders and make sure you put it back after each run. The CaseStudy_
Load_ACH package at this point should look like Figure 23 - 26 .

Figure 23-26

c23.indd 903c23.indd 903 8/28/08 12:48:32 PM8/28/08 12:48:32 PM

Chapter 23: Case Study: A Programmatic Example

904

 To test the progress so far, disable the Execute SQL Task so that a batch row won ’ t be created. Disable the
Lockbox Sequence Container, so it won ’ t be run. Save, and then execute the package to ensure that
everything so far is set up properly.

 ACH Data Flow Validation
 In this section of the package, you are going to fill in the details for the ACH Data Flow Container. The
strategy will be to open up the ACH file, retrieve information from the header, and pass the information
back to the Control Flow via variables. You ’ ll use an XML Data Source combined with an XSD file that
you ’ ll create and edit to read the file. Because the data is structured and hierarchical, you don ’ t have the
parsing tasks that are associated with flat files. However, you can still have bad data in the structure, so
you ’ ll have to validate the file. You ’ ll use a lookup on the header to look for matches by batch number,
and a Script Component will pull this information from the transformation stream and send it back into
your Control Flow for evaluation and further processing.

ACH Data Flow Parsing and Error Handling
 Start by enabling the ACH Validate File and Header Info Data Flow. Click the task to enter the Data Flow.
Add an XML Source to the Data Flow. In the XML Source Editor, set the XML Location to the fixed name
of the sample ACH file SampleAch.xml in the c:\casestudy\ach\ directory. You should immediately
see the message shown in Figure 23 - 27 . This message is acknowledging that an XML formatted file has
been selected, but the task needs schema information from the XSD file to set up data types and sizes.
Because you don ’ t have an XSD file, you ’ ll use a utility provided with this component to generate one.

Figure 23-27

 Provide the XML source with a path to build the XSD as c:\casestudy\ach\ach.xsd . Then click the
Generate XSD button to create the file. Unfortunately, the XSD generator is not perfect, so if you use this
tool, you ’ ll need to manually validate the XSD file. Here ’ s where error - handling strategy and design

c23.indd 904c23.indd 904 8/28/08 12:48:33 PM8/28/08 12:48:33 PM

Chapter 23: Case Study: A Programmatic Example

905

come into play. You can set up the XSD with all text fields, and the file will always parse successfully.
However, you will have to type - check all the fields yourself. If you strongly type your XSD as we are
recommending here, the task could fail, and you won ’ t get a chance to make any programmatic
decisions. Another thing to note is that the automatically generated XSD is based on the available data in
the XML file, so in the case of your header, which has only one row, it doesn ’ t have much data to review
to pick data types. That ’ s why the XSD type designation for the BATCHITEMS variable is incorrect. Open
up the XSD in Notepad and change the XSD type designation from xs:UnsignedByte to xs:
UnsignedInt . Now you match the data type of your global BATCHITEMS variable.

 In the XML Source Component, go to the Error Output tab. For both header and detail output and for
every column and every error type, set the action to Redirect Row. Because you are dealing with an ACH
file, the effect of truncating numbers and dates is a big deal. If you have a truncation or date issue, you
want the file to fail, and redirecting the output will allow you to record what went wrong and then end
the current Data Flow Task that exists solely to validate the incoming file.

 In the same way as the lockbox, if you do get row errors, you would like to gather as much information
about the error to assist in the troubleshooting process. The XML Source has two error outputs, Header
and Detail, so you ’ ll have twice as much work to do. Create two Script Component Tasks as
transformations like you did to capture errors in the Lockbox Data Flow for each of the error outputs
from the XML Source. Select the ErrorCode and ErrorColumn columns from the input. Create a new
Output Column named ErrorDesc of type Unicode string [DT_WSTR] and size 1048. Open up the design
environment for the Script Component. Change your ProcessInputRow event code to the following:

C#
 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {
 //’Script
 //’Purpose: To retrieve the error description to write to error log
 Row.ErrorDesc = ComponentMetaData.GetErrorDescription(Row.ErrorCode);
 }

VB
 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 ‘SCRIPT
 ‘PURPOSE: To retrieve the error description to write to error log
 ‘===
 Row.ErrorDesc= ComponentMetaData.GetErrorDescription(Row.ErrorCode)
 End Sub

 Add two Derived Column Transforms with the following derived columns. Connect them to the output
of the two Script Component Transformations.

 Derived Column Expression DataType

 ExecutionID @[System::ExecutionInstanceGUID] DT_WSTR 38

 ErrorEvent “ ACH “ DT_WSTR 20

 ErrorDate @[System::ContainerStartTime] DT_DATE

c23.indd 905c23.indd 905 8/28/08 12:48:33 PM8/28/08 12:48:33 PM

Chapter 23: Case Study: A Programmatic Example

906

 For the Detail output only, add the following derived column:

 RawData (DT_STR, 1028, 1252) ErrorDesc DT_STR 1048

 Now add two OLE DB Destination Components and connect them to the output of the Derived Columns
mapping the fields to the table ErrorDetail, exactly as you did for the Lockbox Data Flow. Map the
converted [rawdata] field to the [rawdata] field for the detail output. Map the ID field of the header
output to the output [rawdata] field. The error handling of the bad XML file should look like Figure 23 - 28 .

Figure 23-28

ACH Data Flow Validation
 If the XML data is good, you want to perform a lookup on the batch number. If you recall, the Lookup
Transform is case - sensitive, but unlike the flat file where you could convert the whole line to uppercase,
here you ’ ll have to convert each field of importance. Add a Character Map Transform Task and convert
the Header output ID field (a batch number) to uppercase as an in - place change.

 You also need a value in your stream to allow a lookup on import type. Batch numbers are only
guaranteed to be unique by this type, and it is stored in the global variables. Add a Derived Column
Transform to add a column ImportType to your output stream. Because the [ImportType] field in the
BankBatch table is of type CHAR(10), add the derived column as a type string [DT_STR] of size 10. Also
add a casting transform to specifically cast the ID column in place to a Unicode [DT_WSTR] string of
size 50.

 Now you should be ready to add the Lookup Transform to the Data Flow. Set the OLE DB Connection to
CaseStudy.OLEDB. This time you ’ ll set the Lookup to the results of the following query instead of the
table directly. Using only what you need is generally more efficient depending upon the table size and
index structures. The SQL statement should look like this:

SELECT BANKBATCHID, UPPER(BANKBATCHNBR) AS BANKBATCHNBR, UPPER(IMPORTTYPE) AS
IMPORTTYPE
FROM BANKBATCH
ORDER BY BANKBATCHNBR

c23.indd 906c23.indd 906 8/28/08 12:48:33 PM8/28/08 12:48:33 PM

Chapter 23: Case Study: A Programmatic Example

907

 In the Columns tab, link the Input Column ID to the Lookup column of BankBatchNbr. Link the
ImportType columns. Add BankBatchID as the Lookup column with an output alias of BANKBATCHID .
Because you are expecting that you will not get a match on the lookup and that this is indeed a new file,
use the Configure Error output button and set the Lookup step to Ignore Failure on the Lookup Output.

 Add a Script Component Task as a destination to capture the successful end of your transformation Data
Flow. Connect it to the Lookup output. Open the editor and select all the available input columns. Add
the following global variables as ReadWriteVariables: BANKBATCHNBR , BANKBATCHID , BATCHTOTAL ,
 BATCHITEMS , DEPOSITDATE . Insert the following code to store the variables:

C#
public class ScriptMain : UserComponent
{
 public int LocalBankBatchId = 0;
 public double LocalBatchTotal = 0;
 public string LocalBatchNbr = string.Empty;
 public DateTime LocalDepositDate = DateTime.MinValue;

 public override void PreExecute()
 {
 base.PreExecute();
 }

 public override void PostExecute()
 {
 bool bVal = false;
 //’SCRIPT
 //’PURPOSE: To set SSIS variables with values retrieved earlier
 //’==
 try
 {
 //’Attempt to accept the values
 Variables.BANKBATCHID = LocalBankBatchId;
 Variables.BANKBATCHNBR = LocalBatchNbr;
 Variables.DEPOSITDATE = LocalDepositDate;
 Variables.BATCHTOTAL = LocalBatchTotal;
 }
 catch (Exception ex)
 {
 //’If any failure occurs fail the file
 Variables.BANKBATCHID = 0;
 Variables.BATCHTOTAL = 0;
 ComponentMetaData.FireError(0, “”, ex.Message, “”, 1, out bVal);
 }
 base.PostExecute();
 }

 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {
 //’SCRIPT
 //’Purpose: Pull Information from Header row and set variables
 bool bVal = false;

c23.indd 907c23.indd 907 8/28/08 12:48:34 PM8/28/08 12:48:34 PM

Chapter 23: Case Study: A Programmatic Example

908

 string Msg = string.Empty;
 try
 {
 //’If there is no header metadata then mark for failure
 if(Row.DEPOSITDATE_IsNull ||
 Row.TOTALDEPOSIT_IsNull ||
 System.Convert.ToDouble(Row.TOTALDEPOSIT) == 0D)
 {
 LocalBankBatchId = 0;
 LocalBatchTotal = Convert.ToDouble(0D);
 }
 else
 {
 //’Retrieve the data from the stream
 if (Row.BankBatchID_IsNull)
 {
 LocalBankBatchId = 0;
 }
 else
 {
 LocalBankBatchId = Row.BankBatchID;
 }
 LocalBatchNbr = Row.ID;
 LocalDepositDate = Convert.ToDateTime(Row.DEPOSITDATE);
 LocalBatchTotal = Convert.ToDouble(Row.TOTALDEPOSIT);
 }
 Msg = String.Format(“Variables: BankBatchId={0}, “ +
 “BatchTotal={1}, BatchNbr=[{2}]”, LocalBankBatchId,
 LocalBatchTotal, LocalBatchNbr);
 ComponentMetaData.FireInformation(0, ComponentMetaData.Name,
 Msg, “”, 0, ref bVal);
 }
 catch(Exception ex)
 {
 ComponentMetaData.FireError((int)0, ComponentMetaData.Name,
 ex.Message.ToString(), “”, 1, out bVal);
 }
 }

VB
Public Class ScriptMain
 Inherits UserComponent
 Public LocalBankBatchId As Integer = 0
 Public LocalBatchTotal As Double = 0
 Public LocalBatchNbr As String = “”
 Public LocalDepositDate As Date = Date.MinValue

 Public Overrides Sub PreExecute()
 MyBase.PreExecute()
 End Sub

 Public Overrides Sub PostExecute()
 Dim bVal As Boolean

c23.indd 908c23.indd 908 8/28/08 12:48:34 PM8/28/08 12:48:34 PM

Chapter 23: Case Study: A Programmatic Example

909

 MyBase.PostExecute()
 ‘SCRIPT
 ‘PURPOSE: To set SSIS variables with values retrieved earlier
 ‘==
 Try
 ‘Attempt to accept the values
 Variables.BANKBATCHID = LocalBankBatchId
 Variables.BANKBATCHNBR = LocalBatchNbr
 Variables.DEPOSITDATE = LocalDepositDate
 Variables.BATCHTOTAL = LocalBatchTotal
 Catch ex As Exception
 ‘If any failure occurs fail the file
 Variables.BANKBATCHID = 0
 Variables.BATCHTOTAL = 0
 ComponentMetaData.FireError(0, “”, ex.Message, “”, 1, bVal)
 End Try

 End Sub

 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 ‘SCRIPT
 ‘Purpose: Pull Information from Header row and set variables
 Dim bVal As Boolean
 Dim Msg As String
 Try
 ‘If there is no header metadata then mark for failure
 If Row.DEPOSITDATE_IsNull = True Or _
 Row.TOTALDEPOSIT_IsNull = True Or _
 System.Convert.ToDecimal(Row.TOTALDEPOSIT) = 0D Then
 LocalBankBatchId = 0
 LocalBatchTotal = 0D
 Else
 ‘Retrieve the data from the stream
 If Row.BankBatchID_IsNull Then
 LocalBankBatchId = 0
 Else
 LocalBankBatchId = Row.BankBatchID
 End If
 LocalBatchNbr = Row.ID
 LocalDepositDate = Row.DEPOSITDATE
 LocalBatchTotal = Row.TOTALDEPOSIT
 End If
 Msg = String.Format(“Variables: BankBatchId={0}, “ + _
 “ BatchTotal={1}, BatchNbr=[{2}]”, LocalBankBatchId, _
 LocalBatchTotal, LocalBatchNbr)
 ComponentMetaData.FireInformation(0, ComponentMetaData.Name, _
 Msg, “”, 0, bVal)
 Catch ex As Exception
 ComponentMetaData.FireError(0, ComponentMetaData.Name, _
 ex.Message, “”, 1, bVal)
 End Try
 End Sub
End Class

 The ACH Validation Data Flow is now almost complete; you only have one more minor task.

c23.indd 909c23.indd 909 8/28/08 12:48:34 PM8/28/08 12:48:34 PM

Chapter 23: Case Study: A Programmatic Example

910

ACH Data Flow Capturing Total Batch Items
 The last variable that you need to retrieve is the number of transactions in the ACH file details. The XML
Source automatically splits the file stream into its multiple parts. In this case the stream is split into header
and detail lines. At this point you are really only interested in the check lines in the file. Instead of running
an aggregate and pushing the stream into a Script Component like you did in the Lockbox package, use
one of the new Row Count Data Flow Components. This component allows you to set a variable directly
from an aggregate count. The configured Row Count Transform should look like Figure 23 - 29 .

Figure 23-29

 That was easier than putting the Script Component in to capture the Count(*) , now wasn ’ t it? This
component is one of the latest additions to SSIS.

 At this point, the Data Flow for validation purposes is complete. The final Data Flow should look like
Figure 23 - 30 . If you ’ ve still got the Lockbox Sequence Container disabled, then go ahead and run the
package. Once you get it working properly, archive a copy, because you ’ ve got another Data Flow to
build to import the ACH XML file. Play around with the XML file by adding bad data and malforming
the structure of the file to see how the Data Flow handles it.

c23.indd 910c23.indd 910 8/28/08 12:48:35 PM8/28/08 12:48:35 PM

Chapter 23: Case Study: A Programmatic Example

911

 ACH Data Flow Detail Processing ETL
 This section in a lot of ways mirrors the Data Flow for Lockbox Processing. Once you ’ ve validated
the ACH XML file, the Control Flow will create a [BankBatch] row and start the process of importing the
detail. You have all the header - related information, just as you did for the Lockbox process, and because
the file has been validated, you can simply transform the data into the [BankBatchDetail] table.

Processing the ACH File
 Enable the Data Flow Task named Data Flow “ ACH Detail Data Load ” and drill down into its design
surface. Add an XML Source and set it up exactly the same as you did for the Validation Data Flow.
However, this time you already have an XSD file, so just point the component to it. Leave the
ErrorOutput settings to “ Fail component if an error is encountered while processing the file. ” You ’ ll also
leave the error - handling components out in this Data Flow, although in production you should add
them back in.

 If you ran the package to test the ACH Validation section, you ’ ll need to move the SampleACH.XML file
back into the directory c:\casestudy\ach\ .

 This time, you are concerned mainly with the detail portion of the XML data. You have the foreign key
information stored in a variable, so you don ’ t need to perform any lookups on data, but you will want to
use the Lookup later on the DESC field that you are going to import to the RawInvoiceNbr field in the

Figure 23-30

c23.indd 911c23.indd 911 8/28/08 12:48:35 PM8/28/08 12:48:35 PM

Chapter 23: Case Study: A Programmatic Example

912

CaseStudy_Processing package. Add a Character Map Transform to convert the DESC field to uppercase
and replace its current value in the stream.

 The only other thing you need is that foreign key stored in the variable @BANKBATCHID . Add a Derived
Column Transform to add that variable to the current stream. Add another column named
 RAWINVOICENBR and select the [DESC] field from the Columns input collection as a string [DT_WSTR]
type of length 50. This selection of string type has the result of conversion in one step.

 Add an OLE DB Destination and connect to the CaseStudy.OLEDB connection. Select the
[BankBatchDetail] table and map the columns in the following table:

 Input Column Destination Column

 BankBatchID BankBatchID

 Amount PaymentAmount

 RawInvoiceNbr RawInvoiceNbr

 Saving the ACH File Snapshot in the Database
 The final thing you need to do is save the entire XML file in the [BankBatch] table. You ’ ll use exactly the
same technique from the Lockbox process. Add a Derived Column Transform and connect to the Header
output of the XML file. Add columns for the variables BANKBATCHID and ACHCURRENTFILE . Make sure
the ACHCURRENTFILE column is set to [DT_WSTR] 100. Refer back to the “ Bank File Data Flow
Validation ” section to see an example of this transform.

 Add an Import Column Transform and connect to this Header Derived Column Transform. On the Input
Columns tab, select the field that contains the file path in the stream: ACHCURRENTFILE . Then go to the
Advanced Input Output property tab and expand the Input Column Input and Import Column Output
Nodes. Add an output column to the output columns Node named FileStreamToStore. Set the DataType
property to [DT_NTEXT]. The editor should look similar to Figure 23 - 31 , but the LineageIDs may be
different. Note the LineageID, and set the property named FileDataColumnID in the ACHCurrentFile
Input Column to that LineageID.

 Add an OLE DB Destination to the output of the Header Derived Column Transform. Set the OLE DB
Connection to CaseStudy.OLEDB. Then set the SQL Command to Update BankBatch Set BatchFile =
 ? WHERE BANKBATCHID = ? and click Refresh. In the Mappings tab, connect the FileStreamToStore to the
Destination Column Param_0, which is the [BatchFile] field in the BankBatch table. Connect the field
BankBatchID to the Destination Column Param_1. Click Refresh and save.

c23.indd 912c23.indd 912 8/28/08 12:48:35 PM8/28/08 12:48:35 PM

Chapter 23: Case Study: A Programmatic Example

913

 The final Data Flow for ACH processing should look similar to Figure 23 - 31 . After you ’ ve gotten a
successful run of this Data Flow, archive the package.

 Email Load Package
 The email payment processing is interesting. The payment transactions are stored in a relational
database, so you don ’ t have data issues. You just need to check to see if there are any to process. You also
have to make sure that you haven ’ t picked the transaction up before. In this case, you don ’ t have a Batch,
because the information is transactional, so a batch will be the set of transactions available when the
package runs. To avoid picking up duplicates, you ’ ll store the transactional primary key from the
accounting system into the batch detail records as your [ReferenceData1] field. You can then use this
field in your extraction to keep from pulling a transaction more than once. Again, you can also walk
through and create this Email load package or download the complete solution from www.wrox.com to
see and explore the final result.

 Email Package Setup and File System Tasks
 To get started, you need to create a new SSIS package named CaseStudy_Load_Email in c:\casestudy\
casestudy_load_Email\ . When the project is built, go to the Solution Explorer and click the Package
.dtsx file. In the Property window, find the Name property and change the name from package.dtsx
to casestudy_load_Email.dtsx . Answer Yes to change the name of the package object as well.

Figure 23-31

c23.indd 913c23.indd 913 8/28/08 12:48:36 PM8/28/08 12:48:36 PM

Chapter 23: Case Study: A Programmatic Example

914

 Use the menu SSIS Variables to access the Variables editor and add the variables as shown in the
following table:

 Variable Name Scope Data Type Value

 BANKBATCHID CaseStudy_Loa.. Int32 0

 BANKBATCHNBR CaseStudy_Loa.. String

 BATCHITEMS CaseStudy_Loa.. Int32 0

 BATCHTOTAL CaseStudy_Loa.. Double 0

 DEPOSITDATE CaseStudy_Loa.. DateTime 12/30/1899

 EMAILMPORTTYPE CaseStudy_Loa.. String EMAIL

 FILEBYTES CaseStudy_Loa.. Int64 0

 Add an OLE DB Connection to the Connection Manager that connects to the CaseStudy database.
Name the connection CaseStudy.OLEDB. Create an ADO.NET Connection in the Connection Manager as
well that connects to the CaseStudy database. Having connections of both types is not necessary for
typical package development, but both provide opportunities to demonstrate the differences in using
one or the other.

 Email Control Flow Processing
 Unlike the previous packages, the Email processing is a one - time interrogation of an external datastore,
so there will be no looping involved. There is also no need to examine a file structure to validate data
elements. This package is much easier. One interesting technique to point out in this example is the use
of casting in SQL Server to be able to retrieve a monetary amount back into an SSIS Double variable type
structure. The Double data type is the closest thing to a monetary variable type in SSIS.

 Add a Sequence Container to the Control Flow surface named Sequence of Email Payment Processing.
Then add a new Script Task named “ Script to Reset Variables Task ” to the Email Payment Processing
Sequence Container. This task may be familiar to you as it is the same as in previous packages. Feed into
the task all the variables, except the EmailImportType . The code will be real simple:

C#
 Public void Main()
 {
 Dts.Variables[“BANKBATCHID”].Value = System.Convert.ToInt32(0);
 Dts.Variables[“BANKBATCHNBR”].Value = String.Empty;
 Dts.Variables[“BATCHITEMS”].Value = System.Convert.ToInt32(0);
 Dts.Variables[“BATCHTOTAL”].Value = System.Convert.ToDouble(0);
 Dts.Variables[“DEPOSITDATE”].Value = DateTime.MinValue;
 Dts.Variables[“FILEBYTES”].Value = System.Convert.ToInt64(0);
 Dts.TaskResult = (int)ScriptResults.Success
 }

c23.indd 914c23.indd 914 8/28/08 12:48:36 PM8/28/08 12:48:36 PM

Chapter 23: Case Study: A Programmatic Example

915

VB
 Public Sub Main()
 Dts.Variables(“BANKBATCHID”).Value = System.Convert.ToInt32(0)
 Dts.Variables(“BANKBATCHNBR”).Value = String.Empty
 Dts.Variables(“BATCHITEMS”).Value = System.Convert.ToInt32(0)
 Dts.Variables(“BATCHTOTAL”).Value = System.Convert.ToDouble(0)
 Dts.Variables(“DEPOSITDATE”).Value = DateTime.MinValue
 Dts.Variables(“FILEBYTES”).Value = System.Convert.ToInt64(0)
 Dts.TaskResult = ScriptResults.Success
 End Sub

 The next task is to add an Execute SQL Task named Execute SQL to Check For Trans. This task will count
the number of transactions and the total amount in the accounting system not yet processed. The task
will set the variables BATCHITEMS and BATCHTOTAL equal to the number and total amounts of available
transactions to work. Set up the properties using the following table:

 Property Setting

 ResultSet SingleRow

 ConnectionType OLE DB

 Connection CaseStudy.OLEDB

 SQLSourceType Direct Input

 SQLStatement SELECT TranCnt, Convert(float, TotAmt) AS TotAmt
FROM (
SELECT count(*) as TranCnt,
 isnull(Sum(DepositAmount), 0) As TotAmt
FROM vCorpDirectAcctTrans Corp
LEFT OUTER JOIN BANKBATCHDETAIL DTL
ON cast(CORP.TRANSID as varchar(50)) =
DTL.REFERENCEDATA1
WHERE DTL.REFERENCEDATA1 is null
) SUBQRY

 ResultSet:ResultName 0

 ResultSet:Variable User::BATCHITEMS

 ResultSet:ResultName 1

 ResultSet:Variable User::BATCHTOTAL

c23.indd 915c23.indd 915 8/28/08 12:48:37 PM8/28/08 12:48:37 PM

Chapter 23: Case Study: A Programmatic Example

916

 Remember from the Bank Batch file example that you have to use ordinal positions to capture results
when using the OLE DB Connection. In this case, you are capturing two results. The issue that is hidden
here is that SSIS only has a Double variable data type. The DepositAmount field in the BankBatch table
is a SQL Server money data type. When the TSQL returns the money amount it will not bind to the SSIS
Double variable, and you ’ ll get an error that looks like this:

Error: 0xc232F309 at Execute SQL to check for Trans, Execute SQL Task: An
error occurred while assigning a value to variable “BATCHTOTAL”: “The type of
the value being assigned to variable “User::BATCHTOTAL” differs from the
current variable type. Variables may not change type during execution.
Variable types are strict, except for variables of type Object.

 Because the variable data types can ’ t be altered, you have to convert the money amount into the
equivalent of a double in SQL Server. In this example, the conversion to float allows the mapping to
occur. Connect the Script Task to this Execute SQL Task.

 Now add a new Execute SQL Task into the Sequence Container. (A tip that can save time is to copy an
existing task.) Name this new Execute SQL Task “ Add Email Bank Batch Hdr. ” This task will create the
batch header for your email - based transactions using a stored procedure usp_BankBatch_Add. Set up
the parameters to look like Figure 23 - 32 .

Figure 23-32

c23.indd 916c23.indd 916 8/28/08 12:48:37 PM8/28/08 12:48:37 PM

Chapter 23: Case Study: A Programmatic Example

917

 Notice here that we don ’ t really have a unique identifier in the accounting system for the batch of
transactions we are pulling, so we are using the Execution Instance GUID that is unique for every run of
the package. An alternative here would be to create a variable built by an expression that resolves to a
date - based attribute or a combination of date and transactional attributes, like the batch total.

 Add a conditional constraint in combination with an expression between the both SQL Execute Tasks
that won ’ t allow the second SQL Task to be executed if there are no transaction items to be worked as
email payments. The expression should be set to:

@BATCHITEMS > 0

 The last step is to add the Data Flow Task and connect it to the Execute SQL Batch Task. At the
moment, the Email Control Flow Tasks should resemble Figure 23 - 33 . Continue on to the next section
before testing this Control Flow.

Figure 23-33

 You should save the package at this point before proceeding to flesh out the Data Flow Task.

 Email Data Flow Processing
 If the package initiates the Email Data Flow, there must be some email - based accounting transactions in
the accounting database, and the Execute SQL Task will have already created a new row with a
BankBatchID from the BankBatch table for you that is stored in the BANKBATCHID variable. All you have
to do is extract the data from the accounting view, add the foreign key to the data, and insert the rows
into the [BankBatchDetail] table.

c23.indd 917c23.indd 917 8/28/08 12:48:37 PM8/28/08 12:48:37 PM

Chapter 23: Case Study: A Programmatic Example

918

 Start by drilling into the Data Flow Email Load Task design surface. Add an OLE DB Source to the Data
Flow. Connect to the CaseStudy.OLE.DB connection and set the data access mode to “ Table or view. ” Set
the name of the table or view to the view vCorpDirectAcctTrans.

 You also need to add that BankBatchID foreign key to your stream, so add a Derived Column Transform
to add the BANKBATCHID variable to the stream. Connect the OLE DB Source and the Derived Column
Transforms.

 Look at a sample of the TransDesc data that is being brought over in Figure 23 - 34 . To get this to match the
email addresses in the Customer table, it would be better to strip off the PAYPAL* identifier. Because
the BankBatchDetail file expects a nvarchar field of 50 characters, and you also need to be consistent with
case - sensitivity, convert the type and case at the same time by adding an additional column named
RawInvoiceNbr as a string [DT_WSTR] of 50 characters, and set the expression to the following:

(DT_WSTR, 50)TRIM(UPPER(REPLACE(REPLACE(TransDesc,”PAYPAL”,””),”*”,””)))

Figure 23-34

 Add two more columns to the Derived Column Transform to also convert the TransID and TransDesc
fields to an ANSI string value. Name the columns TransIDtoString and TransDescToString. Set the Data
Types to [DT_WSTR] with lengths of 50. The expressions should look like this:

(DT_WSTR, 50)[TransDesc]
(DT_WSTR, 50)[TransID]

 Add an OLE DB Destination Task and connect it to the output of the Derived Column Task. Set the
connection to the CaseStudy.OLEDB connection. Set the table to [BankBatchDetail]. Map the fields in the
Mapping tab to those shown in the following table:

 Input Field Destination in [BankBatchDetail]

 DepositAmount PaymentAmount

 < ignore > ReferenceData2

 BankBatchID BankBatchID

 RawInvoiceNbr RawInvoiceNbr

 TransIDtoString ReferenceData1

 TransDesctoString ReferenceData2

 This completes the construction of the Data Flow for the Email Load Task. The Email Load Data Flow
should look like Figure 23 - 35 .

c23.indd 918c23.indd 918 8/28/08 12:48:38 PM8/28/08 12:48:38 PM

Chapter 23: Case Study: A Programmatic Example

919

 At this point all three of the payment processing packages are complete. Later we ’ ll put all the packages
together, but for now, each one can be run individually to see how the bank batch file, the XML ACH
file, and the email data files are loaded into the BankBatch and BankBatchDetail tables. After testing
thoroughly, and loading all the payment data, you ’ ll be ready to go to the next section, which will use an
advance Data Flow to perform much of the matching of payment information to invoices.

 Testing
 Test the packages by disabling all the Sequence Containers and even the Data Flow Tasks. Work your
way through each of the tasks, enabling them as you go. Use this SQL script to delete rows that you may
be adding to the database during repeated testing that may change the flow of logic in the Control Flow
sections:

DELETE FROM BANKBATCHDETAIL
GO
DELETE FROM BANKBATCH

 Case Study Invoice Matching Process
 Each of the three load packages puts the data into the database. The Invoice Matching package is going to
perform the magic. All this payment data from different sources with varying degrees of quality needs to be
matched by invoice or customer attributes against your dimension tables of Invoice and Customer. Having
it combined in one place allows this package to apply the logic of payment matching to all payments at
once. If you do this right, every time the package runs, it is money in the bank for Company ABC.

 The strategy for this package is to mimic the logic provided from the business specifications in
Figure 23 - 4 . You will queue all the payment transactions that are unmatched for a moment in time. Then
you will run that stream of payments through a gauntlet of matching options until you break through
your confidence level for matching. This design will make it easy to add further matching scenarios in

Figure 23-35

c23.indd 919c23.indd 919 8/28/08 12:48:38 PM8/28/08 12:48:38 PM

Chapter 23: Case Study: A Programmatic Example

920

the future, and will allow you to use the advanced fuzzy matching logic available today in the
Integration Services.

 You ’ ll be breaking the construction of the package into these sections: Package Setup, High - Confidence
Data Flow, and Medium - Confidence Data Flow.

 Matching Process Control Flow
 This portion of the Case Study will create the Control Flow steps that are needed to systematically
review pending and unmatched payment transactions. You will set up the variables needed to store
unmatched payment counts at each stage of the matching process. You will create placeholder Data Flow
Tasks that will perform the matching, and then you ’ ll send out an email to report on the statistics for the
matching operations.

 Matching Process Package Setup
 To get started, you need to create a new SSIS package named CaseStudy_Process in c:\casestudy\
casestudy_process\ . When the project is built, go to the Solution Explorer and click the Package
.dtsx file. In the Property window, find the Name property and change the name from package.dtsx
to casestudy_process.dtsx . Answer Yes to change the name of the package object as well.

 Use the menu SSIS Variables to access the Variables editor and add the variables as shown in the
following table:

 Variable Name Scope Data Type Value

 HIGHCONFMATCHCNTSTART CaseStudy_Process Int32 0

 HIGHCONFMATCHCNTEND CaseStudy_Process Int32 0

 MEDCONFMATCHCNTEND CaseStudy_Process Int32 0

 HIGHCONFMATCHAMTSTART CaseStudy_Process Double 0

 HIGHCONFMATCHAMTEND CaseStudy_Process Double 0

 MEDCONFMATCHAMTEND CaseStudy_Process Double 0

 EMAILMSG CaseStudy_Process String

 Add an OLE DB Connection to the Connection Manager that connects to the CaseStudy database. Name
the connection CaseStudy.OLEDB.

 Add an SMTP Connection to the Connection Manager that connects to a viable SMTP mail server. Name
the connection Mail Server. In the SMTP Connection, provide your available SMTP server address.

c23.indd 920c23.indd 920 8/28/08 12:48:38 PM8/28/08 12:48:38 PM

Chapter 23: Case Study: A Programmatic Example

921

 The EMAILMSG variable needs to get its value from an expression. Set the variable property
EvaluateAsExpression to true and then create this monster expression for the email body:

“COMPANY ABC\nAutomated Payment Matching Results: \n” +
“Job started with “ + (DT_WSTR, 25) @HIGHCONFMATCHCNTSTART + “ payments for “
+ (DT_WSTR, 50)@HIGHCONFMATCHAMTSTART +
“\nWe received and successfully processed “ + (DT_WSTR, 25)
(@HIGHCONFMATCHCNTSTART-@HIGHCONFMATCHCNTEND) +
“ payments for “ + (DT_WSTR, 50) (@HIGHCONFMATCHAMTSTART-@HIGHCONFMATCHAMTEND)
+ “ automatically with a High-Level of confidence.” +
“\nWe processed “ + (DT_WSTR, 25) (@HIGHCONFMATCHCNTEND-@MEDCONFMATCHCNTEND) +
“ payments for “ + (DT_WSTR, 25) (@HIGHCONFMATCHAMTEND-@MEDCONFMATCHAMTEND) +
“ with a Medium-Level of confidence.” +
“\n\nDo not respond to this email. This is an automated message.”

 This expression looks unwieldy, but the resulting message that the package will email will look like this:

COMPANY ABC
Automated Payment Matching Results:
Job started with 0 payments for 0
We received and successfully processed 0 payments for 0 automatically with a
High-Level of confidence.
We processed 0 payments for 0 with a Medium-Level of confidence.

Do not respond to this email. This is an automated message.

 Notice in this example that the formatting escape sequence \n is used to generate a carriage return line
feed, instead of the traditional way VB programmers use to concatenate the constant vbcrlf or the
TSQL method of concatenating CHAR(13) + CHAR(10). The \n is just one of the many formatting escape
sequences that you may want to use in expressions like this. Go back and review these in detail in
Chapter 6 .

 Add the Matching Process Logic
 The matching process logic contains three Execute SQL Tasks that will take snapshots of the total
amounts and counts of available payment information to match in between two matching workflows,
encapsulated in two Data Flow Containers. A final Execute SQL Task will update all batches for balances
to complete the Control Flow. What you ’ ll do to speed up the development of this Control Flow is build
out the first Execute SQL Task, and then copy and paste with a few changes to make the others.

 To start, add an Execute SQL Task to the Control Flow. This task needs to query the database for the
pending payments and record the total number and dollar amount prior to starting the High Confidence
Data Flow Task. Name the task “ Execute SQL Get High Conf Stats. ” Connect to the OLE DB Connection.
Set up two result columns like this to retrieve first an amount value into the variable and then a count
that represents the unmatched payment transactions at this point.

c23.indd 921c23.indd 921 8/28/08 12:48:39 PM8/28/08 12:48:39 PM

Chapter 23: Case Study: A Programmatic Example

922

 Property Setting

 ResultSet SingleRow

 ConnectionType OLE DB

 Connection CaseStudy.OLEDB

 SQLSourceType Direct Input

 SQLStatement SELECT convert(float, sum(paymentamount)) as TotAmt,
 count(*) as TotCnt
FROM bankbatchdetail d
INNER JOIN BANKBATCH h
ON h.bankbatchid = d.bankbatchid
WHERE matcheddate is null
AND RawInvoiceNbr is not null
AND RawInvoiceNbr < > ‘

 ResultSet:ResultName 0

 ResultSet:Variable User:: HIGHCONFMATCHAMTSTART

 ResultSet:ResultName 1

 ResultSet:Variable User:: HIGHCONFMATCHCNTSTART

 Add a Data Flow Task to the Control Flow. Name the task “ High Confidence Data Flow Process Task
Start. ” Connect the Data Flow to the earlier Execute SQL Task. You ’ ll see this task in the “ Matching
Process High - Confidence Data Flow ” section.

 Add another Execute SQL Task by copying the first Execute SQL Task “ Execute SQL Get High Conf
Stats. ” Name the task “ High Confidence Data Flow Process Task End. ” Connect the tasks. Just change
the variable mappings in the result column to HIGHCONFMATCHAMTEND and HIGHCONFMATCHCNTEND .

 Add another Data Flow Task to the Control Flow. Name the task “ Medium Confidence Data Flow
Process Task. ” Connect the task to the Execute SQL Task. You ’ ll see this task in the “ Matching Process
Medium - Confidence Data Flow ” section.

 Add another Execute SQL Task by copying the “ Execute SQL Get High Conf Stats ” SQL Task. Name the
task “ Medium Confidence Data Flow Process Task End. ” Connect the tasks. Change the variable
mappings in the result column to MEDCONFMATCHAMTEND and MEDCONFMATCHCNTEND .

 Add a new Execute SQL Task from the Toolbox. Name the task “ Execute SQL to Balance by Batch. ” Set
the OLE DB Connection. Set the SQLStatement property simply to EXEC usp_BankBatch_Balance. This
procedure will update and balance batch level totals based on the payments that are processed. Neither
parameter mappings nor result mappings are required.

 Finally, add a Send Mail Task. Set it up to connect to the Mail Server SMTP Connection. Fill in the To,
From, and Subject properties. (If you don ’ t have access to an SMTP Connection, disable this task for
testing.) Then set up the expressions to use the variable @EMAILMSG .

c23.indd 922c23.indd 922 8/28/08 12:48:39 PM8/28/08 12:48:39 PM

Chapter 23: Case Study: A Programmatic Example

923

 The completed Control Flow should look similar to Figure 23 - 36 .

Figure 23-36

 With the Control Flow of the Matching Process Case Study package all ready, you ’ ll proceed to filling out
the logic in the two Data Flow Containers you added.

 Matching Process High - Confidence Data Flow
 Your first level of matching should be on the data attributes that are most likely to produce the highest -
 quality lookup against the target Invoice table. The attribute that would provide the highest - quality
lookup and confidence level when matching would be the Invoice Number. An invoice number is a
manufactured identification string generated by Company ABC for each created bill. If you get a match
by invoice number, you can be highly confident that payment should be applied against this invoice
number.

 First, you need to create a stream of items to process in your Data Flow. You ’ ll do this by querying all
pending payments that at least have some sort of data in the RawInvoiceNbr field. If there is no data in
this field, the items can ’ t be matched through an automated process until a subject - matter expert can

c23.indd 923c23.indd 923 8/28/08 12:48:39 PM8/28/08 12:48:39 PM

Chapter 23: Case Study: A Programmatic Example

924

look up the item or identify it in another way. Add an OLE DB Source to the Data Flow. Set up the
following properties:

 Property Value

 Connection CaseStudy.OLEDB Connection

 DataAccessMode SQLCommand

 SQLCommandText SELECT h.ImportType, BankBatchDtlID, UPPER(RawInvoiceNbr)
as RawInvoiceNbr, PaymentAmount FROM bankbatchdetail d
INNER JOIN BANKBATCH h ON h.bankbatchid = d.bankbatchid
WHERE matcheddate is null AND RawInvoiceNbr is not null
AND RawInvoiceNbr < > ‘ ’

 Notice that the [RawInvoiceNbr] field has been converted to uppercase before it is delivered into your
data stream, to be consistent with the stored data and to result in more lookup matches.

 Add a Sort Transform to the output of the OLE DB Source and sort the data by the [BankBatchDtlID]
field in ascending order. Even though you could order the incoming data by BankBatchDtlID by adding
an ORDER BY clause to the SQLCommandText property in the OLE DB Source, you still need this Sort
Transform to sort the stream for a later Merge Join operation.

 Add the first Lookup Transform, which is going to be a lookup by Invoice. You are going to add many of
these, so we ’ ll go over this first one in detail. For each item in the stream, you want to set up an attempt
to match the information in the [RawInvoiceNbr] field from the different payment Data Sources to your
real invoice number in the invoice dimension table. In other lookups, you may attempt name or email
lookups. The invoice number is considered your highest - confidence match because it is a unique number
generated by the billing system. If you find a match to the invoice number, you have identified the
payment. Set up the following properties on the component:

 Property Value

 Connection CaseStudy.OLEDB Connection

 SQL Query SELECT InvoiceID, Convert(Nvarchar(50), UPPER(ltrim(rtrim(Invoice
Nbr)))) As InvoiceNbr, CustomerID FROM INVOICE

 In the Columns tab, connect the Input Column [RawInvoiceNbr] to the Lookup Column [InvoiceNbr]. If
there is a match on the lookup, pull back the InvoiceID and CustomerID. This information will be in the
Lookup data. Do this by adding these columns as Lookup columns to the Lookup Column Grid.

 The default behavior of the Lookup Transform is to fail if there is a no - match condition. You don ’ t want
this to happen, because you expect that you aren ’ t going to get 100 percent matches on each transform.
What you ’ d like to be able to do is separate the matches from the non - matches, so that you only continue

c23.indd 924c23.indd 924 8/28/08 12:48:40 PM8/28/08 12:48:40 PM

Chapter 23: Case Study: A Programmatic Example

925

to look up items in the stream that are unmatched. To do that, you will use this built - in capability to
 “ know ” if a match has been made, and instead of failing the component or package, you will divert the
stream to another lookup. In the Lookup Transform, use the Configure Error Output button to set up the
action of a failed lookup to be Redirect Row as in Figure 23 - 37 .

Figure 23-37

 Because the invoice number can be keyed incorrectly at the bank or truncated, it may be off by only a
few digits, or by using an “ O ” instead of a zero. Using only inner - join matching, you may miss the
match, but there may still be a good chance of a match if you can use the Fuzzy Lookup. This package is
also going to use a lot of Fuzzy Lookup Transforms. They all need to be set up the same way, so you ’ ll do
this one in detail and then just refer to it later.

 1. Add a Fuzzy Lookup Transform to the Data Flow to the right of the Lookup Task. Connect the
Error Output of the previous Invoice Lookup Transform to the Fuzzy Lookup. Set up the OLE
DB Connection to CaseStudy.OLEDB.

 2. Select the option to Generate a New Index with the reference table set to [Invoice]. (Later it will
be more efficient to change these settings to store and then use a cached reference table.)

 3. In the Columns tab, match the [RawInvoiceNbr] fields to the [InvoiceNbr] field.

 4. Deselect the extra Error columns from being passed through from the input columns. These
columns were added to the stream because it was diverted using the error handler. You aren ’ t
interested in these columns because a no - match is not considered an error for this transform.

 5. Right - click the line between the two columns. Click Edit Relationship on the pop - up menu.
Check all the comparison flags starting with Ignore.

c23.indd 925c23.indd 925 8/28/08 12:48:40 PM8/28/08 12:48:40 PM

Chapter 23: Case Study: A Programmatic Example

926

 6. Select the InvoiceID and CustomerID fields to return as the lookup values if a match can be
made with the fuzzy logic.

 7. In the Advanced tab, set the Similarity Threshold up to .70 for the Invoice fuzzy match. The
Similarity Threshold is essentially a rated value to indicate how close of a match a source data
value is to a lookup value. The closer this value is set to 1, the more exact the match must be.
This setting of .70 would have been determined after heavy data profiling — that you can now
also do in SSIS with the Data Profiler Task.

 Because the output of the Fuzzy Lookup contains a number indicating the similarity threshold, you can
use this number to separate the stream into high - and low - similarity matches. Low - similarity matches
will continue through further matching attempts. High - similarity matches will be remerged with other
high - similarity matches. Add a Conditional Split Task to separate the output into two streams based on
the field [_Similarity], which represents a mathematical measurement of “ sameness ” between the
[RawInvoiceNbr] provided by Company ABC ’ s customers and the InvoiceNbr that you have on file. The
splits should always be set up like Figure 23 - 38 .

Figure 23-38

c23.indd 926c23.indd 926 8/28/08 12:48:41 PM8/28/08 12:48:41 PM

Chapter 23: Case Study: A Programmatic Example

927

 You want to merge any high - similarity matching from the Fuzzy Lookup and the previous Inner - Join
Lookup Transform, but to do that, the Fuzzy Lookup output must be sorted. This step will also be
repeated many times. Add a Sort Transform and select to sort the column [BankBatchDtlID] field in
ascending order. The Sort Transforms do two things: They sort data, and they also allow you to remove
the redundant fuzzy - data - added columns by deselecting them for pass - through. Remove references to
these fields (_Similarity, Confidence, ErrorCode, and ErrorColumn) when passing data through sorts.

 Add a Merge Component to the Data Flow. Connect the output of the Invoice Lookup to the High
Similarity output of the Fuzzy Lookup (via the Sort Transform). In the Merge Editor you can see all the
fields from both sides of the merge. Sometimes a field will come over with the value to < IGNORE >
the field. Make sure you match these fields, or some of the data is going to be dropped from your stream.
A merge transaction will look like Figure 23 - 39 .

Figure 23-39

 At this point, the only items in the Merge are matched by Invoice, and you should have foreign keys for
both the customer and the invoice. These keys can now be updated by executing the stored procedure
usp_BankBatchDetail_Match for each of the matching items in your merged stream. Add an OLE DB
command to the Data Flow and set up the OLE DB Connection. Set up the SQLCommand property as
 usp_BankBatchDetail_Match ?, ?, ? . Click Refresh to retrieve the parameters to match. Match the
InvoiceID, CustomerID, and BankBatchDtlID fields from the input and output. The stored procedure
will run for each row in your stream and automatically update the foreign keys. If a row is found with
both invoice and customer keys, the stored procedure will also mark that transaction as complete.

 This completes the High - Confidence Data Flow. At this point, your Data Flow should look like
Figure 23 - 40 . When this Data Flow returns to the Control Flow, the Execute SQL Task will recalculate
the number of remaining pending transactions by count and by amount. The next step is the
Medium - Confidence Data Flow.

c23.indd 927c23.indd 927 8/28/08 12:48:41 PM8/28/08 12:48:41 PM

Chapter 23: Case Study: A Programmatic Example

928

 Matching Process Medium - Confidence Data Flow
 The Medium - Confidence Data Flow is made up of matches using customer information. Because names
and email addresses are more likely to be similar, this level of matching is not as high on the confidence -
 level continuum as an invoice number. Furthermore, identifying the customer is only the first step. You
will still need to identify the invoice for the customer. To find the invoice, you ’ ll attempt to match on the
closest non - paid invoice by amount for the customer. All of these tasks, until you get to the end, are
similar to the High - Confidence Data Flow. The only difference is that the lookups use the Customer table
instead of the Invoice table. For this reason, we ’ ll just list the basic steps. Refer to Figure 23 - 42 to see a
picture of the final result to use as a roadmap as you put this Data Flow together.

 1. Add an OLE DB Source, set up exactly the same way as for the High - Confidence Data Flow.

 2. Add a Lookup to the Data Flow connecting to the OLE DB Source. Name it Email Lookup. Look
for exact matches between RawInvoiceNbr and the field [Email] in the Customer table. Set the
error handling to Redirect when encountering a Lookup error. Use this SQL Query:

Select CustomerID, CONVERT(NVARCHAR(50), UPPER(rtrim(Email))) as Email FROM
Customer WHERE Email is not null AND Email < > ‘’

Figure 23-40

c23.indd 928c23.indd 928 8/28/08 12:48:41 PM8/28/08 12:48:41 PM

Chapter 23: Case Study: A Programmatic Example

929

 3. Add another Lookup by Customer Name beside the Email Lookup. Feed it the error output of
the Email Lookup. Look for exact matches between RawInvoiceNbr and the field [Name] in the
Customer table. Set the error handling to Redirect when encountering a Lookup error. Use this
SQL Query:

SELECT CustomerID, CONVERT(NVARCHAR(50), UPPER(rtrim([Name]))) as [Name] FROM
CUSTOMER WHERE [Name] is not null and [Name] < > ‘’

 4. Add Sort Components to the outputs of both lookups. Place them directly under each lookup.
Sort by BankBatchDtlID ascending. In the sort by name matches, don ’ t forget to deselect the
error columns.

 5. Add a Merge Component to merge the two outputs of the Sorts for matches by Email and
Name.

 6. Add a Lookup using the CustomerLookup table next to the Name Lookup. Feed it the error
output of the Customer Name Lookup. Look for exact matches between the fields
[RawInvoiceNbr] and the lookup field [RawDataToMatch]. This lookup requires an additional
match on the fields [ImportType] for both the input and output data. Set the error handling to
Redirect. Use the table name [CustomerLookup] as the source. Look up and return the
CustomerID.

 7. Add a Sort to the CustomerLookup Task. Deselect the extra columns.

 8. Add a Fuzzy Lookup Transform to the Data Flow. Connect it to the error output of the
CustomerLookup Lookup. Connect to the Customer table, and match by RawInvoiceNbr to
Email Address. Select the CustomerID for the lookup. Set the Similarity for this transform also
to .70. Remove the columns for pass - through that start with lookup.

 9. Add the Conditional Split Component to the output of the Fuzzy Lookup to separate the
matches by similarity values above and below .70.

 10. Moving to the left, add a new Merge Transform to merge the results of the email and name
merge with the customer lookup matched sort results. Combine the matched results of the two
sorted outputs.

 11. Add a Sort to the High Similarity Results of the Fuzzy Lookup by Email. Deselect the columns
that were added by the Fuzzy Lookup starting with “ _ ” . Sort by BatchDetailID.

 12. Add a new Merge Task to combine the Email Fuzzy Lookup Sort to the Email, Name, and
CustomerLookup merged results.

 13. Add a Fuzzy Lookup Transform to the Data Flow beside the conditional split from the last Email
Fuzzy Lookup. Name it Fuzzy Name Lookup. Move it to the same level to the right of the
conditional lookup. Connect the Low Similarity Output from the Email Fuzzy Lookup to the
new Fuzzy Name Lookup. Use the [Customer] table to look for matches matching
[RawInvoiceNbr] to [Name]. Uncheck the pass - through checkbox for the input column
[CustomerID] that is being fed by the Low Similarity stream. Retrieve a new lookup of
CustomerID. In the Advanced tab, move the Similarity setting to .65. This time we ’ ll accept a
lower similarity setting based on previous Data Profiling.

c23.indd 929c23.indd 929 8/28/08 12:48:42 PM8/28/08 12:48:42 PM

Chapter 23: Case Study: A Programmatic Example

930

 14. Add another Conditional Split below the Fuzzy Name Lookup and split the output into High
and Low Similarity, again using the .70 number.

 15. Add a sort to sort the HIGHSIMILARITY output from the Conditional Split you just created.
Remove the extra columns.

 16. Add the last Merge Transform to merge the Sort from the high - similarity fuzzy name match
with all the other matches that have been merged so far. At this point, you have captured in the
output of this Merge Task all the transactions that you were not able to identify by invoice
number, but that you have been able to identify by customer attributes of email or name. These
are all of your medium - confidence matches. Knowing the customer might be good, but finding
the payment invoice would be even better.

 17. Add another Lookup Transform to the Data Flow below the last Merge Transform. Name it
Lookup Invoice By Customer. Connect the output of the Merge Transform to it. Open the editor.
Put the following basic SQL query in as the reference table:

“SELECT INVOICEID, CUSTOMERID, TotalBilledAmt FROM INVOICE”

 In the Columns tab, link the CustomerID that you have discovered to the CustomerID in the in-
voice lookup table. Connect the paymentamount field to the TotalBilledAmount field. Go to the
Advanced tab to update the contents of the Caching SQL statement to the following:

select * from (SELECT INVOICEID, CUSTOMERID, TotalBilledAmt FROM INVOICE) as
refTable where [refTable].[CUSTOMERID] = ? and
(ABS([refTable].[TotalBilledAmt] - ?) < ([RefTable].[TotalBilledAmt]*.05))

 18. Click the Parameters button. A box for parameters will appear, as shown in Figure 23 - 41 . Select
the field PaymentAmount to substitute for Parameter1. This query looks for matches using the
CustomerID field and an amount that is within 5 percent of the billed premium.

 To have the result return an Invoice Number, click back on the Columns tab and select the
 InvoiceID field in the grid. At this stage, you don ’ t care if you don ’ t get a match in terms of error
handling. Set the error - handling behavior to Ignore Error, and just send the data through regard-
less of whether it matches or not. If you have the customer ID and that ’ s it, fine. If you have
both, that ’ s even better, but you ’ ll send your results through regardless.

c23.indd 930c23.indd 930 8/28/08 12:48:42 PM8/28/08 12:48:42 PM

Chapter 23: Case Study: A Programmatic Example

931

 19. Add an OLE DB Command Transform to the Data Flow at the bottom. Attach a connection to
the results of the last invoice lookup by amount. Set the connection to CaseStudy.OLEDB. Set the
SQLCommand property to usp_BankBatchDetail_Match ?, ?, ? . Click Refresh to retrieve
the parameters to match. Match the InvoiceID, CustomerID, and BankBatchDtlID fields from the
input and output. The stored procedure will run for each row in your stream and automatically
update the foreign keys. If a row is found with both invoice and customer keys, the stored
procedure will also mark that transaction as complete.

 This completes the task of building the Medium - Confidence Data Flow and the CaseStudy_Process
package. The Data Flow should look similar to Figure 23 - 42 .

Figure 23-41

c23.indd 931c23.indd 931 8/28/08 12:48:42 PM8/28/08 12:48:42 PM

Chapter 23: Case Study: A Programmatic Example

932

 Once you have the package created and the build is successful, you are ready to run the package and
review the results. Go ahead and run the CaseStudy_Process package before proceeding.

 Interpreting the Results
 Before you started this exercise of creating the CaseStudy_Process SSIS package, you had loaded a set of
16 payment transactions for matching into the BankBatchDetail table. By running a series of SQL
statements comparing the RawInvoiceNbr with invoices and customers, you could only retrieve a
maximum of 7 matches. This translates into a 44 percent match of payments to send to the payment
processors without any further human interaction. The development of this package with heavy usage of
Fuzzy Lookup Transforms increases your identification hit - rate to 13 out of 16 matches, or an 81 percent
matching percentage. The results can be broken out as shown in the following table:

 Stage in Process # of New Matches Match Percent

 High - Confidence Invoice Match 2 12%

 Med - Confidence Invoice Match 9 56%

 Med - Confidence Customer Match 2 12%

Figure 23-42

c23.indd 932c23.indd 932 8/28/08 12:48:43 PM8/28/08 12:48:43 PM

Chapter 23: Case Study: A Programmatic Example

933

 As you may recall, the business expectations were to make an improvement to match all but 20 to 40
percent of every payment that comes into Company ABC. You are right at, or just under, the best
percentage with your test data — and this is just a beginning. Remember that the unidentified items will
be worked on by SMEs, who will store the results of their matching customer information in the
CustomerLookup table. Incidentally, you used this data even though the table is empty within the
Lookup CustLookup Transform in the Medium - Confidence Data Flow. As SME - provided information is
stored, the Data Flow will become “ smarter ” in matching incoming payments by referring to this
matching source as well.

 Now look at the three items that weren ’ t matched by your first run:

 Item Matching Information Payment Amount

 Intl Sports Association $ 34,953.00

 JBROWN@CAPITALCYCLES.COM $ 21,484.00

 181INTERNA $ 18,444.00

 The first item looks like a customer name, and if you search in the Customer table, you ’ d find a similar
customer named International Sport Assoc. Because it is highly likely that future payments will be
remitted in the same manner, the package could store the match between the customer ’ s actual name
and the string Intl Sports Association in the CustLookup table. Look back at Step 6 of the Matching
Process for Medium - Confidence Data Flow to see where this could be plugged in. If you add these
entries manually to the CustLookup table and reset the bankbatch tables, when you rerun the files you ’ ll
see that future runs will match these customers.

 The second item looks like a customer email address. If you can find the customer to whom this email
address belongs, you can update that information directly into the Customer table to facilitate a future
match. There is one customer named Capital Road Cycles that has several invoices at or around $20,000.
You could also update the CustLookup table with matching data for this email address.

 If you query the Invoice table using an invoice number like 181INTERNA, you find several, but they
are all for an amount of $34,953.00. This payment is for $18,444.00. Because the payment is significantly
different from your billed amount, someone is going to have to look at this payment to approve
the processing because you can ’ t make a reliable match based on amount. This transaction will be
manually processed based on your current business rules regardless of anything you could have done.
Because the matching is against an invoice number, you also don ’ t have anything of use for your
customer lookup table.

 If you were to now delete all the rows from the BankBatch and BankBatchDetail tables and rerun both
the CaseStudy_Load and CaseStudy_Process packages, the payment matching process now improves to
15 out of 16 matches — a whopping 94 percent match. Company ABC will be highly pleased with the
capabilities that you have introduced them to with this SSIS solution.

c23.indd 933c23.indd 933 8/28/08 12:48:43 PM8/28/08 12:48:43 PM

Chapter 23: Case Study: A Programmatic Example

934

 Creating a Parent Driver Package
 These packages were designed to run together in a sequence. The three packages that comprise the
payment ETL processes should always run serially before the CaseStudy_Process package is attempted.
Each time the CaseStudy_Process runs, additional payments will be matched to the invoices. Unidentified
payments will need to be matched using an external application. However, when users have to manually
identify an item, their identification can be stored either by updating the data in the dimension tables or in
your lookup tables. The sample packages here would then use that information in the medium - confidence -
 level Data Flow on the next run of the job. To have each of these packages run in concert, create an
additional package called CaseStudy_Driver that will coordinate the running of each of the child packages.

 Driver Package Setup
 To get started, you need to create a new SSIS package named CaseStudy_Driver in c:\casestudy\
casestudy_driver\ . When the project is built, go to the Solution Explorer and click the Package.dtsx
file. In the Property window, find the Name property and change the name from package.dtsx to
 casestudy_driver.dtsx . Answer Yes to change the name of the package object as well.

 Add four SSIS Package Tasks to the Control Flow work surface. Put the first three that will represent
the Load packages into a Sequence Container to provide a visual indication that they are related.
Connect the three Package Tasks in the Sequence Container together with a completion constraint.
Then connect the Sequence Container to the last Package Task.

 Name the Package Tasks CaseStudy_Load_Bank, CaseStudy_Load_ACH, CaseStudy_Load_Email, and
CaseStudy_Process, respectively. Then open up each Package Task and assign the package by browsing
to the package matching the name of the task. You can browse to the path of the packages that should be
in the c:\casestudy\ folder hierarchy.

 The final package should look like Figure 23 - 43 .

Figure 23-43

c23.indd 934c23.indd 934 8/28/08 12:48:43 PM8/28/08 12:48:43 PM

Chapter 23: Case Study: A Programmatic Example

935

 This completes the development of the Driver package. You can now reset the BankBatch tables and run
the whole solution under this one package. When you do this in Visual Studio, the IDE will pop into
each child solution so that you can see the Control and Data Flows within each package.

 Driver Package Deployment
 Developing these packages separately makes the packages easier to troubleshoot and maintain. Merging
all the packages makes the solution easier to run and coordinate. This package can now be easily
scheduled in the SQL Agent, where it would look like Figure 23 - 44 .

Figure 23-44

 Summary
 During this project, you gained some experience with most of the transforms and more than a few of the
common tasks in the Toolbox. You learned firsthand that the new Data Flow is powerful, because you
worked through typical staging logic in memory without having to commit the data and witnessed the
results of the new Fuzzy Lookup Transformations. You saw how visual the environment is and how easy
it is to understand what is going on with the stream as it is being transformed. Transforming is what you
do in the Data Flow, not in the Control Flow — even though it looks like a Control Flow page.

 This case study provided an in - depth look at the new capabilities of the SSIS development environment.
It is a real development environment now. That is why you first started with some business requirements
and worked through the exercise like a development project. You focused on the nuts and bolts of error
handling, naming conventions, and some practical tips for testing. Hopefully you saw a few things that
you can use to solve that problem on your desk with SSIS.

c23.indd 935c23.indd 935 8/28/08 12:48:44 PM8/28/08 12:48:44 PM

Index

In
de

x

A
Access, 452–460

accessing database, 452–453
Connection Manager, 453–454
importing data, 455–457
parameter passing, 457–460
queries, importing, 452
security, 452–453
Upsizing Wizard, 456

ACE engine, 450
ACH files. See payment processing example
AcquireConnection

calling of, 670
Destination adapter, building, 702–703
functions of, 315, 670
Source adapter, building, 680, 682

ActionAtEvent, 782
ActionAtTimeout, 109, 782
Active Directory, package roles, viewing, 832
ActiveX Script Task, 53–54

functions of, 8, 294, 295
migration to SSIS, 612
Script Task as replacement, 294

AddErrorOutput, transform, building, 692
Add Precedence Constraint, 50
Add References, 671
Add Watch, 352–353
administering packages. See package

administration
ADO

Execute SQL Task connection, 86–87
Foreach ADO Enumerator, 125–128
record set, producing, 146

ADO.NET
ADO.NET Destination, 15
ADO.NET Source, 142
Data Profiler Task connection, 64, 357

Data Reader, 15
data sources, 9
Execute SQL Task connection, 86–87
Foreach ADO.NET Schema Rowset

Enumerator, 122
functions of, 449
user interface, building, 733–734

Advanced
Fuzzy Grouping Transform, 165
Fuzzy Lookup Transform, 159
Term Lookup Transform, 192

Advanced Editor
Character Map Transform, 739–740
components, default interface, 717
Import Column Transform, configuring,

167–169
and OLE DB Command Transform, 172
and Row Count Transform, 183
and transformations, 533–534
verification methods, use of, 665

Advanced Windowing Extension (AWE), 515
AdventureWorks2008

Analysis Services Processing Task, use
of, 58–59

Export Column Transform, 156–157
images, importing into, 167–169
Import Column Transform, 167–169
joins, example of, 242–263

AfterEvent, 109, 782
AfterTimeout, 109, 782
Aggregate Transform

Aggregation Name, 148
configuring, 147
data cleansing, 552–553
and data viewers, 132
distinct values, setting, 148
as full blocking transform, 147, 533
functions of, 16, 147

bindex.indd 937bindex.indd 937 8/28/08 7:02:11 PM8/28/08 7:02:11 PM

938

Aggregate Transform (continued)
multiple outputs, 148
options, 147–148
with Term Lookup Transform, 192

agile methodologies, MSF Agile, 590–593
Allow Append, 155
Analysis Management Objects (AMO),

SSAS processing, 401, 408
Analysis Services Connection Manager, 143
Analysis Services Execute DDL Task, 57–58

configuring, 57–58
functions of, 8, 57
SSAS processing, 401, 404

Analysis Services Processing Task, 58–59
database, use with, 58–59
functions of, 8, 58–59
SSAS processing, 400–408

annotations
creating, 39–40
functions of, 39

Append, 155
Application objects

and external management. See
managed code

folder maintenance operations with, 750
functions of, 744
maintenance operations with, 745
management operations with, 744
package listing, 755–756
package monitoring, 753–754
package transfer, example of, 747–750

archiving files
process of, 66–67, 290
unique filename for files, 300–301

ASCII, transfer files in, 68
ASP.NET, SSIS functionality with, 797–802
assemblies

AssemblyCulture, 678
AssemblyInfo, 671, 673, 677, 721–722
AssemblyVersion, 678, 722
AssembyFileVersion, 678
component building, 671–672
GAC, registering in, 302
.NET assemblies, 303–305
reusing, 302–305
user interface, building, 721–722

asynchronous transforms
fully blocking, 147
functions of, 147
partial blocking, 147
PrimeOutput, 669
ProcessInput, 669
Sort Transform, 185–186
transformation output, 534–535

Attach to Process, and debugging, 710–711
Audit Transform

functions of, 16, 149
options, 149

authentication, Import and Export Wizard, 22
Auto Extend Factor, 148
Autos

BIDS, 36
and debugging, 351–352

Available Input Columns, 164
Available Lookup Column, 158
Average, 147

B
backslash escape sequence, string

literals, 217
backup, snapshots, 442–444
BankBatchDetail table, 859, 893, 901–902, 912,

917–919, 932–933
BankBatch table, 858–859, 881–882, 916–919
bank files. See payment processing example
BaseSelect, 209, 234
batch processing

payment processing example
ACH data flow validation, 910–911
adding batches, stored procedure for,

861–862
balancing batch, stored procedure for, 863
bank file data flow validation, 886–889
control flow batch creation, 873–877,

900–904
updating batch, stored procedure for, 862

SQL statement, 88
BatchSize, 81
BCP format, Bulk Insert Task, 84–85
BIDS. See Business Intelligence

Development Studio (BIDS)

Aggregate Transform (continued)

bindex.indd 938bindex.indd 938 8/28/08 7:02:13 PM8/28/08 7:02:13 PM

939

In
de

x

BLOB counters, 564–565
blob-type data, Export Column Transform,

155–157
blocking transformations

and data flow optimization, 558–560
as resource intensive, 533
types of, 532–533

Boolean expressions
for dynamic operations, 220
functions of, 220
with precedence constraints, 626–630

Boolean literals, expression building,
217–218

Boolean variable, 210
bottlenecks, 560–562

preventing, 560
troubleshooting, 561–562

branching code
defined, 602
process of, 602

breakpoints, 645–648
BIDS, 36
Delete All Breakpoints, 132
design-time debugging, 710–712
functions of, 350, 645
inventory check simulation example,

645–647
runtime debugging, 713–714
setting, 350, 645
variables, viewing, 647

buffers, 527–528
architecture of, 528
BufferColumnIndex, 690
buffer counters, 841
Buffer Manager, 535, 669
Buffer Memory counter, 564
BufferWrapper, 333
and data flow optimization, 556
in execution tree, 542–543
flat buffers, 564
functions of, 527, 540
ParseTheFileAndAddToBuffer, 687–688
Performance Monitor (PerfMon), 564–565
PipelineBuffer, 701
private buffers, 564
size of, 527

synchronous transformation, 536–537
transform, building, 691–692, 697, 700–701

Build Events, 675–676
Bulk Insert Task, 79–85

Bulk Insert Task Editor, 81
configuring, 80
connections, creating, 80, 82–83
file delimiters, 80
file specs, adding, 80–81
functions of, 8, 79
limitations of, 79
operation of, 82–85
options, 81–82

Business Intelligence Development Studio
(BIDS), 28–31

accessing, 28
ActiveX Script Task in, 294
development environment of, 5
errors/warnings, 36
functions of, 4–5
navigation pane, 35
new project, starting, 271–272
off-line mode, 5
output window, 36
package, creating, 30–31
project, creating, 29
runtime debugging, 713, 716
solutions, 30
Task List, 36
32-bit emulation mode, 451
Visual SourceSafe project example, 570–585
and Visual Studio, 28–29
Visual Studio Team System, 585–605

Byte Reversal, 150
Byte variable, 210

C
C#

for scripting, 296
and writing expressions, 211–212

cache
Cache Connection Manager (CCM), 266–268
Cache Transform, 150
dimension table data, 388
extension (.caw), 266

cache

bindex.indd 939bindex.indd 939 8/28/08 7:02:14 PM8/28/08 7:02:14 PM

940

cache (continued)
full-cache mode, 253–255, 514–515
Global Assembly Cache (GAC), 302
information, reuse of, 515
Lookup Component features, 238, 240, 242
and lookups, 150
Lookup Transform, 514–515
no-cache mode, 255–257, 514–515
partial-cache mode, 257–259, 514–515
persistent file storage, 515

Cache Connection Manager (CCM), 266–268
advantages to use, 268
cache, loading, 267–268
configuring, 267
functions of, 238
Lookup Transform, 514

Cache Transform
Cache Connection Manager, creating

from, 266
functions of, 150
Lookup cache, loading, 266

Call Stack
BIDS, 36
debugging with, 648

Cancelled, task execution result,50–51
Candidate Key Profile

Candidate Key Profile Request, 63
data profiler results, 361, 365

Candidate Key Profile Request, Candidate
Key Profile, 63

capture instance tables
and CDC process, 434–435
functions of, 434
querying, 436–438

Carriage Return, 80
cascaded operations, Lookup Component,

264–266
case-sensitivity, variables, 208
case study. See payment processing

example
casting

casting operators, list of, 207
problems related to, 206–207

catch block
functions of, 348
transform, building, 701

CellContentClick, user interface, building, 730
CellValueChanged, user interface,

building, 730
central SSIS server, creating, 820–821
Change Data Capture (CDC), 430–442

advantages to use, 431–432, 439, 442
alternative techniques, 431
API of, 436–438
Capture Instance tables, 434–435
editions of SQL server for, 432
enabling functionality of, 433–434
functions of, 430–431
shadow table, querying, 436–438
SSIS, using output, 438–442

change tables. See capture instance tables
Change Types, Slowly Changing Dimension

Transform, 373–374
Changing attributes, 373, 382

Changing Attributes Updates Output, 375, 385
Chaos, 52
Character Map Transform, 150–151

functions of, 16, 150
payment processing example, 878
user interface, building, 739–740

Char variable, 210
Check Constraints, 81
check-in, and shelving, 601–602
check payments, 844

processing of. See payment processing
example

Checkpoints, 492–502
CheckpointFilename, 492
CheckpointUsage, 492
containers, effects of, 496–499
control flow error example, 492–496
FailPackageOnFailure, 492, 494–495
FailParentOnFailure, 499–500
file, example of, 501–502
functions of, 492
SaveCheckpoints, 492
and staging data, 554
variables, adding, 501

child packages
functions of, 98
parent variables, changing, 102
parent variables, setting to use, 99–101

cache (continued)

bindex.indd 940bindex.indd 940 8/28/08 7:02:14 PM8/28/08 7:02:14 PM

941

In
de

x

Chinese language, character maps, 150
classes, inheritance from other

classes, 664
cleansing data. See data cleansing
Cleanup, functions of, 670
Close method, 670
CLSCompliant, 678

user interface, building, 721–722
clustering SSIS, 822–823

MSDTServer100, 822–823
steps in, 822–823

Code Page, 206
codeplex.com, 661
column(s)

Advanced Editor, cautions, 740
ColumnDelimiter, 83, 273
Column Length Distribution Profile,

63, 362
Column Mappings, 172–173
Column Null Ratio Profile, 63
Column Pattern Profile, 63
Column Statistics Profile, 63
data types, setting, 666–667
display, forms, 728–730
Extract Column, 155, 157
lineage number for, 219
names, qualifying, 219
properties, setting, 667
referencing in expressions, 218–219
selection, forms, 730–732
and Transform component, 663
usage types, setting, 668
user interface, 728–732, 739–740

Column Chart data viewer, 132
ColumnInfo

Destination adapter, building, 702,
708–709

transform, building, 690, 697, 700
Column Length Distribution Profile, data

profiler results, 63, 362
Column Null Ratio Profile

Column Null Ratio Profile Request, 63
data profiler results, 362–363, 365

Column Pattern Profile
Column Pattern Profile Request, 63
data profiler results, 363–364

Column Statistics Profile
Column Statistics Profile Request, 63
data profiler results, 364

Columns
Fuzzy Grouping Transform, 164
Fuzzy Lookup Transform, 158

Column Value Distribution Profile, data
profiler results, 363

Comma, 80
Command, BIDS, 36
Command Language Specification (CLS)

CLSCompliant, 678
and component building, 678

command-line programs, Execute Process Task,
102–104

Command Transformation, 557–558
comments, annotations, 39–40
Common Table Expressions, and modularization,

428–430
compact edition, SQL Server, 19
comparison flags

Fuzzy Grouping Transform, 164
Pivot Transform, 178

compiler, using directives, 672
Completion, constraint value, 11
compliance, CLSCompliant, 678, 721–722
component(s), 661–716, 664–668

Buffer Manager, 669
building. See component building
complete package, building, 712
connection time, 670
creating and selling, 661
debugging, 710–712
design-time debugging, 710–712
design-time methods, 664–668
Destination adapter, 663–664
implementing, 664
installing, 710
necessity of, 661
runtime debugging, 713–716
runtime methods, 668–670
Source adapter, 662–663
SQL 2008 updates, 716
transform, 663
updating, 667
user interface, adding. See user interface

component(s)

bindex.indd 941bindex.indd 941 8/28/08 7:02:15 PM8/28/08 7:02:15 PM

942

component building, 671–709
assemblies, selecting, 671–672
AssemblyCulture, 678
AssemblyInfo, 671, 673, 677
Build Events, 675–676
CLSCompliant, 678
ComponentType, 673
Destination adapter, 702–709
folder for, 674–675
and Global Assembly Cache, 673–674, 676
IconResources, 673
inheritance in, 672
new project, creating, 671
ReinitializeMetaData, importance of, 665
Source adapter, 678–690
Transform component, 690–701

ComponentMetaData
Destination adapter, building, 705–706
Source adapter, building, 679
transform, building, 691

Component Properties, 172
conditional expressions, 224–225

functions of, 11–12
options, 12

Conditional Split Transform, 151–153
defined, 151
error detection with, 514
fact table, loading, 396–397
functions of, 16
logic, adding to data flow, 151–153
missing data, remedy, 281–282
subsets of data for scaling, 517–518

Confidence, 158
ConfigString, log providers, 768–769
Configure Error Output, 879
connection(s)

concrete, examples of, 315
to data sources, in Script Task, 315
for packages, creating, 40
retrieving, 315
in SSIS, 315
See also Connection Manager

Connection Manager
Access, 453–454
Bulk Insert Task, 80, 82–83
Cache Connection Manager (CCM), 238

data types, 139–140
and Destination adapter, 663–664
Destination adapter, building, 702–705
destinations, 15
DTExec, 828
Excel, 144
Excel Source, 135–136
Execute Package Task, 98
File Connection Manager Editor, 83
Flat File, 136, 139, 273, 482–485
FTP Task, 67–68
functions of, 9–10, 662
Fuzzy Grouping Transform, 164
HTTP, 69–70
MultiFlatFile, 141
New Flat File Connection, 867–868
new project, creating connections,

272–274
off-line mode, 10
OLE DB Command Transform, 172
Open Database Connectivity (ODBC),

486–489
Script Component, 333
Source adapter, building, 680–681
Source adapter, functions of, 662
and sources, 132
user interface, building, 734–735
WMIConnection, 106–107, 776, 782

Connections, Dts object, 308
connection time methods

AcquireConnection, 670
ReleaseConnections, 670

Constraint
conditional expression, 12
Evaluation Operation, 38

constraint values
functions of, 11
types of, 11

container(s), 12–13
checkpoints, effects on, 496–499
event handler inheritance, 643
Foreach Loop Container, 122–129
functions of, 7, 12
For Loop Container, 119–122
Sequence Containers, 117–118,

496–499

component building

bindex.indd 942bindex.indd 942 8/28/08 7:02:15 PM8/28/08 7:02:15 PM

943

In
de

x

single package/multiple transactions,
506–508

task grouping in, 39
Task Host Containers, 117
types of, 12–13

Control Flow, 36–40
annotation, 39–40
Bulk Insert Task, adding to, 80
container tasks, 53
compared to Data Flow, 37, 131, 522–524
evaluating task, 38–39
expressions, use of, 231–232
functions of, 522
new project, creating, 276
payment processing example

ACH file, 895–904
bank file, 868–877
email transactions, 914–917
Invoice Matching, 920–923

precedence constraints, 38, 623–633
task, creating, 37
task grouping, 39
workflow handling with, 131, 525–526

copy
CopyAllObjects, 115
CopyData, 115
Copy Directory, 64
Copy File, 64
copy-on-first write, 442
CopySids, 113
ObjectsToCopy, 115
Transfer Database Task, 110–111

Copy Column Transform, functions of, 16, 153
corporate ledger data, payment processing

example, 860
corrupt packages, handling, 835–836
Count, 147
Count Distinct, 147, 148
CPU utilization, WMI Event Watcher Task,

108–110
Create Directory, 64
CreateExternalMetaDataColumn, Source adapter,

building, 687
CreateFolderOnDtsServer, 750
CreateFolderOnSqlServer, 750
CreateNewOutputRows, 333

CreateOutputAndMetaDataColumns,
Source adapter, building, 685–686

CreationDate, 42
CreationName

log providers, 768
Source adapter, building, 681

credential, proxy accounts, 838–839
currency, conversion example, 467–475
customer table

CustomerLookup table, 858
Invoice Matching, 928–932
payment processing example, 853,

855–856

D
Data Access Mode, 133
database(s)

Access, 452–460
Analysis Services Processing Task with,

58–59
DatabasesList, 113
Excel, 450–451
Open Database Connectivity (ODBC),

486–489
Oracle, 460–461
for payment processing. See payment

processing example
Script Task, retrieving data, 315–316
Transfer Database Task, 110–111
See also individual databases; relational

database
dataBytes, 329
data cleansing

during data extraction, 418–420
from new project, 280–284
inside queries, 419
regenerate packages, 835–836
scope of, 551
transforms for, 551–553

dataCode, 329
data conversion

Data Conversion Transform, 153–154
guidelines for, 204
SQL conversion table, 205–206
Unicode-non-Unicode issues, 205–206

data conversion

bindex.indd 943bindex.indd 943 8/28/08 7:02:16 PM8/28/08 7:02:16 PM

944

Data Conversion Transform, 153–154
Excel Source, 135
functions of, 16
Output Alias, 153–154
as synchronous transform, 147

Data Direct, 489
data extraction, 414–441

Change Data Capture (CDC), 430–442
combining datasets during, 420–421
data issue, cleanup, 418–420
queries, encapsulating, 423–424
SELECT * FROM, problems of, 414–416
set-based logic, 428–430
sorting data, 421–423
text data, accessing, 425–428
transformation during, 417–420
WHERE, advantages of, 416–417

DataFileType, 81
data flow

components of, 131
data cleansing, 551–553
data correlation, 550–551
data flow, 13–14
Data Mining Model Training Destination, 143
data processing, 526–527
destination adapters, 537–538
destinations, 142–146
EngineThreads, 543
expressions, use of, 233–236
loading flat files, 482–483
NULLs in, 222
operation, example of, 193–197
optimizing. See data flow optimization
source adapters, 537
sources, 132–142
staging environments, 553–554
transformations, 15–17, 529–537
transforms, 42, 146–193

Data Flow
compared to Control Flow, 37, 131, 522–524
Data Flow Scope Level, 234
Data Flow Task, 61, 274
functions of, 523
new project, creating data flow, 275–276, 280
payment processing example

ACH file, 904–913

bank file, 877–894
email transactions, 917–918
Invoice Matching, 923–932

pipeline, location of, 662
scaling out method, 516–518

data flow optimization, 555–565
blocking transforms requirements,

558–560
bottlenecks, avoiding, 560–562
and buffers, 556
data cleansing, 280–284, 418–420,

551–553
design guidelines, 548–555
disk IO, reducing, 549–550
and execution trees, 556–557
Performance Monitor (PerfMon), 562–565
pipeline monitoring, 562–565
RDBMS reliance, reducing, 549–550
row-based transforms, limiting, 557–558
and staging data, 554
synchronicity, limiting, 548–550

Data Flow Scope Level, variables, 234
Data Flow Task

accessing design surface, 13
data processing streams, 61
functions of, 8, 61
new project, creating, 274
payment processing example

ACH file, 901–903
bank file, 873–876

source type component functions, 330
DataGridView, form constructor, 729–730
DataGridViewCellEventArgs, user interface,

building, 730
data loading, 442–448

MERGE, 444–448
snapshots, 442–444

data mining
Data Mining Model Training

functions of, 15
Data Mining Model Training Destination, 143
Data Mining Query Task, 59–60
Data Mining Query Transform, 16, 154

Data Mining Query Task, 59–60
functions of, 8, 59
predictive queries, running, 60

Data Conversion Transform

bindex.indd 944bindex.indd 944 8/28/08 7:02:17 PM8/28/08 7:02:17 PM

945

In
de

x

Data Mining Query Transform
functions of, 16, 154
utility of, 154

data pipeline. See pipeline
Data Profiler Task, 62–64, 356–365

accessing, 62
ADO.NET connection, 64, 357
Candidate Key Profile, 365
Column NULL Ratio, 365
Data Profiler Task connection, 64, 357
execution of, 357–359
functions of, 8, 62, 356
profiles, activating, 63–64
profiles in, 361–364
request types in, 63–64
results, reviewing, 62, 359–364

data profiling, 356–366
Candidate Key Profile, 361, 365
columns. See column(s)
Column Value Distribution Profile, 363
Data Profiler Task, 62–64, 356–365
defined, 356
Functional Dependency Profile, 361
Quick Profile, 63, 358
SQL Profiler, 654

Data Pump Task, limitations of, 294
Data Reader Destination, functions of, 15, 144
data scrubbing, new project, 278–279
data sources, functions of, 9
data source views (DSV), 10–11

caching of, 11
compared to connection managers, 11
functions of, 10–11

Data Transformation Services (DTS), 2
data types, 202–207

casting operators, use of, 206–207
data conversion guidelines, 204
date/time values, new, 204
importance and SSIS, 202
and performance, 204
SQL Server data types, 202–203
SSIS support of, 202
Unicode-non-Unicode conversion, 205–206
for variables, 209–210

DataUtility, postal code format, validating, 305
data validation, Script Component, 337–346

data viewers
accessing, 132
configuring, 132
and debugging, 350–351
functions of, 132
removing, 132
and Term Extraction Transform, 189
types of, 132

data warehouse, 366–411
dimension table loading, 366–388
Execute Package Task, 408–411
fact table loading, 388–400
non-SQL Server data. See heterogeneous data
SSAS processing, 400–408

DateTime variable, 210
date values

SQL Server, new, 204
SSIS errors, 204, 225–226

DBNull variable, 210
DDL statements, Analysis Services Execute DDL

Task, 57–58
debugging, 350–353

Autos window, 351–352
breakpoints, 350, 645–648
Call Stack window, 648
components, 710–716
data viewers, 132, 350–351
DTExec, 716
Immediate window, 353
Locals window, 351–352
Row Count Component, 350–351
watches, 352

DecisionIntVar, 311–312, 314
DecisionStrVar, 311–312, 314
DelayValidation, setting for tasks, 51
Delete All Breakpoints, 132
Delete Directory, 64
Delete Directory Contents, 64
Delete File, 65
DeleteInput, 666, 695
DeleteOutput, 666, 695
deployment utility, 814–818

deploying packages, steps in, 815–818
deployment manifest, creating, 814–815
Deployment Wizard, 815–818

Deployment Wizard, 605–606, 815–818

Deployment Wizard

bindex.indd 945bindex.indd 945 8/28/08 7:02:17 PM8/28/08 7:02:17 PM

946

Derived Column Task, 157
Derived Column Transform, 14, 154–155

configuring, 154–155
data cleansing, 551–552
expressions, in data flow, 234–235
functions of, 16
as synchronous transform, 147, 536–537

DescribeRedirectedErrorCode, 670
Description, setting for tasks, 52
design-time

debugging, 710–712
defined, 664
functionality of, 664–668

design-time methods
column data types, setting, 666–667
column properties, setting, 667
input/output verfication methods, 666
MapInputColumn, 666
MapOutputColumn, 666
path attachment methods, 668
PerformUpgrade, 667
ProvideComponetProperties, 665
RegisterEvents, 667
RegisterLogEntries, 667
ReinitializeMetaData, 665
SetComponentProperties, 667
SetUsageType, 668
Validate, 665

destination(s), 142–146
connecting to data flow, 143
Data Mining Model Training, 143
DataReader, 144
Destination Connection, 66, 80
DestinationOverwrite, 111
DestinationTable, 83
Destination Type, 776
destination type component, Script

Component, 330
Dimension Processing, 144
Excel, 144
Flat File, 145
functions of, 15, 131, 142
Mappings page, 142
OLE DB, 145–146
OverwriteDestination, 66, 776, 778
Partition Processing, 144

Raw File, 146
Recordset, 146
SQL Server, 146
SQL Server Mobile, 146
types of, 15
WMI Data Reader Task, 776

Destination adapters
building, code for, 702–709
functions of, 537–538, 663–664

DialogResult, user interface, building,
724–725

Diff, 76–77
difference algorithms, XML Task, 76–77
Diffgram, 76
 InfoPath, 790–791
DimensionAlternateKey, 367
DimensionKey, 367
Dimension Processing

configuring, 144
Dimension Processing Destination

functions of, 144
functions of, 15
Slowly Changing Dimension Transform,

184–185
dimension table loading, 366–388

caching data, 388
complex table, example of, 375–387
simple table, example of, 367–375
Slowly Changing Dimension Transform, use of,

371–374, 381–388
direct credits, payment processing example, 853
DirectInput, 231
directives, using directives, 672
directory

File System Task functions, 64–66
polling for file delivery, 109–110

DirectRow, transform, building, 692
Disable, tasks, 51–52, 850
disk IO, reducing, 549–550
Dispose method, 670
Distributed Transaction Coordinator (DTC)

Transactions, functions of, 503
Document Type Definition (DTD), 76
DoesEachOutputColumnHaveA

MetaDataColumnAndDoDatatypes Match,
Source adapter, building, 684

Derived Column Task

bindex.indd 946bindex.indd 946 8/28/08 7:02:18 PM8/28/08 7:02:18 PM

947

In
de

x

Double variable, 210
DTExec

creating, 834
runtime debugging, 716
64-bit version, 840
32-bit emulation mode, 451, 839–840

DTExecUI
accessing, 826
Connection Manager, 828
creating DTExec with, 834
execute packages with, 826–832
Maximum Concurrent Executables, 828
progress window, 832
Set Values, 830

DTS 2000 migration, 611–620
DTS xChange, 620
migration success rates, 612
Package Migration Wizard, 614–619

DtsDebugHost, 714
DTSFileConnectionUsageType, Source

adapter, building, 681
Dts object

defined, 307
Log method, 329
properties of, 308
Script Task, 307–308

DTS packages
converting, ActiveX Script Task, 53–54
editing in SQL Server 2008, 609
Execute DTS 2000 Package Task, 610–611
limitations of, 294
migration of DTS 2000. See DTS 2000

migration
opening in Management Studio, 610
push paradigm, 199–200
running under SSIS, 610–611

DtsPipelineComponent, 672–673
DTS runtime managed code library, 743–744
DTSUsageType.UT_IGNORED, 668
DTSUsageType.UT_READONLY, 668
DTSUsageType.UT_READWRITE, 668
dtswizard.exe, 21
DTS xChange, 620
.DTSX files, 7
DTUtil

corrupt packages, handling, 835–836

functions of, 835–836
re-encrypting packages, 835

dump, changed data, capturing, 431
Duplicate Sort Values, 185
dynamic connections, creating with expressions,

229–230
dynamic packages

capabilities of, 199–200
creating, 289–291
and expressions, 200

E
Edit Script, 56
email

payment processing, 913–919
Send Mail Task, 105–106

Enabled, 52
Enable Identity Insert, 82
encryption, re-encrypting packages, 835
EngineThreads, 543
enterprise edition, SQL Server, 19
EntryMethod, 54
EntryPoint, 56, 306
EnumProp, user interface, building, 735
equal sign, double (==), 214
equivalence operator, expression building, 214
error(s), 36

and casting, 207
date and time errors, 204, 225–226
dirty data, handling, 280–284, 285–287
Error List window, 36
Error Output, 134
error outputs, 511–514
error rows, 648–653
Lookup Component output, 260–261
overflow errors, 131
restarting packages. See Checkpoints
Structured Exception Handling, 347–349
task errors, 17

ErrorDetail, payment processing example,
860–861

error handling, 17–18
ACH data flow validation, 904–906
bank file data flow validation, 877–881,

879–881

error handling

bindex.indd 947bindex.indd 947 8/28/08 7:02:18 PM8/28/08 7:02:18 PM

948

error handling (continued)
logging, 653–658
OnError, 17
precedence constraints, 623–633
process of, 17–18
and staging data, 554
for task errors, 17
user interface, 737–739

error messages
ErrorMessageLanguagesList, 112
ErrorMessagesList, 112
SomeStringVariable error message, 310
Transfer Error Messages, 112

error outputs, 511–514
advantages to use, 514
data issues, correcting, 512–513
Error Output, 134
functions of, 511–512

Error Queue
bad data, sending to, 287
error queue table, 338

ErrorRowDisposition, transform, building, 699
error rows, 648–653

configuring, 648
error handlers, 648
example of use, 650–653

escape sequences, string literals, 216–217
ETI, 489
EvaluateAsExpression, 209, 234
Evaluation Operation, options, 38–39
event(s)

event information, logging, 327–328
firing, methods for, 322–333
raising in Script Component, 335–336
raising in Script Task, 322–325
respond to in Script Task, 325–327
specifying events to log, 767–768

Event(s), Dts object, 308
event handling, 43–44, 633–645

default at design phase, 323
events, types of, 43, 634–635
functions of, 7, 17, 43, 325
handlers, setting up, 633–634
inheritance, 643–645
inventory check simulation example,

635–640

logging event information, 327–328
menu options, 634
OnError, example of use, 641–642
OnPreExecute, example of use, 642–643
RegisterEvents, 667
responding to event, 325–327
warning events, generating, 323–325
WMI Event Watcher Task, 784–785

Excel
data integration with, 452
Excel Connection Manager, 144
Excel Destination, 15
Excel Source, 135–136
Execute SQL Task connection, 86–87

Excel Destination
data retrieval with XML Source, 75
Excel Destination Editor, 75
functions of, 15, 144
limitations of, 144

Excel Source, 135–136
functions of, 14, 135
general format, 135

exception handling, Structured
Exception Handling, 347–349

ExclusionGroup, transform, building, 692
execute

DTExecUI, 826–832
new project, 277–278

Execute DTS 2000 Package Task,
610–611

functions of, 8
ExecuteOutOfProcess, 98, 515
ExecutePackage, 761
Execute Package Task, 98–102, 408–411

chaining packages with, 515
configuring, 98
connection, setting for, 98
functions of, 8, 98
for new project, 277–278
parent/child packages, use of, 99–101
steps in, 408–411
two packages/one transaction,

508–509
WMI Event Watcher Task, 784–785

Execute Process Task, 102–104
configuring, 103

error handling (continued)

bindex.indd 948bindex.indd 948 8/28/08 7:02:19 PM8/28/08 7:02:19 PM

949

In
de

x

functions of, 8, 31, 102
runaway process, 104
SSAS processing, 401

Execute SQL Task, 85–97
batch of SQL statements, 88
connections, creating, 86–88
connection type options, 86
functions of, 8, 85
migration to SSIS, 612
multi-row results, 91–93
parameterized SQL statement, 85–88
singleton results, capturing, 88–91
SQL statements, creating, 231–232
stored procedure, executing, 94–96
stored procedure, retrieving output

parameters, 96–97
Execution Instance GUID, 149
Execution Results, default event handler, 323
ExecutionStartTime, 149
execution time methods. See runtime

methods
execution trees, 538–543

buffers in, 542–543
components of, 540
and data flow optimization, 556–557
defined, 538
operation of, 540–543
PipelineExecutionPlan log, 546–548
PipelineExecutionTrees log, 545–546
process thread scheduler, 542–543

ExecutionValue, 308
ExecValueVariable, setting for tasks, 52
Existing File, 83
ExistsOnDtsServer, 745
ExistsOnSqlServer, 745
Export Column Transform, 155–157

AdventureWorks2008, use with, 156–157
configuring, 155
functions of, 16, 155

expression(s), 211–236
casting operators, use of, 206–207
columns, referencing, 218–219
conditional expressions, 11–12
in control flow tasks, 231–232
creating. See expression building
in data flow, 233–236

and dynamic packages, 200
functions of, 11–12, 39
in Lookup Component, 264
and scripting, 295
Script Task Editor, 307
and variables, 201
variables used as, 227–229

Expression
conditional expression, 12
Evaluation Operation, 38–39

expression building
Boolean expressions, 220
Boolean literals, 217–218
conditional expressions, 224–225
date/time values, adjustments, 225–227
dynamic connection, creating with, 229–230
equivalence operator, 214
Expression Builder, 213
language for, 211–212
line continuation, 215
NULLs, 221–222
numeric literals, 215–216
and precedence constraints, 232–233
string, 214–215
string functions, 223–224
string literals, 216–217
variables, referencing, 218

Expression or Constraint, 12
Expression and Constraint, 12
Expression or Constraint, 12, 38
Expression and Constraint, 38
Extensible Stylesheet Language

Transformations (XSLT), functions of, 76
external applications

ASP.NET, 797–802
InfoPath, 788–797
SSIS functionality with, 787–788
Winform .NET, 802–808

external management. See managed code
External Metadata, 665
ExternalMetadataColumn, Source adapter,

building, 685, 687
ExternalMetadataColumnCollection, Source

adapter, building, 687
ExternalMetadataColumnID, Source adapter,

building, 684–685

ExternalMetadataColumnID, Source adapter, building

bindex.indd 949bindex.indd 949 8/28/08 7:02:19 PM8/28/08 7:02:19 PM

950

extract, transfer, and load (ETL)
bad data, handling, 157
Change Data Capture (CDC), 430–442
data extraction, 414–441
data loading, 442–448
dimension table loading, 366–388
Execute Package Task, 408–411
fact table loading, 388–400
Fuzzy Lookup Transform, 157–163
SSAS processing, 400–408

Extract Column, 155, 157

F
fact table loading, 388–400

process of, 388–400
tasks in, 388

Fail Component, 649
FailPackageOnFailure, 492, 494–495

setting for tasks, 52
FailParentOnFailure, 499–500

setting for tasks, 52
FailTask, 113
Failure

constraint value, 11
task execution result, 50–51

Fast Load, OLE DB Destination, 146
FastParse, 140
file(s)

archiving, 66–67
File System Task functions, 64–66

File Connection Manager, 670
File Connection Manager Editor, 83

File Path Column, 157
File System Deployment, 815–816
File System Task, 64–67

archiving files, 66–67
file operations, list of, 64–65
functions of, 8, 64
looping, 65
payment processing example

ACH file, 901–903
bank file, 874–876

File System Task Editor, 65
file transfer protocol (FTP), FTP Task, 67–69
FileUsageType

Destination adapter, building, 703
Source adapter, building, 681

Finally block, 349
FindColumnByLineageID, 697
FireCustomEvent, 323
FireError, 322

Destination adapter, building, 705–706
Source adapter, building, 683
transform, building, 693, 695

FireInformation, 322, 329
payment processing example, 873

FireProgress, 323
FireQueryCancel, 323
Fire Triggers, 82
FireWarning, 323, 327
Fixed attributes, 373, 382, 386
fixed-width files, 136
flags, data cleanup, 340, 345
flat buffers, 564
flat file(s), 481–486

data flow issues, 140
extracting data from, 483–486
FastParse, 140
Flat File Connection Manager, 139, 273
Flat File Destination, 15, 145
Flat File Format, 482
Flat File Source, 136–141, 877
loading, 481–483
MultiFlatFile, 141
New Flat File Connection, 867–868
problems related to, 481
Raw File Source, 142
types of files, 136

Flat File Destination
functions of, 15, 145
loading flat files, 482–483
Web Service Task, use with, 474–475

Flat File Source, 136–141
Connection Manager, 136, 482–485
FastParse, 140
files, types of, 136
functions of, 14, 136
migration to SSIS, 612
MultiFlatFile, 141
new project, creating, 273–274
Text qualifier, 136–139

extract, transfer, and load (ETL)

bindex.indd 950bindex.indd 950 8/28/08 7:02:20 PM8/28/08 7:02:20 PM

951

In
de

x

folder(s), package folder maintenance,
750–752

FolderExistsOnDtsServer, 750
FolderExistsOnSqlServer, 750
Force Truncate, 155, 157
Foreach ADO Enumerator, 125–128

functions of, 122, 125
operation of, 125–128

Foreach ADO.NET Schema Rowset
Enumerator, 122

Foreach File Enumerator, 123–125
functions of, 122
new project, looping, 288–289
operation of, 123–125
starting, 123

Foreach From Variable Enumerator, 122
Foreach Item Enumerator, 122
Foreach Loop Container, 122–129

Foreach ADO Enumerator, 125–128
Foreach File Enumerator, 123–125
functions of, 13, 122
new project, looping, 288–289
options, 122
payment processing example

ACH file, 896
bank file, 869–870

Foreach Nodelist Enumerator, 122
Foreach SMO Enumerator, 122
Foreach Task, 53
For Loop Container, 119–122

functions of, 13, 119–120
looping, example of, 120–122
For Loop task, 53

form
building for user interface, 718, 727–732
column display, 728–730
column selection, 730–732
constructor, 728

FTP Task, 67–69
connection, setting for, 67–68
FTP Connection Editor, 68–69
functions of, 8, 67
passive mode, 67
retrieving file with, 68–69

full-cache mode
configuring, 253–255

Lookup Component, 238, 240, 241,
252–255

Lookup Transform, 514–515
Full Width, 150
fully blocking transforms, 147
Functional Dependency Profile

data profiler results, 361
Functional Dependency Profile Request, 63

Fuzzy Grouping Transform, 163–167
configuring, 164–165
data cleansing, 551
example of use, 165–166
functions of, 16, 163–164

Fuzzy Lookup Transform, 157–163
configuring, 158–160
data cleansing, 551
example of use, 161–163
functions of, 16, 157–158
input stream requirements, 158
Invoice Matching, 925–929
output to, 158

fx, constraint marker, 51

G
GateKeeperSequence, 232
GetErrorMessages, user interface,

building, 737–738
GetErrorOutput, transform, building, 699
GetPackagesRoles, 752
GetRunningPackage, 753–754
GetString, transform, building, 700
GetVirtual Input, user interface, building, 729
Global Assembly Cache (GAC), 302

and component building, 673–674, 676
user interface, building, 720–721

granularity, and Change Data Capture
(CDC), 432

Grid data viewer, 132
GridView, 758
group(s), 118–119

creating, 119
functions of, 118, 538
compared to Sequence Containers,

118–119
Group By, 147

Group By

bindex.indd 951bindex.indd 951 8/28/08 7:02:20 PM8/28/08 7:02:20 PM

952

grouping
Fuzzy Grouping Transform, 163–167
renaming group, 39
task grouping, 39

H
Half Width, 150
HappyPathEnum, 311, 313
HasSideEffects, Destination adapter,

building, 703
Hello World, scripting example, 298–300
heterogeneous data

Access, 452–460
data integration providers, 489–490
Excel, 450–451
IBM DB2, 489
Open Database Connectivity (ODBC), 486–489
Oracle, 460–461
Web Service Task, 463–476
XML, 476–481

Hiragana, 150
Histogram data viewer, 132
Historical attributes, 373, 383, 386
horizontal partitioning, 518–520
HTTP Connection Manager, 69–70

I
IBM DB2, OLE DB provider, 489
IconResources, 673
ID, setting for tasks, 52
identity insert, Import and Export Wizard, 25
IDtsClipboardService, 723
IDtsComponentMetaData100, 723–724
IDtsComponentUI

IDtsComponentUI.Delete, 723
IDtsComponentUI.Edit, 724–725
IDtsComponentUI.Help, 723
IDtsComponentUI.Initialize, 723–724
IDtsComponentUI.New, 723
troubleshooting, 726–727
user interface, building, 718, 722–725

IDtsConnectionService, 723
IDTSInputColumn, transform, building,

694–695

IDTSTaskHost100 interface, 50
IErrorCollectionService, 723

user interface, building, 737–739
IfObjectExists, 113
IF...THEN, conditional expression building,

224–225
Ignore Failure, 649
Immediate, BIDS, 36
Immediate window, and debugging, 353
Import and Export Wizard, 21–27

accessing, 4, 21–22
data protection, 25
default location for package, 27
destination, specifying, 23
functions of, 3–4, 21
moving data, 24–25
saving package, 25–26
source connection, 22, 28

Import Column Transform, 167–169
Advanced Editor, configuring with,

167–169
AdventureWorks2008, importing images,

167–169
functions of, 16, 167
input stream requirements, 167

importing data
from Access, 455–457
code-complete package, 606–608
connectivity providers, 489–490
dimension table loading, 366–388
from Excel, 452
fact table loading, 388–400
from flat files, 481–486
Import Column Transform, 167–169
Open Database Connectivity (ODBC),

486–489
from Oracle, 461–463

index, on dimension table, 387
Inferred Dimension Members, 373–374
inferred members, 386
InfoPath

disconnected data, joining, 792–796
operation types, 790–791
SSIS functionality with, 788–797
XML Task configuration, 789–791

Informix, 489

grouping

bindex.indd 952bindex.indd 952 8/28/08 7:02:21 PM8/28/08 7:02:21 PM

953

In
de

x

inheritance
and classes, 664
component building, 672
event handlers, 643–645

Initialize, user interface, building, 722–724
inline schema, XSD, accessing, 476
INNER JOIN

Lookup Transform, 170
Merge Transform, 170

input(s)
Input0_ProcessInputRow, 333
Input and Output Properties, 172
OnInputPathAttached, 668
ProcessInput, 669
verification methods, 666

Input and Pass-Through Field Names and
Values, 158

InputColumn, 668
InputColumnCollection

component building, 668
Destination adapter, building, 702
transform, building, 690, 693, 697

InsertInput, 666
InsertOutput, 666, 695
installing project

deployment utility, creating, 814–818
Package Installation Wizard, 45

Int16 variable, 210
Int32 variable, 210
Int64 variable, 210
Integration Server, DTS packages, 747–748
Integration Services

component types used, 662
importing code-complete package, 606–608
Integration Services Connections

BIDS, 29
Integration Services Project

BIDS, 29, 30
functions of, 4

IntelliSense, functions of, 295
InteractiveMode, 42
invoices

Invoice Matching, 919–933
table, for payment processing, 853, 856–857
See also payment processing example

IsDestinationPathVariable, 66

IsErrorOutput, transform, building, 692
IServiceProvider, user interface, building,

723, 725
IsLocalPathVariable, 68–69
IsolationLevel, setting for tasks, 52
IsRemotePathVariable, 68
IsSort, 422
iteration

defined, 590
MSF Agile, 590–593

iterative SDLCs, 569–570

J
Japanese language, character maps, 150
JET engine, 450
jobs, Transfer Jobs Task, 114
join(s)

during data extraction, 420–421
example of use, 242–263
inner/outer join streams, 239
Lookup Component, 238, 252–266
Merge Join Component, 239, 247–252
and relational database, 237
relational source, use of, 245–247
SSIS compared to relational, 239–240

K
Katakana, 150
Keep Identity, 145
Keep Nulls, 81
keyboard, user interface navigation, 740
Key scale, 148

L
labeling

defined, 604
Visual Studio Team System, 604–605

libraries, DTS runtime managed code
library, 743–744

LineageID, 177–178
for columns, 219, 535
transform, building, 690, 693, 694

line continuation, expression building, 215

line continuation, expression building

bindex.indd 953bindex.indd 953 8/28/08 7:02:21 PM8/28/08 7:02:21 PM

954

Line Feed, 80
Linguistic Casing, 150
literals

Boolean literals, 217–218
numeric literals, 215–216
string literals, 216–217

LoadFromDtsServer, 745
LoadFromSqlServer, 745
LoadFromSqlServer2, 745
LoadGridView, 764
LoadPackage, 745
LoadTreeView, 764
Locals

BIDS, 36
LocalPath, 68–69

Locals Window, and debugging, 351–352
lockbox service, payment processing

example, 852–853
Log, Dts object, 308
log entry

writing in Script Component, 336–337
writing in Script Task, 329–330

Log File Viewer, 837
logging, 653–658

functions of, 18, 653
Log Events, 544–545
log events, defining, 654–655
Logging Mode, setting, 52
Logging option, 544
PipelineExecutionPlan log, 546–548
PipelineExecutionTrees log, 545–546
process of, 655–658
RegisterLogEntries, 667
See also log providers

logic and data flow, Conditional Split Transform,
151–153

logins
LoginsList, 113
LoginsToTransfer, 113
Transfer Logins Task, 112–113

log providers, 765–770
default providers, 654
defining, 765–767
functions of, 765
object, configuration information, 768–770
programming to, 768–775

specifying events to log, 767–768
Lookup

and cache files, 150
new features, 3

Lookup Component, 252–266
Cache Connection Manager (CCM), 238,

266–268
Cache Transform, 266
cascaded operations, 264–266
example of use, 252–263
expressions, use of, 264
full-cache mode, 238, 240, 241, 252–255
functions of, 238
largest/smallest tables, actions with, 248
miss-cache feature, 242
multiple outputs, 259–263
new features, 242
no-cache mode, 240, 255–257
output options, 260–263
partial-cache mode, 240, 257–259
SSIS compared to relational, 239–240
synchronous behavior, 238
three or more joins, 238
troubleshooting, 242
unsuccessful joins, 238

Lookup Transform
cache modes, 514–515
dimension table, loading, 369–371,

376–380
fact table, loading, 389, 391
functions of, 16, 170
Lookup Editor, accessing, 389
missing data, remedy, 282–287
SSIS improvements, 514–515

looping
File System Task, 65
Foreach Loop Container, 122–129
For Loop Container, 119–122
For Loop tasks, 53
for new project, 288–289
payment processing example

ACH file, 895–897
bank file, 868–870

shredding recordsets, 92
Lotus Notes, 489
Lowercase, 150

Line Feed

bindex.indd 954bindex.indd 954 8/28/08 7:02:21 PM8/28/08 7:02:21 PM

955

In
de

x

M
MachineName, 42, 149
magic numbers, converting to NULLs, 417
Main, 299
managed code, 741–775

Configuration object, 773–775
data stores/capabilities, 771
DTS runtime managed code library, 743–744
log providers, 765–770
package, set-up, 742–743
package configuration, creating, 772–775
package folder maintenance, 750–752
package listing, 755–756
package maintenance, example of, 745–747
package maintenance operations, 745
package management, example of, 756–765
package monitoring, 753–754
package role maintenance, 752–753
package transfer, example of, 747–750

Management Studio, 825–826
accessing, 45, 825
connecting to stores, 825
DTExecUI, 826–832
functions of, 45, 825–826
MSDTServer100, 819–820, 822–823
reports, producing, 826
storing packages, 824–825

MapInputColumn, functions of, 666
MapOutputColumn

functions of, 666
Source adapter, building, 687

master packages, Execute Process Task,
408–411

master stored procedures, Transfer Master
Stored Procedures Task, 113–114

Maximum, 147
Maximum Concurrent Executables, 828
Maximum Insert Commit Size, 145
MDAC drivers, 840
medadata issues, Union All Transform, 192–193
memory

asynchronous and synchronous transforms, 147
buffers, 527–528
increasing, 515
Lookup Component full-cache mode, 256

partial versus full blocking transforms, 147
rows processing caution, 131
and scaling out, 515
SSIS speed, 131, 204
for 32-bit Windows systems, 515

MERGE
data loading, 444–448
running, 445–447
with SSIS, 447–448

Merge, XML Task, 76
Merge Join Component, 247–252

example of use, 250–252
functions of, 239
versus Lookup Component, 247–248
sorting errors, 250

Merge Join Transform
configuring, 171
disconnected data, joining InfoPath,

792–796
fact table, loading, 392, 396, 400
functions of, 16, 170–171
sorting requirements, 531–532

Merge Transform
functions of, 170
limitations of, 170
sorting requirements, 531
compared to Union All Transform, 170

merging
defined, 603
Merge Join Component, 247–252
Merge Join Transform, 170–171
Merge Transform, 170
Visual Studio Team System, 603–604
See also join(s)

MessageBox, Hello World, 300
Message Queue Task, 104–105

advantages to use, 104
functions of, 8, 104
type of message, choosing, 105
and updates, 59

MessageText, 329
metadata

External Metadata, 665
ReinitializeMetaData, 665, 693–694
SetExternalMetadataColumn

DataTypeProperties, 666

metadata

bindex.indd 955bindex.indd 955 8/28/08 7:02:22 PM8/28/08 7:02:22 PM

956

methods. See design-time methods; runtime
methods

Microsoft Data Access Components (MDAC),
460, 486

Microsoft Message Queue (MSMQ), 8
Message Queue Task, 104–105

Microsoft.SqlServer.Dts.Pipeline.Pipeline
Component, 664

migrating packages
Deployment Wizard, 605–606
DTS 2000 packages, 609–620
importing packages, 606–608

Minimum, 147
Miscellaneous folder, Solution Explorer, 33
mobile devices, SQL Server Mobile Destination,

86–87, 146
modularization

and Common Table Expressions, 428–430
queries, encapsulating, and data

extraction, 423–424
mouse, user interface navigation, 740
move

Move Directory, 65
Move File, 65
Transfer Database Task, 110–111

MS Access. See Access
msdb deployment, 824–825
MSDTServer100

clustering, 822–823
configuring, 819–820

MSF Agile, 590–593
functions of, 590
Reporting Services, 592–593
templates, 592
Work Items, 591

Multicast Transform
and data flow optimization, 561–562
functions of, 16, 171
staging data, 555

MultiFlatFile, 141

N
name

payment processing example, 849–850
setting for tasks, 52

strong, importance of, 721, 726
Native Transaction

functions of, 503
single package, in SQL Server,

509–511
navigation, BIDS, 35
.NET assemblies

on Global Assembly Cache (GAC), 302
reuse of, 303–305

.NET language
expressions, writing in, 211–212
selecting for use, 55

New Flat File Connection, 867–868
New Line, 80
New Query, 855
no-cache mode

configuring, 256
Lookup Component, 240, 255–257
Lookup Transform, 514–515

non-blocking transformations
synchronous outputs, 537
types of, 529–531

Not Supported, 52, 503, 509
noun/noun phrase tokens, Term Lookup

Transform, 190–192
NULLs

in data flow, 222
expression building, 221–222
magic numbers, converting to, 417
and variables, 221–222

NumberOfEvents, 109, 782
numerals, Fuzzy Grouping Transform, 164
numeric literals

decimal point, meaning of, 216
expression building, 215–216
suffixes with, 216

O
object(s)

Dts object, 307–308
looping through, 122
moving/copying, 110
ObjectsToCopy, 115
Transfer SQL Server Objects Task, 115
and variables, 201

methods

bindex.indd 956bindex.indd 956 8/28/08 7:02:23 PM8/28/08 7:02:23 PM

957

In
de

x

Object Browser, 45
accessing, 743

Object Explorer, 45
Object variable, 210
ODBC. See Open Database Connectivity (ODBC)
OEM, Bulk Insert Task, 81
OLAP Tasks, migration to SSIS, 612
OLE DB

compared to ODBC, 486
OLE DB Command Transform, 172–175
OleDb.Connection, 315
OLE DB Destination, 145–146, 284–285
OLE DB Source, 132–134

OLE DB Command Transform, 172–175
and Advanced Editor, 172
and data flow optimization, 557–558
example of use, 173–175
fact table, loading, 398–400
functions of, 16, 172
options, 172
reusability of data, 175

OLE DB Destination
Access, importing data from, 456
batch size, 145
column width, 145
fact table, loading, 392, 397
fast versus normal load, 145
functions of, 15, 145–146
rows per batch, 145
sending data to, 284–285

OLE DB Source, 132–134
configuring, 132–133
Data Access Mode, 133
dimension table, loading, 367–369, 375–378
fact table, loading, 388–389, 394–395
functions of, 14, 132
migration to SSIS, 612
options, 133–134
table/column operations, 133–134

OnError
example of use, 641–642
functions of, 17, 43, 634
specifying events to log, 767

OnExecStatusChanged, functions of, 43, 634
On Failure, functions of, 37
OnInformation, functions of, 43, 634

OnInputAttached, Destination adapter,
building, 707

OnInputPathAttached, 668
OnOutputPathAttached, 668
OnPostExecute, functions of, 43, 634
OnPostValidate, functions of, 43, 634
OnPreExecute

example of use, 642–643
functions of, 43, 634

OnPreValidate, functions of, 43, 634
OnProgress, functions of, 43, 634
OnQueryCancel, functions of, 43, 634
OnTaskFailed, functions of, 43, 635
OnVariableValueChanged, functions of,

43, 635
OnWarning, functions of, 43, 635
Open Database Connectivity (ODBC),

486–489
connection to source, 486–489
Execute SQL Task connection, 86–87
functions of, 486
loading data from, 488–489
OdbcConnection, 315
compared to OLE DB providers, 486
view loaded data, 489

OPENQUERY, 425–428
OPENROWSET, 425–428, 447
Options, 189
Oracle, 460–461

client setup, 460–461
client software, accessing, 460
connectivity provider, 489
importing data, 461–463
OracleConnection, 315
64-bit support, 461

OUTER JOIN, Merge Transform, 170
output(s)

OnOutputPathAttached, 668
output parameters, retrieving from stored

procedure, 96–97
Output window, BIDS, 36
PrimeOutput, 669
verification methods, 666

Output Alias, 150, 153
OutputColumnCollection, Source adapter,

building, 686, 690

OutputColumnCollection, Source adapter, building

bindex.indd 957bindex.indd 957 8/28/08 7:02:23 PM8/28/08 7:02:23 PM

958

OutputType, 776
Overwrite, 113
OverwriteDestination, 66, 776, 778
OverwriteFileAtDest, 69

P
package(s)

administering. See package administration
archiving files, 66–67
connections, creating, 40
creating in BIDS, 30–31
designing. See Package Designer
dividing, 117–118
dynamic packages, 199
Execute Package Task, 98–102
executing, 44
execution time, start to finish, 524–525
execution tracking, 6
functions of, 7
management/maintenance.

See managed code
navigation, 35
Package Explorer, 44
PackageID, 42, 149
Package Installation Wizard, 45
of Package Installation Wizard, 45
Package Migration Wizard, 614–619
PackageName, 42
parent packages, 98
runtime engine, 7
saving, 25–26, 277, 850
system variables, 41–42
transactions with. See transaction(s)
and variables, 201
XML structure, 7

package administration, 809–841
central SSIS server, creating, 820–821
clustering SSIS, 822–823
Configuration Filter, 812
configuration type, 812
deployment utility, creating, 814–818
DTExec, 834
DTExecUI, execute packages with, 826–832
DTUtil, 835
Management Studio, 825–826

msdb deployment, 824–825
Package Configuration, 809–810
Package Store, 818–820
performance counters, 840–841
proxy accounts, 838–839
scheduling packages, 836–837
security, 832–834
64-bit issues, 839–840

Package Configuration
Configuration Filter, 812
Configurations Organizer, 812
configuration type, 812
methods to use, 813
and package migration, 813

Package Designer, 36–44
Connection Managers, 40
Control Flow, 36–40
Data Flow, 42–43
event handlers, 43–44
executing package, 44
functions of, 36
Package Explorer, 44
variables, 41–42

Package Explorer, functions of, 44
PackageGroupCollection, 761–764
PackageInfo, 755–756, 761, 764
Package Installation Wizard, functions of, 45
Package Migration Wizard, DTS 2000 migration,

614–619
PackageName, 149
Package objects

and external management. See managed code
maintenance operations with, 744

package roles
connecting, 834
GetPackagesRoles, 752
maintenance of, 752–753
read and write role, 832
SetPackagesRoles, 752
viewing, 832–834

Package Store, 818–820
functions of, 818
importing packages, msdb database, 825
running packages, 819–820

Packages Validation, 817
padding operation, strings, comparing, 224

OutputType

bindex.indd 958bindex.indd 958 8/28/08 7:02:23 PM8/28/08 7:02:23 PM

959

In
de

x

parameters
Access, parameter passing, 457–460
parameterized SQL statement, executing,

85–88
Parameters, 189

parent packages
driver package for payment processing,

934–935
functions of, 98
variables, changing in child packages, 102
variables, use by child packages, 99–101

parsing
ACH data flow validation, 904–906
bank file data flow validation, 877–881
ParseTheFileAndAddToBuffer, 687–688

partial blocking transforms, 147
partial-cache mode

configuring, 258–259
Lookup Component, 240, 257–259
Lookup Transform, 514–515

partitioning
Execute Process Task, 515
horizontal, 518–520
Partition Processing, 15, 144
Partition Processing Destination, 144,

515–516
raw file adapters, 516, 518
staging data, 515–516

Partition Processing
configuring, 144
functions of, 15

Partition Processing Destination, functions
of, 144

Passive Mode, FTP Task, 67
pass-through

Pass-Through, 164
queries to SQL Server, 422

Patch, 77
paths

attachment methods, 668
defined, 42
destination path, specifying, 66
Execute Process Task, 103
Export Column Transform, 155–156
FTP transfers, 68
XPATH, 76

payment processing example, 843–935
ACH file, 894–913

ACH file processing, 911–912
capturing total batch items, 910–911
control flow batch creation, 900–904
control flow loop, 895–897
control flow processing, 895–904
data flow detail processing ETL, 911–913
data flow validation, 904–911
file snapshot, saving, 912–913
file system tasks, 894–895
package setup, 894–895
parsing /error handling, 904–906
validation process, 906–909
XML file size, retrieval, 897–900

architecture of solution, 846–849
bank file, 864–894

bank file check processing, 890–892
bank file snapshot, saving, 892–894
capturing total batch items, 886–889
control flow batch creation, 873–877
control flow file loop, 868–870
control flow retrieval, file properties, 870–873
data flow detail processing ETL, 889–894
data flow validation, 877–894, 881–886
error folder, use of, 879–881
invoice detail lines processing, 890–892
parsing/error handling, 877–881
variable setup tasks, 864–868

case study database model, 853–854
corporate ledger data, 860
database setup, 854–863
email transactions, 913–919

control flow processing, 914–917
data flow processing, 917–919
file system tasks, 914
setup requirements, 913–914

ErrorDetail, 860–861
file storage location, setup, 851
Invoice Matching, 919–933

high-confidence data flow, 923–928
hit-rate, analysis of, 932–933
medium-confidence data flow, 928–931
package setup, 920–921
process logic, adding, 921–923

large project tips, 850

payment processing example

bindex.indd 959bindex.indd 959 8/28/08 7:02:23 PM8/28/08 7:02:23 PM

960

payment processing example (continued)
naming conventions, 849–850
parent driver package

creating, 934–935
payment methods

bank ACH payments, 851–852
direct credits, 853
lockbox service, 852–853
PayPal payments, 853

payment processing goals, 844–845
solution summary, 845
stored procedures

adding batches, 861–862
balancing batch, 863
updating batch, 862

tables
BankBatchDetail table, 859, 893, 912,

917–919, 932–933
BankBatch table, 858–859, 881–882,

901–902, 916–919
CustomerLookup table, 858
customer table, 853, 855–856
invoice table, 853, 856–857

PayPal payments, payment processing
example, 853

Peoplesoft, 489
Percentage Sampling Transform, functions

of, 16, 175
performance counters, 840–841

buffer counters, 841
Rows Read/Rows Written, 840

Performance Monitor (PerfMon), 562–565
buffers of, 564–565
counters available in, 563–564

PerformUpgrade, 667
persistent file storage, functions of, 515
Persistent Systems, 489
pipeline

Data Pipeline, 515
execution events, 543–548
extending. See component building;

component(s); pipeline component
methods

functions of, 662
location of, 662
performance monitoring, 562–565

PipelineExecutionPlan log, 546–548
PipelineExecutionTrees log, 545–546
SSIS improvements, 515
transformations, 15–17

PipelineBuffer, transform, building, 701
pipeline component methods

component building, 672
design-time methods, 664–668
PipelineComponent, overriding, 664
runtime methods, 668–670

pivoting
defined, 16
Pivot Column, 175
PivotKeyValue, 178
Pivot Transform, 175–179
PivotUsage, 177

Pivot Transform, 175–179
data cleansing, 551
example of use, 176–179
functions of, 16
input columns for, 175–176
pivot rules, setting, 176

Play, 44
polling, WMI Event Watcher Task, 108–110
PopulateConnectionsCombo, user interface,

building, 733–734
PostExecute, functions of, 333, 670
precedence constraints, 11–12, 623–633

Boolean expressions with, 626–630
conditional expressions, 11–12
constraint values, 11
in control flow, 38
creating new, 50
example of, 624–625
expressions, use of, 232–233
functions of, 7, 624
fx marker, 51
multiple, use of, 630–633
Precedence Constraint Editor, 38,

218, 625
setting for tasks, 50

PreCompileScriptIntoBinaryCode, 55
predictive queries

Data Mining Query Task, 59–60
Data Mining Query Transform, 154
running, 60

payment processing example (continued)

bindex.indd 960bindex.indd 960 8/28/08 7:02:24 PM8/28/08 7:02:24 PM

961

In
de

x

PreExecute
Destination adapter, building, 707–709
functions of, 333, 669
Source adapter, building, 687
transform, building, 695–696, 700

PrepareForExecute, 669, 670
PrimeOutput

functions of, 669
Source adapter, building, 687
transform, building, 695, 701

private buffers, 564
processes, Execute Process Task, 102–104
ProcessInput

component building, 669
Destination adapter, building, 702, 707–708
transform, building, 695, 697–699, 701

process logic, Invoice Matching, 921–923
profiles. See data profiling
ProgID, log providers, 770
programmatic example. See payment

processing example
project(s), creating, 271–291

archiving files, 290
BIDS, starting new project, 271–272
Conditional Split Transform, 281–282
connections, creating, 272–274
Control Flow, 276
Data Flow, 275–276, 280
data scrubbing, 278–279
dirty data, handling, 280–284, 285–287
dynamic package, creating, 289–291
Error Queue, sending bad data to, 287
executing package, 277–278
looping, 288–289
OLE DB destination, sending data, 284–285
saving package, 277
tasks, 274

Project Explorer, scripting, 298, 299
Project Portal, contents of, 594
Properties, 34–35

editing for package, 34
functions of, 34

Property Expressions Editor, 289
ProtectionLevel, 816
prototype data changes, snapshots, 442–444
ProvideComponetProperties

design-time debugging, 711–712
Destination adapter, building, 702–703
functions of, 667
procedures for, 665
Source adapter, building, 678–679, 683
transform, building, 691–692, 697, 699
user interface, building, 732–733

proxy accounts, 838–839
credential, creating, 838–839
functions of, 838

Q
queries

changed data, capturing, 431
cleaning data in, 419
Data Mining Query Task, 59–60
Data Mining Query Transform, 154
encapsulating, during data extraction,

423–424
FireQueryCancel, 323
OnQueryCancel, 43
pass-through, 422
WHERE, advantages of, 416–417
WQL queries, 107–110, 776–777

Quick Profile, 63, 358
Quick Watch window, 352

R
ragged-right files, 136
RaiseChangeEvent, 635
random sample, transforms, 146
raw file(s)

adapters, functions of, 516, 518
Conditional Split to produce, 518–519
RAW, Bulk Insert Task, 81
Raw File, functions of, 449
Raw File Destination, 15, 146
Raw File Source, 14, 142
and staging data, 516

ReadCommitted, 52
reader role, 832
read only

DTSUsageType.UT_READONLY, 668
ReadOnlyVariables, 56, 307, 309, 312, 334

read only

bindex.indd 961bindex.indd 961 8/28/08 7:02:24 PM8/28/08 7:02:24 PM

962

ReadUncommitted, 52
read write

DTSUsageType.UT_READWRITE, 668
ReadWriteVariables, 56, 307, 309, 312, 334
transform, building, 693

ReattachSourceDatabase, 111
Recordset Destination, functions of,15, 146
Redirect Row, 649–651

DescribeRedirectedErrorCode, 670
Reference Field Name and Value, 158
Reference Table, 158, 160, 192
regenerate packages, 835–836
RegisterEvents, 667
RegisterLogEntries, 667
ReinitializeMetaData

column properties, setting, 667
Destination adapter, building, 707
functions of, 665
Source adapter, building, 683, 685
transform, building, 693–694
user interface, building, 729

relational database
Bulk Insert Task, 79–85
Execute SQL Task, 85–99
join operation, 237
joins, use in, 245–247
reducing reliance on, 549–550
types of, 33

relational engine, SQL Server
data extraction, 414–441
data loading, 442–448

ReleaseConnections, functions of, 670
reloading, changed data, capturing, 431
RemotePath, 68
RemoveFolderFromDtsServer, 750
RemoveFolderFromSqlServer, 750
RemoveFromDtsServer, 745
RemoveFromSqlServer, 745
Remove Rows, 185
Rename File, 65
RenameFolderonDtsServer, 750
RenameFolderonSqlServer, 750
RepeatableRead, 52
Reporting Services, MSF Agile, 592–593
Required, 52, 503, 505
restarting packages. See Checkpoints

reusability of data
of .NET assemblies, 303–305
persistent file storage, 515

ReverseString
component building, 668
user interface, building, 725, 729

ReverseStringTransform
design-time debugging, 711–713
form constructor, 729

roles. See package roles
row(s)

error rows, 648–653
missing, error outputs, 511–514
processing and memory, 131
row-based transformations, 530–531
Row Count Transform, 182–184
RowDelimiter, 83, 273
Rows Per Batch, 145

row-based transformations, 530–531
and data flow optimization, 557–558

Row Columns, 175
Row Count Transform, 182–184

and Advanced Editor, 183
and debugging, 350–351
example of use, 183–184
functions of, 16, 182–183

Row Sampling Transform, functions of,
17, 175

Rows Read counter, 840
Rows Written counter, 840
RunningPackage, 753–754, 764
runtime

defined, 664, 668
functionality of, 668–670

RuntimeConnectionCollection, user
interface, building, 735

runtime engine, functions, 7
runtime methods

Cleanup, 670
DescribeRedirectedErrorCode, 670
PostExecute, 670
PreExecute, 669
PrepareForExecute, 669
PrimeOutput, 669
ProcessInput, 669
user interface, building, 732–735

ReadUncommitted

bindex.indd 962bindex.indd 962 8/28/08 7:02:24 PM8/28/08 7:02:24 PM

963

In
de

x

S
sampling

Percentage Sampling Transform, 175
Row Sampling Transform, 175

SAP, 489
Sarbanes-Oxley compliance, 830
SaveToDtsServer, 745
SaveToSqlServer, 745
SaveToSqlServerAs, 745
SaveToXML, 745
saving

and Import and Export Wizard, 25–26
packages, 25–26, 277, 850
during run, 850
SaveCheckpoints, 492
XML file, saving data to, 317–319

SByte variable, 210
scalability

Lookup Transform, 514–515
scaling out, 515–520

scaling out, 515–520
Data Flow division and restart, 516–518
across machines, 518–520
and memory, 515
staging data, 515–516

Scatter Plot data viewer, 132
scheduling packages, 836–837

and central server, 821
SQL Server Agent, 836–837
steps in, 836–837

schema validation, XML Task, 76
Score Type, 189
Script Component, 330–347

configuring, 331–334
connections, specifying, 333
data sources, connecting to, 335
data validation, 337–346
destination type component, 330
events, raising, 335–336
functions of, 295
log entry, writing, 336–337
Script Component Task, 880, 907–910
Script Component Transform, 17, 184
compared to Script Task, 299, 330, 333–334
source type component, 330

transformation type component, 330
variables, accessing, 334–335

Script Component Transform, functions of,
17, 184

scripting
ActiveX Script Task, 53–54, 295
assemblies, reusing, 302–305
basic components of, 293
C# language, 296
code and classes, adding, 300–302
debugging, 350–353
defined, 293
expressions for, 295
message boxes, 300
.NET assemblies, reuse of, 303–305
Script Component, 295, 330–347
Script Component Transform, 17, 184
Script Task, 55–57, 295, 306–330
Structured Exception Handling, 347–349

ScriptLanaguage, 55, 306
ScriptMain, 56, 298–299

unique filename for files, 300–301
Script Task, 55–57, 306–330

as ActiveX Script Task replacement, 294
breakpoints, 350
C#, choosing, 296
configuring, 55, 306–307
database data, retrieving, 315–316
data sources, connecting to, 315
Dts object, 307–308
event information, logging, 327–328
events, raising, 322–325
events, responding to, 325–327
functions of, 8, 55, 295
Hello World example, 298–300
log entry, writing, 329–330
multiple languages, use of, 296, 298
.NET assemblies, reuse of, 303–305
package flow, control of, 311–314
Project Explorer, 298, 299
compared to Script Component, 299, 330,

333–334
scripting IDE, 297–298
Script Task Editor, 55
SSAS processing, 401, 408
upgrades to, 55

Script Task

bindex.indd 963bindex.indd 963 8/28/08 7:02:25 PM8/28/08 7:02:25 PM

964

Script Task (continued)
variables, accessing, 308–310
XML, serializing data to, 319–322
XML file, saving data to, 317–319

Script Transform
data cleansing, 551
New method, use of, 723

scrubbing data, for new project, 278–279
security

Access, 452–453
Import and Export Wizard, 25
package roles, 832–834
package roles, viewing, 832–834
re-encryting packages, 835
Transfer Logins Task, 112–113

SELECT * FROM, problems of, 414–416
SELECT clause, sorting, 422
SelectSQL, 234–235
SelectSQL_ExpDateParm, 234
SelectSQL_UserDateParm, 234–235
SelectSQL variable, 209
semi-blocking transformations, types of,

531–532
Semicolon, 80
Send Mail Task, 105–106

functions of, 8
SMTP Connection Manager, 105–106

Sequence Containers
checkpoints, use with, 496–499
embedding, 118
example of, 118
functions of, 13, 117–118
payment processing example

ACH file, 896
bank file, 869
email transactions, 914, 916

and precedence constraints, 624–625
task names in, 118

Sequence Task, 53
serialization

data to XML, 319–322
Serializable, 52

server mangement objects (SMO)
Foreach SMO Enumerator, 122
Transfer Database Task, 110–111
Transfer Error Messages, 112

Transfer Jobs Task, 114
Transfer Logins Task, 112–113
Transfer Master Stored Procedures Task,

113–114
Transfer SQL Server Objects Task, 115

ServerStorage, 816
Set Attributes, 65
set-based logic, data extraction, 428–430
SetComponentProperties, 667

user interface, building, 735–736
SetDataTypeProperties, Source adapter, building,

686–687
SetEndOfRowset, transform, building, 699
SetExternalMetadataColumn

DataTypeProperties, 666
SetExternalMetadataColumnProperty, 667
SetInputColumnProperty, 667
SetInputProperty, 666
SetInputVirtualInputColumns, form

constructor, 728
SetOutputColumnDataTypeProperties, 666
SetOutputColumnProperty, 667
SetOutputProperty, 666
SetPackagesRoles, 752
SetString, transform, building, 700
SetUsageType, 668

Destination adapter, building, 707
transform, building, 694–695
user interface, building, 731

Set Values, DTExecUI, 830
shadow tables. See capture instance tables
SharePoint Portal Services, Project Portal, 594
shelving

defined, 600
Visual Studio Team System, 600–601

Show Advanced Editor, 140
shredding

defined, 92
recordsets, 92

Similarity
Fuzzy Grouping Transform, 165
Fuzzy Lookup Transform, 158

Single variable, 210
64-bit support

DTExec, 840
Oracle, 461

Script Task (continued)

bindex.indd 964bindex.indd 964 8/28/08 7:02:25 PM8/28/08 7:02:25 PM

965

In
de

x

package administration issues, 839–840
SSIS, 450–451, 840

Skip, 113
Slowly Changing Dimension Transform, 184–185

Change Types options, 373–374
dimension table, loading, 371–374, 381–388
functions of, 17, 184, 367
limitations of, 387
optimizing, 387–388

SMTP Connection Manager, 105–106
snapshots

ACH file, saving, 912–913
bank file snapshot, saving, 892–894
creating, 443–444
data loading, 442–444
rollback functionality, testing, 444
Snapshot, 52

software development. See source code
Software Development Life Cycles (SDLCs),

567–570
history of, 568
iterative SDLCs, 569–570
waterfall SDLCs, 569

solution(s)
BIDS, 30
functions of, 30, 32
names, viewing, 30

Solution Explorer, 32–33
executing packages, 44
functions of, 32
project, creating in solution, 32–33

sorting
during data extraction, 421–423
Duplicate Sort Values, 185
IsSort, 422
Merge Join Component, 250
Merge Join Transform, 531–532
SELECT clause, 422
Sort Component, 250
SortKeyPosition, 178, 186, 422
Sort Transform, 185–186
transforms, 146

Sort Transform, 185–186
fact table, loading, 392–394
as full blocking transform, 147, 533
functions of, 17, 185

options, 185–186
source(s), 132–142

ADO.NET Source, 142
coding, 15
and Connection Manager, 132
Excel Source, 135–136
Flat File Source, 136–141
functions of, 14, 131
OLE DB Source, 132–134
Raw File Source, 142
Script Component, as source type

component, 330
types of, 14–15
XML Source, 142

Source adapters
building, code for, 678–690
functions of, 537–538, 662–663
ProcessInput, 669

source back pressure, and staging data, 554
source code

Deployment Wizard, 605–606
importing, 606–608
Integration Services, 606–608
Project Portal, 594
Software Development Life Cycles

(SDLCs), 567–570
source control, 570
Team System, 585–605
Visual SourceSafe, 570–585

SourceColumn, 178
source control

defined, 570
Visual Studio Team System, 597–600

SourceDirect, 57
Source Safe, 29
SourceSafe, 825
SourceType, 57
spooling, buffers, 841
SQL

Execute SQL Task, 85–97, 231
SqlConnection, 315
SQL Native Client, 22
SQL Profiler, 654
SQLSourceType, 87–88, 231
SQLStatement, 94–95
SQL statements, creating, 231–232

SQL

bindex.indd 965bindex.indd 965 8/28/08 7:02:26 PM8/28/08 7:02:26 PM

966

SQL 2008, components, recompiling, 716
SQLMOBILE

Execute SQL Task connection, 86–87
SQL Server Mobile Destination, 86–87

SQL Profiler, log provider for, 766, 770
SQL Server

Change Data Capture (CDC), 430–442
Compact Edition Destination, 15
data extraction, 414–441
data loading, 442–448
data types, 202–203
data types and SSIS, 139–140
editions of, 19
log provider for, 654, 766, 770
mobile, 86–87, 146
SQL conversion table, 205–206
SQL Server Destination, 15, 146
Transfer SQL Server Objects Task, 113, 115
TSQL extension features

new features, 3
SQL Server Agent

and Change Data Capture (CDC), 433
scheduling packages, 836–837

SQL Server Deployment, 815–816
SQL Server Integration Services. See SSIS
SSAS processing, 400–408

basic components of, 401
steps in, 401–407

SSIS
architecture of, 5–7
breakpoints, 645–648
Business Intelligence Development Studio

(BIDS), 4–5, 28–31
case study. See payment processing example
components of. See component building;

component(s)
Connection Manager, 9–10
containers, 12–13
data conversion guidelines, 204
data flow elements, 13–14
data processing, scope of, 355–356
data profiling, 356–366
data sources, 9
data source views, 10–11
data types, 202–207
data warehouse, 366–411

destinations, 15
development of, 2
dynamic capabilities, 199
end-to-end package, creating. See

project(s), creating
error handling, 17–18
event handling, 633–645
expressions, 200, 211–236
with external applications. See external

applications
external management. See managed code
Import and Export Wizard, 3–4, 21–27
large project tips, 850
logging, 18, 653–658
Management Studio, 45
new features, 3
Package Designer, 36–44
Package Installation Wizard, 45
packages, 7
precedence constraints, 11–12, 623–633
Properties, 34–35
pull paradigm, 199–200
runtime engine, 7
scalability improvements, 514–515
scripting, 293–354
64-bit support, 450–451
Solution Explorer, 32–33
sources, 14–15
speed of, 131, 204
and SQL editions, 19
SSIS Service, 6
tasks, 8–9
32-bit emulation mode, 451
Toolbox, 33–34
transformations, 15–17
variables, 13, 201, 208–210
See also specific topics

SSIS engine
buffers, 527–528
Control Flow, 522–526
Data Flow, 522–524, 526–527
data processing, 526–527
execution time, start to finish, 524–525
execution trees, 538–543
information processing efficiency, 521–522
pipeline execution events, 543–548

SQL 2008, components, recompiling

bindex.indd 966bindex.indd 966 8/28/08 7:02:26 PM8/28/08 7:02:26 PM

967

In
de

x

runtime engine, functions of, 7
source/destination adapters, 537–538
transformations, 529–537
workflow, handling, 525–526

SSIS Service
functions of, 6
stopping, effects of, 6

staging data
and error handling, 554
Multicast Transform, 555
scaling out by, 515–516
situations related to, 554

standard edition, SQL Server, 19
StandardErrorVariable, 103
StandardInputVariable, 103
StandardOutputVariable, 103
StartTime, 42
Stop, 44
StoredData, 82
stored procedures

Execute SQL Task, 94–96
moving/copying, 110
output parameters, retrieving, 96–97
payment processing example, 861–863
Transfer Master Stored Procedures Task,

113–114
streaming transformations, types of, 529–530
string(s)

comparing, 224
concatenation, expression building, 214–215
double quotes (“”) and building, 214
and expressions, 223–224

string literals
escape sequences, 216–217
expression building, 216–217

String variable, 210
Structured Exception Handling, 347–349

Catch block, 348
Finally block, 349
Try block, 348

subject matter experts (SMEs), 845
Success

constraint value, 11
task execution result, 50–51

suffixes, with numeric literals, 216
Sum, 147

Supported, 52, 503, 505
Sybase, 489
synchronicity, limiting, 548–550
synchronous transforms

functions of, 147
ProcessInput, 669
SynchronousInputID, 537, 692
transformation output, 536–537

system management. See Windows Management
Instrumentation (WMI)

system variables
accessing, 41
types of, 42

T
Tab, 80
Table Lock, 82, 145
Tabular Data Stream (TDS), 88–89
task(s)

ActiveX Script Task, 53–54
adding to flow, 47
Analysis Services Execute DDL Task, 57–58
Analysis Services Processing Task, 58–59
AND/OR with, 38
Bulk Insert Task, 79–85
configuring, 47
Data Flow Task, 61
Data Mining Query Task, 59–60
Data Profiler Task, 62–64
disabling, 51, 850
Execute Package Task, 98–102
Execute Process Task, 102–104
Execute SQL Task, 85–97
execution results, 50–51
File System Task, 64–67
FTP Task, 67–69
functions of, 7, 8, 47
grouping, 39
groups, 118–119
looping tasks, 53
Message Queue Task, 104–105
new project, creating tasks, 274
precedence, setting, 50
preprocessing, 333
properties, 51–52

task(s)

bindex.indd 967bindex.indd 967 8/28/08 7:02:26 PM8/28/08 7:02:26 PM

968

task(s) (continued)
Script Task, 55–57
Send Mail Task, 105–106
setup requirements, 47
Task Editor, 48–49
task errors, 17
Task Host Container

functions of, 12, 117
TaskID, 149
TaskName, 149
TaskResult, 308
Transfer Database Task, 110–111
Transfer Error Messages, 112
Transfer Jobs Task, 114
Transfer Logins Task, 112–113
Transfer Master Stored Procedures Task,

113–114
Transfer SQL Server Objects Task,

113, 115
types of, 8–9
Web Service Task, 69–75
WMI Data Reader Task, 106–108
WMI Event Watcher Task, 108–110
XML Task, 75–79

Task List, BIDS, 36
Team System. See Visual Studio Team System
templates, MSF Agile, 592
Teradata, 489
Term Extraction Transform, 186–190

example of use, 187–189
functions of, 17, 186–187
options, 189
TFIDF score, 187

Term Lookup Transform, 190–192
Aggregate Transform, use of, 192
functions of, 17, 190
input stream requirements, 158
operation of, 191–192

Term Type, 189
text data

accessing, SQL Server, 425–428
log provider for, 654, 766, 770

Text Qualifier
actions of, 136
Flat File Source, 136–139
New Flat File Connection, 273

32-bit emulation mode, 451
Business Intelligence Development Studio

(BIDS), 451
DTExec, 451, 839–840
SSIS, 451
Windows system memory, 515

Timeout
Execute Process Task, 104
WMI Event Watcher Task, 782

time values
removal error, 204
SQL Server, new, 204
SSIS errors, 225–226

Toolbox, 33–34
customizing, 34
functions of, 30–31, 33
organization of, 34
resetting, 34

transaction(s), 502–511
Distributed Transaction Coordinator (DTC)

Transactions, 503
Native Transaction, 503, 509–511
single package/multiple transactions, 506–508
single package/single transaction, 503–506
TransactionMode values, 52
TransactionOption, 52, 503, 505
two packages/one transaction, 508–509

Transaction, Dts object, 308
TransactionOption

setting for tasks, 52, 505–506
values, 503

TransferAllStored Procedures, 113
Transfer Database Task, 110–111, 115

copy or move option, 111
functions of, 110

Transfer Error Messages, 112
Transfer Jobs Task, 114
Transfer Logins Task, 112–113
Transfer Master Stored Procedures Task,

113–114
Transfer SQL Server Objects Task, 113, 115

functions of, 115
operation of, 115

transform(s), 146–193
Aggregate, 147–148
asynchronous, 147

task(s) (continued)

bindex.indd 968bindex.indd 968 8/28/08 7:02:27 PM8/28/08 7:02:27 PM

969

In
de

x

Audit, 149
Cache, 150
Character Map, 150–151
Conditional Split, 151–153
Copy Column, 153
custom, component for, 330
Data Conversion, 153–154
during data extraction, 417–420
and data flow, 42
Data Mining Query, 154
Derived Column, 154–155
in Enterprise Edition SQL Server, 19
Export Column, 155–157
feeding with recordsets, 93
functions of, 15, 131, 146, 663
Fuzzy Grouping, 163–167
Fuzzy Lookup, 157–163
Import Column, 167–169
Lookup, 170
Merge, 170
Merge Join, 170–171
Multicast, 171
OLE DB Command, 172–175
Percentage and Row Sampling, 175
Pivot, 175–179
Row Count, 182–184
Script Component, 184
setting, 146–147
Slowly Changing Dimension, 184–185
Sort, 185–186
synchronous, 147
Term Extraction, 186–190
Term Lookup, 190–192
types of, 16–17
Union All, 192–193
Unpivot, 179–182

transformation(s), 15–17, 529–537
Advanced Editor, 533–534
asynchronous output, 534–535
blocking, 532–533
for data cleansing, 551–553
for data correlation, 550–551
functions of, 15–16, 522, 663
non-blocking, 529–531
row-based, 530–531
semi-blocking, 531–532

streaming, 529–530
synchronous output, 536–537
types of. See transforms

Transform component
building, code for, 690–701
functions of, 663

Transform Data Task, 61
migration to SSIS, 612

TreeView, 758
triggers, changed data, capturing, 431
truncation, OLE DB Source, 134
Try block, 348
TSQL

expressions, writing in, 211–212
extension, new features, 3

tutorial. See project(s), creating

U
UInt32 variable, 210
UInt64 variable, 210
UITypeName, user interface, building, 718,

725–727
Unchanged Output, 387
Unicode

casting, problems of, 207
conversion issues, 205–206

Union All Component, joins, use in, 246–247
Union All Transform, 192–193

configuring, 192–193
during data extraction, 421
functions of, 17, 192
compared to Merge Transform, 170
as partial blocking transform, 147
as semi-blocking transform, 530, 537

Union AllTransformationNow, 284
Unpivot Transform, 179–182

configuring, 180–181
data cleansing, 551
functions of, 17, 180
unpivoting data, 181–182

unshelving, Visual Studio Team System, 602
Unspecified, 52
Uppercase, 150
Use File, 80
UseParentSetting, 52

UseParentSetting

bindex.indd 969bindex.indd 969 8/28/08 7:02:27 PM8/28/08 7:02:27 PM

970

UserExp, 232
user interface, 717–740

Advanced Editor, default interface, 717
AssemblyInfo, 721–722
building, steps in, 718
column display, 728–730
column properties, 739–740
column selection, 730–732
component-level properties, 735–736
Connection Manager, 734–735
error handling, 737–739
form, building, 718, 727–732
form constructor, 728
Global Assembly Cache (GAC), 720–721
IDtsComponentUI, 718, 722–725
Initialize, 722
mouse versus keyboard navigation, 740
project, creating, 719–722
references, adding, 722
runtime connections, 732–735
UITypeName, 718, 725–727

UserName, 42, 149
user variables, 41
Use Windows Authentication, 107
using directives, functions of, 672
USZIP, accessing, 69

V
Validate

Destination adapter, building, 704–706
functions of, 76, 665
Source adapter, building, 682–683, 685
transform, building, 692–693

value(s), variables, actions on, 208
Value Columns, 175
Value Inclusion Profile Request, 63
variable(s), 208–210

case-sensitivity, 208
changing, only method, 208
checkpoints, adding to, 501
creating, 208–209
Data Flow Scope Level, 234
data types for, 209–210
dummy variables, use of, 218
and expressions, 201

functions of, 13, 201, 208
naming, 208, 310
and NULLs, 221–222
payment processing example

ACH file, 894–895
bank file package, 864–868
email transactions, 914–915
Invoice Matching, 920–921

properties, setting, 209
ReadOnlyVariables, 56
ReadWriteVariables, 56
referencing, expression builder, 218
scope, setting, 41
in Script Component, 334–335
in Script Task, 308–314
setting, 13, 56
SomeStringVariable error message, 310
system variables, 41–42
use as expressions, 227–229
user variables, 41
values, changing, 353, 647
VariableDispenser, 308–309
viewing with watch, 647
window, accessing, 41

Variables, Dts object, 308
VBScript, 54
verification methods, functions of,

664–665
version

AssemblyVersion, 678
AssembyFileVersion, 678
VersionBuild, 42
VersionID, 149

Vertical Bar, 80
Virtual Input, 668, 695
Visual SourceSafe, 570–585

configuring, 570
customization options, 571–572
example of use, 572–585
predefined roles, 572
remote access, 572
updates, 570

Visual Studio
and BIDs, 28–29
Visual SourceSafe, 570–585
Visual Studio Team System, 585–605

UserExp

bindex.indd 970bindex.indd 970 8/28/08 7:02:28 PM8/28/08 7:02:28 PM

971

In
de

x

Visual Studio Team System, 585–605
branching code, 602
examples of use, 586–589
integration with SSIS project, 597–605
labeling, 604–605
merging, 603–604
MSF Agile, 590–593
Process Guidance, 589
project management website feature, 588
requirements for use, 585–586
shelving, 600–601
source control, 597–600
unshelving, 602

Visual Studio Tools for Applications (VSTA)
accessing, Script Task, 55–57
Script Components, 295

VSTA. See Visual Studio Tools for
Applications (VSTA)

W
watch

adding, 352–353
BIDS, 36
and debugging, 352
Quick Watch window, 352
variables, viewing, 647

waterfall SDLCs, 569
web project, package management operations

in, 756–765
Web Service Task, 69–75, 463–476

data retrieval, 73–75, 464–465
functions of, 8, 69, 463
operation of, 69–75
values for calculations, conversions, 467–475
XML result sets, retrieving, 69–75

WHERE, advantages of, 416–417
Windows Event log, 654

log provider for, 767, 770
Windows Management Instrumentation (WMI), 8

WMI Data Reader Task, 106–108, 775–781
WMI Event Watcher Task, 108–110, 782–785
WQL language, 775

Winform .NET, SSIS functionality with, 802–808
wire payments, 844

processing of. See payment processing example

WmiConnection, 776
WMI Connection Manager, 776, 782
WMI Data Reader Task, 106–108, 775–781

connection, setting for, 106–107, 776
data type conversion, 779–780
example of use, 777–781
functions of, 8, 106
parameters, 776, 778
tasks, configuring, 779
WQL queries, 107–108, 778–781

WMI Event Watcher Task, 9, 108–110,
782–785

event handler, configuring, 784–785
example of use, 783–785
functions of, 108, 782
parameters, 782–783
polling, 108–110
WqlQuerySource, 109–110

word frequency, Term Extraction Transform,
186–190

workflow
and Control Flow, 131, 525–526
Execute Package Task, 98–102
Execute Process Task, 102–104
Message Queue Task, 104–105
Send Mail Task, 105–106

workgroup edition, SQL Server, 19
Work Items, MSF Agile, 591
WQL language, 775
WQL queries, 107–110

functions of, 107–108
output, example of, 107–108
WMI Data Reader Task generation of,

776–777
WqlQuerySource, 109–110, 776, 782
WqlQuerySourceType, 107, 776, 782

Write BOM, 155
writer role, 832
WSDL file, 69–70

X
XML

data integration with, 476–481
Diffgram, 76, 790–791
InfoPath, 788–797

XML

bindex.indd 971bindex.indd 971 8/28/08 7:02:28 PM8/28/08 7:02:28 PM

972

XML (continued)
in-line XSD, accessing, 476
log provider for, 654, 767, 770
packages, structure of, 7
result sets, retrieving, 69–75
Script Task, saving data to file, 317–319
serializing data to, 319–322
Web Service Task, 69–75, 463–476
XML Schema Defintion (XSD), 76, 476–481
XML Source, 14, 73–75, 142, 476–481
XML Task, 9, 75–79
XPATH, 76, 469–470
XSLT transformations, 76, 791

XMLA scripts, SSAS processing, 401, 404–407
XML Schema Definition (XSD)

functions of, 76, 476
in-line XSD, accessing, 476
XSD files, generating, 142, 476–481

XML Source
data retrieval, 73–75
functions of, 14, 73, 142
ouput path, choosing, 478–481
XSD files, generating, 476–481

XML Task, 75–79
functions of, 9, 75
options of, 76–77
XML file, validating, 77–79
XSD files, generating, 142

XPATH, 76, 469–470
XSLT, 76

Z
ZipCodeExtract, 275
ZipLoad, 273

XML (continued)

bindex.indd 972bindex.indd 972 8/28/08 7:02:29 PM8/28/08 7:02:29 PM

